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Abstract

We provide constant factor approximation algorithms for the Minimum Dominating
Set (MDS) problem on several subclasses of string graphs i.e. intersection graphs of simple
curves on the plane. For k ≥ 0, unit Bk-VPG graphs are intersection graphs of simple
rectilinear curves having at most k cusps (bends) and each segment of the curve being unit
length. We give an 18-approximation algorithm for the MDS problem on unit B0-VPG
graphs. This partially addresses a question of Katz et al. (Comput. Geom. 2005). We also
give an O(k4)-approximation algorithm for the MDS problem on unit Bk-VPG graphs. We
show that there is an 8-approximation algorithm for the MDS problem on vertically-stabbed
L-graphs. We also give a 656-approximation algorithm for the MDS problem on stabbed
rectangle overlap graphs. This is the first constant-factor approximation algorithm for the
MDS problem on stabbed rectangle overlap graphs and extends a result of Bandyapadhyay
et al. (Comput. Geom. 2019). We prove some hardness results to complement the above
results.

Keywords:
Dominating set, Approximation algorithm, geometric intersection graph, string graph.

1. Introduction and Results

An intersection representation R of a graph G = (V,E) is a family of sets {Ru}u∈V

such that uv ∈ E if and only if Ru ∩ Rv ̸= ∅. When R is a collection of geometric objects,
it is said to be a geometric intersection representation of G. When R is a collection of
simple unbounded curves on the plane, it is called an string representation. A graph G is
a string graph if G has a string representation. String graphs are important as it contains
all intersection graphs of connected sets in R2. String graphs have been intensively studied
both for practical applications and theoretical interest. To the best of our knowledge,
Benzer [3] was the first to introduce string graphs in 1959 while exploring the topology of
genetic structures. In 1966, Sinden [4] considered the same constructs at Bell Labs. In 1976,
Graham [5] introduced string graphs to the mathematics community at the open problem

1Preliminary versions of this paper was published in WG 2019 [1] and COCOON 2019 [2].
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session of a conference in Keszthely. Since then, string graphs have become an exciting topic
of research.

Many popular graph classes like planar graphs, chordal graphs, cocomparability graph,
disk graphs, rectangle intersection graphs, segment graphs, circular arc graphs are sub-
classes of string graphs. In fact, any intersection graph of arc-connected sets on the plane
is a string graph [4, 6, 7, 8]. However, not all graphs are string graphs [6] and this mo-
tivates further study of computational complexities of various optimisation problems in
string graphs and its subclasses [9, 10, 11, 12, 13]. In this paper, we propose constant factor
approximation algorithms for the Minimum Dominating Set (MDS) problem on string
graphs.

A dominating set of a graph G = (V,E) is a subset D of vertices V such that each vertex
in V \D is adjacent to some vertex in D. The Minimum Dominating Set (MDS) problem
is to find a minimum cardinality dominating set of a graph G. It is not possible to approx-
imate the MDS problem on string graphs with n vertices within (1− α) lnn for any α > 0
unless NP ⊆ DTIME(nO(log logn)) [14]. Hence, researchers have developed approximation
algorithms for the MDS problem on various subclasses of string graphs. Examples are
planar graphs, chordal graphs, disk graphs, unit disk graphs, rectangle intersection graphs,
intersection graphs of homothets of convex objects etc [15, 16, 17, 18, 19, 20]. De Berg et
al. [21] studied the fixed parameter tractablity of the MDS problem on various classes of
geometric intersection graphs. Erlebach and Van Leeuwen [22] provided constant-factor ap-
proximation algorithms for intersection graphs of r-regular polygons, where r is an arbitrary
constant, for pairwise homothetic triangles, and for rectangles with bounded aspect ratio.

Asinowski et al. [23] introduced the concept of Bk-VPG graphs to initiate a systematic
study of string graphs and its subclasses. A path is a simple rectilinear curve made of axis-
parallel line segments, and a k-bend path is a path having k bends. The Bk-VPG graphs
are intersection graphs of k-bend paths. Any string graph has a Bk-VPG representation
for some k [23]. Katz et al. [24] proved the NP-hardness for the MDS problem on B0-
VPG graphs. However, a sublogarithmic approximation algorithm for the MDS problem on
B0-VPG graphs is still unknown. Observe that intersection graphs of orthogonal segments
having unit length, i.e. unit B0-VPG graphs is a subclass of B0-VPG graphs. In this paper,
we show that the MDS problem is NP-hard on unit B0-VPG graphs. This strengthens a
result of Katz et al. [24]. We also propose the first constant-factor approximation algorithm
for theMDS problem on unit B0-VPG graphs. Specifically, we prove the following theorems.

