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METHODS & TECHNIQUES

insideOutside: an accessible algorithm for classifying interior and

exterior points, with applications in embryology
Stanley E. Strawbridge1,2,*, Agata Kurowski3, Elena Corujo-Simon1,2,4, Alastair N. Fletcher5,

Jennifer Nichols1,2,4,6,* and Alexander G. Fletcher7,8,*

ABSTRACT

A crucial aspect of embryology is relating the position of individual

cells to the broader geometry of the embryo. A classic example of this

is the first cell-fate decision of the mouse embryo, where interior cells

become inner cell mass and exterior cells become trophectoderm.

Fluorescent labelling, imaging, and quantification of tissue-specific

proteins have advanced our understanding of this dynamic process.

However, instances arise where these markers are either not

available, or not reliable, and we are left only with the cells’ spatial

locations. Therefore, a simple, robust method for classifying interior

and exterior cells of an embryo using spatial information is required.

Here, we describe a simple mathematical framework and an

unsupervised machine learning approach, termed insideOutside,

for classifying interior and exterior points of a three-dimensional point-

cloud, a common output from imaged cells within the early mouse

embryo.We benchmark our method against other publishedmethods

to demonstrate that it yields greater accuracy in classification of nuclei

from the pre-implantationmouse embryos and greater accuracy when

challenged with local surface concavities. We have made MATLAB

and Python implementations of the method freely available. This

method should prove useful for embryology, with broader applications

to similar data arising in the life sciences.

KEY WORDS: Machine learning, Quantitative biology,

Pre-implantation, Embryo, Inner cell mass, Trophectoderm

INTRODUCTION

The mouse embryo undergoes three major morphogenetic events

between fertilization and implantation: compaction, cavitation, and

hatching (Fig. 1A,B) (Tarkowski andWróblewska, 1967; Smith and

McLaren, 1977; Yoshinaga et al., 1976). Compaction coincides

with the first binary cell-fate decision, which is ultimately driven by

cellular position within the embryo (Fig. 1C) (Tarkowski and

Wróblewska, 1967). Exterior cells polarize to become the

extraembryonic trophectoderm (TE), precursors of the placenta

(Lawson et al., 1999), while interior cells become the inner cell

mass (ICM) (Ziomek and Johnson, 1980; Johnson and Ziomek,

1981). ICM cells then undergo a second binary cell-fate decision to

become either the embryonic epiblast, source of the foetus (Gardner

and Rossant, 1979) and embryonic stem cells (Evans and Kaufman,

1981; Martin, 1981), or the primitive endoderm (PrE), founder of

the yolk sac (Gardner and Johnson, 1972). This second cell-fate

decision coincides with cavitation, where a fluid-filled cavity, called

the blastocoel, forms between the TE and one side of the ICM

(Smith and McLaren, 1977). Finally, prior to implantation, the

embryo must hatch from the zona pellucida (Malter and Cohen,

1989). Molecular profiling of these tissues through RNA

sequencing (Guo et al., 2010; 2017) and immunohistochemistry

(Chazaud et al., 2006; Niwa et al., 2005; Palmieri et al., 1994) has

revealed key lineage markers such as NANOG and GATA6. These

lineage markers have been used to study the dynamic emergence

and plasticity of distinct cell identities during pre-implantation

development by employing fluorescent reporter knock-ins (Arnold

et al., 2011; Grabarek et al., 2012; Hamilton et al., 2003; Kalkan

et al., 2017; McDole and Zheng, 2012). However, in the mouse

there remain instances where reliable lineage markers do not exist

(Plusa et al., 2008) or cease to faithfully mark their lineage (Le Bin

et al., 2014; Schrode et al., 2014; Bessonnard et al., 2014), while in

other mammals such as humans and non-human primates, such

lineage markers are not yet established (Boroviak et al., 2018; Guo

et al., 2021; Stirparo et al., 2018). In such cases, we must find

alternative methods to classify the tissues under investigation.

For decades, spatial information has been used to help classify

cell populations in the preimplantation mouse embryo (Fleming,

1987; Nichols and Gardner, 1984). Recent advances in image

acquisition and processing technologies have improved the accuracy

of this spatial information. A common analysis method is

quantitative immunofluorescence (qIF) of cell nuclei, whereby

three-dimensional (3D) confocal fluorescence microscopy images

of nuclei are segmented and quantified using software such as Fiji

(Schindelin et al., 2012), MINS (Lou et al., 2014), or Nessys (Blin

et al., 2019). Output parameters from qIF include total nuclear

fluorescence, nuclear volume, and the geometric centre (centroid) of

the nucleus. The centroid point-cloud can then be used to classify

individual nuclei by their relative positions. Classification of

interior and exterior nuclei is of particular interest when

investigating the relationship between the cells of the ICM

(interior) and the TE (exterior).

