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ABSTRACT: Expression of recombinant proteins in mammalian
cell factories relies on synthetic assemblies of genetic parts to
optimally control flux through the product biosynthetic pathway. In
comparison to other genetic part-types, there is a relative paucity of
characterized signal peptide components, particularly for mamma-
lian cell contexts. In this study, we describe a toolkit of signal
peptide elements, created using bioinformatics-led and synthetic
design approaches, that can be utilized to enhance production of
biopharmaceutical proteins in Chinese hamster ovary cell factories.
We demonstrate, for the first time in a mammalian cell context, that
machine learning can be used to predict how discrete signal peptide
elements will perform when utilized to drive endoplasmic reticulum
(ER) translocation of specific single chain protein products. For more complex molecular formats, such as multichain monoclonal
antibodies, we describe how a combination of in silico and targeted design rule-based in vitro testing can be employed to rapidly
identify product-specific signal peptide solutions from minimal screening spaces. The utility of this technology is validated by
deriving vector designs that increase product titers ≥1.8×, compared to standard industry systems, for a range of products, including
a difficult-to-express monoclonal antibody. The availability of a vastly expanded toolbox of characterized signal peptide parts,
combined with streamlined in silico/in vitro testing processes, will permit efficient expression vector re-design to maximize titers of
both simple and complex protein products.

KEYWORDS: translocation, signal peptide, recombinant protein, mammalian

1. INTRODUCTION

Recombinant proteins are the principal molecular format of
biopharmaceutical products, where Chinese hamster ovary
(CHO) cells are a dominant cell factory utilized for their
biomanufacturing. Monoclonal antibodies (mAbs) are the
most common product-type in development, representing
53.5% of all biopharmaceutical approvals between 2018 and
2022.1 Over the past two decades, significant titer increases
have been achieved via cell,2 vector,3 process,4 and media5

engineering. Despite significant advances in biomanufacturing
system outputs, new technologies are critically required to
enhance production of increasingly complex product formats,
such as fusion proteins and tri-specific mAbs.6 These proteins
are commonly referred to as “difficult-to-express” owing to low
product yields, where process optimization is time and cost-
intensive.7−9

Advances in the synthetic biology field, particularly in DNA
sequence engineering, have significantly expanded opportu-
nities to improve CHO cell expression vector design.10

Although some vector components have been widely studied,
with associated availability of DNA part libraries,11 mammalian
signal peptides remain relatively unexplored. As all recombi-
nant protein products are secreted from the host cell factory,

they have an absolute requirement to be paired with an
appropriate signal peptide, a short N-terminal amino acid
sequence that facilitates co-translational translocation of
nascent polypeptides into the endoplasmic reticulum
(ER).12,13 Although signal peptides adhere to a generic
three-domain structure, comprising a basic N-domain, a
hydrophobic H-domain, and a slightly polar C-domain,14 the
sequence features underpinning their performance are
relatively poorly understood. Recent studies have begun to
elucidate mechanistic design rules that govern whether a signal
peptide will generally encode low or high ER translocation
rates;15 however, (i) this work is predominantly in bacterial
systems,16,17 and (ii) there is a paucity of information
regarding context-specific functionality, whereby individual
signal peptide performance is highly variable dependent on the
partner-protein used.
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Previous work in CHO cells has identified bottlenecks in the
secretory pathway as a limiting factor in production
yields.18−20 Multiple studies have determined that the rate of
ER translocation is a critical control parameter in the product
biosynthetic pathway, where utilization of novel signal peptides
has been shown to significantly enhance the titer of a wide

range of recombinant proteins.21 Although screening small
panels of signal peptide parts typically identifies a component
that permits increased system output, as compared to common
industry-used sequences, protein-partner specificity necessi-
tates trial and error screening, which is intractable in time-
sensitive applications such as biopharmaceutical cell line

Table 1. Origin and Amino Acid Composition of 37 Signal Peptides Used to Construct ScfV, ETE, and DTE mAb Expression
Plasmidsa

Signal
peptide Amino acid sequence Signal peptide origin

E1 MAPFASLASGILLLLSLITSSKA Metalloproteinase inhibitor 1 (TIMP1) N-terminal signal peptide. Protein location: secreted

E2 MLLGPGHTLSAPALALAVTLTLLVRSASP Chronodroitin sulphate proteoglycan 4 (CSPG4) N-terminal signal peptide. Protein location: plasma
membrane

E3 MLLSVPLLLGLLGLAAA Calreticulin (CALR) N-terminal signal peptide. Protein location: the ER, cytosol, the cell surface, and
secreted

E4 MQELRGILLCLLLAAAVPTTP Dickkopf-related protein 3 (DKK3) N-terminal signal peptide. Protein location: secreted

E5 MRYVASYLLAALGGNS 60S acidic ribosomal protein P2 (RPLP2) N-terminus. Protein location: the cytosol and secreted

E6 MGKSPEAWCIVLFSVLASFSA Complement C 1s (C1S) N-terminal signal peptide. Protein location: secreted

E7 MASSGSVQQPRLVLLMLVLAGAARA Cathepsin Z (CTSZ) N-terminal signal peptide. Protein location: the lysosome

E8 MRWKIIQLQYCFLLVPCMLTALEA Nucleobinin-2 (NUCB2) N-terminal signal peptide. Protein location: the nucleus, ER, Golgi, and secreted

E9 MLSRSLLCLALAWVARVGA Protein disulphide-isomerase (PDIA1) N-terminal signal peptide. Protein location: the ER and plasma
membrane

E10 MRFSCLALLPGVALLLASARLAAA Protein disulphide-isomerase A3 (PDIA3) N-terminal signal peptide. Protein location: the ER

E11 MRVLWVLGLCCVLLTFGFVRA Endoplasmin (HSP90B1) N-terminal signal peptide. Protein location: the ER

E12 MKFPMVAAALLLLCAVRA BiP (HSPA5) N-terminal signal peptide. Protein location: the ER, cytoplasm, and the cell surface

E13 MRSLLLASFCLLAVALA Serpinh1 N-terminal signal peptide. Protein location: the ER

E14 MKILLLCVGLLLTWDNGMVLG Clusterin (CLU) N-terminal signal peptide. Protein location: the ER, cytosol, nucleus, cytoplasm, chromaffin
granules, and secreted

E15 MLRISGRNMKVLFAAALIVGSVVFLLLPGPSVA Peptidylprolyl isomerase B (PPIB) N-terminal signal peptide. Protein location: the ER

E16 MAATVRRQRPRRLLCWTLVAVLLADLLALS Hypoxia upregulated protein 1 (HYOU1) N-terminal signal peptide. Protein location: the ER

E17 MKMGVRLAARAWPLCGLLLAALGGVCA Dolichyl-diphosphooligosaccharide protein glycotransferase (DDOST) N-terminal signal peptide. Protein
location: the ER

