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Abstract. In June 2022, Frontier became the first Supercomputer to
“officially” break the ExaFLOP/s barrier on LINPACK, achieving a peak
performance of 1.1×1018 floating-point operations per second using AMD
Instinct accelerators. Developing high performance applications for such
platforms typically requires the adoption of vendor-specific programming
models, which in turn may limit portability. SYCL is a high-level, single-
source language based on C++17, developed by the Khronos group
to overcome the shortcomings of those vendor-specific HPC program-
ming models. In this paper we present an initial study into the SYCL
parallel programming model and its implementing compilers, to under-
stand its performance and portability, and how this compares to other
parallel programming models. We use three major SYCL implementa-
tions for our evaluation – Open SYCL (previously hipSYCL), DPC++,
and ComputeCpp – on a range of CPU and GPU hardware from In-
tel, AMD, Fujitsu, Marvell, and NVIDIA. Our results show that for a
simple finite difference mini-application, SYCL can offer competitive per-
formance to native approaches, while for a more complex finite-element
mini-application, significant performance degradation is observed. Our
findings suggest that development work is required at the compiler-
and application-level to ensure SYCL is competitive with alternative
approaches.

Keywords: SYCL · High-Performance Computing · Performance Porta-
bility

1 Introduction

In the seven decades since the UNIVAC-I digital computer, computing has
evolved enormously, fuelled by developments in both hardware and software.
As computing power has increased, so too has our reliance on computing as a
primary tool in scientific research. The fastest computers in the world today are
being employed to help us solve many fundamental questions in the science and
engineering disciplines. The High Performance Computing (HPC) research field
is concerned with how these systems, and the software running on them, can be
better engineered to provide increased accuracy and decreased time-to-solution.

Historically, the primary metric for assessing the performance of an HPC
system has been the number of floating-point operations that can be completed
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each second (FLOP/s). By this measure, the Exascale-barrier was broken by the
Frontier system in June 2022, using nearly 38,000 GPU accelerators to achieve
1.1 ExaFLOP/s1.

Like many of the recent systems to achieve the #1 ranking, Frontier is a
heterogeneous system, with each compute node comprising of both CPUs and
GPU accelerators; in the case of Frontier, one 64-core AMD “Trento” CPU, and
four AMD Instinct MI250X GPUs. Extracting the maximum level of performance
from such systems requires that data is efficiently moved between the host CPU
and connected accelerator devices, that algorithms are effectively parallelised
and that computation is appropriately distributed across the available hardware.
Achieving this is no mean feat, and in some cases might require the use of a
vendor-specific parallel programming model.

In order to avoid issues of vendor lock-in and increase developer productivity,
a number of language-like tools and frameworks have been developed that are
capable of providing the programming semantics that allow us to target hetero-
geneous architectures from a single codebase. Some of the most commonly used
ones are OpenMP [14], OpenACC [13], OpenCL [21], Kokkos [6] and RAJA [1].

The SYCL parallel programming model was developed by the Khronos group
in 2014, as another such tool to assist heterogeneous programming [22]. One of
the key design goals of SYCL is portability. However, there have been discussions
about how performant it is across platforms [4, 8]. A 2021 study by Lin et al.
addressed this and some other concerns by evaluating historical performance
of three major SYCL implementations across a range of platforms [12]. Their
study shows the increasing maturity of the compilers, but highlights remaining
potential for further improvements.

In this paper, we further evaluate the performance portability of the Open
SYCL, DPC++, and ComputeCpp compilers with a focus on mini-applications
of interest to the plasma physics community. Our evaluation is motivated by
Project NEPTUNE (NEutrals & Plasma TUrbulance Numerics for the Exas-
cale), a UK project to develop a new simulation code to aid in the design of a
future nuclear fusion power plant. Specifically, we make the following contribu-
tions:

– We evaluate SYCL against OpenMP and CUDA on a simple finite difference
heat diffusion code. This serves as a baseline of performance and portability
we can expect from SYCL and its implementing compilers;

– We then evaluate SYCL against MPI, OpenMP, Kokkos, CUDA and HIP on
a mini-application implementing a finite element method. This evaluation is
based on a simple conversion to SYCL and therefore this provides us with an
indication of how much optimisation might be required for SYCL to provide
performance that is competitive with other approaches;

– Finally, we analyse the performance portability of these two mini-applications
using visualisations developed by Sewall et al. [20], showing that for simple
codes, SYCL can provide equivalent performance to OpenMP with minimal

1 https://www.top500.org/lists/top500/2022/06/
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developer effort, but that for more complex cases, a basic code conversion is
not sufficient and additional developer effort is required to bridge the gap.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the background and related work; Section 3 outlines the methodol-
ogy of our study; Section 4 provides the results of our study; finally, Section 5
concludes this paper.