To date, three methods have been used to classify interior and

exterior nuclei of the mouse embryo from qIF. We refer to these as

the random sample consensus (RANSAC) Ellipsoidal, Convex

Hull, and insideOutside methods. The RANSAC EllipsoidalReceived 26 July 2023; Accepted 27 July 2023
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method, employed by MINS (Lou et al., 2014), robustly fits an

ellipsoid to the point-cloud generated by segmented nuclear

centroids through the RANSAC iterative method (Fischler and

Bolles, 1981). Each nucleus is then classified as exterior if the

distance from the ellipsoid’s centre to the nuclear centroid exceeds

0.95 times the distance from the ellipsoid’s centre to the point on the

ellipsoid that is closest to the nucleus’s centroid; otherwise, the cell

is classified as interior. MINS has been widely used for qIF and has

been cited in nearly 100 manuscripts. The Convex Hull method,

employed by the spatial analysis software IVEN (Forsyth et al.,

2021), constructs a convex hull, the smallest convex set that

contains all centroids, from all nuclear centroids of the embryo and

then classifies a nucleus as exterior if it belongs to the boundary of

the convex hull. IVEN allows for manual correction of the

classification, but this requires user input which may introduce

bias. The insideOutside method, a preliminary version of which was

employed by Stirparo et al. (2021), is an accessible position-based

approach to the classification of interior and exterior nuclei.

A fourth method, which we refer to as the Naïve Ellipsoidal

method, was introduced by Forsyth et al. (2021) for their

benchmarking. This approach accepts the first fit of an ellipsoid

to the point-cloud, as opposed to generating a consensus ellipsoid

through iterative random sampling, as in the RANSAC approach.

The same distance rule as the RANSAC Ellipsoidal method is then

applied to classify cell positions.

These four methods share the common assumption that the

embryo is convex. A shape is said to be convex if the line segment

between any pair of points within the shape is entirely contained

within the shape (Fig. 1D); otherwise, the shape is said to be

concave (Fig. 1E). The RANSAC Ellipsoidal method models the

embryo as an ellipsoid, which is a convex shape. Similarly, the

Convex Hull method explicitly defines the exterior points as being a

member of a convex shape. Therefore, these methods underperform

if the surface of the embryo exhibits small local concavities or if the

embryo incurs indentations through fixation and mounting. The

insideOutside method softens the assumption of convexity by

classifying points using a two-dimensional (2D) parameter space

instead of requiring strict membership of a convex shape.

It has become increasingly important for developmental biologists

to perform rigorous quantification of their data. Thus it is necessary

to develop easy-to-deploy software that does not require high levels

of programming expertise. Furthermore, benchmarking of the three

mentioned classificationmethods has yet to be performed. Therefore,

here we present the accessible insideOutside algorithm for the

classification of interior and exterior points of embryo-like shapes.

We detail the mathematics underpinning the 2D parameter space

used for unsupervised classification, along with accuracy testing. We

then benchmark current classification methods using simulated and

empirical data from pre-implantationmouse blastocysts, showing that

the Convex Hull and insideOutside methods outperform the

Ellipsoidal methods. We conclude by demonstrating that the

insideOutside method outperforms the Convex Hull method when

challenged with local surface concavities, as can be found in

empirical data sets.

RESULTS

The minimum distance and variance in distances from a

point to the surface of a convex shape are inversely related

Here we will establish the minimum distance, and variance in

distances, to the surface of a convex shape as parameters underlying

Fig. 1. Morphogenetic events during pre-implantation mouse development. (A) Bright-field images from pre-implantation mouse development, from

morula to late blastocyst. (B) Three major morphogenetic events occur during pre-implantation mouse development: compaction, cavitation, and hatching.

(C) Cells in the pre-implantation embryo make two sets of binary cell-fate decisions: first, blastomeres become inner cell mass (ICM) (interior) or

trophectoderm (exterior); second, ICM cells become epiblast or primitive endoderm. These decisions coincide with compaction and cavitation, respectively,

and are completed by hatching. (D) A shape is convex if for any pair of points, P0 and P1, the resulting line segment is entirely contained within the shape;

biological examples of convex shapes include the compacted morula and blastocyst. (E) A shape is concave if there exists at least one pair of points whose

resulting line segment passes to the exterior of the shape; biological examples of concave shapes include trophectoderm cells and the blastocoel cavity.
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the insideOutside algorithm. An intuitive understanding for this

choice of parameters follows by considering their relationship for

points at the centre, and on the surface, of a sphere.

We first consider these parameters for a point at the centre of a

sphere (Fig. 2A). The minimum distance to the sphere is exactly the

radius of the sphere. In fact, the distance from the centre to all other

points of the sphere is identically the radius, meaning that the

variance in distance to the surface of the sphere is exactly zero.

Thus, minimum distance to the surface is maximized and the

variance in distances is minimized for the point at the centre of a

sphere.