X1 MWWRLWWLLLLLLLLWLALAAAA N-terminal signal peptide expressing SEAP in CHO−S. Published name: SSP110

X2 MGWSLILLFLVAVATRVLS N-terminal signal peptide expressing rituximab HC in CHO K1. Published name: rituximab native HC21

X3 MDFQVQIISFLLISASVIMSRG N-terminal signal peptide expressing rituximab LC in CHO K1. Published name: rituximab native LC21

X4 MEFGLSWVFLVALFRGVQC N-terminal signal peptide expressing avastin, humira, rituxan, and remicade HC in CHO K1. Published name:
H721

X5 MKWVTFISLLFLFSSAYS Serum albumin preproprotein N-terminal signal peptide expressing model antibody HC and LC and a model
fusion protein in CHO K1, and Gaussia luciferase in CHO DG44 and CHO AA8. Published name: B18,19

X6 MKLPVRLLVLMFWIPAASA N-terminal signal peptide expressing anti-HER2 antibody in CHO DG44 and E. coli W3110. Published
name: ASA23

X7 MNLLLILTFVAAAVA Human trypsinogen-2 N-terminal signal peptide expressing Gaussia luciferase in an unspecified CHO host.
Published name: trypsinogen-224

X8 MGSAALLLWVLLLWVPSSRA N-terminal signal peptide derived from CHO composed of a modified Ig kappa chain V−III region
MOPC63-like precursor with the last 4 amino acids taken from azurocidin preproprotein. this signal
peptide was expressing GFP and a model scFv-Fc in CHO K1 and CHO DG44. Published name: mIgk C25

X9 MTRLTVLALLAGLLASSRA N-terminal azurocidin preproprotein signal peptide expressing two model antibodies HCs and LCs and a
model fusion protein, GFP and a model scFv-Fc in CHO K1 and CHO DG44. Published name: E19,25

X10 MWWRLWWLLLLLLLLWPMVWA/AA Synthetically designed N-terminal signal peptide expressing SEAP, IFNa2́, IL-25, sclerostin, mimecan, and
prostaglandin-H2 D-isomerase in HEK293 and CHO−S. Published name: secrecon10,20,26

X11 MKLPVRLLVLMFWIPASSS N-terminal signal peptide expressing an anti-HER2 antibody and an anti-HER2 Fab in CHO DG44 and E.
coli W3110. Published name: SSS23

X12 MDMRVPAQLLGLLLLWLSGARC N-terminal signal peptide expressing avastin, rituxan, remicade, herceptin, and humira light and HCs in CHO
K1. Published name: L121

X13 MKYLLPTAAAGLLLLAAQPAMA N-terminal signal peptide expressing avastin, rituxan, remicade, herceptin and humira light and HCs in CHO
K1. Published name: L221

X14 MGVKVLFALICIAVAEA N-terminal native G. princeps signal peptide expressing Gaussia luciferase in CHO K1, CHO AA8, and an
unspecified CHO host. Published name: native G18,19

X15 MPLLLLLPLLWAGALA N-terminal CD33 signal peptide expressing SEAP in HEK293. this signal peptide is referred to as the industry
standard for CHO hosts. Published name: CD3320

S1 MRARALLAVLLLLLLVGIAAAA Synthetically designed

S2 MATATLLAVLLLLLLVGSAGGA Synthetically designed

S3 MRARALLVVLVLVVLLGVASSA Synthetically designed

S4 MPGPGAALLLLLLVLLGLGSAA Synthetically designed

S5 MTTTTVLLLLVLVVLAGLTSGA Synthetically designed

C MGWSCIILFLVATATGVHS N-terminal murine HC signal peptide. AstraZeneca CLD leader sequence. Published name: Sig 127

aSignal peptide “C” is used as an industrially relevant standard reference signal peptide (ISC). E = CHO homologous, X = experimentally verified,
and S = synthetically designed.
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development processes. The introduction of predictive tools
based on machine learning (ML) and deep learning, such as
SignalP,22 have provided a streamlined approach to identifying
and selecting signal peptides which are likely to facilitate
correct peptide cleavage. Moreover, ML approaches have
recently been employed to create tools that can create16 and
select17 signal peptides to function within specific protein-
partner contexts. However, such tools are not available for
mammalian cell contexts, nor have they been described for
situations where multiple polypeptide chains need to be
simultaneously expressed, as is the case for mAb LC and HC
molecules.
In this study, we have employed three distinct design routes

to create a library of signal peptide components for use in
CHO cell vector engineering. We validated the utility of this
toolbox, the largest panel of signal peptides ever designed and
tested in CHO cell systems, by using it to identify parts that
facilitated significant titer increases (compared to standard
industrial components) for a range of protein products.
Critically, we also describe in silico ML-based and design
rule-based in vitro screening methods that substantially reduce
the testing required to identify product-specific signal peptides
for both simple single-chain molecules and complex multi-
chain proteins. This technology can be applied to rapidly
derive synthetic signal peptide-protein partner assemblies that
optimize ER translocation rates to enhance outputs from
biopharmaceutical manufacturing systems.

2. RESULTS AND DISCUSSION

2.1. Creating a Synthetic Signal Peptide Toolkit for
Mammalian Host Cell Expression Vector Engineering. A
library of 37 signal peptides was designed, containing 17 CHO
homologous, 15 experimentally-verified, and 5 synthetically
designed signal peptides (Table 1). The purpose of these sub-
groups was to assess a broad range of signal peptides and their
impact on transient protein expression in a CHO-K1 derived
host. Although synthetic constructs have the potential to move
significantly beyond the performance of naturally evolved
sequences,3,11 the design rules underpinning signal peptide
functionality are relatively poorly-understood, resulting in poor
predictability of synthetic element activity. Accordingly,
preference was given to experimentally verified sequences
and CHO homologous signal peptides, based on the
hypothesis that endogenous parts may exhibit optimized
interactions with the CHO cell factory translocation
machinery.
CHO homologous signal peptides were selected from an in-

house RNASeq dataset that profiled the transcriptome of a
mAb producing CHO−S cell line. Proteomic datasets were not
utilized due to the relatively low coverage typically obtained in
CHO cell proteomic studies, which would have significantly
restricted the design space. This dataset was first ranked by
mRNA abundance (FPKM) then filtered using SignalP4.1 to
only show proteins predicted to contain an N-terminal signal
peptide. The 17 signal peptide-containing proteins with highest
mRNA abundance were selected for in vitro testing, based on
the hypothesis that very highly expressed genes may encode
signal peptides that facilitate a relatively high translocation rate.
It is of note that 11 of the 17 signal peptides taken from this
dataset are present in the ER, with three of these 11 proteins
also being secreted from the cell. Of the remaining six signal
peptides, four (E1, E4, E5, and E6) are taken from secreted
native proteins and two (E2 and E7) from native proteins that