Theorem 1. It is NP-Hard to solve the MDS problem on unit Bk-VPG graphs with k ≥ 0.

Theorem 2. Given a unit B0-VPG representation of a graph G with n vertices, there is
an O(n5)-time 18-approximation algorithm to solve the MDS problem on G.

We generalise Theorem 2 in the following way. A unit k-bend path is a k-bend path with
each segment being of unit length. A unit Bk-VPG representation of a graph G = (V,E) is
a set, C = {Cu}u∈V , of unit k-bend paths, such that uv ∈ E if and only if Cu ∩ Cv ̸= ∅. A
graph is a unit Bk-VPG graph if it has a unit Bk-VPG representation. Observe that, any
string graph has a unit Bk′ -VPG representation for some k′. We prove the following.
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Theorem 3. Given a unit Bk-VPG representation of a graph G with n vertices, there is
an O(k2n5)-time O(k4)-approximation algorithm to solve the MDS problem on G. 2

The MDS problem remains difficult in restricted families of string graphs. An L-path is
a simple curve consisting of one vertical segment and one vertical segment joined in a point
in such a way that it creates the shape ‘L’. A set of L-paths is vertically-stabbed if all L-paths
in the set intersect a common vertical line. A vertically-stabbed L-representation of a graph
G = (V,E) is a set, C = {Cu}u∈V , of vertically-stabbed L-paths, such that uv ∈ E if and
only if Cu ∩Cv ̸= ∅. A graph is a vertically-stabbed L-graph if it has a vertically-stabbed L-
representation. The class of vertically-stabbed L-graphs was introduced by McGuinness [25]
and it contains many important graph classes like interval graphs, outerplanar graphs, per-
mutation graphs, interval overlap graphs as subclasses. Researchers have studied the MDS
problem on these classes of graphs ([26, 27, 28, 29, 30]). Bandyapadhyay et al. [31] proved
APX-hardness for the MDS problem on vertically-stabbed L-graphs. An ϵ-net based al-
gorithm of Mehrabi [32] gives an O(1)-approximation algorithm for the MDS problem on
vertically-stabbed L-graphs. The specific value of the constant (which is at least 32) was
not reported by the author. We prove the following.

Theorem 4. Given a vertically-stabbed L-representation of a graph G with n vertices, there
is an O(n5)-time 8-approximation algorithm to solve the MDS problem on G.

A rectangle overlap representation R of a graph G = (V,E) is a family of axis parallel
rectangles {Ru}u∈V such that uv ∈ E if and only if the boundaries of Ru and Rv intersect. A
graph G is a rectangle overlap graph if G has a rectangle overlap representation. An interval
overlap representation R of a graph G = (V,E) is a family of closed intervals {Iu}u∈V such
that uv ∈ E if and only if the Iu∩ Iv ̸= ∅ and none of Iu and Iv is contained in the other. A
graph G is an interval overlap graph if G has an interval overlap representation. Finding a
constant-factor approximation algorithm for the MDS problem on rectangle overlap graphs
is a challenging open problem. The MDS problem remains APX-hard even on interval
overlap graphs [28]. We prove the following assuming Unique Games Conjecture [33] to be
true.

Theorem 5. Assuming the Unique Games Conjecture to be true, it is not possible to have a
polynomial time (2− ϵ)-approximation algorithm for the MDS problem on rectangle overlap
graphs for any ϵ > 0.

Constant-factor approximation algorithms are known only for restricted subclasses of
rectangle overlap graphs and rectangle intersection graphs. Damian-Iordache and Pem-
maraju [29] gave a (2 + ϵ)-approximation for the MDS problem on interval overlap graphs.
Pandit [34] introduced the intersection graph of diagonally anchored rectangles which also
turns out to be a subclass of rectangle overlap graphs. A set R of rectangles is a set of
diagonally anchored rectangles if there is a straight line l with slope −1 such that inter-
section of any R ∈ R with l is exactly one corner of R. Surprisingly, the MDS problem
remains NP-Hard on intersection graphs of diagonally anchored rectangles [34]. Bandya-
padhyay et al. [31] gave a (2 + ϵ)-approximation algorithm for the same. Erlebach and Van

2Preliminary versions of the proofs of Theorems 3 and 4 appeared in WG 2019 [1].
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(a) (b)

Figure 1: A graph which is a stabbed rectangle overlap graphs but neither an interval overlap graph nor an
intersection graph of diagonally anchored rectangles.

Leeuwen [22] provided constant-factor approximation algorithms for intersection graphs of
rectangles with bounded aspect ratios. The work of Govindarajan et al. [20] implies a PTAS
for approximation algorithm for MDS of intersection graphs of unit-height rectangles.