2 Background and Related Work

Since the introduction of IBM Roadrunner in 2008 there has been a shift to-
wards heterogeneous architectures within HPC. However, programming systems
with multiple architectures can be challenging, and often relies on vendor-led
programming models specifically developed for each architecture (e.g. CUDA on
NVIDIA, HIP/ROCm on AMD). Adopting these programming models for large
HPC applications can lead to vendor lock-in. To combat this, there are a num-
ber of programming models that have been developed that are able to target
multiple host and accelerator architectures from a single codebase.

The typically stated goal of these programming models is to achieve “the
three Ps”, performance, portability, and productivity [18]. Notable examples are
the compiler directive-based approaches OpenMP [3] and OpenACC [13], the
C++ template-based approaches Kokkos [6] and RAJA [1], and language exten-
sions such as OpenCL [21]. Many of these have been the target of studies looking
at performance portability across heterogeneous platforms [5, 7, 9, 10, 15,17,23].

Another approach that is beginning to see widespread adoption in HPC is
the SYCL parallel programming model [22]. SYCL is a high-level, single-source
programming model based on ISO C++17. It was introduced by the Khronos
group in 2014, and takes inspiration from, though is independent of, OpenCL.
In particular, SYCL sits at a higher level of abstraction to OpenCL, removing
much of the “boiler-plate” code that was previously required.

Since its inception, multiple SYCL compilers have been developed, each im-
plementing different subsets of the standard, and targeting different architec-
tures or execution approaches. The programming model has been the subject of
a number of recent studies examining its performance portability and the ma-
turity of its implementing compilers [2, 5, 8, 12, 19]. In this paper, we build on
these previous studies, with a focus on three mainstream SYCL compilers and
algorithms of interest to the plasma physics domain.

Open SYCL (previously known as hipSYCL) is an open-source library or SYCL
compiler developed at the University of Heidelberg, by Aksel et al.2. It is based
on the LLVM compiler framework, and one of its defining features is that it
is not built on OpenCL. Instead, Open SYCL uses other low-level backends to
target different platforms. Open SYCL currently supports an OpenMP back-
end for CPUs, CUDA and HIP backends for NVIDIA and AMD GPUs, and an
experimental Level-Zero backend to support Intel’s Level-Zero hardware.

2 https://opensycl.github.io
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DPC++ is a C++ and SYCL compiler developed by Intel, that forms part of
their OneAPI project. They provide two versions of their compiler, one a pre-
compiled proprietary implementation3 and one an open-source fork of the LLVM
compiler framework4. The compiler can target host CPUs directly, or through
an OpenCL runtime, and can target GPUs through CUDA, HIP and Level-Zero.

ComputeCpp was the first fully compliant SYCL 1.2.1 implementation, devel-
oped by Codeplay5. The compiler is built on the open-source Clang 6.0 compiler,
but is distributed as a proprietary compiler with no open-source implementation
available. ComputeCpp relies on an OpenCL driver for compilation of kernels
and therefore has limited platform support. With the announcement in June
2022 that Intel has acquired Codeplay Software, it is likely that future develop-
ment effort will be instead be focused on Intel’s DPC++ compiler.

In addition to these three mainstream implementations there are other projects,
like triSYCL and neoSYCL, that are not included in this study.

3 Methodology

This paper seeks to answer three questions regarding the SYCL programming
model and its implementing compilers:

1. How does SYCL’s performance compare to other parallelising frameworks?
2. How does each SYCL compiler perform relative to other implementations?
3. How much portability is offered by SYCL and by each SYCL compiler?

To address these questions, we evaluate two applications across eleven platforms.

3.1 Benchmarks

Evaluating new parallel programming frameworks is difficult on production-
grade applications that often consist of tens of thousands, or hundreds of thou-
sands, of lines of code. Instead, mini-applications are typically used to rapidly
investigate performance, portability and productivity, prior to extensive porting
efforts. These mini-applications usually implement key kernels or algorithms that
are found in production applications, but in only a few thousand lines of code. In
this paper we focus our effort on two applications that implement computational
methods typically used in the simulation of fluids and plasma.