are only located in the plasma membrane and the lysosome,
respectively. Signal peptides of particular interest from the
CHO homologous group were those taken from ER chaperone
proteins (E11: endoplasmin and E12: BiP), proteins involved
in ER protein processing (E9: PDIA1, E10: PDIA3, E15: PPIB,
and E17: DDOST), and proteins which are stress-induced
(E16: HYOU1) as these pathways are upregulated in
recombinant protein production.28 It was therefore hypothe-
sized that the signal peptides from these proteins may be
preferentially recognized and imported into the ER in protein-
producing CHO cells.
Literature-mined signal peptides were selected based on the

criteria that the signal peptide facilitated increased expression
of at least one recombinant protein, in comparison to a control,
in a CHO cell host. Following a comprehensive search of
published studies testing signal peptide functionality in CHO
cells, a total of 15 discrete signal peptide sequences were
identified that met this selection criteria. Although all of these
constructs have the ability to drive high levels of ER
translocation in a CHO cell context, due to protein partner
specificity, we did not hypothesize that all of these sequences
would perform well when combined with our recombinant
product testing panel.
Synthetic signal peptides were created according to design

rules that we previously applied when generating a genetic
component assembly toolkit for CHO cells. Specifically, as
higher-level signal peptide sequence features are poorly
understood, we used a simple domain-based design to create
novel sequences with defined N-, H-, and C-regions. A
database of experimentally verified mammalian signal peptides
were extracted from signalpeptide.de before separating each
sequence into constituent domains. The average size of each
domain was calculated (N = 5AA, H = 12AA, and C = 5AA),
and synthetic domain sequences were then created in silico as
detailed in Section 4.1. Briefly, experimentally-verified signal
peptide domains were analyzed to identify conserved amino
acids in each region, which were then randomly assembled to
create thousands of unique configurations. Additional design
constraints were placed on synthetic C-domain creation,
applying rules from the literature that have been shown to
enhance/facilitate the functionality of this region.14,29,30

Combining synthetic domain sequences in all possible
permutations resulted in a library of > 1 × 1012 signal peptide
constructs. Levinshtein distancing analysis was performed to
identify sequences with highest heterogeneity (i.e., to find
discrete points within the design space), resulting in 1.18 × 106

signal peptides. These sequences were analyzed using SignalP,
where 0.03% were predicted to be functional signal peptides
(D score >0.7). We note that as SignalP is trained using
endogenous sequences, and synthetic constructs which move
significantly beyond the natural design space therefore have an
increased chance of being designated as non-functional signal
peptides. To maximize the chances of identifying high-
performing synthetic constructs, a panel of five sequences
with D scores >0.7 were selected for in vitro testing.
SignalP demonstrates a eukaryotic cleavage precision score

of between 0.795 and 0.914 for cleavage predictions ±0AA −

±3AA. Accordingly, previous experimental analyses (covering
a range of signal peptides and polypeptides) clearly
demonstrate the accuracy of cleavage site prediction by
SignalP.31 Moreover, previous analyses of mAbs with different
signal peptides expressed by CHO cells, both in this laboratory
(data not shown) and published by others,21 have shown that
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>98% of mAb polypeptides are correctly processed�strongly
aligning with a SignalP cleavage prediction. As this study is
focused on the effect of signal peptide sequence on the
recombinant protein production rate (and considering that the
study reports the expression of 333 different signal peptide/
protein combinations), we concluded that measurement of
cleavage efficiency in all cases was impractical and that to
measure only a small number would be inconclusive (i.e., it
cannot be concluded that a demonstration of correct cleavage
for one signal peptide-protein combination infers that a
different combination will be correctly processed). It is clear
however that ultimately, use of a specific signal peptide-protein
combination in a particular context such as biopharmaceutical
production would require analytical confirmation of correct
cleavage.

2.2. Rationally Designed Panel of Signal Peptides
Permits Molecule-Specific Optimization of Recombi-
nant Protein Production in Mammalian Cells. To
evaluate the performance of our designed signal peptide
panel, each signal peptide was tested in combination with three
industrially relevant biopharmaceutical proteins, an ScFv fusion
protein, an easy to express (ETE) mAb, and a difficult to
express (DTE) mAb. The optimal ratio of mAb HC/LC
protein expression is highly product-specific, and utilizing the
same signal peptide for both chains is unlikely to permit
maximal product titers. Accordingly, we first tested the signal
peptide library in combination with the LC constructs alone
(i.e., without co-expression of cognate HCs; LCs were chosen
as they are secreted, permitting simple quantification). Vectors
containing each signal peptide in combination with partner

Figure 1. Choice of signal peptide significantly impacts production of single chain recombinant proteins. Expression constructs (a total of 111
unique constructs) each encoding one of 37 mammalian signal peptides (Table 1) with one of three recombinant single chain molecules (A, B, and
C) were independently transfected into CHO-K1 cells followed by measurement of secreted recombinant protein titer after 5-day culture. (A) ETE
IgG1 mAb LC, (B) DTE IgG1 mAb LC, and (C) ScFv fusion protein. Data were normalized with respect to the mean volumetric titer observed on
transfection of the respective recombinant protein construct harboring a control murine Ig HC signal peptide�ISC (MGWSCIILFLVA-
TATGVHS,27 dotted line). Signal peptides are divided into three groups, E (CHO homologous, blue), X (literature-mined, gold), and S (synthetic,
green); Table 1. NE denotes no measured expression. Each bar shows the mean ± standard deviation derived from three independent transfections,
each performed in duplicate. Statistical significance is defined as p ≤ 0.05 (* = p ≤ 0.05, ** = p ≤ 0.01, and *** = p ≤ 0.001).
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product coding sequences (CDS) were transiently transfected
into a CHO-K1 derived host cell line. Relative product titers
were determined by ELISA (mAb LCs) or ValitaTitre (ScFv
fusion) at the end of 5-day fed batch production processes. As
shown in Figure 1, signal peptides within the toolbox exhibited
variable performance, where for each product molecule the test
elements enabled titers ranging from no expression (NE) to a
≥1.8× increase, relative to an industrial standard control
construct (ISC). The maximum titer increase facilitated was
variable between each product, where the best performing
signal peptides enhanced yields by 1.8-fold (X7), 2.5-fold (E1),
and 2.7-fold (E17) for the ETE LC, DTE LC, and ScFv fusion
product, respectively. In each case, at least six signal peptide
elements were identified that out-performed the ISC. However,
similar to previous studies20,21 the relative performance of each
signal peptide was typically highly product-specific. Indeed, no
signal peptide element facilitated titer increases across all three
molecules, validating the use of a toolbox approach. Moreover,
a pair-wise analysis of library function across all three test
molecules showed that there were no significant correlations in
signal peptide performance (Figure 2A−C). There is limited
mechanistic understanding of the rules governing how a signal
peptide performs when in combination with a specific partner
protein sequence. Although LC sequences share significant
similarities in amino acid composition and physiochemical
properties, our data align with previous studies showing that
the functionality of a discrete signal peptide is variable across