On the other hand, consider an arbitrary point on the surface of

that same sphere (Fig. 2B). For that surface point, the minimum

distance to the surface of the sphere is exactly zero. If we then draw

Fig. 2. Establishing the inverse relationship between minimum distance and variance in distances between a point and the sphere. (A) For a point P

(orange dot) at the centre of a sphere (O, black dot) of radius r, the minimum distance from P to the sphere is r and the variance in distances is zero. (B) For

a point P on the surface of the sphere, the minimum distance is zero, and the variance in distances is greatest. (C) Analytic expressions for the minimum

distance, m, and variance in distances, v, from a point P located on/inside a sphere of radius r centred at the origin to the sphere. (D) This relationship is

tested for spheres that are discretized using equidistant points. 100 equidistant points (blue dots) are plotted on the unit sphere (rainbow surface). m and v

are calculated for 50 test points (red dots) along the vector from the origin (black dot) to the surface point P = (0, 0,1). Shown are the three-quarters view (left)

and the three orthogonal views (right). (E) The inverse relationship between m and v are shown for the continuous case of the unit sphere (see Eqn 2) (red

line) and discrete cases of 100 equidistant points on the unit sphere (Fig. 2D, black dotted line) and 100 uniform random points on the unit sphere (Fig. S1,

translucent black lines, 1000 realizations).
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line segments from that point to all other points on the surface of the

sphere, we see that we are drawing line segments of every length

between zero and the diameter of the sphere, meaning that the

original point on the surface of the sphere achieves the most

diversity of line segment lengths possible for the sphere. In other

words, as we will see below, a point on the surface of the sphere has

the maximum variance in distances to the surface. Thus, minimum

distance to the surface is minimized and the variance in distances to

the surface has been maximized for any point on the surface of a

sphere. We therefore arrive at an inverse relationship between the

minimum distance and the variance in distances to the surface of a

sphere as we move from the centre of the sphere to the surface of the

sphere.

We now formalize this relationship. First, we derive the expression

for the minimum distance from any point on/inside the sphere of

radius r, centred at the origin, to the sphere. Intuitively, a point P on/

inside the sphere, its closest point on the sphere, and the origin all lie

on a straight line (Fig. 2C, top). Hence, if P is located a distance

x∈ [0, r] from the origin, then since the distance from any point on

the sphere to the origin is r, the minimum distance from P to the

sphere is given by m = r− x.

Next, we derive the expression for the variance in distances from

a given point on/inside the sphere to the sphere. Let P be located at

distance x∈ [0, r] from the origin, and without loss of generality let

P lie on the z-axis. Consider a pointQ on the sphere, whose angle to

the z-axis is given by ϕ (Fig. 2C, bottom). Since the distance fromQ

to the origin is r, by the law of cosines the distance from P to Q is

given by dðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ x2 � 2rx cosf
p

. Computing surface

integrals, the variance in distances from P to the sphere is thus

given by,

v ¼ E½d2� � E½d�2 ¼ r2 þ x2 �
3r2 þ x2

3r

� �2

: ð1Þ

Substituting x = r−m into Eqn (1), and differentiating with

respect to m, we obtain,

dv

dm
¼ �

2

9r2
ðm � rÞ ð2m2 � 4mr � r2Þ: ð2Þ

Since m− r≤ 0 and 2m2
− 4mr − r2≤ 0 for m∈ [0, r], we have

dv/dm≤ 0 for m∈ [0, r], hence v is a decreasing function of m for

m∈ [0, r]. Thus, for points on/inside the sphere, the variance in

distances is inversely related to the minimum distance to the sphere.

This relationship is plotted in Fig. 2E.

The above calculations prove that the minimum distance and

variance in distances to the surface are inversely related for a sphere.

As an aside, we note that this relationship does not hold absolutely

for arbitrary compact, convex 3D shapes. Indeed, it is possible to

construct examples where the centre of mass does not maximize the

minimum distance to the surface, and it is this feature that hinders

the inverse relationship between the minimum distance and variance

in distances to the surface. Nevertheless, given a compact, convex

surface that satisfies a mild roundness condition, there is a compact

subset of its interior for which the minimum distance to the

boundary and the variance in distances are inversely related. This

means that the desired property holds once we are close enough to

the surface, and the closer the surface resembles a sphere, the

stronger the inverse relationship between the minimum distance and

variance in distances to it. While a more detailed mathematical study

lies outside the scope of the present study, we note that this

relationship does not hold absolutely for arbitrary compact, convex

3D shapes.

We conclude this section by providing numerical simulations

indicating that this property remains true for piecewise linear

approximations of the sphere. For this we simulate 100 points on the

surface of a sphere that are spaced either equidistant (Fig. 2D) or

uniformly at random (1000 realizations) (Fig. S1) (Deserno, 2004).

For each discrete surface, the minimum distance and variance in

distances to the surface points are calculated for 50 test points

equally spaced between the centre of the sphere and a surface point.

Both sets of simulations closely match the analytical solution

(Fig. 2E). While this has been demonstrated for the case of the

sphere and discretized derivatives of the sphere, it provides a

theoretical foundation for the use of m and v in the classification of

convex point-clouds. Importantly, the demonstration using discretized

surfaces indicates that this relation is directly applicable to empirical

datawhich consist of discrete points, e.g. the centroids of nuclei within

an embryo.

insideOutside: a 2D decision space for classifying interior

and exterior positions

Motivated by the theoretical result of the previous section, we

proceed to describe an algorithm for the classification of interior and

exterior points of a 3D point-cloud. The insideOutside algorithm

(Algorithm 1) takes in a set of 3D Cartesian coordinates, S∈ℝ
n×3

(Fig. 3Ai), and returns indexing vector I∈B
n with 0 indexing the

inside points and 1 indexing the outside points. For pre-implantation

embryos, the input data can be generated through manual nuclear

segmentation in Fiji (Schindelin et al., 2012) or MATLAB’s

volumeSegmenter App (Copyright 2020 The MathWorks, Inc.) or

through automated 3D nuclear segmentation pipelines like MINS

(Lou et al., 2014), Nessys (Blin et al., 2019), or StarDist (Weigert

et al., 2020). The algorithm begins by computing the Delaunay

triangulation, D, over S (Fig. 3Aii). From D, we generate a convex

hull H (Barber et al., 1996) (Fig. 3Aiii). Now, using H we can

calculate the distance function, dðP; HÞ; 8P [ S (Fig. 3Aiv).

