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Abstract. Rectangle intersection graphs are intersection graphs of axis-
parallel rectagles on the plane. A graph G is said to be a k-stabbable

rectangle intersection graph, or k-SRIG for short, if it has a rectangle
intersection representation in which k horizontal lines can be chosen such
that each rectangle is intersected by at least one of them. The stab
number of a graph G, denoted by stab(G), is the minimum integer k such
that G is a k-SRIG. In this paper, we introduce “natural” subclasses of 2-
SRIG and study the containment relationship among them. We introduce
a graph class named (P,P)-graph and give a linear time algorithm to
recognise triangle-free (P,P)-graph. In this paper, we prove that finding
chromatic number is NP-complete even for 2-SRIGs. We also give a
linear time algorithm to find the chromatic number of triangle-free 2-
SRIGs.

1 Introduction

A rectangle intersection representation of a graph is a collection of axis-parallel
rectangles on the plane such that each rectangle in the collection represents a
vertex of the graph and two rectangles intersect if and only if the vertices they
represent are adjacent in the graph. The graphs that have rectangle intersection
representation are called rectangle intersection graphs. The boxicity box(G) of a
graph G is the minimum d such that G is representable as an intersection graph
of d-dimensional (axis-parallel) hyper-rectangles. A graph G is an interval graph
if box(G) = 1 and G is a rectangle intersection graph if box(G) ≤ 2.

A k-stabbed rectangle intersection representation is a rectangle intersection
representation, along with a collection of k horizontal lines called stab lines,
such that every rectangle intersects at least one of the stab lines. A graph G is
a k-stabbable rectangle intersection graph (k-SRIG), if there exists a k-stabbed
rectangle intersection representation of G. The stab number of a rectangle in-
tersection graph, denoted by stab(G), is the minimum integer k such that there
exists a k-stabbed rectangle intersection representation of G. In other words
stab(G) is the minimum integer k such that G is k-SRIG. A k-exactly stabbed
rectangle intersection representation is a k-stabbed rectangle intersection rep-
resentation in which every rectangle intersects exactly one of the stab lines. A
graph G is a k-exactly stabbable rectangle intersection graph, or k-ESRIG for
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short, if there exists a k-exactly stabbed rectangle intersection representation of
G. The exact stab number of a rectangle intersection graph, denoted by estab(G),
is the minimum integer k such that there exists a k-exactly stabbed rectangle in-
tersection representation of G. In other words, estab(G) is the minimum integer
k such that G is k-ESRIG.

Boxicity of a graph has been an active field of research for many decades [1,
9–11, 14]. While recognizing graphs with boxicity at most d is NP-complete for
all d ≥ 2 [21, 26], there are efficient algorithms to recognize interval graphs, i.e.
graphs with boxicity at most 1 [12,23]. There seems to be a “jump in the difficulty
level” of problems as the boxicity of the input graph increases from 1 to 2. For
example, the Maximum Independent Set and Chromatic Number prob-
lems, while being linear-time solvable for interval graphs, become NP-complete
for rectangle intersection graphs (even with the rectangle intersection represen-
tation given as input) [17,22]. To understand the reason of this jump, the concept
of stab number and exact stab number was introduced [7].The concept of stab
number is a generalization of the idea behind a class of graphs known as “2SIG”,
which was introduced in an earlier paper [3]. Even though our definitions of 2-
SRIG and 2-ESRIG are both slightly different from that of “2SIG”, all three
classes of graphs turn out to be equivalent [7].

As mentioned earlier, recognizing graphs with boxicity at most 2 is NP-
complete. But there are efficient algorithms to recognize interval graphs. Over
the years, researchers have defined several subclasses of interval graphs. The
class of proper interval graphs and unit interval graphs are popular examples.
It is well known that these two families are in fact equivalent. A short proof
for this fact was given by Bogart and West [5]. The class k-LengthINT consists
intersection graphs of intervals whose lengths are restricted to have at most
k different sizes. These classes of interval graphs have been a popular topic of
research [6,15,18–20,24]. It is known that (k−1)-LengthINT( k-LengthINT [19],
for each k ≥ 2. Klavik et al. [19] introduced the class of k-NestedINT, the class of
interval graphs which have representations with no k + 1 intervals I0, I2, . . . , Ik
such that I1 ⊆ I2 ⊆ . . . Ik. In this paper, we introduce “natural” subclasses of 2-
SRIG and study the containment relationship among them. We shall introduce a
graph class named (P,P)-graph (defined later) and give a linear time algorithm
to recognise triangle-free (P,P)-graph.

We also study the Chromatic Number of 2-SRIGs. The study of Chro-

matic Number of rectangle intersection graphs started in 1948, when Bielecki [4]
asked whether the ratio (σ(G)) of Chromatic Number (χ(G)) and Clique

Number (ω(G)) is independent of the number of vertices in the graph. This
question was answered positively by Asplund and Grunbaum [2] in 1960, when
they show that for a rectangle intersection graph G, σ(G) ≤ 4ω(G) − 3. The
best known lower bound result was also obtained by Asplund and Grunbaum [2]
which states that σ(G) ≥ 3. Chalermsook [8] established the connection be-
tween Independence number and chromatic number of rectangle intersec-
tion graphs and also provided improved bounds of σ(G) for special classes of
rectangle intersection graphs. In this paper, we prove that Chromatic Num-
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ber is NP-complete even for rectangle intersection graphs with stab number at
most two. This strengthens the result of Imai and Asano [17]. Moreover, we show
that the chromatic number of triangle-free 2-SRIGs can be found in linear time.

1.1 Our results

Let G be a graph with vertex set V (G) and edge set E(G). A set of intervals
is proper (or P for short) if no two intervals in the set is a subset of the other.
Now we shall introduce the subclasses of 2-SRIG studied in this paper.

For a 2-exactly stabbed rectangle intersection representation R of a graph
G let y = a1 and y = a2 be the stab lines with a1 < a2. Let Rt and Rb be the
sets of intervals obtained by projecting the rectangles that intersect y = a2 and
y = a1 respectively on the x−axis. The graph G is an (I,P)-graph if there is
a 2-exactly stabbed rectangle intersection representation R of G such that Rb

is a set of proper intervals. See Table 1 for an illustration. The graph G is an
(I,U)-graph if there is a 2-exactly stabbed rectangle intersection representation
R of G such that Rb is a set of unit intervals. The graph G is a (P,P)-graph
if there is a 2-exactly stabbed rectangle intersection representation R of G such
that both Rt and Rb are sets of proper intervals. The graph G is a (P,U)-
graph if there is a 2-exactly stabbed rectangle intersection representation R of
G such that Rt is a set of proper intervals and Rb is a set of unit intervals. The
graph G is a (U ,U)-graph if there is a 2-exactly stabbed rectangle intersection
representation R of G such that both Rt and Rb are sets of unit intervals. A
graph G is 2-stabbable unit square intersection graph or 2-SUIG, if G has a 2-
stabbed rectangle intersection representation R in which all rectangles are unit
squares. Following is the main result of this paper.