different mAb molecules.21 One notable difference in protein
sequence between the LC molecules and the ScFv fusion
protein is the presence of basic amino acid residues between
position +1 and +10 in the latter. Basic amino acid residues
have been shown to directly affect the function of different
signal peptides dependent on their relative hydrophobicity and
polarity.32,33 However, although general hypotheses can be
made as to why a panel of signal peptides exhibits variable
performance between two different molecules, the relative
sequence features underpinning this are poorly understood.
Although it is intractable to identify a universal signal

peptide sequence that performs optimally across a product
portfolio, we hypothesized that it may be possible to
significantly reduce the testing space required to select high-
performing elements. The simplest classification within our
signal peptide library is the method underpinning their design/
selection, i.e., experimentally verified, CHO homologous
(identified via bioinformatics analysis), and synthetically
designed. As shown in Figure 1, none of these design routes
were generally superior, where each group contained a mixture
of low-high performing elements across each molecule.
Moreover, the high-performing constructs for each product
(i.e., those permitting increased yields compared to the ISC)
were not associated with a particular signal peptide type. We
concluded that this validated our initial toolbox strategy to
derive elements from various design pathways. This indicates
that the signal peptide design (i.e., synthetically designed

Figure 2. Effect of signal peptide on recombinant protein production is molecule specific. Derived from the data shown in Figure 1, production of
ETE mAb LC, DTE mAb LC, and ScFv fusion protein mediated by different signal peptides are generally not correlated (A−C). Signal peptides
highlighted (E17, E1, and E14) show generic good performance. Grey dashed line represents quadrant separation. However, CHO endogenous
signal peptides (E17, E14, E1, and E11) yielded maximum volumetric titers. Bars represent the mean recombinant protein titer across the three
recombinant proteins tested for each signal peptide (figure d). Error bars represent the volumetric titer range across the three recombinant proteins
tested for each signal peptide. Data are normalized with respect to the respective recombinant protein ISC (dotted line).
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elements) and selection (i.e., bioinformatics-derived) methods
that we employed in this study should also be effective in other
contexts (e.g., different cell-types).
It is perhaps surprising that constructs which have previously

been experimentally verified as driving high levels of ER
translocation did not generally exhibit more predictable
function than our newly-identified elements (i.e., CHO
homologous and synthetically designed signal peptides). This
highlights a key advantage and disadvantage associated with
signal peptide design/selection; namely that (i) the design
space permits relatively simple identification of constructs that
have enhanced performance compared to incumbent stand-
ards, but (ii) their functionality is typically highly context-
specific, dependent on the associated product molecule.
Although the identification of multiple novel signal peptides
that can be deployed to enhance product titers is a valuable
resource, ideally the testing space would be minimized.
Accordingly, we analyzed the dataset to determine if robust
signal peptides could be identified that exhibited good
performance across all single chain molecules. As shown in
Figure 2, CHO homologous signal peptide E17 drove relatively
high rates of ER translocation with all protein partners,
facilitating 0.95-fold, 2.26-fold, and 2.61-fold increases in ETE
IgG1 mAb LC, DTE IgG1 mAb LC, and the ScFv fusion
protein, respectively, as compared to the ISC. This novel
element, derived from the CHO DDOST protein could replace
incumbent signal peptides (such as the ISC) in standard gene
expression plasmids. Although testing with a higher number of
protein partners is required to definitively show generically
robust performance across a wide range of product types, our
data suggest that it could be deployed in single-chain protein-
production vectors to deliver either (i) significant titer
increases or (ii) similar effects to the ISC.

2.3. Using Machine Learning to Identify High-
Performance, Molecule-Specific Signal Peptide Solu-
tions In Silico. Although a toolbox approach permits
identification of optimal signal peptides for a given protein,
testing a large number of component combinations is not
desirable in time- (e.g., cell line development for biopharma-
ceutical protein production) and/or resource-limited contexts.
Accordingly, we sought to develop a tool that could be utilized
to screen signal peptide performance in silico, to minimize the
required in vitro testing space while maximizing protein
expression. Although model-based tools have been created that
can predict signal peptide performance in protein-partner
specific contexts, this has only been achieved in bacterial
systems.17 Utilizing the data obtained from screening our
signal peptide panel in combination with three different
molecules (i.e., Figure 1), we attempted to build a model
linking signal peptide performance to discrete protein
sequence features. An XGBoosting (XGB) regression model
was trained (Figure 3) to predict recombinant protein titers as
a function of eleven discrete sequence features, where
sequences were defined as the relevant signal peptide in
combination with the first 50 amino acids of the partner
protein.33 The input variables utilized were isoelectric point
(pI), dipeptide stability, flexibility, aliphatic index, Gibbs free
energy (ΔG), grand average of hydropathicity index
(GRAVY), and the percentage of glycine and proline residues
in the signal peptide (GP %). This feature set was designed to
cover both physical (e.g., stoichiometry) and physiochemical
(e.g., hydrophobicity) protein properties, while also incorpo-
rating specific characteristics that have previously been shown

to effect signal peptide function (e.g., glycine/proline
presence34).
Hyperparameter optimization was done using a grid search

approach, and early stopping was employed to avoid model
overfitting (model parameters and feature generation is
described in detail in Section 4.5). An optimized model,
where 7/14 features had a significant impact on predicting
signal peptide performance, was moderately accurate in
predicting the activity of a withheld test dataset (R2 = 0.65,
Figure 4A). This represents the first regression model that can
accurately explain the function of mammalian signal peptides
across varying protein partners. K-fold cross validation MAE of
the optimized model was 0.149 (0.02SD), an 8% decrease
compared to the unoptimized model, confirming model
robustness. We note that the predictive power of the model
decreases as signal peptide activity (i.e., encoded ER
translocation rate) increases. The Shapley additive explanation
value for each training datapoint shows the relative impact of
each sequence feature on model output (i.e., titer; Figure 4B).
Signal peptide activity was determined to be a function of both
physiochemical (GRAVY, pI, dipeptide stability, and ΔG) and
stoichiometric (aliphatic index and flexibility) properties,
where sequence pI had the greatest influence on construct
activity. Although sequence pI correlates well with signal