We calculate the minimum and variance in dðP; HÞ; 8P [ S,

and then scale each parameter such that the maximum is 1 and the

minimum is 0 (Fig. 3Av). Note that we choose to calculate distances

to all surfaces of the convex hull, not just all points generating it, to

maximise the accuracy and robustness of our method. Finally,

hierarchical clustering by ward linkage is performed on the

parameters to classify the points into two groups (Fig. 3Avi,vii).

Algorithm 1

insideOutside takes in an n×3 matrix of Cartesian points and returns

a bit vector that classifies each point as either inside, 0, or outside, 1.

Data: Set of points S∈ℝ
n×3.

Result: Classification vector I∈B
n.

Delaunay triangulation D over S.

Generate convex hull H from D.

for each point P∈ S do

for each face f∈H do

Calculate min d(P, f )

end

Calculate m =min d(P, H )

Calculate v = Var d(P, H )

end

Perform unsupervised classification for two groups.

The accuracy of the insideOutside method classification was

performed on test shapes designed to resemble the late mouse

blastocyst, whose cell number ranges between 100-150 (Plusa et al.,

2008), where approximately 60-70% of the cells belong to the TE
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Fig. 3. See next page for legend.
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(outside cells) (Fleming, 1987; Saiz et al., 2016; 2020; Morgani

et al., 2018). Therefore, we constructed shapes with 100 uniform

random points on the unit sphere (outside) and 50 uniform random

points within balls of radii between 0.01 and 1 (inside), both centred

at the origin (Fig. 3B and Fig. S2). 1000 embryos were simulated

and classified for each of 100 inner ball radii.

Initial tests revealed near-perfect classification rates for True

Outside points at all inner ball radii (Fig. S2E). There was, however,

a significant drop in the True Inside classification rate at an inner

ball radius of 0.82 where the True Inside classification rate dropped

below 0.99 with minimum rate of 0.48 ± 0.17 (mean ± s.d.) at an

inner ball radius of 1. To improve the True Inside classification rate,

we modified the parameter space by taking the log of m, which

results in a greater separation of inside and outside points along the

minimum distance axis (Fig. S2F). Simulations bear out marked

improvements in True Inside classification rates with no detriment

to True Outside classification rates. The resulting True Inside

classification rates do not drop below 0.99 until an inner ball radius

of 0.94 and achieve a minimum of only 0.82 ± 0.09 at an inner ball

radius of 1.

We extended this analysis to explore the effects on True Inside

classification rate by adding different values of a small parameter, ɛ,

to the minimum distance to the surface (Fig. 3C). We observe very

high True Inside classification rates (> 0.95) for the vast majority of

inner ball radii. For all values of ɛ assessed, a decrease in True Inside

classification rate is only observed for inner ball radii near one.

Indeed, we see that the worst case True Inside classification rates for

each ɛ are obtained for inner ball radii at, or very near, one (Fig. 3D).

While these worst case True Inside classification rates range

between 0.67 and 0.87, each ɛ outperforms the raw minimum

distance of 0.48. We therefore conclude that so long as ɛ is

sufficiently small, the exact value has little impact on the

classification rates. Thus, we have established our algorithm using

the parameters of [log10(m + ɛ), v], for ɛ = 0.01, and we now

proceed to challenge this method with empirical data.

insideOutside and Convex Hull methods outperform the

Ellipsoidal methods when classifying cells of the mouse

blastocyst

In this section we set out to show that the insideOutside method can

successfully classify the nuclei of real-world samples by using

previously quantified mid-blastocysts mouse embryos (Stirparo

et al., 2021) (Fig. 4A). We initially assess different unsupervised

clustering methods which can be used in insideOutside and

how well the minimum distance and variance of distances to the

surface relationship is able to classify empirical data. Next, we

assess how well the individual parameters, minimum distance and

the variance of distances to the surface, are able to classify

these data. We finally benchmark our method against the three

other methods: Naïve Ellipsoidal, RANSAC Ellipsoidal (Lou et al.,

2014), and Convex Hull (Forsyth et al., 2021); with these same

embryos. SOX2 staining, which can be used to mark all nuclei of the

early ICM (Wicklow et al., 2014), was used as the ground truth,

where SOX2 positive nuclei indicate inside nuclei and SOX2

negative nuclei indicate outside nuclei. SOX2 positive/negative

status was determined through statistical inference (Gaussian

mixture modelling) with 758 cells from 14 embryos (Fig. 4B,C).