A set R of axis-parallel rectangles is stabbed if there is a straight line that intersects
all rectangles in R. A stabbed rectangle overlap representation R of a graph G = (V,E) is
a family of stabbed axis parallel rectangles {Ru}u∈V such that uv ∈ E if and only if the
boundaries of Ru and Rv intersect. A graph G is a stabbed rectangle overlap graph if G has
a stabbed rectangle overlap representation.

Theorem 6. Given a stabbed rectangle overlap representation of a graph G with n vertices,
there is an O(n5)-time 656-approximation algorithm for the MDS problem on G.3

We note that interval overlap graphs and intersection graphs of diagonally anchored
rectangles are strict subclasses of stabbed rectangle overlap graphs. See Figure 1(a) for
a separating example [35]. Note that approximation algorithms for optimisation problems
like Maximum Independent Set and Minimum Hitting Set on intersection graphs of
“stabbed” geometric objects have been studied [35, 36, 12, 37, 38].

1.1. Main lemma

Proofs of Theorem 2, 3, 4 and 6 use two crucial lemmas. The first one is about the
stabbing segment with rays (SSR) problem and the second one is about the stabbing rays with
segment (SRS) problem, both introduced by Katz et al. [24]. Below we provide definitions
of both SSR and SRS problems.

Stabbing segments with rays (SSR)

Input: A set R of disjoint leftward-directed horizontal semi-infinite rays and a set of disjoint
vertical segments.

Output: A minimum cardinality subset of R that intersect all segments in V .

Stabbing rays with segments (SRS)

3The authors proposed a 768-approximation algorithm for the MDS problem on stabbed rectangle inter-
section graphs in COCOON 2019 [2].
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Input: A set R of disjoint leftward-directed horizontal semi-infinite rays and a set of disjoint
vertical segments.

Output: A minimum cardinality subset of V that intersect all rays in R.

Let SSR(R, V ) (resp. SRS(R, V )) denote an SSR instance (resp. an SRS instance)
where R is a given set of disjoint leftward-directed horizontal semi-infinite rays and V is a
given set of disjoint vertical segments. Katz et al. [24] gave dynamic programming based
polynomial time algorithms for both the SSR problem and SRS problem. However, to
prove Theorems 2, 3, 4 and 6, we required an upper bound on the ratio of the cardinality
of the optimal solution of an SSR instance (and SRS instance) with the optimal cost of the
corresponding relaxed LP formulation(s). Therefore, we proved the following lemmas.

Lemma 1. Let C be an ILP formulation of an SSR(R, V ) instance. There is an O((n +
m) log(n+m))-time algorithm to compute a set D ⊆ R which gives a feasible solution of C
and |D| ≤ 2 ·OPT (Cl) where n = |R|,m = |V | and Cl is the relaxed LP formulation of C.

Lemma 2. Let C be an ILP formulation of an SRS(R, V ) instance. There is an O(n log n)
time algorithm to compute a set D ⊆ V which gives a feasible solution of C and |D| ≤
2 ·OPT (Cl) where n = |V | and Cl is the relaxed LP formulation of C.

Note that to prove both the above lemma, we do not need to explicitly solve the LP(s).
Moreover, since OPT (Cl) ≤ OPT (C), the algorithm of Lemma 1 provides an approximate
solution to the SSR(R, V ) instance with approximation ratio 2. Therefore, the following
theorem is a consequence of Lemma 1.

Theorem 7. There is an O((n+m) log(n+m))-time 2-approximation algorithm for SSR
problem where n and m are the number of rays and segments, respectively.

1.2. Organisation of paper

In Section 2.1 and Section 2.2, we prove the hardness results (Theorem 1 and Theorem 5).
In Section 3 and Section 4, we prove Lemma 1 and Lemma 4, respectively. In Section 5, we
shall apply both Lemma 1 and Lemma 2 to prove Theorem 4. Then in Section 6, 7 and 8,
we prove Theorem 2, 3 and 6, respectively.

2. Hardness results

In this section, we prove the two hardness results of this paper.

2.1. Proof of Theorem 1

We shall reduce the NP-complete MDS problem on grid graphs [39] to the MDS prob-
lem on unit B0-VPG graphs. The (h,w)-grid is the undirected graph G with vertex set
{(x, y) : x, y ∈ Z, 1 ≤ x ≤ h, 1 ≤ y ≤ w} and edge set {(u, v)(x, y) : |u− x|+ |v − y| = 1}. A
graph G is a grid graph if G is an induced subgraph of (h,w)-grid for some positive integers
h,w.

