
This is a repository copy of Automatic Code Commenting in Integrated Development
Environments Based on Indirect Interaction with Chatbots.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202981/

Version: Accepted Version

Proceedings Paper:
Fabiyi, S. orcid.org/0000-0001-9571-2964 and Ajibuwa, O. (2023) Automatic Code
Commenting in Integrated Development Environments Based on Indirect Interaction with
Chatbots. In: 2023 International Scientific Conference on Computer Science (COMSCI).
2023 11-th International Scientific Conference COMPUTER SCIENCE, 18-20 Sep 2023,
Hotel Lazur, Sozopol, Bulgaria. IEEE . ISBN 979-8-3503-2526-3

https://doi.org/10.1109/COMSCI59259.2023.10315818

This is an author produced version of a conference paper accepted to the 2023 11-th
International Scientific Conference COMPUTER SCIENCE, made available under the
terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted
use, distribution and reproduction in any medium, provided the original work is properly
cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

 ©2023 IEEE

Automatic Code Commenting in Integrated

Development Environments Based on Indirect

Interaction with Chatbots
Samson Damilola Fabiyi and Opeyemi Ajibuwa§

School of Computing, University of Leeds, Leeds, United Kingdom, s.d.fabiyi@leeds.ac.uk
§
School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, USA,

ajibuwao@oregonstate.edu

Abstract – Efficient code commenting is critical to improving

code readability, maintainability, and collaboration. This

paper introduces automated code commenting within an

integrated development environment IDE using chatbots. The

introduced system, implemented in Python with Selenium,

automates the comments generation process, allowing coders to

focus on code logic. Results obtained demonstrates successful

interactions with chatbots, comment retrieval and handling

delay. Challenges identified include instruction selection and

extended conversations, offering opportunities for

improvement. Future prospects include reusable libraries,

user-friendly interfaces, and streamlined code-commenting.

Keywords – automation, chatbot, comment, code, selenium

I. INTRODUCTION

 In the rapidly evolving field of software development,

efficient code commenting plays a vital role in improving

code readability, maintainability, and collaboration among
coders [1]. Conventionally, code commenting was a manual

and time-consuming process, which requires coders to

carefully mark lines of code with explanations. However,

with the advent of artificial intelligence (AI) and chatbot

technology, a new automated approach to code commenting

is surfacing, offering the opportunity to streamline the

process and improve overall productivity.

 This paper aims at exploring the concept of automatic

code commenting within an integrated development

environment (IDE) using indirect interaction with chatbots.

The proposed method uses AI-powered chatbots to generate
comments on lines of code without requiring direct

interaction from coders. By automating the code

commenting process, coders can focus more on the logic and

functionality of their code, while chatbots help provide the

necessary contextual explanations and meaningful

comments.

 The rest of the paper is arranged as follows. Section II

introduces the materials and methods utilized in this work.

Section III presents the results and discussion derived from

evaluating the performance of the proposed system. Section
IV concludes the paper and present ideas for future work.

II. MATERIALS AND METHODOLOGY

MATERIALS

A. Integrated Development Environment (IDE)

 An Integrated Development Environment [2] is a software

package that provides extensive tools and functions for

software development. It works as a centralized platform

where developers and programmers can write, modify,

compile, debug and deploy their programs. Examples of

IDEs are Visual Studio, Eclipse, Spyder, etc. In this work,

Spyder, an open source IDE designed specifically for

scientific computing, data analysis and numerical

programming was chosen to evaluate the effectiveness of the

proposed approach on codes written in Python programming

language.

B. Selenium library

 The Selenium library [3], an open source software

framework, is well-known for web browsers automation. It

incorporates a programming interface which facilitates

developers’ and programmers’ interaction with web
applications and automation of web browser processes.

Selenium supports multiple programming languages, such

as Python, Java, C#, Ruby, and JavaScript, which renders it

a versatile and widely used library in various development

environments.

C. ChatAI

 ChatAI [4] is an AI-powered assistant designed to support

users with various tasks and requests. It can interact with

users through messaging apps, voice commands, or other

interfaces to provide information, schedule appointments,

complete tasks, and more. ChatAI is essentially a chatbot - a

computer program designed to mimic a conversation with

people through text messages or voice communication.

ChatAI can respond to users’ queries, supply information
and carryout tasks using natural language processing and

machine learning.

D. Regular expression matching

 A regular expression [5], a string that specifies a search

pattern, normally consists of regular characters (e.g. letters

and numbers) that match each other and special characters

with specific meaning in the context of the regular

expression. Regular expression matching thus refers to the

process of finding and matching patterns in text using

regular expressions (usually abbreviated as regex). Using

regular expressions, patterns in a text or string can be

effectively and flexibly illustrated and recognized. There are

online converters which can be used to generate regular

expression for texts. An example of this is Regex Generator

[6].

METHODOLOGY

A. Concept

 The proposed method involves developing an auto code

commenting program within an IDE. The program interacts

with a chatbot to automatically generate comments for lines

of code without any direct coder interaction.

B. Implementation

 The system is implemented using Python programming

language and the Selenium library. Selenium allows

automated interaction with the chatbot. The implementation

involves the following steps:

 Accessing the Chatbot: The program uses a function

in the Selenium library to access the homepage of the

chatbot (Chat) via a web browser specified in the

program. User login details (username and password)

are provided within the program for authentication.