We then used the SOX2 ground truth (Fig. 4D) to calculate the True

Inside and True Outside rates for the four classification methods

(Fig. 4E).

First, we assessed different unsupervised clustering methods on

classification rates (Fig. S3A). The methods we assessed were

K-means clustering, hierarchical clustering, spectral clustering, and

DBSCAN. No difference was observed in either the True Inside

classification rate (means ranging between 0.91 and 0.93, P-values

> 0.05, Kruskal–Wallis) or the True Outside classification rate

(P-values > 0.05, Kruskal–Wallis). However, the spectral clustering

method exhibited a larger variance than the other three methods and

a lower mean rate of 0.79, while the mean rates for the other three

methods ranged between 0.89 and 0.90. We therefore propose that

any of K-means clustering, hierarchical clustering, or dbscan are

sufficient for unsupervised clustering. However, because DBSCAN

requires additional user defined parameters, we would only suggest

K-means clustering or hierarchical clustering. Finally, we select

hierarchical clustering for insideOutside as the preferred method as

it tends to better classify highly eccentric distributions, such as the

ones generated from these data (Fig. S2C).

Next, we see from simulations that there is a roughly linear

relationship between the minimum distance to the surface, m, and

variance of distances to the surface, v, for points away from the

surface and centre of a sphere (Fig. 2E). Therefore, we wanted to

determine if one of the parameters was sufficient for classification of

empirical data, or if it is the case that both parameters are needed to

improve classification in the nonlinear regions that are towards the

surface and centre of embryos. To that end, we examined the ability

to classify nuclei using only a univariate parameter space of either

log10(m + 0.01) or v against the bivariate parameter space of

[log10(m + 0.01), v] (Fig. S3B). We see that v alone is a relatively

poor classifier for both inside nuclei (rate = 0.69 ± 0.21, mean ± s.d.;

N = 14 embryos) and outside nuclei (rate = 0.65 ± 0.15). Whereas

log10(m + 0.01) and [log10(m + 0.01), v] correctly classified nuclei

with identical rates (rate = 0.91 ± 0.06) above that of v alone (P-value

of 0.0027, Kruskal–Wallis). Again log10(m + 0.01) (rate = 0.895 ±

0.092; P-value of 0.004) and [log10(m + 0.01), v] (rate = 0.904 ±

0.086; P-value of 0.002) yielded better rates for outside nuclei

classification rates compared with v. Although, outside classification

rates for log10(m + 0.01) and [log10(m + 0.01), v] were not

significantly difference (P-value of 0.98), [log10(m + 0.01), v]

outperformed log10(m + 0.01) for three out of 14 embryos. This

leads us to conclude that the bivariate parameter space does indeed

provide an advantage in classifying outside nuclei in some instances.

With insideOutside in hand, we now benchmark our method against

the three other methods. For inside nuclei classification (Fig. 4F,left),

we find that both the Convex Hull (rate = 0.92 ± 0.06, mean ± s.d.;

N = 14 embryos) and insideOutside (rate = 0.91 ± 0.06) methods

Fig. 3. The insideOustide method for the classification of interior and

exterior points of a convex shape. (A) Outline of the insideOutside

algorithm. (B) Accuracy testing was performed on a shape constructed of

100 outside points, uniform random points on the unit sphere, and 50 inside

points, uniform random points in a ball centred at O of radii ranging from

0.01 to 1 (see Fig. S2). (Bi-iv) The steps of the algorithm performed on an

example shape with inner ball radius of 1. (Bi) Ground truth of inside points,

blue dots enclosed by blue surface, and outside points, orange points on

orange surface. (Bii) The triangulated hull generated from making a convex

hull over the Delaunay triangulation. (Biii) The classification of points using

hierarchical clustering over the calculated parameter space. Shown are True

Inside points (blue), True Outside points (orange), and Misclassified Outside

points (green). (Biv) The classification mapped onto the original shape.

(C,D) Accuracy testing was performed by classifying the points (50 inside,

100 outside) of 500 shapes for each of 100 different inner ball radii for

values of ɛ ∈ [0.001, 0.1]. (C) Mean True Inside rate of 500 realizations for

each pair of inner ball radius and ɛ. (D) The minimum achieved True Inside

rate for each value of ɛ from the parameter sweep in C. The red dashed line

shows the True Inside rate using the raw minimum distance and black dotted

line shows the selected value of ɛ.
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outperform the Naïve Ellipsoidal method (rate = 0.59 ± 0.29; P-values

of 6.8×10−4 and 1.0×10−3, respectively, Kruskal–Wallis) and

RANSAC Ellipsoidal method (rate = 0.62 ± 0.12; P-values of

8.1×10−5 and 1.3×10−4, respectively). The Naïve and RANSAC

Ellipsoidal methods show no difference in ability to classify inside

nuclei (P-value of 0.96). Similarly, the ConvexHull and insideOutside

Fig. 4. See next page for legend.
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methods show no difference in ability to classify inside nuclei (P-value

of 0.99, Kruskal–Wallis). These rates are summarized in the table in

Fig. S3C.