We shall show that any grid-graph is a unit-B0-VPG graph and thus prove Theorem 1.
Observe that it is sufficient to show that for any positive even integer n, the (n, n)-grid has
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(a) (b)

Figure 2: (a) A (4, 4)-grid. In this case, X consists of the gray vertices and Y consists of black vertices. (b)
A unit B0-VPG representation of (a).

a unit B0-VPG representation. Let n be a fixed positive even integer and H = (V ′, E′) be
a (n, n)-grid. Let X = {(i, j) ∈ V ′ : i, j have same parity} and Y = V ′ \X. See Figure 2(a)
for an example. We have the following lemma.

Lemma 3. The graph H has a unit B0-VPG representation R where the vertical segments
represent the pairs in X and the horizontal segments represent the pairs in Y .

The proof of Lemma 3 is not difficult but requires involved calculation. For the sake of
completion, we provide detailed proof of Lemma 3 in Section 9.

2.2. Proof of Theorem 5

A vertex cover of a graph G = (V,E) is a subset C of V such that each edge in E has an
endvertex which lies in C. The Minimum Vertex Cover problem is to find a minimum
cardinality vertex cover of a graph. Assuming Unique Games Conjecture to be true, the
Minimum Vertex Cover has no polynomial time (2− ϵ)-approximation algorithm for any
ϵ > 0 [33]. We shall reduce the Minimum Vertex Cover problem to the MDS problem
on rectangle overlap graphs.

Given a graph G = (V,E), construct another graph G′ = (V ′, E′) as follows. Define
V ′ = V ∪E. Define E′ = {uv : u, v ∈ V }∪{ue : u ∈ V, e ∈ E and u is an endvertex of e inG}.
We have the following observation

Observation A. The graph G has a vertex cover of size k if and only if G′ has a dominating
set of size k.

Proof. Let C be a vertex cover of G. Then at least one endpoint of every edge of G belongs
to C. From construction of G′, it follows that C is a dominating set of G′. Now let D
be a dominating set of G′ and e ∈ E be a vertex of D. Let ve be a neighbour of e in G′.
Observe that if a vertex w of G′ is adjacent to e, it must be adjacent to ve also. Hence,
D′ = (D \ {e}) ∪ {ve} is also a dominating set of G′ with |D′| ≤ |D|. Arguing in similar
way for all vertices in D ∩ E, we have a dominating set D∗ of G′ which is a subset of V .
Therefore, D∗ is a vertex cover of G.

We will be done by showing that G′ is a rectangle overlap graph. Let V = {v1, v2, . . . , vn}
and for each vi ∈ V define Rvi

= [i, n+ 1]× [−i, 0] (See Figure 3(c) for illustration).
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Figure 3: Reduction procedure for Theorem 5. (a) Input graph G, (b) The graph G′ and (c) rectangle
overlap representation of G′.

Notice that, each vertex u ∈ V ′\V , has degree two and is adjacent to exactly two vertices
of V . For each vertex u ∈ V ′ \ V , introduce a rectangle Ru which overlaps only with Rvi

and Rvj
where {vi, vj} is the set of vertices adjacent to u with i < j. This is possible as Ru

can be kept around the unique intersection point of the bottom boundary of Rvi
and the

left boundary of Rvj
(see Figure 3(c) for illustration). Formally, for each u ∈ V ′ \ V , define

Ru = [p − ϵ, p + ϵ] × [q − ϵ, q + ϵ] where ϵ = 1
|V | and (p, q) is the intersection point of the

bottom boundary of Rvi
and the left boundary of Rvj

. Observe that the set of rectangles
R′ = {Rvi : vi ∈ V } ∪ {Ru : u ∈ V ′ \ V } is a rectangle overlap representation of G′. This
completes the proof.

Remark B. For a graph G, the graph G′ is also an intersection graph of line segments
on the plane, i.e., a segment graph. Hence, unless the Unique Games Conjecture is false,
it is not possible to have a polynomial-time (2 − ϵ)-approximation algorithm for the MDS
problem on segment graphs, for any ϵ > 0.

3. Proof of Lemma 1

In this section we shall prove Lemma 1 and Theorem 7. Recall that in the SSR problem,
the inputs are a set of disjoint leftward-directed horizontal rays and a set of disjoint vertical
segments. The objective is to select a minimum number of leftward-directed horizontal rays
that intersect all vertical segments.

In this section, we call a leftward-directed horizontal semi-infinite ray by simply a ray
and a vertical segment by a segment in short. Let R be a set of disjoint rays and V be a set
of disjoint vertical segments.

To prove Lemma 1, first, we present an iterative algorithm consisting of three main
steps. The first step is to include all rays r ∈ R in solution S whenever some segments in V
intersect a single ray r in that iterative step. Next, delete all segments intersecting any ray
in S from V . In the final step, find a ray in R \ S whose x-coordinate of the right endpoint
is the smallest among all rays in R \ S and delete it from R (when there are multiple such
rays, choose one arbitrarily). We repeat the above three steps until V is empty. The above
algorithm takes O((|R|+ |V |) log(|R|+ |V |)) time (using segment trees [40]) and outputs a
set S of rays such that all segments in V intersect at least one ray in S.

