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Artificial intelligence in ovarian cancer histopathology: a
systematic review
Jack Breen 1✉, Katie Allen2, Kieran Zucker 3, Pratik Adusumilli 2,4, Andrew Scarsbrook 2,4, Geoff Hall3, Nicolas M. Orsi2,5 and
Nishant Ravikumar1,5

This study evaluates the quality of published research using artificial intelligence (AI) for ovarian cancer diagnosis or prognosis
using histopathology data. A systematic search of PubMed, Scopus, Web of Science, Cochrane CENTRAL, and WHO-ICTRP was
conducted up to May 19, 2023. Inclusion criteria required that AI was used for prognostic or diagnostic inferences in human ovarian
cancer histopathology images. Risk of bias was assessed using PROBAST. Information about each model was tabulated and
summary statistics were reported. The study was registered on PROSPERO (CRD42022334730) and PRISMA 2020 reporting
guidelines were followed. Searches identified 1573 records, of which 45 were eligible for inclusion. These studies contained 80
models of interest, including 37 diagnostic models, 22 prognostic models, and 21 other diagnostically relevant models. Common
tasks included treatment response prediction (11/80), malignancy status classification (10/80), stain quantification (9/80), and
histological subtyping (7/80). Models were developed using 1–1375 histopathology slides from 1–776 ovarian cancer patients. A
high or unclear risk of bias was found in all studies, most frequently due to limited analysis and incomplete reporting regarding
participant recruitment. Limited research has been conducted on the application of AI to histopathology images for diagnostic or
prognostic purposes in ovarian cancer, and none of the models have been demonstrated to be ready for real-world
implementation. Key aspects to accelerate clinical translation include transparent and comprehensive reporting of data provenance
and modelling approaches, and improved quantitative evaluation using cross-validation and external validations. This work was
funded by the Engineering and Physical Sciences Research Council.
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INTRODUCTION
Ovarian cancer is the eighth most common malignancy in women
worldwide1. It is notoriously difficult to detect and diagnose, with
ineffective screening2 and non-specific symptoms similar to those
caused by menopause3. Encompassing primary malignant
tumours of the ovaries, fallopian tubes, and peritoneum, the
disease has often started to spread within the abdomen at the
time of diagnosis (FIGO4 Stage 3). This typical late stage at
diagnosis makes ovarian cancer a particularly deadly disease, with
the 314,000 new cases diagnosed each year translating to 207,000
deaths per year globally1.
Most ovarian cancers are carcinomas (cancers of epithelial

origin) which predominantly fall into five histological subtypes:
high-grade serous, low-grade serous, clear cell, endometrioid, and
mucinous. Non-epithelial ovarian cancers are much less common
and include germ cell, sex cord-stromal, and mesenchymal
tumours. Ovarian cancer subtypes differ morphologically and
prognostically and have varying treatment options5. High-grade
serous carcinoma is the most common form of ovarian cancer,
accounting for approximately 70% of all cases6.
Histopathology, the examination of tissue specimens at the

cellular level, is the gold standard for ovarian cancer diagnosis.
Pathologists typically interpret tissue stained with haematoxylin
and eosin (H&E), though interpretation can be a subjective,
time-consuming process, with some tasks having a high level of
inter-observer variation7–9. In the assessment of difficult cases,
general pathologists may seek assistance from subspecialty

gynaecological pathology experts, and/or use ancillary tests,
such as immunohistochemistry (IHC). Referrals and ancillary
testing can be essential to the accuracy of the diagnostic
process but come at the cost of making it longer and more
expensive. Worldwide, pathologists are in much greater demand
than supply, with significant disparities in the number of
pathologists between countries10, and with better-supplied
countries still unable to meet demand11.
Traditionally, pathologists have analysed glass slides using a

light microscope. However, the implementation of a digital
workflow, where pathologists review scanned whole slide images
(WSIs) using a computer, is becoming more common. While digital
pathology uptake has likely been driven by efficiency benefits12, it
has created an opportunity for the development of automated
tools to assist pathologists. These tools often aim to improve the
accuracy, efficiency, objectivity, and consistency of diagnosis. Such
tools could help to alleviate the global workforce shortage of
pathologists, increasing diagnostic throughput and reducing the
demand for referrals and ancillary tests. This is an increasingly
active area of research13 and, for some malignancies, these
systems are starting to achieve clinical utility14.
In this study, we systematically reviewed all literature in which

artificial intelligence (AI) techniques (comprising both traditional
machine learning (ML) and deep learning methods) were applied
to digital pathology images for the diagnosis or prognosis of
ovarian cancer. This included research that focused on a single
diagnostic factor such as histological subtype and studies that
performed computer-aided diagnostic tasks such as tumour
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segmentation. The review characterises the state of the field,
describing which diagnostic and prognostic tasks have been
addressed, and assessing factors relevant to the clinical utility of
these methods, such as the risks of bias. Despite ovarian cancer
being a particularly difficult disease to detect and diagnose, and
the shortage of available pathologists, AI models have not yet
been implemented in clinical practice for this disease. This review
aims to provide insights and recommendations based on
published literature to improve the clinical utility of future
research, including reducing risks of bias, improving reproduci-
bility, and increasing generalisability.

RESULTS
As shown in Fig. 1, the literature searches returned a total of 1573
records, of which 557 were duplicates. Nine hundred and thirty
records were excluded during the screening of titles and abstracts,
and 41 were excluded based on full paper screening, including 3
records for which full articles could not be obtained. The
remaining 45 studies were included in the review, of which 11

were conference papers and 34 were journal papers. All accepted
studies were originally identified through searches of research
databases, with no records from trial registries meeting the
inclusion criteria. While the searches returned literature from as
early as 1949, all of the research which met the inclusion criteria
was published since 2010, with over 70% of the included literature
published since 2020. Study characteristics are shown in Table 1.
The 45 accepted articles contained 80 models of interest, details of
which are shown in Table 2.

Risk of bias assessment
The results of the PROBAST assessments are shown in Table 3.
While some studies contained multiple models of interest, none of
these contained models with different risk of bias scores for any
section of the PROBAST assessment, so one risk of bias analysis is
presented per paper. All models showed either a high overall risk
of bias (37/45) or an unclear overall risk of bias (8/45). Every high-
risk model had a high-risk score in the analysis section (37/45),
with several also being at high risk for participants (6/45),
predictors (11/45), or outcomes (13/45). Less than half of the

Fig. 1 PRISMA 2020 flowchart. PRISMA 2020 flowchart of the study identification and selection process for the systematic review. Records
were screened on titles and abstracts alone, and reports were assessed based on the full-text content. CENTRAL Central Register of Controlled
Trials. WHO-ICTRP World Health Organisation International Clinical Trial Registry Platform.
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studies achieved a low risk of bias in any domain (21/45), with
most low risks being found in the outcomes (16/45) and predictors
(9/45) sections. Nearly all of the papers had an unclear risk of bias
in at least one domain, most commonly the participants (36/45)
and predictors (25/45) domains. Qualitative summaries are
presented in Fig. 2.