Theorem 1. 2-SUIG = (U ,U)-graphs ⊂ (P,U)-graphs = (P,P)-graphs ⊂ (I,U)-
graphs = (I,P)-graphs ⊂ 2-ESRIG = 2-SRIG.

Name of the graph class Rt Rb

(I,P)-graph interval (I) proper interval (P)

(I,U)-graph interval (I) unit interval (U)

(P,P)-graph proper interval (P) proper interval (P)

(P,U)-graph proper interval (P) unit interval (U)

(U ,U)-graph unit interval (U) unit interval (U)

Table 1: Different subclasses of 2-SRIG.

In this paper, we also give an algorithm to decide whether a triangle-free
graph is a (P,P)-graph or not. Specifically, we prove the following theorem.

Theorem 2. Let G be a triangle-free graph. There is a O(|V (G)|) time algo-
rithm to decide if G is a (P,P)-graph.
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Given a graph G and an integer c, c-coloring of G is a mapping φ : V (G) → [c]
such that φ(u) 6= φ(v) when uv ∈ E(G). For an integer c, when there exists a
c-coloring of G, we say G is c-colorable. The chromatic number of G is the mini-
mum integer c for which there is a c-coloring of G. We study the computational
complexity of finding the chromatic Number of 2-SRIGs. Specifically, we prove
the following theorems.

Theorem 3. Finding the chromatic Number is NP-hard even for rectangle in-
tersection graphs with stab number at most two.

Theorem 4. Let G be a triangle-free 2-SRIG. There is a O(|V (G)|) time algo-
rithm to find the chromatic number of G.

In Section 2, we give some definitions and notation that will be used through-
out the paper. In Section 5 and Section 3 we prove Theorem 3 and Theorem 1,
respectively. Finally we draw conclusion in Section 7.

2 Preliminaries

We present some definitions in this section. Let N(v) = {u ∈ V (G) : uv ∈
E(G)} and N [v] = N(v) ∪ {v} denote the open neighbourhood and the closed
neighbourhood of a vertex v, respectively. For S ⊆ V (G), we denote by G[S] the
subgraph induced in G by the vertices in S, and by G−S the graph obtained by
removing the vertices in S from G. For an edge e ∈ E(G), we denote by G − e
the graph on vertex set V (G) having edge set E(G) \ {e}.

Let G be a rectangle intersection graph with rectangle intersection repre-
sentation R. A rectangle in R corresponding to the vertex v is denoted as
rv. All rectangles considered in this article are closed rectangles. Denote by
x+
v (x−

v ), the x−coordinate of the right (left) bottom corner of rv. Also y+v
(y−v ) is the y−coordinate of the left top (bottom) corner of rv. In other words,
rv = [x−

v , x
+
v ] × [y−v , y

+
v ]. The span of a vertex u, denoted as span(u), is the

projection of ru on the X−axis, i.e. span(u) = [x−
u , x

+
u ]. For two intervals

I1 = [a1, b1] and I2 = [a2, b2], we write I1 < I2 to indicate that b1 < a2.
Clearly, I1 ∩ I2 = ∅ if and only if I1 < I2 or I2 < I1. For an edge uv ∈ E(G), we
define span(uv) = span(u) ∩ span(v). For an induced subgraph H of G,

span(H) =
⋃

u∈V (H)

span(u)

Note that when H is connected, span(H) is an interval.
Let G be a k-SRIG with a k-stabbed rectangle intersection representation R

in which the stab lines are y = a1, y = a2, . . ., y = ak, where a1 < a2 < · · · < ak.
The top (resp. bottom) stab line of R is the stab line y = ak (resp. y = a1). For
1 ≤ i < k, we say that the stab lines y = ai and y = ai+1 are “consecutive”.
A vertex u ∈ V (G) is said to be “on” a stab line if ru intersects that stab line.
Two vertices u, v of G “have a common stab” if there is some stab line that
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intersects both ru and rv. Similarly, a set of vertices is said to have a common
stab if there is one stab line that intersects the rectangles corresponding to each
of them. It is easy to see that if uv ∈ E(G), then there must be either a stab
line such that u and v are on it or two consecutive stab lines such that u is on
one of them and v is on the other. We say uv ∈ E(G) is a bridge edge in R
if there are two consecutive stab lines such that u is on one of them and v is
on the other. Whenever the k-stabbed rectangle intersection representation of
a graph G under consideration is clear from the context, the terms ru, x

−
u , x

+
u ,

y−u , y
+
u , for every vertex u ∈ V (G) and usages such as “on a stab line”, “have

a common stab”, “span” etc. are considered to be defined with respect to this
representation.

The (h,w)-grid is the undirected graph G with V (G) = {(x, y) : x, y ∈ Z, 1 ≤
x ≤ h, 1 ≤ y ≤ w} and E(G) = {(u, v)(x, y) : |u− x|+ |v − y| = 1}.

3 Proof of Theorem 1

The proof Theorem 1 is divided into seven lemmas. The following lemma was
proved previously in an earlier paper, and therefore we only provide the state-
ment here.

Lemma 1 ([7]). The classes 2-SRIG and 2-ESRIG are equivalent.

In Lemma 2, we shall prove that the family of (I,P)−graphs is a proper sub-
set of 2-ESRIG. But before that, we prove some observations and propositions.

Observation A Let R be a 2-exactly stabbed representation of a graph G. Let
uv be a bridge edge in R and let S = {w ∈ V (G) : span(w) ∩ span(uv) 6= ∅}.
Let a, b ∈ V (G) such that span(a) < span(uv) < span(b). Then a and b are in
different connected components of G− S.

Proof. Suppose for the sake of contradiction that a and b are in the same con-
nected component C of G − S. As span(C) is an interval that contains both
span(a) and span(b), it is clear that span(C) also contains span(uv). But this
means that C contains some vertex w such that span(w)∩ span(uv) 6= ∅, which
is a contradiction.

Note that in the above observation, if a /∈ N [u] ∪ N [v] and b /∈ N [u] ∪
N [v], then because S ⊆ N [u] ∪ N [v], we can conclude that a and b are in
different connected components of G− (N [u] ∪N [v]). We shall use this form of
Observation A in several places.