We describe the above algorithm formally in Algorithm 1. Below we introduce some
notations used to describe the algorithm. We assign token Tr = {r} for each r ∈ R initially.

7



Algorithm 1 The SSR-Algorithm

Input: A set R of leftward-directed rays and a set V of vertical segments.
Output: A subset of R that intersects all segments in V .

1: Tr = {r} for each r ∈ R and i← 1, V0 ← V,R0 ← R,S ← ∅, S0 ← ∅ ▷ Initialisation.
2: while Vi−1 ̸= ∅ do
3: S ← S ∪ {r : r ∈ Ri−1, r is critical after (i− 1)th iteration} and Si ← S.

▷ Critical ray collection.
4: Vi ← the set obtained by deleting all segments from Vi−1 that intersect a ray in Si.
5: Find a r ∈ Ri−1 \ Si whose x-coordinate of the right endpoint is the smallest.
6: r discharges the token to its neighbours.
7: Ri ← The set obtained by deleting {r} ∪ Si from Ri−1.

▷ Discharging token step.
8: i← i+ 1;
9: end while

10: return S

r1

r2

r3

r4

r1

r2

r3

r4

r1

r2

r3

r4

r1

r2

r3

r4

(a) (b) (c) (d)

Figure 4: (a) An input SSR instance, (b) 1st iteration, (c) 2nd iteration and (d) 3rd iteration of the SSR-
Algorithm with (a) as input. A dotted ray (or segment) indicates that it is deleted.

For i ≥ 1, let Ri, Vi, Si be the set of rays, the set of segments and the solution constructed
by Algorithm 1, respectively at the end of ith iteration. A ray r ∈ Ri is critical if there is a
segment v ∈ Vi such that r is the only ray in Ri that intersects v. We describe a discharging
technique below.

Let D be a subset of R. A ray r ∈ D lies between two rays r′, r′′ ∈ D if the y-coordinate
of r lies between those of r′, r′′. A ray r ∈ D lies just above (resp. just below) a ray r′ ∈ D
if y-coordinate of r is greater (resp. smaller) than that of r′ and no other ray lies between
r, r′ in D. Two rays r, r′ ∈ D are neighbours of each other if r lies just above or below r′.

Discharging Method: Let r ∈ Ri−1 \ Si be a ray whose x-coordinate of the right
endpoint is the smallest. The phrase “r discharges the token to its neighbours” in the ith

iteration means the following operations in the given order.

(i) Let r′ lie just above r and r′′ lie just below r in Ri−1 \Si. For all x ∈ Tr (x and r not
necessarily distinct) do the following. If there is a segment in Vi that intersects x, r′

and r then assign Tr′ = Tr′ ∪ {x} and if there is a segment in Vi that intersects x, r
′′

and r then Tr′′ = Tr′′ ∪ {x}.
(ii) Make Tr = ∅ after performing the above step.

For an illustration, consider the input instance shown in Figure 4(a). At the first iteration
of Algorithm 1, r3 passes the token to its neighbours (r2, r4) and gets deleted. After the
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1st iteration, notice that r2 has become critical. So, at the begining of the 2nd iteration
Algorithm 1 put r2 in the solution. Then all segment intersecting r2 is deleted and r2 itself
is also deleted. Also in the second iteration r1 passes the token to its neighbour (r4) and
gets deleted. Finally in the third iteration r4 is put in the solution. We have the following
observation.

Observation C. For some v ∈ Vk, k ≥ 1, if some ray r ∈ R0 intersects v, then either
r ∈ Rk or there exists some ray r′ ∈ Rk such that r ∈ Tr′ .

Proof. Assume r /∈ Rk. Let < r1, r2, . . . , rk > be a sorted order of the rays such that
for i < j, ri discharged the token to the neighbours before rj . Due to step 5 of the SSR-
algorithm, X =< r1, r2, . . . , rk > is an increasing sequence based on the x-coordinate of their
right endpoint. Observe that, whenever a ray ri ∈ X discharged its token to its neighbours
in the ith iteration, all the vertical segments in Vi intersected by ri also intersects one of the
immediate neighbours of ri. Again as v ∈ Vk, v is not intersected by critical ray within k
iteration. Hence the result follows.

Lemma 4. For a ray r, there are at most two tokens containing r.