Data synthesis results
Data in included literature. The number of participants in internal
datasets varied by orders of magnitude, with each study including
1–776 ovarian cancer patients, and one study including over
10,000 total patients across a range of 32 malignancies15. Most
research only used data from the five most common subtypes of
ovarian carcinoma, though one recent study included the use of
sex cord-stromal tumours16. Only one study explicitly included any
prospective data collection, and this was only for a small subset
which was not used for external validation17.
As shown in Fig. 3, the number of pathology slides used was

often much greater than the number of patients included, with
three studies using over 1000 slides from ovarian cancer
patients18–20. In most of the studies, model development samples
were WSIs containing resected or biopsied tissue (34/45), with
others using individual tissue microarray (TMA) core images (5/45)
or pre-cropped digital pathology images (3/45). Most studies used
H&E-stained tissue (33/45) and others used a variety of IHC stains
(11/45), with no two papers reporting the use of the same IHC
stains. Some studies included multi-modal approaches, using
genomics 17,21–24, proteomics21,24, transcriptomics24, and radio-
mics17 data alongside histopathological data.
The most commonly used data source was The Cancer Genome

Atlas (TCGA) (18/45), a project from which over 30,000 digital
pathology images from 33 malignancies are publicly available. The
ovarian cancer subset, TCGA-OV25, contains 1481 WSIs from 590
cases of ovarian serous carcinoma (mostly, but not exclusively,
high-grade), with corresponding genomic, transcriptomic, and
clinical data. This includes slides from eight data centres in the
United States, with most slides containing frozen tissue sections
(1374/1481) rather than formalin-fixed, paraffin-embedded (FFPE)
sections. Other recurring data sources were the University of
British Columbia Ovarian Cancer Research Program (OVCARE)
repository26–28, the Transcanadian study29,30, and clinical records
at the Mayo Clinic31,32, Tri-Service General Hospital33–35, and
Memorial Sloan Kettering Cancer Center17,36. All other researchers
either used a unique data source (12/45) or did not report the
provenance of their data (8/45). TCGA-OV, OVCARE, and the
Transcanadian study are all multi-centre datasets. Aside from
these, few studies reported the use of multi-centre
data17,24,28,37–39. Only two studies reported the use of multiple
slide scanners, with every slide scanned on one of two available
scanners27,28. The countries from which data were sourced
included Canada, China, Finland, France, Germany, Italy, Japan,
the Netherlands, South Korea, Taiwan, the United Kingdom, and
the United States of America.

Methods in included literature. There was a total of 80 models of
interest in the 45 included papers, with each paper containing 1–6
such models. There were 37 diagnostic models, 22 prognostic
models, and 21 other models predicting diagnostically relevant
information. Diagnostic model outcomes included the classifica-
tion of malignancy status (10/37), histological subtype (7/37),
primary cancer type (5/37), genetic mutation status (4/37),
tumour-stroma reaction level (3/37), grade (2/37), transcriptomic
subtype (2/37), stage (1/37), microsatellite instability status (1/37),
epithelial-mesenchymal transition status (1/37), and homologous
recombination deficiency status (1/37). Prognostic models
included the prediction of treatment response (11/23), overall
survival (6/23), progression-free survival (3/23), and recurrenceTa
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(2/23). The other models performed tasks that could be used to
assist pathologists in analysing pathology images, including
measuring the quantity/intensity of staining, generating segmen-
tation masks, and classifying tissue/cell types.
A variety of models were used, with the most common types

being convolutional neural network (CNN) (41/80), support vector
machine (SVM) (10/80), and random forest (6/80). CNN architectures
included GoogLeNet40, VGG1619,32, VGG1926,28, InceptionV333–35,38,
ResNet1817,27,28,39,41,42, ResNet3443, ResNet5016,44,45, ResNet18236,
and MaskRCNN32. Novel CNNs typically used multiple standardised
blocks involving convolutional, normalisation, activation, and/or

pooling layers22,46,47, with two studies also including attention
modules20,35. One study generated their novel architecture by using
a topology optimisation approach on a standard VGG1623.
Most researchers split their original images into patches to be

separately processed, with patch sizes ranging from 60×60 to
2048×2048 pixels, the most common being 512×512 pixels (19/56)
and 256×256 pixels (12/56). A range of feature extraction techniques
were employed, including both hand-crafted/pre-defined features
(23/80) and features that were automatically learned by the model
(51/80). Hand-crafted features included a plethora of textural,
chromatic, and cellular and nuclear morphological features. Hand-

Table 2. Characteristics of the 80 models of interest from the 45 papers included in this systematic review, grouped by model outcome.

Diagnosis 
outcome Publica�on Internal

par�cipants

Internal 
pathology

images

Other 
dataa

Stain
type

Original
image size

Patch size
(pixels) Magnifica�on(s) Feature 

extrac�on
Histopathological 

features Final model Predic�on
precision Classes

External 
valida�on 

data
Metric Internal

results

Internal 
variability
(measure)

External
results

External 
variability
(measure)

Malignancy 
status 

Janowczyk 
201152 6 11 IHC 1400x1400 Unclear 40x Hand-

cra�ed
Texture, cellular 

morphology

Probabilis�c 
Boos�ng 

Tree
Patch 2 - Tumour, stroma

Monte 
Carlo 
cross-

valida�on 
(5 reps)

AUC 0.8341

Kothari 
201218 571 1301 H&E WSI 512x512 Unclear Hand-

cra�ed
Colour, texture, cellular 
and nuclear morphology SVM Patch 2 - Tumour, non-

tumour

Single 
train/test 

split
Accuracy 90%

Yu 202019 587 1375 H&E WSI Unclear Unclear Learned CNN features (VGG16) CNN (VGG16) WSI 2 - Malignant, 
benign

Monte 
Carlo 
cross-

valida�on 
(3 reps)

AUC 0.975 ±0.001 
(unclear)

Jiang 202131 30 ≥30 H&E WSI 512x512 40x Hand-
cra�ed

Colour, cellular and 
nuclear morphology SVM Patch 2 - HGSC, Serous 

borderline tumour Unclear
Accuracy 90.64%

AUC 0.96

Shin 202138 142 ≥142 H&E WSI 256x256 Unclear Learned CNN features (Incep�on 
V3)

CNN 
(Incep�on 

V3)
Patch 2 - Cancer, non-

cancer
External 

valida�on

32 WSIs 
from

different 
centre

Accuracy 98.3% 80.8%

AUC 0.998
0.995-
0.999 

(95% CI)
0.916

0.899–
0.930 

(95% CI)

Boehm 
202217 283 ≥283 H&E WSI 128x128 Unclear Learned CNN features 

(ResNet18)
CNN 

(ResNet18) Patch 4 - Tumour, stroma, 
fat, necrosis

4-fold 
cross-

valida�on
Accuracy 88%

Farahani 
202228 ≤416 416 H&E WSI 512x512 20x Learned CNN features 

(ResNet18)
CNN 

(ResNet18) Patch 2 - Tumour, stroma
3-fold 
cross-

valida�on

Balanced 
accuracy 96.99%

AUC 0.9441

Mayer 
202239 ≤101 101 H&E WSI 512x512 Unclear Learned CNN features 

(ResNet18)

CNN 
Ensemble 

(ResNet18)
Patch 2 - Cancer, non-

cancer

Monte 
Carlo 
cross-

valida�on 
(10 reps) 

& external 
valida�on

41 WSIs 
from

different 
centre

Accuracy per 
pa�ent 56.3%-93.2%

Unclear 
plot 

(IQR & 
range)

Unclear 
plot

Unclear 
plot 

(IQR & 
Range)

Salguero 
202267 18 ≥18 H&E WSI 100x100 40x Hand-

cra�ed
Colour, texture, cellular 

morphology SVM Patch 2 - Cancer, non-
cancer

Single 
train/test 

split
Accuracy 73%

Meng 202316 80 94 H&E WSI 512x512 Unclear Learned CNN features 
(ResNet50)

CNN (novel 
STT-BOX) WSI 2 - Malignant, 

benign

3-fold 
cross-

valida�on 
(non-

ovarian) & 
external 

valida�on 
(ovarian)

50 WSIs 
from 30 
pa�ents

AUC per 
subtype

0.9815-
0.9953 0.8883

Histological
subtype

BenTaieb 
201529 80 80 H&E WSI Unclear 20x, 90x Learned CNN features 

(deconvolu�on network) SVM WSI 5 - HGSC, LGSC, CCC, 
MC, EC

Monte 
Carlo 
cross-

valida�on 
(3 reps)

Accuracy 91.0% ±1.0% 
(unclear)

AUC 0.86

BenTaieb 
201630 80 80 H&E WSI 500x500 20x, 40x Hand-

cra�ed
Colour, texture, cellular 
morphology, cytology SVM WSI 5 - HGSC, LGSC, CCC, 

MC, EC

Leave-
one-

pa�ent-
out 

cross-
valida�on 

(5 reps)

Accuracy 95.0% ±1.5% 
(one SD)