Figure 3. Schematic describing the creation of an XGBoost regression
model for signal peptide selection in a molecular context. Using single
chain molecule data described in Figure 1 an XGBoost regression
model was trained to predict signal peptide rank in combination with
the first 50 amino acids of its partner protein. Features based on seven
protein parameters pI, dipeptide stability, flexibility, aliphatic index,
Gibbs free energy (ΔG), grand average of hydropathicity index
(GRAVY), and the percentage of glycine and proline residues in the
signal peptide (GP %) were assigned to each signal peptide and its
matching protein (a total of 114 combinations). All values were
normalized using a min−max scale. Data were separated using a
randomized 90−10% train-test split. The model was optimized using a
hyperparameter optimization grid search and employed early stopping
to avoid overfitting. Optimized model K-fold cross validation mean
absolute error (MAE) is 0.149 (0.023 SD).
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peptide activity in our model, it is unlikely to be a generically
good predictor of element performance, which instead is
determined by a complex interplay of multiple sequence
features.
Our intended use of this model was to (i) rationally select

purely synthetic signal peptides able to increase expression of a
given recombinant protein and (ii) significantly reduce the
number of signal peptide constructs required to be made and
tested. With respect to the latter, for example, the data in
Figure 1A−C (which largely results from the use of “natural”
signal peptides) are derived from extensive informatic analyses
to select context-relevant signal peptides�and the probability
that another natural, signal peptide informatically-derived de
novo would significantly increase the expression of a particular
protein (e.g., over the ISC control) is approximately 30%.
Accordingly, a protein-specific synthetic signal peptide

selection workflow was developed, which utilized the same
synthetic signal peptide library described in Section 4.1, and
incorporated the use of SignalP6.0 to select high probability
signal peptide sequences for subsequent model processing
(Figure 5A). We used the ScFv fusion protein experimental
system (Figure 1C) to test the utility of this approach against
the criteria indicated above.
A random sample of 40,000 synthetic elements was reduced

to 8467, which adhered to SignalP6.0, defined correct cleavage
and had a signal peptide probability of >0.7. Following
sequence feature generation, the performance of each signal
peptide was predicted using the developed model. Based on
the model’s moderate predictive power (R2 = 0.65), we
rationalized that we could reduce the number of synthetic
signal peptides to be tested to a minimal panel of three discrete
peptides (Table 2), which were all hypothesized to yield ScFv
fusion protein expression in the 95th percentile of all predicted
synthetic signal peptides (Figure 5B). Model selected synthetic
signal peptide-ScFv fusion constructs were evaluated in a 5-day
fed batch transient production process. Of the three signal
peptides chosen, two (NS1 and NS2) facilitated significantly
enhanced titers in comparison to the ISC, where the best
performing construct increased product yield by 1.95-fold. NS1
and NS2 also exhibited correlation between their predicted and
measured activities, with acceptable prediction being defined as

falling within the 95% confidence interval of experimental
activity (Figure 5C,D). In accordance with the model R2, two
of the chosen predicted high activity synthetic elements
performed as expected when expressing the ScFv fusion
protein. Our data therefore confirm that model-based synthetic
signal peptide selection is feasible, to reduce an impractical
testing sample size substantially. Put in context, and in
comparison with this model-based approach, the probability
that any two additional informatically-derived signal peptides
would both significantly increase expression of the test ScFv
fusion protein (Figure 1C) is approximately 10%.
Mammalian signal peptides were also selected based on

model prediction; however, prediction error was greater when
compared with the synthetic signal peptides chosen (Figure S1,
Table S1). As discussed previously, the model’s predictive
power decreases with increasing signal peptide activity, which
may account for two out of three mammalian signal peptides
exhibiting unpredictable functionalities in vitro (NE1 and
NE2). Though the model prediction threshold is theoretically
limitless it is unreasonable to assume that this could translate
to a biological system. In contrast to the predicted synthetic
signal peptide choices, the predicted mammalian signal
peptides fell outside of the known data limits of the model,
further contributing to unpredictable functionalities in ScFv
fusion protein expression (Figure S1B).
We did not apply sequence homology-restrictions when

selecting the in vitro testing panel. Accordingly, the synthetic
designed elements that were selected shared similarities in their
amino acid compositions, for example, all having the same N-
domain sequence. Indeed, NS1 and NS2 had identical amino
acid compositions arranged in different discrete orders. Five H-
domain amino acid rearrangements (position 6: A → V,
position 8: V → L, and position 10−12: LVL → VLA) are
sufficient to increase NS2 activity in comparison to NS1. This
highlights a limitation of the model, which does not consider
relative amino acid order when generating sequence features.
We hypothesize that future models, utilizing larger datasets,
that are able to include amino acid order (particularly in the H-
domain) as an input parameter will have enhanced predictive
power. However, despite only considering broader, overall
sequence properties, we were able to build a model that

Figure 4. Graphical representation of model fit and the importance of relative features. (A) Moderate correlation is seen between measured and
predicted ranking of the withheld test dataset (orange marker). Train dataset R2 = 0.772, p-value = 1.98 × 10−27, and confidence interval set at 95%
(blue markers, blue line). Test dataset R2 = 0.652, p-value = 1.69 × 10−4. (B) Individual feature importance SHAP values show input effects on
model output. Positive SHAP values show a positive outcome, leading the model to predict a higher signal peptide ranking in its relative molecular
context (high pI values result in higher ranking). Negative SHAP values show a negative outcome, leading the model to predict a lower signal
peptide ranking in its relative molecular context (low pI values result in lower ranking). Each point represents one signal peptide in its molecular
context. Features listed are isoelectric point (pI), dipeptide stability, flexibility, aliphatic index, Gibbs free energy (ΔG), grand average of
hydropathicity index (GRAVY), and the percentage of glycine and proline residues in the signal peptide (GP %).
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substantially reduced the in vitro testing space required to
identify a high-performing signal peptide for a specific protein-
partner. For single chain proteins, this can be utilized to either
(i) significantly increase vector optimization studies by
selecting a minimal subset from the original 37 component
library and/or (ii) significantly increase the design space,
permitting identification of context-specific high activity
elements from large signal peptide databases (e.g., large

synthetic libraries). To fully validate the utility of this
approach, future studies will need to apply the model to a
large panel of new protein-partner molecules.