Proof. If r never discharged its token to its neighbours, the statement is true. Let r discharge
the token to its neighbours at iteration i. Note that r discharged tokens to at most two of
its neighbours. Since r gets deleted after the discharging step, the rays whose tokens contain
r become neighbours.

Let j be the minimum integer with i < j such that at the end of (j−1)th iteration, there
is a ray p ∈ Rj−1 which is critical and r ∈ Tp. Note that iteration of the SSR-Algorithm may
stop before encountering such events. However, within iteration i to j − 1, there may exist
some rays which discharged their tokens containing r due to step 5 of the SSR-Algorithm.

To prove the lemma, we use induction to show that there are at most two tokens con-
taining r in any iteration from i to j − 1, and if there are indeed two tokens containing r,
then the corresponding rays are neighbours.

Consider some k, i < k < j, such that x1, x2 ∈ Rk−1 be only two rays where r ∈ Tx1

and r ∈ Tx2
. Notice that, x1 and x2 are neighbours of each other and without loss of

generality assume x1 lies just above x2 in Vk−1. Assume x1 discharged its token at kth

iteration. If there exists a neighbour of x1 (say x3) which is different from x2, then due to
the discharging step of kth iteration, x1 passes the token to its neighbours (i.e x2 and x3)
and gets deleted from Rk−1 to create Rk. If x3 does not exist, then x1 shall pass the token
only to x2. Therefore x2 becomes the top-most ray among those rays in Rk which intersect
some segment intersecting r.

Moreover, if x was the only ray in Rk−1 such that r ∈ Tx, then x was the top-most (or
bottom-most) ray among those rays in Rk−1 which intersect some segment intersecting r.
Therefore, at the end of kth iteration there is exactly one ray x′ ∈ Rk such that r ∈ Tx′ and
x′ must be the top-most (resp. bottom-most) ray among those rays in Rk which intersect
some segment intersecting r.

Hence we conclude that for each k with i ≤ k < j, there is at most two rays r′, r′′ ∈ Rk

such that r ∈ Tr′ ∩ Tr′′ and they are neighbours. If there is exactly one ray r′′′ ∈ Rk such
that r ∈ Tr′′′ then r′′′ must be the top-most or bottom-most ray among those rays in Rk

which intersect some segment intersecting r.

9



In iteration j, ray p is critical and r ∈ Tp and p is put in the solution. If p is the only
ray whose token contained r, only Tp will contain r after the termination of Algorithm 1.
Let r′, p ∈ Rj−1 be the rays whose token contained r. They must be neighbours. Without
loss of generality, assume that p lies just above r′. If both r′, p are selected in Sj , there is
nothing to prove. Now consider the set A of segments in Vj that intersects r but not p.
Note that no ray above p intersects any segment in A. Hence r′ becomes the only ray in the
next iterative step whose token contains r and r′ turns to be the bottom-most ray among
those rays in Rj−1 which intersect some segment intersecting r. Now consider any iteration
k > j. By similar arguments as above, there would be at most one ray in Rk that contains
the token r. Hence the lemma follows.

For a segment v ∈ V , let N(v) ⊆ R be the set of rays that intersect v. Let r ∈ S be
a ray, i be the minimum integer such that r ∈ Si. There must exist a segment νr ∈ Vi−1

such that r is the only ray in Ri−1 that intersects νr and all rays in N(νr) \ {r} must have
passed the token to its neighbours. So, for each ray r ∈ S, there exists a segment νr such
that for all x ∈ N(νr) \ {r} we have Tx = ∅. We call νr a critical segment with respect to r.

Observation D. For a ray r ∈ S let νr be a critical segment with respect to r. Then
N(νr) ⊆ Tr.

Proof. Consider any arbitrary but fixed deleted ray y ∈ N(νr) \ {r} which was deleted at
some jth iteration. By Observation C, there exists a ray y′ ∈ Rj such that y′ intersects v
and y ∈ Ty′ . Applying the above argument for all rays in N(νr)\{r}, we have the proof.

Lemma 5. If S is the set returned by the SSR-algorithm with rays R and segments V , then
|S| ≤ 2|OPT |, where OPT is an optimum solution of SSR(R, V ).