BenTaieb 
201748 133 133 H&E WSI 500x500 4x, 10x, 20x, 

40x Learned CNN features (novel K-
means) SVM WSI 5 - HGSC, LGSC, CCC, 

MC, EC

Single 
train/test 

split
Accuracy 90%

Levine 
202026 ≤406 406 H&E WSI 256x256 40x Learned CNN features (VGG19) CNN (VGG19) Patch 5 - HGSC, LGSC, CCC, 

MC, EC

Monte 
Carlo 
cross-

valida�on 
(10 reps)

Accuracy 70.87% ±6.35% 
(one SD)

Balanced 
accuracy 75.15% ±10.44% 

(one SD)

AUC 0.9177 ±2.30% 
(one SD)

Boschman 
202227 160 308 H&E WSI 256x256 20x Learned CNN features 

(ResNet18)
CNN 

(ResNet18) WSI 5 - HGSC, LGSC, CCC, 
MC, EC

External 
valida�on

60 WSIs 
from

different 
centre

AUC 0.97
Unclear 

plot 
(unclear)

0.94
Unclear 

plot 
(unclear)

Farahani 
202228 485 948 H&E WSI 512x512 20x Learned CNN features (VGG19) CNN (VGG19) WSI 5 - HGSC, LGSC, CCC, 

MC, EC

3-fold 
cross-

valida�on 
& 

external 
valida�on

60 WSIs 
from

different 
centre

Balanced 
accuracy 81.38% 80.97%

AUC 0.9475 0.9469

Kasture 
202246 ≤500 500 H&E 227x227 NA 20x Learned CNN features (novel KK-

Net)
CNN (novel 

KK-Net) Patch 5 - Serous, MC, CCC, 
EC, Non-cancer

10-fold 
cross-

valida�on

Accuracy 91%

AUC 0.95

Primary 
cancer type

Kalra 202015 933 1039 H&E WSI 1000x1000 20x Learned NNs features (unclear 
architectures)

Yo�xel 
Search WSI

4 - Ovarian, uterine 
carcinosarcoma, 

uterine endometrial, 
cervical (FFPE slides)

Leave-
one-

pa�ent-
out cross-
valida�on

Accuracy 
(Ovarian) 66.98%

Kalra 202015 1450 2216 H&E WSI 1000x1000 20x Learned NNs features (unclear 
architectures)

Yo�xel 
Search WSI

4 - Ovarian, uterine 
carcinosarcoma, 

uterine endometrial, 
cervical (frozen 

slides)

Leave-
one-

pa�ent-
out cross-
valida�on

Accuracy 
(Ovarian) 98.98%

Kalra 202015 9484 11,561 H&E WSI 1000x1000 20x Learned NNs features (unclear 
architectures)

Yo�xel 
Search WSI

13 - Gynaecological, 
brain, pulmonary, 

prostate/tes�s, 
breast, … (FFPE 

slides)

Leave-
one-

pa�ent-
out cross-
valida�on

Accuracy 
(Gynaecological) 68.86%

Kalra 202015 10,571 14,887 H&E WSI 1000x1000 20x Learned NNs features (unclear 
architectures)

Yo�xel 
Search WSI

13 - Gynaecological, 
brain, pulmonary, 

prostate/tes�s, 
breast, … (frozen 

slides)

Leave-
one-

pa�ent-
out cross-
valida�on

Accuracy 
(Gynaecological) 66.89%

Valida�on 
type
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crafted features were commonly used as inputs to classical ML
methods, such as SVM and random forest models. Learned features
were typically extracted using a CNN, which was often also used for
classification.
Despite the common use of patches, most models made

predictions at the WSI level (29/80), TMA core level (18/80), or
patient level (6/80), requiring aggregation of patch-level
information. Two distinct aggregation approaches were used,
one aggregating before modelling and one aggregating after
modelling. The former approach requires the generation of slide-
level features before modelling, the latter requires the

aggregation of patch-level model outputs to make slide-level
predictions. Slide-level features were generated using summa-
tion16, averaging21,24,36, attention-based weighted aver-
aging20,41,42,44,45, concatenation15,30, as well as more complex
embedding approaches using Fisher vector encoding29 and
k-means clustering48. Patch-level model outputs were aggre-
gated to generate slide-level predictions by taking the max-
imum22,35, median43, or average23, using voting strategies27,34, or
using a random forest classifier28. These approaches are all
examples of multiple instance learning (MIL), though few models
of interest were reported using this terminology22,41,42,44.

Table 2 continued

Ramasamy 
202354 ≤776 776 Unclear WSI Unclear Unclear Learned CNN features (novel 

architecture) CNN (novel) WSI 2 - ovarian cancer, 
non-ovarian cancer

5-fold 
cross-

valida�on
Accuracy 99.2%

Gene�c
muta�on

status

Zeng 202124 229 ≥229 H&E WSI 1000x1000 Unclear Hand-
cra�ed

Texture, cellular and 
nuclear morphology

Random 
Forest Pa�ent 2 - BRCA1 Mutated, 

not mutated

Single 
train/test 

split
AUC 0.952

Zeng 202124 229 ≥229 H&E WSI 1000x1000 Unclear Hand-
cra�ed

Texture, cellular and 
nuclear morphology

Random 
Forest Pa�ent 2 - BRCA2 Mutated, 

not mutated

Single 
train/test 

split
AUC 0.912

Nero 202244 664 664 H&E WSI 256x256 Unclear Learned CNN features 
(ResNet50) CNN (CLAM) WSI 2 - BRCA1/2 

Mutated, wild-type

Single 
train/test 

split
AUC 0.59

Ho 202336 609 609 H&E WSI 224x224 5x Learned CNN features 
(ResNet182)

CNN 
(ResNet182) WSI 2 - BRCA1/2 

Mutated, wild-type

Single 
train/test 

split
AUC 0.43

Tumour-stroma
reac�on

Jiang 202232 ≤306 ≤306 H&E WSI 256x256 Unclear Learned CNN features (Mask-
RCNN) CNN (VGG16) Patch

3 - Low, 
intermediate, high 

(fibrosis score)

Single 
train/test 

split

Sensi�vity per 
class 0.91-0.93

Jiang 202232 ≤306 ≤306 H&E WSI 256x256 Unclear Learned CNN features (Mask-
RCNN) CNN (VGG16) Patch

3 - Low, 
intermediate, high 
(cellularity score)

Single 
train/test 

split

Sensi�vity per 
class 0.79-0.95

Jiang 202232 ≤306 ≤306 H&E WSI 256x256 Unclear Learned CNN features (Mask-
RCNN) CNN (VGG16) Patch

3 - Low, 
intermediate, high 
(orienta�on score)

Single 
train/test 

split

Sensi�vity per 
class 0.74-0.95

Grade

Poruthoor 
201321 387 ≥387 H&E WSI 512x512 Unclear Hand-

cra�ed
Colour, texture, cellular 
and nuclear morphology SVM WSI 2 - Grade 1-2, Grade 

3-4

Monte 
Carlo 
cross-

valida�on 
(15 reps)

Accuracy 88%
Unclear 

plot (one 
SD)

Yu 202019 570 ≤1358 H&E WSI Unclear Unclear Learned CNN features (VGG16) CNN (VGG16) WSI 2 - Low-to-
moderate, high

Monte 
Carlo 
cross-

valida�on 
(3 reps)

AUC 0.812 ±0.088 
(unclear)

Transcriptomic
subtype

Yu 202019 553 ≤1341 H&E WSI Unclear Unclear Learned CNN features (VGG16) CNN (VGG16) WSI

4 - Prolifera�ve, 
differen�ated, 

immunoreac�ve, 
mesenchymal

5-fold 
cross-

valida�on
p-value <0.0001

Zeng 202124 229 ≥229 H&E WSI 1000x1000 Unclear Hand-
cra�ed

Texture, cellular and 
nuclear morphology

Random 
Forest Pa�ent

4 - Prolifera�ve, 
differen�ated, 

immunoreac�ve, 
mesenchymal

Single 
train/test 

split
AUC per class 0.918-0.961

Stage Ghoniem 
202123 587 587 G H&E WSI 224x224 Unclear Learned CNN features (altered 