Heat is a simple mini-application that solves a heat diffusion equation using
a finite-differencing scheme, with a 5-point stencil [24]. It was developed at the
University of Bristol as part of an OpenMP tutorial course, and therefore con-
sists of only a few hundred lines of code. This limits the optimisation space and

3 https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.
html

4 https://github.com/intel/llvm
5 https://developer.codeplay.com/products/computecpp/ce/home/
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gives us a good baseline for the potential performance of any particular parallel
programming model. The mini-application operates on a two-dimensional struc-
tured grid, and in our study we use a fixed problem size of 100002. For our study,
implementations are available in OpenMP, CUDA and SYCL.

miniFE also solves a heat diffusion equation, but does so on an unstructured
brick-shaped domain, using a finite-element method [11]. miniFE is significantly
more complex than Heat, and the SYCL variant used in this paper is a conversion
from an OpenMP 4.5 implementation. The relative performance of this simplistic
conversion to SYCL will provide us with insight into the optimisation effort that
might be required to port an application to SYCL in a performance portable
manner. In this paper, we use a 2563 problem size, and focus our efforts only
on the conjugate gradient kernel (since this kernel dominates the performance).
We present results for the MPI, OpenMP (with and without target directives),
CUDA, HIP, Kokkos and SYCL implementations.

3.2 Evaluating Performance and Portability

The focus of this paper is in evaluating the maturity of the SYCL programming
model and its implementing compilers in terms of both the performance of SYCL
applications when compared to alternative programming models, and also the
performance portability of SYCL applications.

To evaluate comparative performance, we use runtime as the figure of merit;
to evaluate the performance portability, we apply the Pennycook metric [18].

PP(a, p,H) =















|H|
∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

(1)

where H is the set of platforms, a is the application of interest, p is the chosen
problem, and ei(a, p) is the efficiency of an application a solving problem p on
platform i (i.e. the ratio of the achieved performance against the best known
implementation on the given platform). In this paper we focus on application

efficiency, where PP(a, p,H) represents the harmonic mean of the observed effi-
ciency of an application across the selected set of platforms.

However, rather than present the raw performance portability, we instead
use the cascade plot visualisations outlined by Sewall et al. [20], and generated
using Intel’s P3 Analysis Library [16].

3.3 Evaluation Platforms

The results in this paper have been collected using Isambard, at the University
of Bristol, and the Intel DevCloud. The CPU platforms are detailed in Table 1,
while the GPU platforms are detailed in Table 2. Our evaluation includes the
Intel HD Graphics P630 GPU, which is a mid-range integrated GPU provided
on some Intel Xeon Coffee Lake and Kaby Lake CPUs. It is included in our
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Table 1: Summary of CPUs used for the platform setup

Name Clock Cores (Threads) Sockets Memory (GB/s) Vector type

CLX 2.10 GHz 20 (40) 2 131 (DDR4, 6 ch) SSE, AVX512
(Intel Xeon Gold 6230, Cascade Lake)

Rome 2.25 GHz 64 (128) 2 205 (DDR4, 8 ch) AVX2
(AMD EPYC 7742, Zen 2)

Milan 2.0 GHz 64 (128) 2 205 (DDR4, 8 ch) AVX2
(AMD EPYC 7713, Zen 3)

KNL 1.30 GHz 64 (256) 1 102 (DDR4, 6 ch) AVX512
(Intel Xeon Phi 7210, Knights Landing)

ThunderX2 2.10 GHz 32 (128) 2 252 (DDR4, 8 ch) 128 NEON
(Cavium CN9980, ARMv8.1)

A64FX 1.80 GHz 48 (48) 1 1024 (HBM2) 128-512 SVE
(Fujitsu A64FX, ARMv8.2-A)

Table 2: Summary of GPUs used for the platform setup

Name Cores Memory (GB) Bandwidth (GB/s)

P100 3840 16 732
(NVIDIA P100 Pascal, CUDA Capability 6.0)

V100 5120 16 900
(NVIDIA V100 Volta, CUDA Capability 7.0)

A100 6912 40 1555
(NVIDIA A100 Ampere, CUDA Capability 8.0)

MI100 120 32 1200
(AMD Instinct MI100, CDNA 1.0)

HD P630 24 (System-shared) 64 (System-shared) 41.6
(Intel HD Graphics P630, Gen 9.5)

evaluation to demonstrate the portability to Intel Xe-HPC GPUs, but we do
not expect its performance to be competitive with discrete GPUs.