For outside nuclei classification (Fig. 4F, right), we see that theNaïve

Ellipsoidal method (rate = 0.73 ± 0.13) underperforms compared to the

RANSAC Ellipsoidal method (rate = 0.95 ± 0.06, P-value of 4.9 ×

10−4), Convex Hull method (rate = 0.89 ± 0.09, P-value of 0.031), and

insideOutside method (rate = 0.90 ± 0.08, P-value of 0.019). However,

no difference is seen between the RANSAC Ellipsoidal, Convex Hull,

and insideOutside methods (all pair-wise P-values≥ 0.63). Thus, the

Naïve Ellipsoidal method shows the lowest rates of classification for

both inside and outside points.While the RANSACEllipsoidal method

only underperforms in classifying interior points. These data together

show that ellipsoid fitting has the least satisfactory classification

accuracy.

insideOutside outperforms the Convex Hull method in

classification of outside points

While both the insideOutside and Convex Hull methods perform

comparably on the empirical blastocysts, the Convex Hull method

holds a systematic error of misclassifying outside points as inside

points when there are minor concavities at the surface. We highlight

this feature in two head-to-head comparisons of the insideOutside

and Convex Hull methods. First, we simulate segmentation/imaging

errors by leave-K-out sub-sampling of the empirical embryos. Then

we conclude with the introduction of small local surface concavities

to simulated test shapes.

We begin by simulating segmentation/imaging errors by k-fold

cross validation sub-sampling of the empirical embryos for k

values between 1 and 15. This reveals that the Convex Hull

method outperforms insideOutside in classifying inside points in

16.44% of sub-sampled embryos (Fig. S3D). When considering

outside classification, insideOutside performs better in 12.98%

of sub-sampled embryos while the Convex Hull method performs

better in 0.06% of subsampled embryos (Fig. S3E). We then

asked how sensitive these methods are to perturbations relative to

the non-subsampled embryos. We found a decrease in inside

classification rates relative to the non-subsampled classfication

for both Convex Hull method (39.86% of samples) and

insideOutside (40.71% of samples) (Fig. S3F). Conversely, an

increase in outside classification rates relative to the non-

subsampled embryos was exhibited for both Convex Hull

method (31.37% of samples) and insideOutside (27.70% of

samples) (Fig. S3G).

We now show the systematic nature of this misclassification by

emulating increasing levels of local surface concavities via the

introduction of increasing levels of normally distributed random

noise to the surface points of the test shapes (Fig. 4G). We then

compute the classification rates over the parameter space of inner

ball radius (100 radii between 0.01 and 1) and noise factor (100

levels between 0 and 0.25) for 100 shapes (Fig. 4H and Fig. S4A).

The Convex Hull method shows a uniform decrease of True Outside

classification rates across all inner ball radii for increasing levels of

noise, eventually dropping below a rate of 0.4 around a noise factor

greater than 0.2. The insideOutside method does not display this

uniform decrease of True Outside classification rates, instead

maintaining a rate of greater than 0.9 for the majority of the

parameter sets tested. The insideOutside method only begins to lose

accuracy when both the inner ball radius and noise factor become

large. Surface concavities have negligible effects on the

classification rates of inside points for both methods (Fig. S4B,C).

DISCUSSION

Motivated by the need to accurately classify cells of mouse

embryos based on their spatial position alone, we present

insideOutside, an accessible algorithm for the classification of

interior and exterior points of a three-dimensional point-cloud. We

established an inverse relationship between the minimum distance

and variance in distances from a point to a ‘typical’ convex shape’s

surface. We then harnessed this inverse relationship to build an

algorithm which allows for faithful classification of interior and

exterior points by hierarchical clustering. We then proceeded to

benchmark our method against three other methods, Naïve

Ellipsoidal, RANSAC Ellipsoidal (Lou et al., 2014) and Convex

Hull (Forsyth et al., 2021), finding that the insideOutside method

was as reliable, or better, at classifying nuclei of the pre-

implantation mouse embryo. We demonstrated that the

insideOutside method has greater accuracy than the Convex Hull

method in classifying exterior points when challenged with both

segmentation/imaging errors and local surface concavities. Finally,

we have packaged the algorithm as freely available standalone

MATLAB and Python implementations.

We have shown that the Convex Hull and insideOutside methods

both outperform the Naïve and RANSACEllipsoidal methods in the

classification of interior nuclei of pre-implantation mouse embryos,

while the Naïve Ellipsoidal method underperforms the other three

methods when classifying exterior nuclei. In all four methods we

find that instances of misclassification are highest where the ICM is

in contact with the TE (Fig. 4E). This shows that ellipsoid fitting

methods (Naïve and RANSAC) are not as suitable in classifying

interior and exterior points as convex hull based methods (Convex

Hull and insideOutside).

Moreover, we have shown through simulation that the

insideOutside method is more accurate than the other methods

when challenged with surface concavities. This is particularly

important for classifying model systems whose exterior points

exhibit high levels of noise. Such noise can be biological in nature,

e.g. due to variability in nuclear height along the apicobasal axis of

columnar epithelia; or technical, e.g. due to segmentation errors.