 Interaction with the Chatbot: Initially, the chatbot

displays the message, “Hello! How can I help you
today?” in its first element. Functions in the Selenium
library are then utilized to present our message

(instruction) to the chatbot via its next (second)
element. The message is presented in a question form

which will solicit a suitable response from the chatbot.

 Retrieving Chatbot Response: Another function in

Selenium is used to select the element containing the

chatbot’s response and extract the returned response.

 Formatting the Response: Since the returned

information (response) may include expected

comments and additional explanation from the

chatbot, a regular expression match operation is
performed to extract only the required comments and

any related explanation. The implemented program

uses the following regular expression: r"\#(.*)".

 Handling Delays: Due to the dynamic nature of

conversations with the chatbot and potential delays in

displaying the returned results, a function called

WebDriverWait() is employed. This function allows

the system to wait for a specified duration until the

element becomes visible. If the element remains

invisible after the specified wait time, an error
message is returned.

III. RESULTS AND ANALYSIS

 In this section, we present the results obtained from

evaluating the program's performance and analyse the

findings. Additionally, we explore the challenges

encountered during the process and discuss potential

opportunities for future improvements and expansions.

A. Results

 To evaluate the program, we utilized the following data

for various selenium functions:

i. Username - xxxx@gmail.com (a part of the email

address used is hidden for privacy).

ii. Password - xxxxxxx (again, the password used is

hidden for privacy).

iii. Question supplied to the chatbot: “add a comment to
this python programming code: a = c * d”.

iv. Waiting duration: 20 seconds.

v. Condition: visibility_of_element_located (it checks to

see if the element to be interacted with is present).

vi. Web browser: Chrome.

 Figure 1 depicts the results obtained from running the

program, while Figure 2 showcases the output generated by

the program in Spyder. As illustrated in Figure 1, the

program successfully executed the following steps: opening

the home page, locating the login button, using the provided

login details to gain access to the chatbot, and supplying the

question to initiate a response. Furthermore, Figure 2

demonstrates the effectiveness of the regular expression

matching process, which accurately formatted the chatbot's

response to include only the relevant comment.

Fig. 1. Conversation with the chatbot

B. Challenges

 Throughout the testing phase, several challenges were

encountered:

i. Finding the right instructions: The process of
identifying and implementing the correct instructions

for the chatbot to get the desired comments posed a

significant challenge.

ii. Bypassing sites with human/robot checking stage:

Certain websites presented additional stages for
human or robot verification, making it difficult to

bypass these checks.

iii. Handling extended conversations: The program's

current implementation fixed the selection of the third

element in the chat as the returned result. However,

this approach may be insufficient when dealing with

extended conversations. Thus, the code should be

updated to dynamically select the most recent

message from the chatbot.

C. Opportunities

 Despite these challenges, the successful testing of the

program opens several promising opportunities for future

work. The current work paves the way for the following

opportunities:

i. Development of a reusable library: Creating a library

that can be easily called to update and maintain the

code consistently.

ii. Creation of a separate user interface: Designing a

dedicated user interface that abstracts away the

behind-the-scenes actions, simplifying the process of

generating the final code with comments.

iii. Expanding language compatibility: Extending the

scope of the program beyond Python to encompass

codes written in other programming languages.

iv. Streamlining the code commenting process: In order

to expedite the code commenting process and promote
efficiency, it would be beneficial to include a feature

that allows for the opening of a file containing all the

code in the IDE. This would then enable the chatbot

based system to access and add comments to the entire

code in a single go, facilitating the creation of

comprehensive and well commented programs. By

implementing this feature, the resulting output would

consist of a fully commented code, eliminating the

need for line-by-line implementation. This

streamlined approach would save considerable time

and effort, allowing the proposed system to focus on
adding meaningful comments to the code as a whole.

IV. CONCLUSION

The proposed automatic code commenting system has

been evaluated and the results obtained demonstrates its
effectiveness in using chatbot technology to generate
contextual explanation and meaningful comments for lines
of code within an IDE. Although this work faces some
challenges, it also points to promising future prospects, such
as the development of a reusable library, a user-friendly
interface, reduced execution time, and expanded language
compatibility. This work opens the door to more efficient
and comprehensive code commenting practices, which will
ultimately benefit programmers and advance the field of
software development.

V. ACKNOWLEDGEMENTS

 For the purpose of open access, the authors have applied

a Creative Commons Attribution (CC BY) licence to any

Author Accepted Manuscript version arising from this

submission.
REFERENCES

[1] L. Pascarella, “Classifying code comments in java mobile
applications,” in Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems,
2018, pp. 39–40.

[2] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K.
Damevski, A. R. Nair, and D. Shepherd, “A practical guide
to analyzing ide usage data,” in The Art and Science of
Analyzing Software Data. Elsevier, 2015, pp. 85–138.

[3] S. Raghavendra, Python Testing with Selenium: Learn to
Implement Different Testing Techniques Using the Selenium
WebDriver. Springer, 2021.

[4] ChatAI. ChatAI: AI Chat Companion [Online]. Available:
https://chatai.com.

[5] D. D. A. Bui and Q. Zeng-Treitler, “Learning regular
expressions for clinical text classification,” Journal of the
American Medical Informatics Association, vol. 21, no. 5,

pp. 850–857, 2014.
[6] Neumann, O. Regular Expression Generator [Online].

Available: https://regex-generator.olafneumann.org/

APPENDIX

Data Availability Statement: The data that support the

findings of this study are described within the article.

Fig. 2. Final comment extracted using the regular expression
matching process

https://regex-generator.olafneumann.org/