Observation B Let R be a 2-exactly stabbed rectangle intersection represen-
tation of a triangle-free graph G. Let e1, e2 ∈ E(G) be two bridge edges in R.
Then, span(e1) ∩ span(e2) = ∅.
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Proof. Suppose for the sake of contradiction that I = span(e1) ∩ span(e2) 6= ∅.
Let e1 = uv, e2 = ab and u, a being distinct vertices. Then, we have I ⊆ [x−

u , x
+
u ],

I ⊆ [x−
v , x

+
v ], I ⊆ [x−

a , x
+
a ], and I ⊆ [x−

b , x
+
b ]. Let us assume without loss of

generality that u and a are on the bottom stab line and that v and b are on
the top stab line. Now observe that if y+u ≥ y+a , then u, a, b form a triangle in G
((I × [y−b , y

+
a ]) ⊆ ru ∩ ra ∩ rb) and that if y+u < y+a , then a, u, v form a triangle

in G ((I × [y−v , y
+
u ]) ⊆ ra ∩ ru ∩ rv).

Proposition 1. In any 2-exactly stabbed rectangle intersection representation
of a cycle of order greater than 3, there are exactly two bridge edges.

Proof. Let G be a cycle of order greater than 3. Clearly, all the vertices of G
cannot have a common stab as G is not an interval graph. This implies that
in any 2-exactly stabbed rectangle intersection representation of G, there are
at least two bridge edges. Suppose for the sake of contradiction assume that
is a 2-exactly stabbed rectangle intersection representation R of G that have
more than two bridge edges. As G is triangle-free, we can use Observation B
to conclude that the bridge edges in R can be ordered as e1, e2, . . . , ek, where
k ≥ 3, such that span(e1) < span(e2) < · · · < span(ek). Let ei = uivi for all i.
As span(e1) < span(e2) < span(ek), it is clear from the definition of span(ei)
that there exists a vertex w1 ∈ {u1, v1} and a vertex w2 ∈ {uk, vk} such that
span(w1) < span(e2) < span(wk). We can now apply Observation A to conclude
that w1 and wk are in different connected components of G−(N [u2]∪N [v2]). But
this is a contradiction as in any cycle of order greater than 3, it is not possible
to remove the closed neighbourhoods of two consecutive vertices to obtain a
disconnected non-empty graph.

v

Fig. 1: A graph belonging to the W6,2 family and v is the central vertex.

The graph family Wn+1,d with n ≥ 4, d ≥ 2, n ≥ d consists of triangle free
graphs that are isomorphic to a cycle of order n with d vertices adjacent to a
new central vertex. For example, Figure 1 shows a graph belonging to the W6,2

family.

Proposition 2. Let n ≥ 4, d ≥ 2 be two integers and R be any 2-exactly stabbed
rectangle intersection representation of a graph G ∈ Wn+1,d with central vertex
v. Then the number of bridge edges incident on v is |N(v)|−1. Moreover, if d ≥ 3
and uv be an edge such that u, v have a common stab, then span(v) ⊂ span(u).

Proof. Consider an arbitrary 2-exactly stabbed rectangle intersection represen-
tation R of G. Let C be the cycle obtained by removing the central vertex v
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from G and let u1, u2, . . . , ud be the neighbours of v on C in the cyclic order.
Let Pi denote the subpath of C from ui to ui+1 (where ud+1 = u1) that does
not contain any neighbour of v as an internal vertex. Notice that each of C,
C1 = G[V (P1) ∪ {v}], C2 = G[V (P2) ∪ {v}], . . . , Cd = G[V (Pd) ∪ {v}] are in-
duced cycles of G that are of order greater than 3. Applying Observation 1 to
each of C,C1, C2, . . . , Cd, we can conclude that each of them contain exactly
two bridge edges. Let us first consider Ci, for some i ∈ {1, 2, . . . , d}. Suppose
that the two bridge edges of Ci are also in Pi. Then these two edges are exactly
the two bridge edges of C, implying that none of the paths in P1, P2, . . . , Pd

other than Pi contain any bridge edges. This means that the two bridge edges
of Ci+1 (where again, Cd+1 = C1) are vui and vui+1. But then vui is a third
bridge edge in Ci other than the two bridge edges on Pi, which is a contradiction.
So we can assume that there is at most one bridge edge in Pi, for each i. As
C has exactly two bridge edges, it follows that there are exactly two values in
{1, 2, . . . , d}, say t and t′, such that Pt and Pt′ contain a bridge edge each. This
tells us that for i ∈ {1, 2, . . . , d} \ {t, t′}, the edges vui and vui+1 are the two
bridge edges in Ci. Now if t and t′ are not consecutive (i.e., t− 1 6= t′ 6= t+ 1),
then by our previous observation, both vut and vut+1 are bridge edges, which
is a contradiction as we would then have three bridge edges in Ct. Therefore,
we can conclude that t and t′ are consecutive. Let us assume without loss of
generality that t′ = t + 1. By our earlier observation, we know that every edge
in vui, where i ∈ {1, 2, . . . , d} \ {t + 1} is a bridge edge, as it belongs to some
Cj , where j ∈ {1, 2, . . . , d} \ {t, t′}. Also, we can see that vut+1 is not a bridge
edge as otherwise, the cycles Ct and Ct′ will have more than two bridge edges.
Therefore, the set of bridge edges incident on v is {u1, u2, . . . , ud} \ {ut+1}.

We will now show that span(v) ⊂ span(ut+1). For ease of notation, let a = ut,
b = ut+1 and c = ut+2. Let us assume without loss of generality that v is on
the bottom stab line. Then, we know that a and c are both on the top stab line
as va and vc are bridge edges. Since a and c are nonadjacent, it follows that
span(a) ∩ span(c) = ∅. Let us assume by symmetry that span(a) < span(c).
Since v is a neighbour of both a and c, it follows that span(v) intersects both
span(a) and span(c), or in other words, [x+

a , x
−
c ] ⊆ span(v). Notice that there

are no bridge edges in the path P = Pt+2 ∪ Pt+3 ∪ · · · ∪ Pd ∪ P1 ∪ P2 ∪ · · ·Pt−1.
Therefore, all the vertices in P are have a common stab line, in particular, have
a common stab line with a and c. As a, c ∈ P , we have that span(P ) contains
both span(a) and span(c), which implies that [x+

a , x
−
c ] ⊆ span(P ). Let ww′

and zz′ be the bridge edges on Pt and Pt+1 respectively, where w, z, a, c have a
common stab line and w′, z′, b, v have a common stab line. Let P ′

t be the path
Pt−{a, b} and P ′

t+1 the path Pt+1−{b, c}. As no vertex of P ′
t is adjacent to any

vertex of P or to v, we can conclude that span(P ′
t )∩ [x+

a , x
−
c ] = ∅. As there is a

neighbour of a on P ′
t , span(P

′
t ) intersects span(a), leading us to the conclusion

that span(P ′
t ) < [x+

a , x
−
c ]. Since at least one of w,w′ is on P ′

t , this means that
span(ww′) < [x+

a , x
−
c ]. With the same kind of arguments, we can also deduce

that [x+
a , x

−
c ] < span(P ′

t+1) and that [x+
a , x

−
c ] < span(zz′). By Observation B,

we know that the spans of any two bridge edges of G are disjoint. Since it
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is clear that span(va) ∩ [x+
a , x