Fig. 4. Benchmarking the insideOutside method. (A) Confocal images of

a mid-blastocyst stained for DNA and early ICM marker SOX2. A single slice

is shown for transmitted light and maximum intensity projections are shown

for fluorescence images. (B) Gaussian mixture modelling (GMM) was

performed on the SOX2 nuclear signal of 758 cells from 14 embryos to

classify SOX2 positive (blue) and negative (orange) nuclei. Nuclear signal

was normalized by nuclear volume, log10 transformation, and re-scaling to

the interval [0,1]. (C) GMM classification of cells applied to the embryo from

A. (D) SOX2 GMM classification of embryo from A shown in three-quarters

view. SOX2 GMM classification was used as the ground truth for methods

benchmarking. Shown are True Inside (blue) and True Outside (orange) cell

classification. (E) Classification of embryo from A by the Naïve Ellipsoidal,

RANSAC Ellipsoidal (Lou et al., 2014), Convex Hull (Forsyth et al., 2021),

and insideOutside (Stirparo et al., 2021) methods shown in three-quarter

view. Shown are True Inside (blue), True Outside (orange), Misclassified

Outside (green; inside classified as outside), and Misclassified Inside (gray;

outside classified as inside) nuclei. (F) Classification rates for True Inside

(left, blue) and True Outside (right, orange). Kruskal–Wallis Test, P-values: *,

0.05≥ P > 0.01; **, 0.01≥P > 0.001; ***, 0.001≥P > 0.0001; ****, 0.0001≥P.

All other pairwise relationships were not significant with P-values≥ 0.63. (G)

Increasing levels of noise were added to the surface points of the test shape

to simulate increasing local surface concavities. (H) The mean True Outside

rate (orange scale) is shown over the parameter space of inner ball radius

(100 radii between 0.01 and 1) versus noise factor (100 levels between 0 and

0.25) for the Convex Hull (left) and insideOutside (right) methods. 100 test

shapes were classified for each parameter pair. Additional contour lines are

shown to delineate drops in classification rate.
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These findings speak to the appropriateness of each method.

There may be instances when the user has a large number of points

in a low noise situation where exterior points should be strictly

classified as belonging to the surface. In such cases the Convex Hull

method is most appropriate. Alternatively, the user may want to

soften this condition in the case of a small number of points in a high

noise situation, e.g. the pre-implantation mouse embryo. Here, the

insideOutside method would be most useful, as it performs the best

in such high noise situations. While the Ellipsoidal method has

proved useful in identifying unique embryos from images with

many embryos (Lou et al., 2014), we would not recommend the

Ellipsoidal method for classifying the nuclei of those embryos.

Finally, we note that all of the classification methods considered in

the present study take on the order of 10−4 to 10−3 s to implement

for a typical mouse embryo. As such, relative computational cost is

unlikely to be a factor unless analysing unrealistically large numbers

of embryos.

There is scope for further refinement of the insideOutside

algorithm. This could come by way of incorporating more

information about the segmented nuclei, e.g. making use of

nuclear aspect ratio and not just nuclear centroid. Additional

parameters could also be introduced to the parameter decision

space. IVEN has made use of number-of-neighbours, calculated

from the Delaunay triangulation, in downstream spatial analysis.

The addition of number-of-neighbours to the classification space

may aid in better discrimination of interior and exterior points,

especially in the problem case where the ICM meets the TE. More

generally, extensions to our algorithm could leverage alternative

approaches to improve robustness of classification, such as those

based on deep learning (Ounkomol et al., 2018; Christiansen et al.,

2018).

We have sought to make this method, and future methods, easy-

to-deploy for biological and life scientists, as there is increasing

need for them to perform rigorous quantification of their data.

Development of the insideOutside method in Stirparo et al. (2021)

was born of a need to refine the originalMINS classification method

and was driven by collaboration between experimentalists and

theoreticians. While there is no expectation for experimentalists to

do methods development, there is expectation that they should be

able to use these methods, thus empowering future work. Both

MINS and IVEN share this ethos of empowering experimentalists in

the journey of data analysis. However, the insideOutside method is

provided as a stand-alone script, whereas the classification methods

in MINS and IVEN are members of a larger software package. This

means that the insideOutside method has greater flexibility in use

and migration to other programming languages. Critically, the

stand-alone nature of the insideOutside method lends itself to

incorporation into other software pipelines. For example, the

insideOutside method could be incorporated as an additional

classification method into either MINS or IVEN, as both packages

have MATLAB implementations.

Finally, other use cases for the insideOutside method include

other mammalian organisms that undergo the process of blastocyst

formation (humans, non-human primates, other rodents, ungulates,

etc.). It also has use for certain organoid systems, such as

quantifying the level of cell sorting in ICM organoids (Mathew

et al., 2019). And while the insideOutside method was motivated by

the need to discriminate between the ICM and the TE in the

preimplantation blastocyst, it remains a general method for

classifying the interior and exterior points of a point-cloud. This

means it has extensibility to any data of this description. This

includes the organization of transcription factor clusters from

single-molecule localization microscopy (Liu et al., 2014), the

pattern of RNA transcripts acquired through seq-FISH (Lohoff

et al., 2022), and the relationship of genomic loci within the nucleus

as determined by single-cell Hi-C structures (Stevens et al., 2017).