2.4. Signal Peptide Engineering Significantly Enhan-
ces mAb Production Titers, Where Optimal Vector
Designs are Highly Molecule-Specific. Having validated
the performance of our signal peptide library to enhance
expression of single chain molecules, we next evaluated its

Figure 5. Functional performance of model derived synthetic signal peptides. Utilizing the model described in Figure 3, a minimal test set of three
predicted high activity synthetic signal peptides were selected for ScFv fusion protein expression from a random sample of 40,000 elements (A).
The three synthetic signal peptides were selected from the 95th percentile of 8467 predicted synthetic signal peptides (B). Two of the three model
chosen synthetic signal peptides showed measured activity which fell into the 95% confidence interval of each prediction, denoted by orange lines
(C). Test signal peptides described in Figure 4A defined the model prediction space, shaded in grey. The predicted activity of each synthetic signal
peptide was directly compared to their measured activity counterpart, highlighting the acceptable predictability of two of the three synthetic
elements in their ScFv fusion protein context (D). The ScFv fusion protein was independently transfected into CHO-K1 derived cells followed by
measurement of secreted recombinant protein titer after 5-day culture. NS denotes new synthetic signal peptides; refer to Table 2. Experimental
data were first normalized with respect to the mean volumetric titer observed on transfection of the ScFv fusion protein ISC then normalized with
respect to the model derived ISC value. The mean value of all predicted synthetic signal peptides is represented by the dotted line. Each measured
activity bar (green) shows the mean ± SD derived from three independent transfections, each performed in duplicate. An asterisk represents signal
peptides which fall outside of the 95% confidence interval of model prediction.
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utility to optimize production of more complex, multi-chain
proteins. mAbs are the dominant class of biopharmaceutical
products,1,35 where both the “ideal” HC/LC expression ratio
and the optimal absolute expression level of each chain are
highly molecule-specific.7,9 Accordingly, a universal signal
peptide combination would not facilitate maximal titers across
product portfolios, necessitating screening to identify mAb-
specific solutions. However, even for 2-chain molecules, a full-
factorial analysis of all signal peptide combinations in our
toolbox would entail 1369 permutations. Given that this
screening burden would be intractable in most contexts, we
concluded that a two-step optimization process would facilitate
efficient derivation of optimal signal peptide combinations,
where all 37 elements are first tested in association with the LC
to identify parts that facilitate low, medium, and high rates of
expression (LC preferred over HC as it secreted when
expressed in isolation, permitting rapid titer quantification).
Restricting the number of options for the LC expression

parameter to three experimentally-verified levels (while
maintaining all 37 potential expression values for HC
expression) a fractional factorial analysis of all part
combinations requires 111 unique permutations, reducing
the testing space by > 90%.
Using data from our screen of signal peptides in association

with two discrete LC molecules (Figure 1), we designated
appropriate parts as driving high (maximum fold change in
titer relative to the ISC), medium (equivalent expression to the
ISC) or low (0.8-fold titer compared to the ISC) activity
components. A single element facilitating each discrete
expression level was selected for the ETE (X7 > E17 > X4)
and DTE (E1 > X8 > E3) LCs. These components were
utilized to drive ER translocation of the LC, where HC
translocation rate was controlled by one of the 37 elements
from the larger signal peptide library (i.e., 111 part
combinations for each mAb). Given that it is common
industrial practice to utilize different signal peptides for each
protein chain, for each mAb we used a reference dual control
system (RDCS) comprising the ISC (driving HC trans-
location) in combination with an element of equivalent
experimentally-verified strength (E17-LC and X8-LC for the
ETE and DTE products, respectively; Figure 1). HC and LC
expression vectors were transiently co-transfected into CHO
cells and relative product titers were determined by ValitaTitre
after a 5-day fed batch production process (Figure 6A,C).
Signal peptide assemblies resulted in diverse IgG1 titer
outputs, ranging from 0.36-fold (LC/X7 and HC/E5) to

Table 2. Model Directed Selection of Synthetic Signal
Peptides for In Vitro Testing with an ScFv Fusion Proteina

Signal peptide Amino acid sequence

NS1 MRKKTALVVLVLLLLAPIGASG

NS2 MRKKTVLLVVLALLLAPIGASG

NS3 MRKKTLLLLAVLVVVLPSTSSS
aSignal peptide “C” is used as an ISC; refer to Table 1. Synthetic
signal peptides were taken from initial design space pool as described
in Section 4.1.

Figure 6. Choice of HC and LC signal peptide combinations significantly impacts both recombinant ETE IgG1 mAb and recombinant DTE IgG1
mAb production. Expression constructs (a total of 340 unique co-expression combinations) each encoding one of 37 mammalian signal peptides
(Table 1) driving HC translocation with one of three recombinant mAb LC signal peptides (A,C) were independently transfected into CHO-K1
cells followed by measurement of secreted recombinant protein titer after 5-day culture. (A) ETE IgG1 mAb, LC signal peptides are X7 (high), E17
(mid), and X4 (low); refer to Figure 1A. (B) Maximized ETE IgG1 mAb recombinant protein volumetric titer distribution when one of 37 signal
peptides expressing HC is combined with the optimal of three LC signal peptides expressing LC (X7, E17, and X4; refer to Table 1). (C) DTE
IgG1 mAb, LC signal peptides are E1 (high), X8 (mid), and E3 (low); refer to Figure 1B. (D) Maximized DTE IgG1 mAb recombinant protein
volumetric titer distribution when one of 37 signal peptides (Table 1) expressing HC is combined with the optimal of three LC signal peptides
expressing LC (E1, X8, and E3; refer to Table 1). Data were normalized with respect to the mean volumetric titer observed on transfection of each
mAb RDCS (ETE IgG1 mAb LC: MKMGVRLAARAWPLCGLLLAALGGVCA, DTE IgG1 mAb LC: MGSAALLLWVLLLWVPSSRA, and HC:
MGWSCIILFLVATATGVHS) (dotted line). Signal peptides are divided into three groups, E (CHO homologous, ETE: dark blue bars and DTE:
brown bars), X (literature-mined, ETE: blue bars and DTE: orange bars), and S (synthetic, ETE: grey-blue bars and DTE: yellow bars); Table 1.
Each bar shows the mean ± standard deviation derived from three independent transfections, each performed in duplicate. Statistical significance is
defined as p ≤ 0.05 (* = p ≤ 0.05, ** = p ≤ 0.01, and *** = p ≤ 0.001).
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1.82-fold (X7:X3), and 0.1-fold (E1:E6) to 2.12-fold (E3:E10)
for the ETE and DTE mAbs, respectively, as compared to the
RDCS. The utility of the signal peptide toolkit-approach was
validated by identification of least 26 element combinations
that outperformed the RDCS for each mAb. Indeed, ∼25% of
part-assemblies tested facilitated significant increases in titer
relative to the RDCS, suggesting that the testing space required
to identify vector engineering solutions could be substantially
reduced.
However, rules for designing smaller testing spaces are

clearly molecule specific. For the ETE mAb, titers were
generally enhanced by using the high strength signal peptide to
control LC translocation. However, the inverse was true for the
DTE mAb, where the low strength LC signal peptide
outperformed the high and medium strength elements in the
vast majority of vector designs tested, and was the optimal
partner for 35/37 HC-signal peptides. This may be explained
by the proteins having contrasting optimal LC/HC expression
ratios,7,36 where enhancing DTE LC translocation rates may
result in increased LC-aggregate formation.6 Alternatively, it
could be a result of the proteins with varying molecular
structures. The ETE IgG1 mAb contains a kappa (κ) LC
whereas the DTE IgG1 mAb contains a lambda (λ) LC.
Assembly of HC−LC intermediaries is slower in λLC mAbs
compared with that in κLC mAbs due to differing relative