−
c ] 6= ∅ and span(vc) ∩ [x+

a , x
−
c ] 6= ∅, we now

have span(ww′) < span(va) < span(vc) < span(zz′) (recall that span(a) <
span(c)). As span(ww′) < span(va), there exists a vertex w′′ ∈ {w,w′} such
that span(w′′) < span(va). Let S = {u ∈ V (G) : span(u) ∩ span(va) 6= ∅}. It
is easy to see that S ⊆ N [v] ∪ N [a]. Now, by Observation A, w′′ and c are in
two connected components of G− S (note that c /∈ S). This implies that b ∈ S,
or in other words, span(b) ∩ span(va) 6= ∅. Using the same kind of reasoning
for the bridge edges vc and zz′, we can conclude that span(b) ∩ span(vc) 6= ∅.
Together, we get [x+

a , x
−
c ] ⊆ span(b). Recall that [x+

a , x
−
c ] ⊆ span(v). As b and

v have a common stab line and because a, c ∈ N(v) \ N(b), we can conclude
that y+b < y+v . Now suppose that x−

v ≤ x−
b . Let b′ be the neighbour of b on

P ′
t . As span(P ′

t ) < [x+
a , x

−
c ], we have span(b′) < [x+

a , x
−
c ]. But then, rb′ cannot

intersect rb without intersecting rv. This contradiction lets us conclude that
x−
b < x−

v . Arguing symmetrically, we can also derive x+
b > x+

v . This shows that
span(v) ⊂ span(b).

u9 u8 u7 u6

u10 v1 v2 u5

u1 u2 u3 u4

u10

u9

u8

u7

v2 u6

u1

u2

v1 u3

u4

u5

(a) (b)

Fig. 2: 2-exactly stabbed rectangle intersection representation of (3, 4)-grid graph.

Observation C Consider the (3, 4)-grid graph H as shown in Figure 2(a). In
any 2-exactly stabbed rectangle intersection representation of H, the edge v1v2
is a bridge edge.

Proof. Suppose for the sake of contradiction that there is a 2-exactly stabbed
rectangle intersection representation R of H such that v1 and v2 have a
common stab. In H, both the subsets {v1, u1, u2, u3, v2, u7, u8, u9, u10} and
{v2, u2, u3, u4, u5, u6, u7, u8, v1} induce subgraphs belonging to the W9,4 fam-
ily. Hence, by Proposition 2, for each i ∈ {1, 2}, there is exactly one vertex
wi ∈ N(vi) that have a common stab line as vi and span(vi) ⊂ span(wi) in R.
Then by definition of w1 and w2, we have w1 = v2 and w2 = v1. Now we can
use our earlier observation to infer that span(v1) ⊂ span(v2) ⊂ span(v1), which
is a contradiction.

Let R be a 2-exactly stabbed rectangle intersection representation of a graph
G along with the stab lines y = a1 and y = a2 where a1 < a2. Recall that Rt and
Rb are the sets of intervals obtained by projecting the rectangles that intersect
y = a2 and y = a1 respectively on the x−axis.
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Lemma 2. The family of (I,P)−graphs is a proper subset of 2-ESRIG.

Proof. By definition, an (I,P)−graph is a 2-ESRIG. We show that there is a
graph which is a 2-ESRIG but not an (I,P)−graph. Let H be the (3, 4)-grid as
shown in Figure 2(a). Clearly, there is a 2-exactly stabbed rectangle intersection
representation of H (Figure 2(b)).

In H, both the subsets {v1, u1, u2, u3, v2, u7, u8, u9, u10} and
{v2, u2, u3, u4, u5, u6, u7, u8, v1} induce subgraphs belonging to the W9,4

family. Hence, by Proposition 2, in any 2-exactly stabbed rectangle intersection
representation of H, for each i ∈ {1, 2}, there is exactly one vertex wi ∈ N(vi)
that have a common stab line as vi and span(vi) ⊂ span(wi). Moreover, by
Observation C, in any 2-exactly stabbed rectangle intersection representation
of H, the edge v1v2 is a bridge edge. This implies that, in any 2-exactly stabbed
rectangle intersection representation R of H, none of the sets Rt and Rb is a
set of proper interval. Hence, H is not an (I,P)−graph.

Lemma 3. The family of (I,P)−graphs is equivalent to the family of
(I,U)−graphs.

Proof. By definition, an (I,U)−graph is a (I,P)−graph. Let G be an
(I,P)−graph and R be a 2-exactly stabbed rectangle intersection representa-
tion of G such that at least one of Rt and Rb is a set of proper intervals. We
shall assume without loss of generality that Rb is a set of proper intervals and
for any two vertices u, v ∈ V (G) we have {x−

v , x
+
v } ∩ {x−

u , x
+
u } = ∅. We shall

use V1 and V2 to denote the sets of vertices that are on the top and bottom
stab lines respectively. Note that Rb is a proper interval representation of G[V2].
Let p1, p2, . . . , p2|V2| be the endpoints of the intervals in Rb written in ascending
order. We now use the fact that every graph that has a proper interval repre-
sentation also has a unit interval representation in which the endpoints of the
intervals are in the same order [5]. Let U be the unit interval representation
corresponding to Rb and let p′1, p

′
2, . . . , p

′
2|V2|

be the endpoints of the intervals in
U written in ascending order. We now construct a 2-exactly stabbed rectangle
intersection representation R′ = {r′u = [x′−

u , x′+
u ] × [y′−u , y′+u ]}u∈V (G) of G such

that at least one of R′
t and R′

b is a set of unit intervals as follows.
In the representation R′, the rectangle corresponding to a particular vertex

intersect the same stab line as it intersects in R. We define [y′−u , y′+u ] = [y−u , y
+
u ]

for every vertex u ∈ V (G). For each vertex u ∈ V2, we let x
′+
u = p′i and x′−

u = p′j ,
where x+

u = pi and x−
u = pj . Define f :

⋃
u∈V1

{x+
u , x

−
u } → R as follows: f(p) =

p′i+
j

t+1 (p
′
i+1−p′i), where pi < p < pi+1, and q1, q2, . . . , qk−1, (qk = p), qk+1, . . . , qt

are the points in {x+
u : u ∈ V1, pi < x+

u < pj} ∪ {x−
u : u ∈ V1, pi < x−

u < pj}, in
ascending order. For each vertex u ∈ V1, we let x′+

u = f(x+
u ) and x′−

u = f(x−
u ).