MATERIALS AND METHODS

Embryo collection and bright-field imaging

Embryos were obtained from natural mating, detection of a copulation plug

in the morning was used as confirmation of successful mating and indicated

embryonic day (E) 0.5. Eight-cell and compacted morula embryos were

flushed from the oviduct at E2.5 and E3.0, respectively, and mid and late

blastocysts were flushed from the uterine horns at E3.5 and E4.5,

respectively, using M2 medium (Sigma-Aldrich, M7167). This research

has been regulated under the Animals (Scientific Procedures) Act 1986

Amendment Regulations 2012 following ethical review by the University of

Cambridge Animal Welfare and Ethical Review Body. Use of animals in

this project was approved by the ethical review committee for the University

of Cambridge, and relevant Home Office licences (Project licence number

80/2597 and number P76777883) are in place. Bright-field images were

taken on a Leica DMI4000B microscope.

Quantitative immunofluorescence of embryos

Quantitative immunofluorescence data was originally published in Stirparo

et al. (2021). In brief, embryos were fixed in paraformaldehyde, stained for

DNA and SOX2, and imaged using confocal microscopy. Embryo nuclei

were segmented and each nucleus’s total fluorescence (sum of pixel values),

volume, and centroid were quantified using MINS (Lou et al., 2014).

Accuracy testing designations and rates

For accuracy testing, each point was assigned one of four designations: true

inside, misclassified inside, true outside, or misclassified outside. A

designation of ‘true inside’ means the ground truth of the point and the

classification of the point were both ‘inside’. A designation of ‘misclassified

inside’ means the ground truth of the point was ‘inside’ and the

classification of the point was ‘outside’. The same logic applies to the

‘outside’ designations. Two rates were calculated in the accuracy testing:

true inside rate and true outside rate. The ‘true inside rate’ was calculated as

the number ‘true inside’ points divided by the number of ‘total inside’ points

determined by the ground truth,

True Inside Rate ¼
True Inside

Total Inside
: ð3Þ

The same logic applies to the ‘true outside rate’. Note that our terminology is

based on biological intuition and represents a departure from standard

machine learning nomenclature: ‘true inside rate’ corresponds to the

sensitivity of the inside classification, and similarly for ‘true outside rate’.

Simulating segmentation error

Segmentation error was simulated by k-fold cross validation sub-sampling,

k∈ [1, 15], of the 14 different embryos. For one-fold cross validation sub-

sampling, each nucleus was left out once to build the sample (E.g. For an

embryo with 35 nuclei, there would be 35 samples drawn). For k-fold cross

validation sub-sampling with k > 1, we randomly chose 100 samples with

replacement from each of the 14 embryos, for a total of 1400 sub-sampled

embryos for each value of k.

Code availability

The insideOutside algorithm and all code used in this manuscript to

perform simulations, analysis, and benchmarking are written in MATLAB

(2021a) and are freely available at https://github.com/stanleystrawbridge/

insideOutside under the GNU General Public License v3.0. A Python

implementation of the insideOutside algorithm is provided in the same

repository.
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and Hadjantonakis, A.-K. (2020). Growth-factor-mediated coupling between

lineage size and cell fate choice underlies robustness of mammalian

development. Elife 9, e56079. doi:10.7554/eLife.56079

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,

T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B. et al. (2012). Fiji: an

open-source platform for biological-image analysis. Nat. Methods 9, 676-682.

doi:10.1038/nmeth.2019

Schrode, N., Saiz, N., Di Talia, S. and Hadjantonakis, A.-K. (2014). GATA6 levels

modulate primitive endoderm cell fate choice and timing in the mouse blastocyst.

Dev. Cell 29, 454-467. doi:10.1016/j.devcel.2014.04.011

Smith, R. and Mclaren, A. (1977). Factors affecting the time of formation of the

mouse blastocoele. J. Embryol. Exp. Morphol. 41, 79-92.

Stevens, T. J., Lando, D., Basu, S., Atkinson, L. P., Cao, Y., Lee, S. F., Leeb, M.,

Wohlfahrt, K. J., Boucher, W., O’shaughnessy-Kirwan, A. et al. (2017). 3D

structures of individual mammalian genomes studied by single-cell Hi-C. Nature

544, 59-64. doi:10.1038/nature21429

Stirparo, G. G., Boroviak, T., Guo, G., Nichols, J., Smith, A. and Bertone, P.

(2018). Integrated analysis of single-cell embryo data yields a unified transcriptome

signature for the human preimplantation epiblast. Development 145, dev158501.

doi:10.1242/dev.158501

Stirparo, G., Kurowski, A., Yanagida, A., Bates, L., Strawbridge, S., Hladkou, S.,

Stuart, H., Boroviak, T., Silva, J. and Nichols, J. (2021). OCT4 induces

embryonic pluripotency via STAT3 signaling and metabolic mechanisms. Proc.

Natl. Acad. Sci. USA 118, e2008890118. doi:10.1073/pnas.2008890118
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