disulphide bond positioning.37,38 Accordingly, using a high-
strength signal peptide to maximize ER translocation of the LC
may result in dyssynchronous mAb assembly processes.
As shown in Figure 6B, D, there was a clear difference in the

average performance of optimal LC/HC signal peptide
combinations between the ETE and DTE mAbs. The median
molecular titer of best-performing element assemblies (i.e.,
each HC signal peptide in combination with the LC signal
peptide partner that facilitated highest product expression) was
significantly higher for the DTE mAb (1.52-fold compared to
the RDCS), compared to that for the ETE (1.29-fold), with a
concomitant increase in the interquartile range. We therefore
concluded that tailoring polypeptide ER translocation rates had
a larger relative impact on DTE product expression. This is
likely to be the case across product portfolios, as molecules
that have been designated DTE typically have biosynthetic
pathway rates that are dyssynchronous with cellular capacities,
leading to induction of internal stress response pathways.
Accordingly, for DTE products, it is likely that minimized
signal peptide testing spaces can be used to identify product-
specific vector solutions that significantly increase protein
titers.
The relative impact of utilizing a discrete signal peptide to

control HC ER translocation rate was moderately consistent
across both (i) variable LC signal peptide partners encoding

Figure 7. Optimal LC signal peptide pairings in the recombinant ETE IgG1 mAb and recombinant DTE IgG1 mAb identifies generic high
performing HC signal peptides for recombinant protein production. Grouping ETE IgG1 mAb and DTE IgG1 mAb titers by the respective LC titer
(refer to Figure 6) shows moderate positive correlation between the ETE and DTE mAbs (A−C). Highlighted signal peptides show high
volumetric titers across all combinations of LC (E10, E17, and X3). Grey dashed line represents quadrant separation. Derived from the data shown
in Figure 6, a variety of CHO endogenous, literature-mined, and synthetic signal peptides (E17, E10, and X3) yielded maximum volumetric titers
(D). Bars represent the mean recombinant protein titer across two mAbs containing a mAb specific optimal LC signal peptide and one of 37 HC
signal peptides (Figure 6). Data are normalized with respect to the RDCS (dotted line). Error bars represent the volumetric titer range across the
optimal HC−LC signal peptide combination for the ETE IgG1 mAb and DTE IgG1 mAb tested for each HC signal peptide.
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low-high ER translocation rates and (ii) the two different mAb
molecules (Figure 7A−C). This is in contrast to the data
observed when LCs were expressed in isolation, where relative
signal peptide performance showed no correlation between
different single chain proteins (Figure 2A−C). This indicates
that the utility of signal peptide components for controlling
HC expression rates is less context-specific, where discrete
parts may display reasonably consistent performance across
varying product and vector designs. Indeed, as shown in Figure
7D, when LC translocation rate is optimized, the performance
of 37 signal peptides driving HC expression is highly consistent
across the two different mAbs. This raises the possibility of
utilizing universal signal peptides. For example, E10 and X3,
which were the top two ranked HC signal peptide components
for both products (elements ranked by ability to increase
product titer relative to the RDCS). Future studies will test the
performance of these elements across a wider panel of mAb
products to evaluate if they can be used to generically enhance
mAb titers irrespective of HC partner-context.
Ideally, the testing space would be refined in silico using an

appropriate model to predict the effect of signal peptide
combinations on expression of multi-chain proteins. However,
although this was achieved for single chain molecules (Section
2.3), we did not anticipate it would be possible to utilize an
XGB model to forward engineer optimal element assemblies
that maximize mAb titers. Indeed, our data highlight the
unpredictable parameters governing expression of multi-chain
products, where optimal stoichiometric HC/LC expression
ratios are dependent on a complex interplay between product
assembly pathways and host-cell biosynthetic capacities. To
confirm this, we applied our previously described model
(trained using data from our single-chain protein expression
screens) to retrospectively predict the ability of signal peptide
combinations to enhance mAb titers. Sequence features were
generated for signal peptides in association with LC and HC
partners, where overall values for discrete element assemblies
(e.g., E1-LC:E10-HC) were calculated as the mean of the two
part-polypeptide combinations (e.g., pI = (pI of E1-LC + pI of
E10-HC)/2). As expected, the model had poor predictive
ability, only ∼38% (14/37) and ∼46% (17/37) of predictions
were correct for the DTE and ETE products, respectively,
where correct prediction was defined as being in the 95%
confidence interval range of experimental results. Accordingly,
we concluded that although multi-chain product testing spaces
can be reduced by selecting a small number of LC signal
peptides in silico, it is intractable to accurately predict the
performance of complete signal peptide compositions,
necessitating the in vitro testing of 10s of potential vector
solutions.

3. CONCLUSIONS

We have created a panel of signal peptides that can be utilized
to enhance expression of recombinant proteins in CHO cells,
validating the utility of three distinct component design/
selection strategies that can be applied to other cellular
contexts. As with previous studies in mammalian cell systems,
we found that optimal signal peptide solutions were highly
protein-specific. However, for all products tested we were able
to derive vector designs that enhanced product titers by > 1.8-
fold, compared to standard industry technologies. Moreover,
for single-chain products, we were able to build an XGB model
that could guide selection of context-specific high-performing
synthetic signal peptide elements. This model can be utilized

to significantly reduce the screening space required to identify
high performing, product-specific signal peptide solutions,
representing for the first time that such a model has been
developed for a mammalian cell context. Although in silico/in
vitro screening is required to identify the optimal signal
peptide element for a new single chain molecule, we identified
a small number of constructs that exhibited robust perform-
ance across different protein partners. For time and/or cost
sensitive applications, these “universal” signal peptides could
be used as a generic expression vector component.
As expected, modeling techniques could not be applied to

multi-chain mAb proteins, owing to unpredictable, molecule-
specific optimal LC/HC expression ratios that are a function of
internal cellular capacities and protein assembly dynamics.
Indeed, we showed for the first time that specifically slowing
down LC ER translocation rate can increase production of a
DTE mAb. Despite this unpredictability, we were able to
significantly reduce the vector testing space required to identify
signal peptide combinations that increase product titers. Pre-
selection of LC signal peptides that encoded low, medium, and
high levels of ER translocation focused the testing space
toward solutions that enhanced protein production. Accord-
ingly, in this work we have presented novel signal peptide
parts, with associated streamlined in silico and in vitro testing
processes, that can be used to rapidly re-design expression
vectors to improve production of both simple and complex
protein products.