It is not difficult to verify that R′ is a 2-exactly stabbed rectangle intersection
representation of G such that R′

b is a set of unit intervals.

Remark 1. From the proof of Lemma 3, it is clear that the left and right edges
of the rectangles of R′ are in the same order as they are in R.
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Let G is a (P,P)-graph and R be a 2-exactly stabbed rectangle intersection
representation of G such that both Rt and Rb are sets of proper intervals. By
Remark 1, the construction procedure described in Lemma 3 when applied on R
gives us a 2-exactly stabbed rectangle intersection representation R′ of G such
that one of R′

t and R′
b is a set of unit intervals and the other is a set of proper

intervals. This gives us the following lemma.

Lemma 4. The family of (P,P)−graphs is equivalent to the family of
(P,U)−graphs.

Now we show that there is a graph which is an (I,P)−graph but not a
(P,P)−graph.

Lemma 5. The family of (P,P)−graphs is a proper subset of the family of
(I,P)−graphs.

Proof. By definition, a (P,P)−graph is an (I,P)−graph. We show that there is
a graph which is a (I,P)−graph but not a (P,P)−graph. Consider the labelled
(3, 3)-grid graph H shown in Figure 3(a). Clearly, there is a 2-exactly stabbed
rectangle intersection representation R of H such that at least one of Rt and Rb

is a set of proper intervals (Figure 3(b)). Note that H is a graph belonging to the
W9,4 family. By Proposition 2, in any 2-exactly stabbed rectangle intersection
representation of H, there is a vertex w ∈ N(v) such that w, v have a common
stab and span(v) ⊂ span(w). Hence, H is not a (P,P)-graph.

u7 u6 u5

u8 v1 u4

u1 u2 u3

u8

u7

u6

u5

u4

u1

u2

v1 u3

(a) (b)

Fig. 3: 2-exactly stabbed rectangle intersection representation R of (3, 3)-grid graph
such that Rb is a set of proper intervals.

Observation D Let R be a 2-exactly stabbed rectangle intersection represen-
tation of a triangle free graph G such that both Rt and Rb are sets of proper
intervals. Let e = uv be a bridge edge and a, b ∈ V (G) such that span(a) <
span(uv) < span(b). Then a and b are in different connected components of
G− {u, v}.

Proof. Assume for the sake of contradiction that a and b are in the same con-
nected component C of G − {u, v}. Then there exists a path P = {u1 =
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a, u2 . . . , ut = b} between a and b in C. As span(P ) is an interval that contains
both span(a) and span(b), it is clear that span(P ) also contains span(uv) in R.
Let j ∈ {2, . . . , t− 1} be the minimum value such that span(uj)∩ span(uv) 6= ∅.
As G is trinagle free, uj intersects exactly one of u, v. Without loss of generality,
assume uj intersects u. Since G is triangle free, uj and u must have a common
stab in R. Without loss of generality assume that both uj and u are on the bot-
tom stab line. Therefore, we must have y+uj

< y−v . As G is triangle free, the vertex
uj−1 does not intersect u and from our definition of j, span(uj−1) < span(uv).
If x−

uj
> x−

u , then ruj−1
, ru, ruj

intersects each other contradicting the fact that
R is a valid 2-exactly stabbed rectangle intersection representation of G. There-
fore, we must have x−

uj
< x−

u in R. Similarly, we can show that x+
uj

> x+
u . This

implies that span(u) ⊂ span(uj). But this contradicts the fact Rb is a set of
proper intervals.

The graph family Cn,d with n ≥ 4, d ≥ 1, n ≥ d consists of triangle free
graphs G isomorphic to a cycle of order n and d new vertices each adjacent to
a unique vertex of the cycle. For example, Figure 4 shows a graph belonging to
the C10,1 family.

v

Fig. 4: A graph belonging to the C10,1 family.

Proposition 3. Let n ≥ 4 be a positive integer and G be a graph isomorphic
to a graph belonging to Cn,1. Let v be the vertex in G with degree 3 and R be
any 2-exactly stabbed rectangle intersection representation of G such that both
Rt and Rb are sets of proper intervals. Then at least one of the two edges which
are in the cycle and incident on v is a bridge edge.

Proof. Let v1, v2, w be the vertices adjacent to v, C be the induced cycle in G
and w is the vertex with degree 1. For the sake of contradiction, assume that
none of vv1 and vv2 is a bridge edge. We shall use V1 and V2 to denote the sets
of vertices that are on the top and bottom stab lines respectively. Note that
G[V1] and G[V2] are proper interval graphs. We know that a proper interval
graph cannot have a K1,3 as an induced subgraph. Since the graph induced by
{v, w, v1, v2} is isomorphic to K1,3, therefore it must be the case that e = vw
is a bridge edge. Moreover, by proposition 1, C has exactly two bridge edges.
Let the bridge edges in C be e1 = z1w1 and e2 = z2w2 with z1, z2, w1, w2

being distinct from v. By Observation B, we know that span(e1) ∩ span(e2) =
span(e1)∩ span(e) = span(e2)∩ span(e) = ∅. Without loss of generality assume
that span(e1) < span(e2). If span(e1) < span(e) < span(e2) then there are
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vertices a ∈ {z1, w1} and b ∈ {z2, w2} such that span(a) < span(e) < span(b).
By Observation D, we can infer that a and b lies in two different components
of G − {v, w}. This is a contradiction as there will be only one component in
G− {v, w}. If span(e) < span(e1) < span(e2) then there are vertices a ∈ {w, v}
and b ∈ {z2, w2} such that span(a) < span(e1) < span(b). Observation D, we
can infer that a and b lies in two different components of G − {z1, w1}. But
due to our initial assumption that v /∈ {w1, z1}, this is impossible. By similar
type of reason we can show that span(e) < span(e1) < span(e2) is impossible.
Therefore, at least one of vv1 or vv2 must be a bridge edge.

For a graph G, let α(G) denote the cardinality of the maximum independent
set of G.

Observation E Let R be a 2-exactly stabbed rectangle intersection representa-
tion of a graph G such that both Rt and Rb are sets of unit intervals. Let v be
a vertex of G and G′ is the graph induced by the set {w ∈ V (G) : span(w) ∩
span(v) 6= ∅ and w, v are on different stab lines}. Then α(G′) ≤ 2.