VGG16)
CNN (altered 

VGG16) WSI 5 - I, II, III, IV, Not 
available

5-fold 
cross-

valida�on 
(20 reps)

Accuracy 98.87%

Microsatellite
instability Zeng 202124 229 ≥229 H&E WSI 1000x1000 Unclear Hand-

cra�ed
Texture, cellular and 
nuclear morphology

Random 
Forest Pa�ent 3 - High instability, 

stable, NA

Single 
train/test 

split

AUC (High 
instability) 0.919

AUC (Stable) 0.924

Epithelial-
mesenchymal 

transi�on status
Hu 202241 ≤70 70 H&E WSI 256x256 40x Learned CNN features 

(ResNet18)
CNN (novel 

adInter-MIL) WSI 2 - High, low

Monte 
Carlo 
cross-

valida�on 
(10 reps)

Balanced 
accuracy 85.45% ±0.48% 

(variance)

AUC 0.7455 ±0.0043 
(variance)

HRD status Lazard 
202242 ≤90 90 H&E WSI 224x224 20x Learned CNN features 

(ResNet18) NN WSI
2 - Homologous 
Recombina�on 

Deficient, Proficient
Unclear AUC 0.73

Prognosis 
outcome Publica�on Internal

par�cipants

Internal 
pathology

images

Other 
dataa

Stain
type

Original
image size

Patch size
(pixels) Magnifica�on(s) Feature 

extrac�on
Histopathological 

features Final model Predic�on
precision Classes

External 
valida�on 

data
Metric Internal

results

Internal 
variability
(measure)

External
results

External 
variab ility
(measure)

Treatment
response

Yaar 202022 220 ≥220 G H&E WSI 512x512 20x Learned CNN features (novel) CNN WSI 2 - Chemo-resistant, 
chemo-sensi�ve

5-fold 
cross-

valida�on
AUC 0.79 ±0.07 

(one SD)

Yu 202019 277 ≤1065 H&E WSI Unclear Unclear Learned CNN features (VGG16) CNN (VGG16) WSI 2 - Early relapse, late 
relapse

5-fold 
cross-

valida�on
p-value 0.003

Wang 
202233 ≤180 180 IHC TMA 512x512 20x Learned CNN features (modified 

Incep�on V3)

CNN 
(modified 

Incep�on V3)
TMA 2 - Effec�ve, invalid 

(AIM2 stain)

5-fold 
cross-

valida�on
AUC 0.91 ±0.05 

(unclear)

Wang 
202233 ≤180 180 IHC TMA 512x512 20x Learned CNN features (modified 

Incep�on V3)

CNN 
(modified 

Incep�on V3)
TMA 2 - Effec�ve, invalid 

(C3 stain)

5-fold 
cross-

valida�on
AUC 0.78 ±0.12 

(unclear)

Wang 
202233 ≤180 180 IHC TMA 512x512 20x Learned CNN features (modified 

Incep�on V3)

CNN 
(modified 

Incep�on V3)
TMA 2 - Effec�ve, invalid 

(C5 stain)

5-fold 
cross-

valida�on
AUC 0.66 ±0.07 

(unclear)

Wang 
202233 ≤180 180 IHC TMA 512x512 20x Learned CNN features (modified 

Incep�on V3)

CNN 
(modified 

Incep�on V3)
TMA 2 - Effec�ve, invalid 

(NLRP3 stain)

5-fold 
cross-

valida�on
AUC 0.55 ±0.08 

(unclear)

Wang 
202234 78 288 H&E WSI 512x512 Unclear 

(mul�ple) Learned CNN features (Incep�on
V3)

CNN 
(Incep�on 

V3)
WSI 2 - Effec�ve, invalid

5-fold 
cross-

valida�on
& external 
valida�on

175 TMAs 
from

71 
pa�ents

Accuracy 88.2% ±6% 
(unclear) 77.5%

Wang 202335 ≤180 180 IHC TMA 512x512 20x Learned CNN features (novel) CNN 
(Incep�onV3) TMA 2 - Effec�ve, invalid 

(PKM2 stain)

5-fold 
cross-

valida�on
AUC 0.99 ±0.01 

(unclear)

Wang 202335 ≤180 180 IHC TMA 512x512 20x Learned CNN features (novel) CNN 
(Incep�onV3) TMA 2 - Effec�ve, invalid 

(Ang-2 stain)

5-fold 
cross-

valida�on
AUC 1.00 ±0.01 

(unclear)

Wang 202335 ≤180 180 IHC TMA 512x512 20x Learned CNN features (novel) CNN 
(Incep�onV3) TMA 2 - Effec�ve, invalid 

(VEGF stain)

5-fold 
cross-

valida�on
AUC 0.89 ±0.08 

(unclear)

Wang 202335 ≤180 180 IHC TMA 512x512 20x Learned CNN features (novel)
CNN 

Ensemble 
(Incep�onV3)

TMA 2 - Effec�ve, invalid 
(PKM2+Ang-2 stain)

5-fold 
cross-

valida�on
AUC 1.00 ±0.00 

(unclear)

Overall
survival

Poruthoor 
201321 382 ≥382 G,P H&E WSI 512x512 Unclear Hand-

cra�ed
Colour, texture, cellular 
and nuclear morphology SVM WSI 2 - <5 years, ≥5 years

Monte 
Carlo 
cross-

valida�on 
(15 reps)

Accuracy 55%
Unclear 

plot (one 
SD)

Valida�on 
type
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Most studies included segmentation at some stage, with
many of these analysing tumour/stain segmentation as a
model outcome32,36,37,47,49–54. Some other studies used seg-
mentation to determine regions of interest for further
modelling, either simply separating tissue from back-
ground15,18,44,45, or using tumour segmentation to select the
most relevant tissue regions33–35,55,56. One study also used

segmentation to detect individual cells for classification57.
Some studies also used segmentation in determining hand-
crafted features relating to the quantity and morphology of
different tissues, cells, and nuclei17,18,21,24,30,31.
While attention-based approaches have been applied to other

malignancies for several years58,59, they were only seen in the most
recent ovarian cancer studies20,28,33–35,41,42,44,45, and none of the

Table 2 continued

Zeng 202124 229 ≥229 G,P,T H&E WSI 1000x1000 Unclear Hand-
cra�ed

Texture, cellular and 
nuclear morphology

Random 
Forest Pa�ent 2 - High risk, low risk External 

valida�on

TMAs 
from

92 
pa�ents

Hazard ra�o 18.23
10.34-
34.38 

(95% CI)
p-value <0.0001 0.0097

Boehm 
202217 444 ≥283 R H&E WSI 128x128 Unclear Hand-

cra�ed
Colour, texture, cellular 
and nuclear morphology Cox model WSI Risk score

Single 
train/test 

split
C-index 0.61

0.594-
0.625 

(95% CI)

Liu 202220 583 1296 H&E WSI 512x512 20x Learned CNN features (novel 
DeepConvA�en�onSurv)

CNN (novel 
DCAS) Pa�ent Risk score

Single 
train/test 

split
C-index 0.98 ±0.0085 

(unclear)

Yokomizo 
202243 110 ≥110 H&E WSI 255x255 Unclear Learned CNN features 

(ResNet34)
CNN 

(ResNet34) TMA 2 - Short, long

Monte 
Carlo 
cross-

valida�on 
(10 reps)

AUC "~0.95"

Wu 202345 90 90 H&E WSI 256x256 Unclear Learned CNN features 
(ResNet50) CNN (CLAM) TMA Risk score

5-fold 
cross-

valida�on
C-index 0.5789

0.5096-
0.6053 

(CV range)

Progression-
free survival

Laury 202156 52 227 H&E WSI Unclear Unclear Learned CNN features (unclear 
architecture) NN WSI 2 - <6 months, >18 

months

Single 
train/test 

split
Accuracy 82%

Boehm 
202217 422 ≥261 G,R H&E WSI 128x128 Unclear Hand-

cra�ed
Colour, texture, cellular 
and nuclear morphology Cox model WSI 2 - High, low