For each of our evaluations on Isambard, we use version 11.0 of the Clang/L-
LVM compiler environment. We use a custom-build of the compiler infrastruc-
ture, to ensure all required features are available (e.g. OpenMP target offload
directives, CUDA, HIP). All of our results are collected with -O3 and other
performance relevant compiler flags. We use OpenMPI version 4.1, except on
the TX2 platform, where we use version 3.1. We use version 11.2 of the CUDA
Toolkit, specifying the correct architecture each time. For Kokkos, we use the
OpenMP backend for CPU platforms and the CUDA and HIP backends for GPU
platforms. The results presented in this paper are the best runtime achieved on
each platform, regardless of maximum parallelism achievable, using the best dis-
covered combination of runtime parameters.

For Open SYCL, we build version 0.9.4 of the compiler from source, enabling
it to target CPUs and GPUs through OpenMP and CUDA/HIP, respectively.

We use Intel’s proprietary DPC++ compiler for the CLX, KNL and HD P630
platforms, and we build DPC++ version 16.0 from source for the AMD and
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NVIDIA platforms. For TX2 and A64FX, we were able to compile benchmarks
using DPC++ but we encountered linking errors that we were unable to resolve
and so we omit results from these platforms.

We use version 2.10.0 of the ComputeCpp compiler, which is distributed as
a pre-built executable. It is only compliant up to the SYCL 1.2.1 standard, and
therefore is dependent on an OpenCL driver for each architecture; because of
this, our platform set is limited to CLX, KNL, Rome and Milan CPUs.

4 Results and Analysis

We begin our investigation with the “Heat” mini-application. Since this appli-
cation is implemented in only a few hundred lines of code, it serves as a good
starting point to show the potential performance and portability of the SYCL
programming model. We use the OpenMP, CUDA and SYCL implementations
present in the HeCBench benchmark repository6.

We then analyse the performance of miniFE. This application implements a
finite element method on an unstructured grid, using 8-point hex elements. The
application is implemented in approximately 5000 lines of code, and the SYCL
port is based on simplistic conversion from the OpenMP 4.5 implementation of
miniFE.

For each application we first present the raw runtime data, and we then
analyse the performance portability using visualisations from Sewall et al. [20].

4.1 Heat

Figure 1 depicts the runtime for Heat on eight of the platforms surveyed. This
simple evaluation reveals valuable information on platform coverage for SYCL.
Crucially, there is at least one SYCL compiler that is able to target each archi-
tecture, and SYCL appears to provide performance comparable to OpenMP 4.5.
The two most striking features of the data are perhaps the superior performance
of the two NVIDIA GPU platforms and the relatively poor performance of the
two ARM-based systems (ThunderX2 and A64FX). The V100 is approximately
10× faster than the fastest CPU execution observed, and importantly that per-
formance improvement is seen in both CUDA and Open SYCL/DPC++. The
runtimes observed on both ARM platforms are much worse than on the Cas-
cade Lake and Rome CPU systems, likely due to using a custom-build of LLVM
rather than the vendor supplied compiler (which did not support target offload
semantics or SYCL).

Figure 2(a) shows how the performance efficiency changes for each program-
ming model as new platforms are added to the evaluation set (in order of decreas-
ing efficiency). For six of the eight platforms evaluated, DPC++ achieves almost
perfect efficiency. Both Open SYCL and OpenMP 4.5 follow a similar trajectory,
with Open SYCL maintaining a marginally higher efficiency up to the addition

6 https://github.com/zjin-lcf/HeCBench



8 W. R. Shilpage, S. A. Wright

CLX Rome KNL ThunderX2 A64FX

0

50

100

CPU Platforms

R
u
n
ti
m
e
(s
)

OpenMP 4.5 CUDA Open SYCL DPC++ ComputeCpp

P100 V100 HD P630

0

20

40

60

GPU Platforms

Fig. 1: Raw runtime data for Heat on five CPU and three GPU platforms.

(a) Complete Dataset (b) SYCL Compressed

Fig. 2: A cascade plot for the Heat application with (a) the complete dataset,
and (b) the SYCL data compressed to a single value.

of the AMD Rome system. That SYCL is able to outperform OpenMP 4.5 (in
particular on GPU platforms) can perhaps be explained by the richer semantics
available in the programming model, allowing a greater scope for customisation
and optimisation.