Proof. Suppose for the sake of contradiction α(G′) > 2 and S be the maximum
independent set of G′. There are at least three vertices {w1, w2, w3} ⊆ S such
that span(w1) < span(w2) < span(w3) in R. Hence, we have x−

w3
− x+

w1
>

1. Since span(v) intersects with both span(w1) and span(w3), we must have
x+
v − x−

v > 1 which is a contradiction.

Observation F Let R be a 2-exactly stabbed rectangle intersection represen-
tation of a graph G such that both Rt and Rb are sets of unit intervals.
Let uv is an edge such that both u, v have a common same stab and G′ is
the graph induced by the set {w ∈ V (G) : span(w) ∩ (span(v) ∪ span(u) 6=
∅ and w, v are on different stab lines}. Then α(G′) ≤ 3.

Proof. Without loss of generality assume x−
u < x−

v . Since u, v are adjacent we
must have x+

v − x−
u ≤ 2. Suppose for the sake of contradiction α(G′) > 3

and S be the maximum independent set of G′. There are at least four vertices
{w1, w2, w3, w4} ⊆ S such that span(w1) < span(w2) < span(w3) < span(w4)
in R. Hence, we have x−

w4
−x+

w1
> 2. Since span(u)∪span(v) intersects with both

span(w1) and span(w4), we must have x+
v − x−

u > 2 which is a contradiction.

Lemma 6. The family of (U ,U)−graphs is a proper subset of the family of
(P,U)−graph.

Proof. By definition, a (U ,U)−graph is a (P,U)−graph. We show that there is
a graph G which is a (P,U)−graph but not a (U ,U)−graph. Let H be a graph
isomorphic to the graph shown in Figure 5(a). As shown in Figure 5(b), there is
a 2-exactly stabbed rectangle intersection representation R of H such that one
of Rt and Rb is a set of proper intervals and the other is a set of unit intervals.
We prove that H is not an (U ,U)−graph.

For the sake of contradiction, assume there is a 2-exactly stabbed rectangle
intersection representation R of H such that both Rt and Rb are sets of unit
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v1
w1

v2

u7 u6 u5 u4 u3 u2 u1

w2 w3

v3

v1
w1

w2

v2

u7 u6 u5 u4 u3 u2 u1

v3

w3

(a) (b)

Fig. 5: A 2-exactly stabbed rectangle intersection representation R of the graph shown
in (a) such that one of Rt and Rb is a set of proper intervals and the other is a set of
unit intervals.

intervals. Without loss of generality, assume that v1 is on the top stab line and
let C denote the induced cycle in H. Notice that, the subgraph of H induced
by V (C) ∪ {w1} is isomorphic to a graph in the C10,1 family. By Proposition 3,
at least one of v1v2 and v1v3 is a bridge edge. By proposition 1, C will have
exactly two bridge edges in C. Hence, if both v1v2 and v1v3 are bridge edges,
then all vertices of the path P = u1u2 . . . u7 will be on the bottom stab line
and for each i ∈ {1, 2, . . . , 7}, span(ui) ∩ span(v1) 6= ∅. But α(P ) = 4, which by
Observation E is a contradiction.

Therefore, exactly one of v2 and v3 must be on the top stab line. Without loss
of generality, assume that v3 is on the top stab line. Notice that, the subgraph of
H induced by V (C)∪{w3} is isomorphic to a graph in the C10,1 family. Since v3v1
is not a bridge edge, therefore by Proposition 3 the edge v3u1 must be a bridge
edge. Since both v1v2 and v3u1 are bridge edges of C, all vertices of the path
P = u1u2 . . . u7 will be on the bottom stab line. Now for each i ∈ {1, 2, . . . , 7},
span(ui)∩ (span(v1)∪ span(v3)) 6= ∅. But α(P ) = 4, which by Observation F is
a contradiction.

Lemma 7. The family of 2-SUIG is equialent to the family of (U ,U)-graphs.

Proof. By definition, a 2-SUIG is a (U ,U)−graph. Let G be a (U ,U)−graph
and R be a 2-exactly stabbed rectangle intersection representation of G such
that both Rt and Rb are sets of unit intervals. Let I be the set of intervals
{[y+v , y

−
v ]}v∈V (G). We now use the fact that every graph that has a proper interval

representation also has a unit interval representation in which the endpoints
of the intervals are in the same order [5]. Let U = {[y′−v , y′+v ]v∈V (G)} be the
unit interval representation corresponding to I. Consider the set of rectangles
R′ = {[x+

v , x
−
v ] × [y′−v , y′+v ]}v∈V (G). Clearly, R

′ is a 2-exactly stabbed rectangle
intersection representation of G and all rectangles are unit squares. Hence, G is
a 2-SUIG.

Combining Lemma 1,2,3,4,5,6,7, we have the proof of Theorem 1.

4 Proof of Theorem 2

A planar graph G is said to have an LL-drawing if G has a straight line em-
bedding on the plane such that the point corresponding to a vertex of G lies on
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one of two given horizontal lines. A planar graph G is an LL-graph if G has an
LL-drawing. Cornelsen et al. [] proved the following result which we state as a
theorem.

Theorem 5 ([]). Given a graph G, there is a O(|V (G)|) time algorithm to
decide if G is an LL-graph.

Let L be an LL-drawing of a graph G and y = a1,y = a2 be the hor-
izontal lines in L with a1 < a2. For a vertex v ∈ V (G) let pv denote the
point corresponding to v in L. Let AL = {w ∈ V (G) : pw lies on y = a1}
and BL = {w ∈ V (G) : pw lies on y = a2}. For two vertices u, v ∈ V (G), we
say u <L v if both u, v lies on y = ai for some i ∈ {1, 2} and x-coordinate
of pu is less than that of pv. Let CL denote the subgraph of G such that
E(CL) = {uv ∈ E(G) : pu lies on y = a1 and pv lies on y = a2}. When the
LL-drawing of G under consideration is clear from the context, the sets AL and
BL, the relation <L and the graph CL are considered to be defined with respect
to this drawing.

Observation G Let L be an LL-drawing of a graph G. Then the subgraph CL

of G is a caterpillar graph.

Lemma 8. If a graph G is a LL-graph then G is also a (P,P)-graph.

Proof. Let L be an LL-drawing of a graph G and y = a1,y = a2 be the horizontal
lines in L. We shall give a 2-exactly stabbed rectangle intersection representation
of G where the stab lines are y = a1 and y = a2.

First take a 2-exactly stabbed rectangle intersection representation C of the
subgraph CL of G such that C satisfies (i) y = a1 and y = a2 are the stab lines
in C, (ii) AL ∩ V (CL) is the set of vertices that are on the bottom stab line in
C, (iii) BL ∩ V (CL) is the set of vertices that are on the top stab line in C, and
(iv) if u <L v then span(u) < span(v) in C.