Proof. Let R be the set of rays and V be the set of segments with |R| = n, |V | = m. Consider
the ILP formulation Q of SSR(R, V ). For each ray r ∈ R, let xr ∈ {0, 1} denote the variable
corresponding to r. Objective is to minimize

∑

r∈R

xr with constraints
∑

r∈N(v)

xr ≥ 1 for all

v ∈ V . Let the corresponding relaxed LP formulation be Ql.
Let Ql = {xr}r∈R be an optimal solution of Ql. Consider the SSR-algorithm. Here,

define yr = 1 if r ∈ S, yr = 0 if r /∈ S and Q′ = {yr}r∈R, obtained by the algorithm. This
is a feasible solution of Q as the SSR-algorithm terminates only when no segments are left
in Vi. Now we fix any arbitrary r ∈ S and νr be a critical segment with respect to r. Then
due to Observation D, we know that for all z ∈ N(νr)\{r} we have Tz = ∅ and N(νr) ⊆ Tr.
Therefore, for the constraint corresponding to νr in Ql, we have that

∑

z∈N(νr)

yz = 1 ≤
∑

z∈N(νr)

xz ≤
∑

z∈Tr

xz [since N(νr) ⊆ Tr by Observation D]

Therefore, from above argument and from Lemma 4 we conclude that

|S| =
∑

r∈S

yr =
∑

r∈S

∑

z∈N(νr)

yz ≤
∑

r∈S

∑

z∈Tr

xz ≤ 2
∑

z∈R

xz ≤ 2|OPT |.

Hence we have the proof.
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The proofs of Lemma 1 and Theorem 7 follows directly from the proof of Lemma 5.

4. Proof of Lemma 2

In this section, we shall prove Lemma 2. Recall that in the SRS problem, the input
is a set of disjoint leftward-directed horizontal rays and a set of disjoint vertical segments.
The objective is to select a minimum number of vertical segments intersecting all leftward-
directed horizontal rays.

2-approximation algorithm for the SRS problem: With each segment v ∈ V , we
associate a token Tv which is a subset of V . Initialise Tv = ∅ for each v ∈ V . Let ri be a
ray whose right-endpoint, (xi, yi), has the smallest x-coordinate. Assuming that there is a
feasible solution to the SRS instance, there must exist a segment of V that intersects ri.
Let N(ri) ⊆ V be the set of segments that intersect ri. Let vtop (resp. vbot) be a segment
in N(ri) whose top endpoint is top-most (resp., bottom endpoint is bottom-most); it may
be that vtop = vbot. We add both vtop and vbot to our heuristic solution set S. Also we set
Tvtop = Tvbot = N(ri). We remove from R all of the rays that intersect vtop or vbot, delete
all segments in N(ri) and then repeat the above steps untill R = ∅. Observe that for each
ray r, there is a segment v ∈ S that intersects r. Also observe that for each segment v ∈ V ,
there are at most two tokens such that both of them contains v. Ob serve that, the running
time of the above algorithm is O(n log n) where n = |V |.

Lemma 6. Let Q be the ILP of the SRS instance with a set of rays R and set of segments
V as input and Ql be the corresponding relaxed LP. Then OPT (Q) ≤ 2 ·OPT (Ql).

Proof. Let X = {xv}v∈V be an optimal solution of Ql where xv denotes the value of the
variable inQl corresponding to v ∈ V . Let S be the solution returned by the above algorithm
with R, V as input. Now define for each v ∈ V , yv = 1 if v ∈ S, yv = 0 if v /∈ S and let
Y = {yv}v∈V . Observe that Y is a feasible solution of Q. For each z ∈ S, there is a ray ri

such that Tz = N(ri). Therefore, yz = 1 ≤
∑

v∈N(ri)

xv =
∑

v∈Tz

xv

As a segment v is contained in at most two tokens, using the above inequality we have

|S| =
∑

v∈S

yv ≤
∑

v∈S

∑

v′∈Tv

xv′ ≤ 2
∑

v′∈V

xv′ = 2 ·OPT (Ql)

Hence the result follows.

5. Algorithm for vertically-stabbed L-graphs

Given a vertically-stabbed L-representation of a graph G with n vertices, we shall give
an O(n5)-time 8-approximation algorithm to solve the MDS problem on G. In the rest
of the paper, OPT (Q) and OPT (Ql) denote the cost of the optimum solution of an ILP
formulation Q and LP formulation Ql, respectively.

Overview of the algorithm: First, we solve the relaxed LP formulation of the ILP
formulation of the MDS problem on the input vertically-stabbed L-graph G and create
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two subproblems. We shall show that one of those two subproblems is equivalent to the
SSR problem, and the other is equivalent to the SRS problem. Using Lemma 1 and 2 we
shall give a performance guarantee of our algorithm. The running time of the algorithm
becomes O(n5) where n is the number of vertices in the input graph [41]. We note that such
techniques have been previously used to design approximation algorithms [42, 43, 44].

Now we describe our approximation algorithm for the MDS problem on vertically-
stabbed L-graphs. Let R = {Lu}u∈V be a vertically-stabbed L-representation of a graph
G = (V,E). We assume that (i) the vertical line x = 0 intersects all the L-paths in R and
the x-coordinate of the corner point of each L-path in R is strictly less than 0, and (ii)
whenever two distinct L-paths intersect in R, they intersect at exactly one point (other-
wise we can apply small perturbation to the L-paths so that whenever two distinct L-paths
intersect in R, they intersect at exactly one point [45]).