Single 
train/test 

split
p-value 0.040

Yokomizo 
202243 110 ≥110 H&E WSI 255x255 Unclear Learned CNN features 

(ResNet34)
CNN 

(ResNet34) TMA 2 - Short, long

Monte 
Carlo 
cross-

valida�on 
(10 reps)

AUC 0.98

Relapse

Nero 202244 656 656 H&E WSI 256x256 Unclear Learned CNN features 
(ResNet50) CNN (CLAM) WSI

2 -
Relapse/progression, 

no 
relapse/progression

Single 
train/test 

split
AUC 0.714

Yokomizo 
202243 110 ≥110 H&E WSI 255x255 Unclear Learned CNN features 

(ResNet34)
CNN 

(ResNet34) TMA 2 - Recurrent, non-
recurrent

Monte 
Carlo 
cross-

valida�on 
(10 reps)

AUC 0.98

Other outcome Publica�on Internal
par�cipants

Internal 
pathology 

images

Other 
dataa

Stain
type

Original
image size

Patch size
(pixels) Magnifica�on(s) Feature 

extrac�on
Histopathological 

features Final model Predic�on
precision Classes

External 
valida�on 

data
Metric Internal

results

Internal 
variability
(measure)

External
results

External 
variability
(measure)

Stain 
quan�ty/intensity

Gentles 
202155 33 ≥66 IHC TMA NA 20x Unclear Unclear Genie 

Classifier TMA ATM stain H-score 
(0-18) 

Single test 
set R	 0.1833

Gentles 
202155 33 ≥66 IHC TMA NA 20x Unclear Unclear Genie 

Classifier TMA ATR stain H-score (0-
18) 

Single test 
set R	 0.4330

Gentles 
202155 33 ≥66 IHC TMA NA 20x Unclear Unclear Genie 

Classifier TMA DNAPKcs stain H-
score (0-18) 

Single test 
set R	 0.6296

Gentles 
202155 33 ≥66 IHC TMA NA 20x Unclear Unclear Genie 

Classifier TMA Ku70 stain H-score 
(0-18) 

Single test 
set R	 0.5891

Gentles 
202155 33 ≥66 IHC TMA NA 20x Unclear Unclear Genie 

Classifier TMA PAR stain H-score (0-
18) 

Single test 
set R	 0.3978

Gentles 
202155 33 ≥66 IHC TMA NA 20x Unclear Unclear Genie 

Classifier TMA RPA stain H-score (0-
18) 

Single test 
set

R	 0.4453

Elie 202261 25 25 IHC WSI Unclear 20x Hand-
cra�ed Colour, texture

Gaussian 
Mixture 
Model

Patch 3 - Mcl-1 high, 
medium, low None Accuracy per 

pa�ent
96.94%-
99.51%

Elie 202261 25 25 IHC WSI Unclear 20x Hand-
cra�ed Colour, texture

Gaussian 
Mixture 
Model

Patch 3 - Bim high, 
medium, low None Accuracy per 

pa�ent
92.77%-
95.75%

Elie 202261 25 25 IHC WSI Unclear 20x Hand-
cra�ed Colour, texture

Gaussian 
Mixture 
Model

Patch 3 - P-ERK high, 
medium, low None Accuracy per 

pa�ent 89.08%-100%

Tumour 
segmenta�on

Signolle 
201051 Unclear Unclear IHC WSI 2048x2048 20x Hand-

cra�ed Texture Hidden 
Markov Tree Pixel

5 - Cancer, 
inflammatory 
stroma, loose 

connec�ve �ssue,
cellular stroma, 

background

Single 
train/test 

split
Accuracy 71.50% ±12.83 

(one SD)

Jiang 202232 306 306 H&E WSI 256x256 Unclear Learned CNN features (Mask-
RCNN)

CNN (Mask-
RCNN) Pixel 2 - Tumour, stroma

Single 
train/test 

split
Dice coefficient 93.5%

Unclear 
plot 

(unclear)

Kowalski 
202247 ≤26 26 H&E 1698x1242 100x200 Unclear Learned CNN features (novel 

architecture) CNN (novel) Pixel 2 - Cancer, healthy
Single 

train/test 
split

Accuracy 82%

Ho 202336 39 39 H&E WSI 256x256 5x, 10x, 20x Learned CNN features (novel 
architecture)

CNN (novel 
DMMN) Pixel 2 - Cancer, non-

cancer

Single 
train/test 

split

Intersec�on 
over union 0.74

Ramasamy 
202354 ≤776 776 Unclear WSI Unclear Unclear Learned CNN features (novel 

architecture) CNN (novel) Pixel 2 - Tumour, non-
tumour

5-fold 
cross-

valida�on
Dice coefficient 92%

Stain 
segmenta�on

Dong 
201049 1 1 IHC Unclear NA Unclear Hand-

cra�ed Colour ISODATA 
clustering Pixel 2 - Posi�ve, Nega�ve None Qualita�ve "Sa�sfactory"

Dong 
201050 1 1 IHC Unclear NA Unclear Hand-

cra�ed Colour OTSU 
thresholding Pixel 2 - Posi�ve, Nega�ve None Qualita�ve "Sa�sfactory"

Janowczyk 
201253 100 ≥500 IHC TMA NA 20x Hand-

cra�ed Colour HNCuts 
(novel) Pixel 2 - Posi�ve, Nega�ve Single test 

set

Sensi�vity 59.24% ±7.36% 
(variance)

Specificity 99.01% ±0.56% 
(variance)

Cell type

Lorsakul 
201766 ≤45 45 IHC WSI Unclear 20x Hand-

cra�ed Nuclear morphology Random 
Forest Cell

5 - Cancer, 
carcinoma-
associated 

fibroblast, non-
tumour, 

background, ar�fact

5-fold 
cross-

valida�on
Accuracy 91.7%

Heindl 
201857 514 514 H&E WSI 2000x2000 Unclear Hand-

cra�ed
Texture, cellular 

morphology SVM Cell 3 - Cancer, stroma, 
lymphocyte

Single 
train/test 

split

Balanced 
accuracy per 

class

80.64%-
85.05%

Accuracy 91.8%

AUC 0.974

Paijens 
202137 268 268 IHC TMA Unclear Unclear Learned NN features (unclear 

architecture) NN Pixel None None NA

Valida�on 
type

2 - Epithelium, 
stroma

2 - Epithelium, 
stroma

Du 201840 ≤154 154 H&E Unclear 60x60 Unclear Learned SVM SuperpixelCNN features 
(GoogLeNet)

Single 
train/test 

split
Tissue type

SVM support vector machine, CNN convolutional neural network, AUC area under the receiver operating characteristic (ROC) curve, HGSC high-grade serous
carcinoma, LGSC low-grade serous carcinoma, CCC clear cell carcinoma, MCmucinous carcinoma, EC endometrioid carcinoma, H&E haematoxylin and eosin, IHC
immunohistochemistry, TMA individual cores from tissue microarrays, WSI whole slide images of biopsy or resection specimens.
aOther data types are Genomics (G), Proteomics (P), Radiomics (R), and Transcriptomics (T).
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methods included self-attention, an increasingly popular method
for other malignancies60. Most models were deterministic, though
hidden Markov trees51, probabilistic boosting trees52, and Gaussian
mixture models61 were also used. Aside from the common use of
low-resolution images to detect and remove non-tissue areas,
images were typically analysed at a single resolution, with only six
papers including multi-magnification techniques in their models of

interest. Four of these combined features from different resolutions
for modelling29,30,36,48, and the other two used different magnifica-
tions for selecting informative tissue regions and for modelling33,34.
Out of the papers for which it could be determined, the most
common modelling magnifications were ×20 (35/41) and ×40 (7/
41). Few models integrated histopathology data with other
modalities (6/80). Multi-modal approaches included the concatena-
tion of separately extracted uni-modal features before model-
ling21,23,24, the amalgamation of uni-modal predictions from
separate models17, and a teacher–student approach where multiple
modalities were used in model training but only histopathology
data was used for prediction22.