Now for each vertex v ∈ AL \ V (CL) (resp. v ∈ BL \ V (CL)), introduce
a rectangle such that y+v = y−v = a1 (resp. y+v = y−v = a2). Moreover, we can
ensure that after introducing all rectangles corresponding to the vertices in (AL∪
BL) \ V (CL) we can ensure that whenever u <L v we have span(u) < span(v)
(resp. span(v) < span(u)). Let C′ denote the set of these new rectangles. We can
further modify the rectangles in C′ to get C′′ such that (i) whenever there is an
edge uv with u, v ∈ (AL ∪BL) \ V (CL), the rectangles ru and rv intersects and
(ii) whenever there is an edge u′v′ with u′ ∈ V (CL) and v′ ∈ (AL∪BL)\V (CL),
span(u′) in C and span(v′) in C′′ intersects.

Let R = C ∪ C′′. It is not difficult to verify that R is a 2-exactly stabbed
rectangle intersection representation of G. This completes the proof.

Lemma 9. If a triangle-free graph G is a (P,P)-graph then G a LL-graph.

Proof. Let R be a 2-stabbed rectangle intersection representation of a triangle-
free (P,P)-graph G such that both Rt and Rb are sets of proper interval. With-
out loss of generality, we can assume that R is a 2-exactly stabbed rectangle
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intersection representation of G and for any two vertices u, v ∈ V (G) we have
that {x+

u , x
−
u , y

+
u , y

−
u } ∩ {x+

v , x
−
v , y

+
v , y

−
v } = ∅. For each v ∈ V (G), consider the

point pv = (av, bv) such that av = x+
v , bv = 0 if v is on the bottom stab line and

bv = 1 if v is on the top stab line. Now for each eadge uv ∈ E(G), let suv be the
line segment joining pu and pv. It is not difficult to verify that {pv}v∈V (G) and
{suv}uv∈E(G) gives an LL-drawing of G.

Combining Theorem 5, Lemma 8 and Lemma 9 we have the proof of Theo-
rem 2.

5 Proof of Theorem 3

Given a 2-SRIG H, its 2-stabbed rectangle intersection representation R and an
integer c, the 2-SRIG coloring problem is to decide whether the chromatic
number of H is at most c. A circular arc representation of a graph is a collection
of circular arcs of a circle such that each circular arc in the collection represents
a vertex of the graph and two circular arc intersect if and only if the vertices
they represent are adjacent in the graph. The graphs that have circular arc
representation are called circular arc graphs. Given a circular arc graph G, its
circular arc representation C and an integer c, the circular arc coloring

problem is to decide whether the chromatic number of G is at most c. To prove
our theorem we shall reduce the NP-complete circular arc coloring [16]
problem to 2-SRIG coloring problem. First we introduce some definition and
notations. When traversing around the circle in the clockwise direction, we first
encounter the left endpoint of a circular arc, then its interior, and then its right
endpoint. For points p, q, r on the circle, we write p < q < r to indicate that the
points p, q, r appear in this order in a full traversal of the circle in the clockwise
direction starting from the point p. Similarly, we write p1 < p2 < . . . < pn for the
clockwise order of points p1, p2, . . . , pk. We write [p, q] for the clockwise arc from
p to q. Let G be a connected circular arc graph with a circular arc representation
C. For a vertex v ∈ V (G), let cv = [av, bv] denote the circular arc corresponding
to v in C where av and bv are the left and right endpoints of cv, respectively.

Given a connected circular arc graph G with a circular arc representation C
and an integer c. We shall construct a 2-SRIG H such that G is c-colorable if
and only if H is c-colorable. Without loss of generality we can assume that all
circular arcs in C are part of the unit circle with centre on the origin, all circular
arcs in C have distinct endpoints, no circular arc have an endpoint on the x-axis.
Below we describe the reduction procedure which consitutes of two steps viz.
partition step and joining step.

Partition step: Let H1 and H2 be the two closed half spaces induced by the
x-axis. For each i ∈ {1, 2} and v ∈ V (G), let Ci(v) = cv ∩ Hi. Notice that, for
each i ∈ {1, 2} and v ∈ V (G), the number of circular arcs in Ci(v) is at most two
and total number of circular arcs in C1(v)∪C2(v) is at most three (see Figure 6).
For each i ∈ {1, 2} let Ci be the set of circular arcs in {Ci(v)}v∈V (G) and Gi
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u

C1

C2

C1(u)c′u1

C2(u)C2(u)

(a) (b)

Fig. 6: Illustration of the partition step.

be the intersection graph induced by the arcs in Ci. For a vertex w1 ∈ V (G1),
c′w1

= [a′w1
, b′w1

] shall denote the corresponding circular arc in C1. Similarly, for
a vertex w2 ∈ V (G2), c

′′
w2

= [a′′w2
, b′′w2

] shall denote the corresponding circular
arc in C2. We shall use the following observation in our proof.

Observation H Both G1 and G2 are interval graphs and |V (G1) ∪ V (G2)| ≤
3|V (G)|.

Joining step: Let R be a 2-stabbed rectangle intersection representation of G1

such that (i) y = 1 and y = 0 are the two stab lines in R1, (ii) for all vertex
u ∈ V (G1) we have y−u = y+u = 1 and for two distinct vertices u, v ∈ V (G1)
we have {x−

u , x
+
u } ∩ {x+

v , x
+
v } = ∅, (iii) for two vertices u, v ∈ V (G1) if a

′
u < a′v

in C1 then x−
u < x−

v in R, and (iv) for two vertices u, v ∈ V (G1) if b′u < b′v
in C1 then x+

u < x+
v in R (see Figure 7(a)). For each vertex u ∈ V (G1), define

f−(u) and f+(u) to be cardinality of the sets {v ∈ V (G1) : x
−
v < x−

u } and
{v ∈ V (G1) : x

+
v > x+

u }, respectively. Now we do the following.

(i) For each vertex u ∈ V (G1) with a′u = (−0.5, 0) in C1, let z = x−
u (with

respect to R) and consider a new complete graph Q−
u consisting of (c −

f−(u) − 1) vertices. Take a 2-stabbed rectangle intersection representation
R′ = {r′v}v∈V (Q−

u ) of Q
−
u such that x′−

v = x′+
v = z, y−v = 0, y+v = 1 in R′ for

all v ∈ V (Q−
u ) and define R = R∪R′ (see Figure 7(a)).