4. METHODS

4.1. Synthetic Signal Peptide Creation. A library of
1168 experimentally verified human and mouse signal peptides
with an amino acid length of 15−30 were extracted from
signalpeptide.de and used as building blocks for synthetic
signal peptide creation. Each signal peptide was separated out
into its constituent N-, H-, and C-domains. The first amino
acid and final three amino acids were designated as minimal N-
and C- domains, respectively. The H-domain was identified
using a sliding window approach, where the first and last 6AA
regions containing at least four hydrophobic amino acids (F, I,
W, L, V, M, A, Y, and C) marked the beginning and end of the
domain. The amino acid sequences either side of the identified
H-domain were assumed to be in the N-domain or C-domain.
Domain boundaries were assigned according to the

following rules:

i. The N-domain must start with M and has a maximum
length of ≤10 amino acids. It is of variable length.

ii. The H-domain is composed of amino acid blocks of six
where four of the six amino acids must be hydrophobic
(F, I, W, L, V, M, A, Y, and C) and two must be non-
hydrophobic. The maximum H-domain length is 12
amino acids, and the minimum H-domain length is 6
amino acids.

iii. The C-domain is of variable length. It has a minimum
length of 3 amino acids and a maximum length of ≤10
amino acids.

Where possible, signal peptide composition rules described
in the literature were applied to each domain. Excluding basic
domain separation, the definitions of each domain are limited
with the C-domain being the most investigated. The synthetic
N-domain was purely composed of conserved amino acids
present in human and mouse signal peptide N-domains and
always started with M. Amino acid conservation in the N-
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domain of the selected human and mouse signal peptides
showed low amino acid preference. An arbitrary cut-off of
≥20% was applied resulting in synthetic N-domain amino acid
selection being limited to K, T, A, G, S, P, and R residues at
amino acid positions −21 to −18 (where the last signal peptide
residue position is −1). The synthetic H-domain was
composed of conserved amino acids present in ≥60% human
and mouse H-domain signal peptides (L, A, and V) with the
exception of the last H-domain amino acid (position −6)
which was limited to P or G residues.39,40 Previously published
A-X-B, no P residues, and −3 and −1 literature defined C-
domain rules were applied to synthetic C-domain crea-
tion.14,29,30 These applied rules resulted in different amino
acid choices at each C-domain position. All five C-domain
positions could be composed of A, G, or S residues. At position
−5 L, V, and I residues could also be present. At position −4 T
or C residues could be additionally present and at positions −2
and −1 C and T residues could be, respectively, present.
Domain amino acid permutations were done resulting in

2401 synthetic N-domains, 354,294 H-domains, and 1440 C-
domains. N-, H-, and C-domain permutations resulted in 1.2 ×

1012 synthetic signal peptides. To reduce this number 1% of
the most different domains were chosen for synthetic signal
peptide creation (24 N-domain options, 3542 H-domain
options, and 14 C-domain options), giving a final synthetic
signal peptide permutation number of 1.18 × 106. Using a
SignalP4.1 signal peptide probability (D-score) limit of ≥0.7,
five synthetic signal peptides were randomly selected for
testing.41

4.2. Molecular Cloning for Recombinant Protein
Vector Construction. Parental expression vectors containing
the CDS of an ETE IgG1 mAb, a DTE IgG1 mAb and an ScFv
fusion protein (AstraZeneca, UK) were used for constructing
signal peptide varied plasmids for recombinant protein assays.
For each mAb, separate HC and LC plasmids were provided.
Q5 site-directed mutagenesis kits (New England Biolabs, UK)
were used to insert one of 37 signal peptides directly upstream
of each CDS, replacing the control murine Ig HC signal
peptide (MGWSCIILFLVATATGVHS27). Transfection-grade
plasmid DNA was purified using the QIAGEN plasmid plus
Midiprep kit (QIAGEN, USA).

4.3. Cell Culture and Transient Transfection. CHO-K1
derived host cells (AstraZeneca, UK) were maintained in CD
CHO medium (Thermo Fisher Scientific, USA) supplemented
with 6 mM L-glutamine. Cultures were maintained at 37°C
under 5% CO2 in a humidified atmosphere with 140 rpm
orbital shaking. Cells were routinely sub-cultured at a seeding
density of 0.2 × 106 cells mL−1. Cell viability and
concentration was measured using a VI-CELL viability
analyzer (Beckman−Coulter, USA).
Cells were transiently transfected in a 96 well Amaxa

Nucleofector System (Lonza, Switzerland) following the
manufacturer’s protocols. Transfected cells were cultured in
24 shallow-well plates (Corning, UK) containing CD CHO
medium supplemented with 6 mM L-glutamine for 5 days at
37°C with 5% CO2 at 240 rpm orbital shaking. Cultures were
fed with a 1:1 Efficient Feed A (Thermo Fisher Scientific,
USA) and Efficient Feed B (Thermo Fisher Scientific, USA)
on day 3. Transient transfections of both mAbs were done
using separate HC and LC plasmids at 1:1.

4.4. Recombinant Protein Quantification. Cell culture
medium was clarified by centrifugation. ETE mAb LC and
DTE mAb LC were quantified using Kappa and Lambda

Human Immunoglobulin Free LC ELISAs (BioVendor, UK)
following the manufacturer’s protocol. Both IgG1 mAbs and
ScFv fusion protein titers were quantified using ValitaTitre
(ValitaCell, Ireland). ValitaTitre measurements were done in
accordance with the manufacturer’s protocol. The commer-
cially available purified kappa IgG1 mAb (Merck, Germany)
and lambda IgG1 mAb (Merck, Germany) were used for
quantification of the ETE IgG1 mAb and DTE IgG1 mAb,
respectively. The purified ScFv fusion protein (AstraZeneca,
UK) was used for quantification of the ScFv fusion protein. All
assays were read using a SpectraMax iD5 microplate reader
(Molecular Devices, USA).

4.5. Model Creation. The XGboost package was used for
construction and training of the model proposed.42 Titers from
recombinant single chain proteins were normalized using a
min−max scalar. Each signal peptide was paired with the first
50 amino acids of its respective protein and assigned 7 protein
parameter generated features (isoelectric point, dipeptide
stability, flexibility, aliphatic index, GRAVY, ΔG, and signal
peptide percentage of glycine and proline). Processed data
were split into 90−10% train/test. Hyperparameter optimiza-
tion resulted in the following XGB regression parameters:
colsample_bytree: 0.7; learning_rate: 0.05; max_depth: 3;
min_child_weight: 1; n_estimators: 100; objective: reg/
squarederror; subsample = 1. Early stopping was applied
based on log loss validation (early stopping rounds = 5). K-fold
cross validation parameters were as follows: number of splits =
5; number of repeats = 10. Mammalian experimental validation
signal peptides were collected from UniProt using the
following search term: annotation/(type/signal length:[10 to
30]) taxonomy:“Eukaryota [2759]” AND reviewed/yes.
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