Analysis in included literature. Analyses were limited, with less
than half of the model outcomes being evaluated with cross-
validation (39/80) and with very few externally validated using
independent ovarian cancer data (7/80), despite small internal
cohort sizes. Cross-validation methods included k-fold (22/39)
with 3–10 folds, Monte Carlo (12/39) with 3–15 repeats, and
leave-one-patient-out cross-validations (5/39). Some other
papers included cross-validation on the training set to select
hyperparameters but used only a small unseen test set from the
same data source for evaluation. Externally validated models
were all trained with WSIs, with validations either performed on
TMA cores (2/7) or WSIs from independent data sources (5/7),
with two of these explicitly using different scanners to digitise
internal and external data27,28. Some reported methods were
externally validated with data from non-ovarian malignancies,
but none of these included ovarian cancer data in any capacity,
so were not included in the review. However, there was one
method which trained with only gastrointestinal tumour data
and externally validated with ovarian tumour data16.
Most classification models were evaluated using accuracy,

balanced accuracy, and/or area under the receiver operating
characteristic curve (AUC), with one exception where only a
p-value was reported measuring the association between
histological features and transcriptomic subtypes based on a
Kruskal–Wallis test19. Some models were also evaluated using
the F1-score, which we chose not to tabulate (in Fig. 3) as the
other metrics were reported more consistently. Survival model
performance was typically reported using AUC, with other
metrics including p-value, accuracy, hazard ratios, and C-index,
which is similar to AUC but can account for censoring.
Segmentation models were almost all evaluated differently from
each other, with different studies reporting AUC, accuracy, Dice
coefficient, intersection over union, sensitivity, specificity, and
qualitative evaluations. Regression models were all evaluated
using the coefficient of determination (R2-statistic). For some
models, performance was broken down per patient39,61, per
subtype16, or per class15,24,32,57, without an aggregated, holistic
measure of model performance.
The variability of model performance was not frequently

reported (33/94), and when it was reported it was often
incomplete. This included cases where it was unclear what the
intervals represented (95% confidence interval, one standard
deviation, variation, etc.), or not clear what the exact bounds of
the interval were due to results being plotted but not explicitly
stated. Within the entire review, there were only three examples
in which variability was reported during external valida-
tion27,38,39, only one of which clearly reported both the bounds
and the type of the interval38. No studies performed any
Bayesian form of uncertainty quantification. Reported results
are shown in Table 2, though direct comparisons between the
performance of different models should be treated with caution
due to the diversity of data and validation methods used to
evaluate different models, the lack of variability measures, the
consistently high risks of bias, and the heterogeneity in
reported metrics.

Table 3. PROBAST risk of bias assessment results for the 45 papers
included in this review.

Publication Participants Predictors Outcome Analysis Overall

Dong 201049 High High High High High

Dong 201050 High High High High High

Signolle 201051 Unclear Unclear High High High

Janowczyk
201152

Unclear Unclear Low High High

Janowczyk
201253

Unclear High Unclear High High

Kothari 201218 Unclear Low Low Unclear Unclear

Poruthoor 201321 Unclear High High High High

BenTaieb 201529 Unclear Unclear Low High High

BenTaieb 201630 Unclear High Unclear High High

BenTaieb 201748 Unclear Unclear Low High High

Lorsakul 201766 Unclear Unclear High High High

Du 201840 Unclear Unclear Unclear Unclear Unclear

Heindl 201857 Unclear Low Low High High

Kalra 202015 Unclear Low Low High High

Levine 202026 Unclear Low Low Unclear Unclear

Yaar 202022 Unclear Unclear Low High High

Yu 202019 Unclear Low Low High High

Gentles 202155 High Unclear High High High

Ghoniem 202123 Unclear Unclear Unclear High High

Jiang 202131 High High Unclear High High

Laury 202156 Low High High High High

Paijens 202137 Low High Unclear High High

Shin 202138 Unclear Unclear Unclear High High

Zeng 202124 Unclear Unclear Low High High

Boehm 202217 Unclear High Unclear High High

Boschman
202227

Unclear Low Low High High

Elie 202261 Unclear Low High High High

Farahani 202228 Unclear Unclear Low Unclear Unclear

Hu 202241 Unclear Unclear Unclear Unclear Unclear

Jiang 202232 Unclear Unclear High High High

Kasture 202246 High High High High High

Kowalski 202247 Unclear Unclear Unclear High High

Lazard 202242 Unclear Unclear Unclear Unclear Unclear

Liu 202220 Unclear Unclear Unclear Unclear Unclear

Mayer 202239 Unclear Unclear High High High

Nero 202244 Unclear Low High High High

Salguero 202267 Unclear Unclear Low High High

Wang 202233 Unclear Unclear Unclear High High

Wang 202234 Unclear Unclear Low High High

Yokomizo 202243 Low Low Unclear Unclear Unclear

Ho 202336 Unclear Unclear Unclear High High

Meng 202316 Unclear Unclear Low High High

Ramasamy
202354

High High High High High

Wang 202335 Unclear Unclear Unclear High High

Wu 202345 Unclear Unclear Low High High

This is presented as one row for each paper because every paper that
contained multiple models of interest was found to have the same risk of
bias for every model.
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DISCUSSION
The vast majority of published research on AI for diagnostic or
prognostic purposes in ovarian cancer histopathology was found
to be at a high risk of bias due to issues within the analyses
performed. Researchers often used a limited quantity of data and
conducted analyses on a single train-test data split without using
any methods to account for overfitting and model optimism
(cross-validation, bootstrapping, external validation). These limita-
tions are common in gynaecological AI research using other data
types, with recent reviews pointing to poor clinical utility caused
by predominantly retrospective studies using limited data62,63 and
limited methodologies with weak validation, which risk model
performance being overestimated64,65.
The more robust analyses included one study in which several

relevant metrics were evaluated using 10 repeats of Monte Carlo
cross-validation on a set of 406 WSIs, with standard deviations
reported for each metric26. Other positive examples included the
use of both internal cross-validation and external validation for the
same outcome, giving a more rigorous analysis28,34,39. While
external validations were uncommon, those which were con-
ducted offered a real insight into model generalisability, with a
clear reduction in performance on all external validation sets
except one28. The only study which demonstrated high generali-
sability included the largest training set out of all externally
validated approaches, included more extensive data labelling than
many similar studies, and implemented a combination of three
colour normalisation approaches, indicating that these factors
may benefit generalisability.
Studies frequently had an unclear risk of bias within the

participants and predictors domains of PROBAST due to incom-
plete reporting. Frequently missing information included where
the patients were recruited, how many patients were included,
how many samples/images were used, whether any patients/
images were excluded, and the methods by which tissue was

processed and digitised. Reporting was often poor regarding
open-access datasets. Only three papers were found to be at low
risk of bias for participants, with these including clear and
reasonable patient recruitment strategies and selection criteria,
which can be seen as positive examples for other research-
ers37,43,56. Information about the predictors (histopathology
images and features derived thereof) was generally better
reported, but still often missed key details which meant that it
was unclear whether all tissue samples were processed similarly to
avoid risks of bias from visual heterogeneity. It was found that
when patient characteristics were reported, they often showed a
high risk of bias. Many studies included very small quantities of
patients with specific differences from the majority (e.g. less than
20 patients with a different cancer subtype to the majority),
causing a risk of spurious correlations and results which are not
generalisable to the wider population.
Reporting was particularly sparse in studies which used openly

accessible data, possibly indicating that AI-focused researchers
were not taking sufficient time to understand these datasets and
ensure their research was clinically relevant. For example, many of
the researchers who used TCGA data included frozen tissue
sections without commenting on whether this was appropriate,
despite the fact that pathologists do not consider them to be of
optimal diagnostic quality. One paper handled TCGA data more
appropriately, with a clear explanation of the positives and
negatives of the dataset, and entirely separate models for FFPE
and frozen tissue slides15.
Sharing code can help to mitigate the effects of incomplete

reporting and drastically improve reproducibility, but only 19 of the
45 papers did this, with some of these appearing to be incomplete
or inaccessible. The better code repositories included detailed
documentation to aid reproducibility, including environment set-up
information16,19, overviews of included functions17,36,42, and code
examples used to generate reported results57.