(ii) For each vertex u ∈ V (G1) with b′u = (0.5, 0) in C1, let z′ = x+
u (with

respect to R) and consider a new complete graph Q+
u consisting of (c −

f+(u) − 1) vertices. Take a 2-stabbed rectangle intersection representation
R′ = {r′v}v∈V (Q+

u ) of Q+
u such that x′−

v = x′+
v = z′, y−v = 0, y+v = 1 in R′

and define R = R∪R′ (see Figure 7(a)).
(iii) Take a 2-stabbed rectangle intersection representation R′′ = {r′′u}u∈V (G2)

of G2 such that (i) y = 1 and y = 0 are the two stab lines in R′′, (ii) for
all vertex u ∈ V (G2) we have y−u = y+u = 0 and for two distinct vertices
u, v ∈ V (G2) we have {x′′−

u , x′′+
u } ∩ {x′′+

v , x′′+
v } = ∅, (iii) for a vertex u2 ∈

V (G2) if there is a vertex u1 ∈ V (G1) and a vertex v ∈ V (G) satisfying the
following properties: (a) c′u1

∈ C1(v), (b) c′′u2
∈ C2(v) and (c) c′u1

∪ c′′u2
cuts
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the negative x-axis (resp. positive x-axis), then x′′−
u2

= x−
u1

(resp. x′′+
u2

= x+
u1
).

See Figure 7(b). Define R = R ∪R′′ and H be the 2-SRIG induced by the
rectangles in R.

u1

Q−

u1

(a)
u1

Q−

u

(b)

Fig. 7: Illustration of the joining step.

Observe that, H has at most 3nc vertices and construction of H clearly takes
polynomial time. Also, note that G1 and G2 are induced subgraphs of H and
there is no edge between a vertex of G1 and a vertex of G2. We shall show that
G is c-colorable if and only if H is c-colorable. Given a c-coloring φ of G, we can
define a c-coloring φ′ of H as follows.

(i) For each vertex u ∈ V (H) ∩ V (G1) we define φ′(u) = φ(v) where v is the
vertex of G such that c′u ∈ C1(v).

(ii) For each vertex u ∈ V (H) ∩ V (G2) we define φ′(u) = φ(v) where v is the
vertex of G such that c′′u ∈ C2(v).

(iii) After performing the above two steps, for each vertex u ∈ V (H) \ V (G1) ∪
V (G2), we assign φ′(u) to be the smallest available color.

From construction it is not difficult to verify that φ′ is a valid c-coloring of
H. Now we shall show if H is c-colorable then G is c-colorable. First we have
the following observation.

Observation I Let φ be any c-coloring of H. For each i ∈ {1, 2}, let ui ∈
V (H)∩V (Gi). If there is a vertex v ∈ V (G) such that {c′u1

, c′′u2
} ⊆ C1(v)∪C2(v),

then φ(u1) = φ(u2).

Now given a c-coloring φ of H we define a coloring φ′ of G as follows. For each
vertex v ∈ V (G), there is a vertex u ∈ V (H) such that c′u ∈ C1(v) or c

′′
u ∈ C2(v)

and define φ′(v) = φ(u). Using Observation I, we can infer that φ′ is indeed a
c-coloring of G. This completes the proof of Theorem 3.
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6 Proof of Theorem 4

Let H be a triangle-free 2-SRIG. In Lemma 10, we shall show that H is a
planar graph. Then due to Grötscz theorem, we can infer that H is 3-colorable.
Hence, in O(|V (H)|) time we can decide if H is 2-colorable and due to Dvor̆ák
et al. [13], we can have a 3-coloring of H in O(|V (H)|) time. Now we state a
result of Perepelitsa [25].

Theorem 6 ([25]). Let G be the triangle-free intersection graph of finite num-
ber of compact connected sets Ai with boundaries that are piecewise differentiable
Jordan curves. For every i and j, let Ai \ Aj be nonempty and arc-connected.
Then G is a planar graph.

A rectangle intersection representation R of a graph G is crossing-free if for
any two rectangles ru and rv in R, the regions ru \ rv and rv \ ru are both
arc-connected.

Lemma 10. Let H be a triangle-free 2-SRIG. Then H is a planar graph.

Proof. Due to Theorem 6, if we can show that H has a 2-stabbed rectangle
intersection representation R such that R is crossing-free, then H is planar. Now
assume any 2-stabbed rectangle intersection representation R of H and I be the
interval graph induced by the set of intervals {[y−v , y

+
v ]}v∈V (H). Notice that, size

of the maximum independent set of H is at most two. Therefore, I must be an
unit interval graph and I = {y′−v , y′+v }v∈V (H) be an unit interval representation
of I. Now consider the set of rectangles R′ = {[x−

v , x
+
v ]× [y′−v , y′+v ]}. Clearly, R′

is a 2-stabbed rectangle intersection representation of H where each rectangle
has unit height and therefore R′ is crossing-free. Hence, H is a planar graph.

7 Conclusions

In this paper, we focus our study on graphs that have stab number at most
2 and its subclasses. We prove that 2-SUIG = (U ,U)-graphs ⊂ (P,U)-graphs
= (P,P)-graphs ⊂ (I,U)-graphs = (I,P)-graphs ⊂ 2-ESRIG = 2-SRIG. While
proving the theorem, we showed that exact stab number of (3, 4)-grid is exactly
2. In fact using the observations made in this paper, it is possible to prove that
for any n ≥ 1, the exact stab number of (3, n)-grid is at most 2. Moreover, the
above observation can be used to show that estab((h,w)− grid) ≤ 2⌈ t

3⌉ where
t = min{h,w}.

Since (P,P)-graphs are proper subsets of 2-SRIG, a direction of further re-
search could be to investigate the class of (P,P)-graphs and try to characterize
this class of graphs.

Question 1. Develop a forbidden structure characterization and/or a polynomial-
time recognition algorithm for (P,P)-graphs.
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For a 2-SRIG H, notice that χ(H) ≤ 2ω(H). Moreover, we proved that the
chromatic number of any triangle-free 2-SRIG is at most three. In other words,
when a 2-SRIG H is triangle-free, we have χ(H) ≤ ω(H) + 1. Therefore, the
following is a natural question in this direction.

Question 2. Is there a constant c such that for any 2-SRIG H we have χ(H) ≤
ω(H) + c?

References

1. Adiga, A., Chandran, L., Sivadasan, N.: Lower bounds for boxicity. Combinatorica
34(6), 631–655 (2014)
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19. Klav́ık, P., Otachi, Y., Šejnoha, J.: On the Classes of Interval Graphs of Limited
Nesting and Count of Lengths. In: ISAAC 2016. LIPIcs, vol. 64, pp. 45:1–45:13
(2016)
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