To compare the programming models in isolation (away from concerns about
individual SYCL implementations), Figure 2(b) shows a cascade plot where the
SYCL data point is taken as the minimum runtime achieved by Open SYCL,
DPC++, and ComputeCpp. This analysis further shows the potential of the
SYCL programming model, where it is consistently able to achieve equivalent or
better performance, and is portable to all of the architectures evaluated. Across
the eight platforms, SYCL achieves PP ≈ 0.95; OpenMP 4.5 achieves PP ≈ 0.77
and lags SYCL after just three platforms are added to its evaluation set.
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Fig. 3: Raw runtime data for miniFE on six CPU and five GPU platforms.

4.2 miniFE

While Heat provides a good benchmark for the potential of the SYCL program-
ming model and its compilers, its simplicity belies the effort that may be required
for larger, more complex applications. The miniFE SYCL port used in this pa-
per is also provided as part of the HeCBench benchmark suite, and is based on
the OpenMP 4.5 implementation of miniFE. To provide a more thorough anal-
ysis, we compare this against the MPI reference implementation of miniFE, two
OpenMP implementations (one with target offload semantics and one without),
a CUDA implementation, a HIP implementation, and a Kokkos implementation.
Similar to Heat, our evaluation includes the Intel HD Graphics P630 integrated
GPU; while this is not an HPC GPU, it does allow us an insight into the level
of support for the Intel Xe product line.

Figure 3 shows the runtime achieved by miniFE running on the eleven eval-
uation platforms. On the six CPU platforms, the reference MPI implementation
is the most performant; on the NVIDIA and Intel GPU platforms, the vendor-
specific implementations are the fastest (i.e. CUDA on NVIDIA, DPC++ on
Intel); Kokkos is the fastest implementation on the AMD Instinct MI100 plat-
form. In contrast to Heat, no portable programming model is as performant
as the MPI and CUDA non-portable programming models. However, there is
at least one SYCL implementation able to execute on each of the eleven plat-
forms, while OpenMP 4.5 (with target offload directives) is able to target all
eleven platforms. As with Heat, there is a performance degradation present on
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(a) Complete Dataset (b) SYCL Compressed

Fig. 4: A cascade plot for the miniFE application with (a) the complete dataset,
and (b) the SYCL data compressed to a single value.

the ARM platforms when using the SYCL programming model, and for miniFE
this degradation is exaggerated further (particularly when compared to the ref-
erence MPI implementation). Only the DPC++ and OpenMP 4.5 variants have
been executed on the Intel GPU, and the runtime achieved by the OpenMP 4.5
implementation (371.3 secs) is approximately 5.4× slower than the DPC++ run-
time (68.7 secs). On each of the GPUs, the OpenMP 4.5 runtime is significantly
slower than all other implementations (> 100 secs) and so, along with the data
for the HD P630, they have been cropped from Figure 3.

The performance portability of each miniFE implementation is visualised
in Figure 4(a). The two “native” programming models, MPI and CUDA, both
follow the 1.0 efficiency line before abruptly stopping as they reach GPU and
non-NVIDIA platforms, respectively. Only the OpenMP 4.5 programming model
is able to target all eleven platforms (though the SYCL programming model can
achieve this with different compilers for each platform, as shown in Figure 4(b)).
Kokkos and Open SYCL extend to ten of the eleven platforms, respectively, with
Kokkos providing better efficiency throughout. DPC++ follows a similar trend
to the Open SYCL compiler, but its ability to target the Intel HD Graphics P630
GPU means that its efficiency is generally higher (since it is the most performant
implementation on this architecture). For each of the portable approaches, the
GPUs and ARM platforms are typically the source of decreased efficiency.

As before, Figure 4(b) provides the same data but with the SYCL data point
taken as the best (minimum) result achieved by either of Open SYCL, DPC++
and ComputeCpp, and the OpenMP data point taken as the best result achieved
by OpenMP with or without target offload directives. We can now see that both
OpenMP 4.5 and SYCL are able to target every platform in our evaluation set.
SYCL’s efficiency rapidly drops below 0.5, as soon as the MI100 is added to its
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Fig. 5: A cascade plot for the miniFE application considering only the three
portable programming models (OpenMP, Kokkos and SYCL).

evaluation set, but it achieves a PP ≈ 0.19. OpenMP is similarly portable, but
the addition of the GPU platforms (platforms 7-11 in the evaluation set) push
its efficiency to near zero, ultimately achieving PP ≈ 0.03. The Kokkos variant
generally achieves a higher application efficiency, but achieves PP = 0 as we were
unable to collect a data point for the Intel HD Graphics P630 GPU.