Fig. 2 PROBAST risk of bias results. PROBAST risk of bias results summarised for the 45 papers included in this review.

Fig. 3 Number of patients and slides per model. Histograms showing the number of a ovarian cancer patients and b ovarian cancer
histopathology slides used in model development. Many of these values are uncertain due to incomplete reporting, as reflected in Table 2.
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Two papers were found to have major discrepancies between
the reported data and the study design, indicating much greater
risks of bias than those seen in any other research46,54. In one
paper46, it was reported that TCGA-OV data was used for
subtyping with 5 classes, despite this dataset only including
high-grade serous and low-grade serous carcinomas. In the other
paper54, it was reported that TCGA-OV data was used for slide-
level classification into ovarian cancer and non-ovarian cancer
classes using PAS-stained tissue, despite TCGA-OV only containing
H&E-stained ovarian cancer slides.

Limitations of the review
While the review protocol was designed to reduce biases and
maximise the quantity of relevant research included, there were
some limitations. This review is restricted to published literature in
the English language, however, AI research may be published in
other languages or made available as pre-prints without publica-
tion in peer-reviewed journals, making this review incomplete.
While most of the review process was completed by multiple
independent researchers, the duplicate detection was performed
by only a single researcher, raising the possibility of errors in this
step of the review process, resulting in incorrect exclusions. Due to
the significant time gap between the initial and final literature
searches (approximately 12 months), there may have been
inconsistencies in interpretations, both for data extraction and
risk of bias assessments. Finally, this review focused only on light
microscopy images of human histopathology samples relating to
ovarian cancer, so may have overlooked useful literature outside
of this domain.

Development of the field
The field of AI in ovarian cancer histopathology diagnosis is
rapidly growing, with more research published since the start of
2020 than in all preceding years combined. The earliest research,
published between 2010 and 2013, used hand-crafted features to
train classical ML methods such as SVMs. These models were used
for segmentation49–51,53, malignancy classification18,52, grading21,
and overall survival prediction21. Most of these early studies
focused on IHC-stained tissue (5/7), which would be much less
commonly used in subsequent research (6/38).
The field was relatively dormant in the following years, with

only 6 papers published between 2014 and 2019, half of which
had the same primary author29,30,48. These models still used
traditional ML classifiers, though some used learned features
rather than the traditional hand-crafted features. The models
developed were used for histological subtyping29,30,48 and
cellular/tissue classification40,57,66.
Since 2020, there has been a much greater volume of research

published, most of which has involved the use of deep neural
networks for automatic feature extraction and classification, with a
minority using traditional machine learning model17,24,31,61,67.
Recent research has investigated a broader array of diagnostic
outcomes, including the classification of primary cancer type15,54,
mutation status24,36,44, homologous recombination deficiency
status42, tumour–stroma reaction level32, transcriptomic sub-
types19,24, microsatellite instability24, and epithelial-mesenchymal
transition status41. Three additional prognostic outcomes have
also been predicted in more recent literature—progression-free
survival17,43,56, relapse43,44, and treatment response19,22,33–35.
Despite progress within a few specific outcomes, there was no

obvious overall trend in the sizes of datasets used over time, either
in terms of the number of slides or the number of participants.
Similarly, there was no evidence that recent research included
more rigorous internal validations, though external validations
have been increasing in frequency—no research before 2021
included any external validation with ovarian cancer data, but
seven studies published more recently did16,24,27,28,34,38,39. While

these external validations were typically limited to small quantities
of data, the inclusion of any external validation demonstrates
progress from previous research. Such validations are essential to
the clinical utility of these models as real-world implementation
will require robustness to different sources of visual heterogeneity,
with variation occurring across different data centres and within
data centres over time. As this field continues to mature, we hope
to see more studies conduct thorough validations with larger,
high-quality independent datasets, including clearly reported
protocols for patient recruitment and selection, pathology slide
creation, and digitisation. This will help to reduce the biases,
limited reproducibility, and limited generalisability identified in
most of the existing research in this domain.

Current limitations and future recommendations
A large proportion of published work did not provide sufficient
clinical and pathological information to assess the risk of bias. It is
important that AI researchers thoroughly report data provenance
to understand the extent of heterogeneity in the dataset, and to
understand whether this has been appropriately accounted for in
the study design. Modelling and analysis methods must also be
thoroughly reported to improve reliability and reproducibility.
Researchers may find it useful to refer to reporting checklists, such
as transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD)68, to ensure that they
have understood and reported all relevant details of their studies.
In many studies, it is not clear how AI would fit in the clinical
workflow, or whether there are limitations in how these methods
could be applied. AI researchers should ensure they understand
the clinical context of their data and potential models before
undertaking research to reduce bias and increase utility. Ideally,
this will involve regular interactions with expert clinicians,
including histopathologists and oncologists.
To further improve reproducibility, we recommend that

researchers should make code and data available where possible.
It is relatively easy to publish code and generate documentation
to enhance usability, and there are few drawbacks to doing so
when publishing research. Making data available is more often
difficult due to data security requirements and the potential
storage costs, but it can provide benefits beyond the primary
research of the original authors. Digital pathology research in
ovarian cancer is currently limited by the lack of openly accessible
data, leading to over-dependence on TCGA, and causing many
researchers to painstakingly collate similar but distinct datasets.
These datasets often contain little of the heterogeneity seen in
multi-centre, multi-scanner data, making it difficult for researchers
to train robust models or assess generalisability. Where hetero-
geneous data is included, it often includes small quantities of data
which are different to the majority, introducing risks of bias and
confounding rather than helping to overcome these issues. TCGA-
based studies are prone to this, with significant differences
between TCGA slides originating from different data centres69, but
with many of these centres only providing small quantities of data.
Many researchers are reliant on open-access data, but there is a
severe shortage of suitable open-access ovarian cancer histo-
pathology data. Making such data available, with detailed
protocols describing data creation, allows researchers to conduct
more thorough analyses and significantly improve model gen-
eralisability and clinical implementability.
For AI to achieve clinical utility, it is essential that more robust

validations are performed, especially considering the limitations of
the available datasets. We recommend that researchers should
always conduct thorough analyses, using cross-validation, boot-
strapping, and/or external validations to ensure that results are
robust and truly reflect the ability of their model(s) to generalise to
unseen data, and are not simply caused by chance. This should
include reporting the variability of results (typically in a 95%
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confidence interval), especially when comparing multiple models
to help to distinguish whether one model is genuinely better than
another or whether the difference is due to chance. Statistical
tests can also be beneficial for these evaluations. Another option
for capturing variability is Bayesian uncertainty quantification,
which can be used to separate aleatoric (inherent) and epistemic
(modelling) uncertainty.
Current literature in this field can be largely characterised as

model prototyping with homogeneous retrospective data.
Researchers rarely consider the reality of human-machine inter-
action, perhaps believing that these models are a drop-in
replacement for pathologists. However, these models perform
narrow tasks within the pathology pipeline and do not take into
consideration the clinical context beyond their limited training
datasets and siloed tasks. We believe these models would be more
beneficial (and more realistic to implement) as assistive tools for
pathologists, providing secondary opinions or novel ancillary
information. While current research is typically focused on
assessing model accuracy without any pathologist input, different
study designs could be employed to better assess the real-world
utility of these models as assistive tools. For example, usability
studies could investigate which models are most accessible and
most informative to pathologists in practice, and prospective
studies could quantify any benefits to diagnostic efficiency and
patient outcomes, and investigate the robustness of models in
practice. Understanding the effects of AI on the efficiency of
diagnosis is particularly important given the limited supply of
pathologists worldwide. As such, this type of research will
significantly benefit clinical translation.

Summary of recommendations
To improve clinical utility, researchers should understand their
data and ensure planned research is clinically relevant before any
modelling, ideally involving clinicians throughout the project.
They should also consider different study designs, including
usability studies and/or prospective studies. When evaluating
models, researchers should conduct thorough analyses using
cross-validation, external validation, and/or bootstrapping. When
reporting research, researchers should clearly report the context of
any histopathology data, including how patients were recruited/
selected, and how tissue specimens were processed to generate
digital pathology images. Finally, researchers should make all code
openly accessible, and make data available where possible.

METHODS
Literature search
Searches were conducted in three research databases, PubMed,
Scopus and Web of Science, and two trial registries, Cochrane
Central Register of Controlled Trials (CENTRAL) and the World
Health Organisation International Clinical Trial Registry Platform
(WHO-ICTRP). The research databases only include journals and
conference proceedings which have undergone peer review,
ensuring the integrity of included research. The initial searches
were performed on 25/04/2022 and were most recently repeated
on 19/05/2023. The search strategy was composed of three
distinct aspects—artificial intelligence, ovarian cancer, and histo-
pathology. For each aspect, multiple relevant terms were
combined using the OR operator (e.g. “artificial intelligence” OR
“machine learning”), and then these were combined using the
AND operator to ensure that retrieved research met all three
aspects. The widest possible set of search fields was used for each
search engine except for Scopus, where restrictions were imposed
to avoid searching within the citation list of each article, which is
not an available field in the other search engines. The terms “ML”
and “AI” were restricted to specific fields due to the diversity of
their possible meanings. To ensure the most rigorous literature

search possible, no restrictions were placed on the publication
date or article type during searching.
Many AI approaches build on statistical models, such as logistic

regression, which can blur the lines between disciplines. When
conducting searches, a previously reported methodology was
adopted70 whereby typical AI approaches were searched by name
(e.g. neural networks), and other methods were searched by
whether the authors described their work as artificial intelligence.
Full details of the search implementation for each database are
provided in Supplementary Note 1. The review protocol was
registered with PROSPERO before the search results were
screened for inclusion (CRD42022334730).

Literature selection
One researcher (J.B.) manually removed duplicate papers with the
assistance of the referencing software EndNote X9. Two research-
ers (J.B., K.A.) then independently screened articles for inclusion in
two stages, the first based on title and abstract, the second based
on full text. Disagreements were discussed and arbitrated by a
third researcher (N.R. or N.M.O.). Trials in WHO-ICTRP do not have
associated abstracts, so for these studies, only titles were available
for initial screening.
The inclusion criteria required that research evaluated the use

of at least one AI approach to make diagnostic or prognostic
inferences on human histopathology images from suspected or
confirmed cases of ovarian cancer. Studies were only included
where AI methods were applied directly to the digital pathology
images, or to features which were automatically extracted from
the images. Fundamental tasks, such as segmentation and cell
counting, were included as these could be used by pathologists
for computer-aided diagnosis. Only conventional light microscopy
images were considered, with other imaging modalities, such as
fluorescence and hyperspectral imaging, excluded. Publications
which did not include primary research were excluded (such as
review papers). Non-English language articles and research where
a full version of the manuscript was not accessible were excluded.
A model in an included study was considered to be a model of

interest if it met the same inclusion criteria. Where multiple models
were compared against the same outcome, the model of interest
was taken to be the newly proposed model, with the best
performing model during validation taken if this was unclear. If
multiple model outcomes were assessed in the same study, a
model of interest was taken for each model outcome, regardless
of any similarity in modelling approaches. The same model
outcome at different levels of precision (e.g. patch-level, slide-
level, patient-level) were not considered to be different model
outcomes. Models did not need to be entirely independent, for
example, the output of one model of interest could have been
used as the input of another model of interest on the condition
that model performance was separately evaluated for each model.

Risk of bias assessment
The risk of bias was assessed for models of interest using the
Prediction model Risk Of Bias ASsessment Tool (PROBAST)71,
where risk of bias is the chance of reported results being distorted
by limitations within the study design, conduct, and analysis. It
includes 20 guiding questions which are categorised into four
domains (participants, predictors, outcome, and analysis), which
are summarised as either high-risk or low-risk, or unclear in the
case that there is insufficient information to make a comprehen-
sive assessment and none of the available information indicates a
high risk of bias. As such, an unclear risk of bias does not indicate
methodological flaws, but incomplete reporting.
The participants domain covers the recruitment and selection

of participants to ensure the study population is consistent and
representative of the target population. Relevant details include
the participant recruitment strategy (when and where participants
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were recruited), the inclusion criteria, and how many participants
were recruited.
The predictors domain covers the consistent definition and

measurement of predictors, which in this field typically refers to
the generation of digital pathology images. This includes methods
for fixing, staining, scanning, and digitally processing tissue before
modelling.
The outcome domain covers the appropriate definition and

consistent determination of ground-truth labels. This includes the
criteria used to determine diagnosis/prognosis, the expertise of
any persons determining these labels, and whether labels are
determined independently of any model outputs.
The analysis domain covers statistical considerations in the

evaluation of model performance to ensure valid and not unduly
optimistic results. This includes many factors, such as the number
of participants in the test set with each outcome, the validation
approaches used (cross-validation, external validation, bootstrap-
ping, etc.), the metrics used to assess performance, and methods
used to overcome the effects of censoring, competing risks/
confounders, and missing data. The risks caused by some of these
factors are interrelated, for example, the risk of bias from using a
small dataset is somewhat mitigated by cross-validation, which
increases the effective size of the test set and can be used to
assess variability, reducing optimism in the results. Further, the risk
caused by using a small dataset depends on the type of outcome
being predicted, for example, more data is required for a robust
analysis of 5-class classification than binary classification. There
must also be sufficient data within all relevant patient subgroups,
for example, if multiple subtypes of ovarian cancer are included,
there must not be a subtype that is only represented by a few
patients. Due to these interrelated factors, there are no strict
criteria to determine the appropriate size of a dataset, though
fewer than 50 samples per class or fewer than 100 samples overall
is likely to be considered high-risk, and more than 1000 samples
overall is likely to be considered low-risk.
Risks of bias often arise due to inconsistent methodologies.

Inconsistency in the participants and predictors domains may cause
heterogeneity in the visual properties of digital pathology slides
which may lead to spurious correlations, either through random
chance or systematic differences between subgroups in the dataset.
Varied data may be beneficial during training to improve model
generalisability when using large datasets, though this must be
closely controlled to avoid introducing systematic confounding.
Inconsistent determination of the outcome can mean that the results
of a study are unreliable due to spurious correlations in the ground
truth labels, or invalid due to incorrect determination of labels.
While PROBAST provides a framework to assess risks of bias,

there is some level of subjectivity in the interpretation of
signalling questions. As such, each model was analysed by three
independent researchers (any of J.B., K.A., N.R., K.Z., N.M.O.), with at
least one computer scientist and one clinician involved in the risk
of bias assessment for each model. The PROBAST applicability of
research analysis was not implemented as it is unsuitable for such
a diverse array of possible research questions.

Data synthesis
Data extraction was performed independently by two researchers
(J.B., K.A.) using a form containing 81 fields within the categories
Overview, Data, Methods, Results, and Miscellaneous. Several of
these fields were added or clarified during data extraction with
the agreement of both researchers and retroactively applied to all
accepted literature. The final data extraction form is available at
www.github.com/scjjb/OvCaReview, and is summarised in Sup-
plementary Table 1.
Information was sought from full-text articles, as well as

references and supplementary materials where appropriate.
Inferences were made only when both researchers were confident

that this gave the correct information, with disagreements
resolved through discussion. Fields which could not be con-
fidently completed were labelled as being unclear.
All extracted data were summarised in two tables, one each for

study-level and model-level characteristics. Only models of interest
were included in these tables. The termmodel outcome refers to the
model output, whether this was a clinical outcome (diagnosis/
prognosis), or a diagnostically relevant outcome that could be used
for computer-aided diagnosis, such as tumour segmentation. The
data synthesis did not include any meta-analysis due to the
diversity of included methods and model outcomes. The PRISMA
2020 guidelines for reporting systematic reviews were followed,
with checklists provided in Supplementary Tables 2 and 3.

DATA AVAILABILITY
The authors declare that the main data supporting the findings of this study are
available within the article and its Supplementary Information files. Extra data are
available from the corresponding author upon request.
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