Our findings for miniFE run counter to the data seen for Heat in Figure 2(b).
The “performance portability gap” between these two applications is likely not
a result of the programming model chosen, but instead an indication that ad-
ditional effort may be required to optimise the application for heterogeneous
architectures. In the case of Heat, the simplicity of the application means that
the kernel likely translates reasonably well for each of the target platforms with-
out much manual optimisation effort, regardless of programming semantics. For
a significantly more complex application like miniFE, the target architectures
must be much more carefully considered in order to optimise memory access
patterns and minimise unnecessary data transfers [19].

Figure 5 shows a simplified cascade plot containing only the three portable
programming models considered in this study (i.e. OpenMP, Kokkos and SYCL).
In this figure, both OpenMP and Kokkos follow the 1.0 efficiency line up to the
addition of GPU and CPU platforms, respectively. On CPUs, SYCL is typically
less performant than OpenMP; and on GPUs, SYCL is typically less performant
than Kokkos, with the exception of the Intel HD Graphics P630 (for which we
do not have a Kokkos data point). The platform ordering in Figure 5 shows
that Kokkos and SYCL are typically better at targetting GPU platforms than
CPU platforms, while the reverse is true for OpenMP. Overall, when compared
only to other portable programming models, SYCL achieves PP ≈ 0.36, while
OpenMP only achieves PP ≈ 0.06. Although Kokkos achieves PP = 0 (due to no
result on one of the platforms), if we remove the Intel HD Graphics P630 from
our evaluation set, it achieves PP ≈ 0.64.

At the most basic level, SYCL provides a similar abstraction to Kokkos, i.e.,
a parallel-for construct for loop-level parallelism, and a method for moving data
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between host and device. For this reason we believe that SYCL should be able
to provide competitive performance portability to Kokkos. That SYCL achieves
approximately half of the performance portability of Kokkos is therefore likely
due to limited optimisation efforts at the application-level, and possibly lack of
maturity at the compiler-level; this performance gap is likely to close in time.

5 Conclusion

This paper details our initial investigation into the current status of compilers
implementing the SYCL programming model in terms of performance and per-
formance portability. Our study is motivated by the growing rate of SYCL adop-
tion within HPC, fuelled by its adoption by Intel for their new Xe line of GPUs.
Our evaluation is based on three SYCL compilers and two mini-applications that
implement methods commonly found in plasma physics simulation applications:
one a finite difference method, the other a finite element method.

For a simplistic finite difference heat diffusion mini-application, our results
show that SYCL is able to offer performance that is comparable to other perfor-
mance portable frameworks such as OpenMP 4.5 (with target offload). For well
optimised, simplistic kernels, SYCL is able to achieve high performance across
a range of different architectures with little developer effort.

On a significantly more complex finite element method application, SYCL
leads to a significant loss of efficiency when compared to native approaches such
as CUDA and MPI. When compared against other portable programming mod-
els, such as OpenMP 4.5 and Kokkos, SYCL fares better, achieving PP ≈ 0.36.
Kokkos is arguably the most performance portable approach considered in this
study, achieving PP ≈ 0.64 (without the Intel HD Graphics P630). It is likely
that a focused optimisation effort would improve the performance of the SYCL
variant across every platform and reduce the gap between Kokkos and SYCL.

Overall our results (and those of previous studies [4, 8, 12, 19]) show that
the SYCL programming model can provide performance and portability across
platforms. However, our experience with the miniFE application shows that this
performance does not come “for free” and likely requires careful consideration
of compilers and compiler options, and a SYCL-focused optimisation effort. As
the language and compiler infrastructure are further developed, the burden on
developers should decrease considerably.

5.1 Future Work

The work presented in this paper shows an initial investigation into the SYCL
programming model using two mini-applications. The most significant perfor-
mance issues highlighted concern the SYCL implementation of miniFE used in
this paper. Since it is a conversion from an OpenMP 4.5 implementation, it has
not been subject to the same optimisation efforts as the other ports evaluated.
It would therefore be prudent to re-evaluate the application following a focused
optimisation effort. Nonetheless, the work in this paper highlights the probable
performance gap between a simplistic conversion and a focused porting effort.
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