For a vertex u ∈ V , let N [u] denote the closed neighbourhood of u in G, Hu = {c ∈
N [u] : Lc intersects the horizontal segment of Lu} and let Vu denote the set N(u) \ Hu.
Based on these, we have the following ILP (say Q) of the problem of finding a minimum
dominating set of G.

minimize
∑

v∈V

xv

subject to
∑

v∈Hu

xv +
∑

v∈Vu

xv ≥ 1, ∀u ∈ V

xv ∈ {0, 1}, ∀v ∈ V
Q

Let Ql be the the relaxed LP formulation of Q and Ql = {xv : v ∈ V } be an optimal
solution of Ql. Now we define the following sets.

A1 =

{

u ∈ V :
∑

v∈Hu

xv ≥
1

2

}

, A2 =

{

u ∈ V :
∑

v∈Vu

xv ≥
1

2

}

H =
⋃

u∈A1

Hu, V =
⋃

u∈A2

Vu

Based on these, we consider the following two integer programs Q′ and Q′′.

minimize
∑

v∈H

x′
v

subject to
∑

v∈Hu

x′
v ≥ 1,∀u ∈ A1

x′
v ∈ {0, 1}, v ∈ H

minimize
∑

v∈V

x′′
v

subject to
∑

v∈Vu

x′′
v ≥ 1,∀u ∈ A2

x′′
v ∈ {0, 1}, v ∈ V

Q′ Q′′

Let Q′
l and Q′′

l be the relaxed LP of Q′ and Q′′ respectively. Clearly, the solutions of
Q′ and Q′′ gives a feasible solution for Q. Hence OPT (Q) ≤ OPT (Q′) + OPT (Q′′). For
each xv ∈ Ql, define yv = min{1, 2xv} and define Yl = {yv}xv∈Ql

. Notice that Yl gives
a solution to Q′

l and Q′′
l . Therefore, OPT (Q′

l) + OPT (Q′′
l ) ≤ 4 · OPT (Ql). We have the

following lemma.

Lemma 7. Q′ and Q′′ are SRS and SSR instances, respectively. Therefore, OPT (Q′) ≤
2 ·OPT (Q′

l) and OPT (Q′′) ≤ 2 ·OPT (Q′′
l ).
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Proof. Note that for each vertex u ∈ A1, Hu is non-empty and for each v ∈ Hu, Lv

intersects the horizontal segment of Lu. Let R be the set of horizontal segments of the
L-paths representing the vertices in A1 and S be the set of vertical segments of the L-paths
representing the vertices in H. Since all horizontal segments in R intersect the vertical
line x = 0 and the x-coordinates of the vertical segments in S is strictly less than 0, we
can consider the horizontal segments in R as rightward directed rays. Hence, solving Q′ is
equivalent to solving the ILP, say E , of the problem of finding a minimum cardinality subset
of vertical segments S that intersects all rays in the set R of rightward-directed rays. Hence
solving E is equivalent to solving an SRS instance with R and S as input. By Lemma 6, we
have that

OPT (Q′) = OPT (E) ≤ 2 ·OPT (El) ≤ 2 ·OPT (Q′
l)

where El is the relaxed LP of E . Hence we have proof of the first part.
For the second part, using similar arguments as above, we can show that solving Q′′

is equivalent to solving an SSR instance. Hence, by Lemma 1, we have that OPT (Q′′) ≤
2 ·OPT (Q′′

l ). Hence the proof follows.

Proof of Theorem 4: Lemma 7 implies that solving Q′ (resp. Q′′) is equivalent to
solving the SRS (resp. SSR) problem instance. Let A be the union of the solutions returned
by 2-approximation algorithm for SRS problem and the SSR-algorithm, used to solve Q′

and Q′′ respectively. Hence,

|A| ≤ 2(OPT (Q′
l) +OPT (Q′′

l )) ≤ 8 ·OPT (Ql) ≤ 8 ·OPT (Q)

Since Ql consists of n variables where n = |V |, solving Ql takes O(n5) time [41]. Solving
both the SSR and the SRS instances takes a total of O(n log n) time and the total running
time of the algorithm is O(n5).

6. Algorithm for unit B0-VPG graphs

Given a unit B0 representation of a graph G with n vertices we shall give an 18-
approximation algorithm for the MDS problem on G. We shall prove the following stronger
theorem.

Theorem 8. Let S1 and S2 be sets of orthogonal unit length segments. Let C be the ILP of
the problem of finding a minimum cardinality subset D of S2 such that every segment in S1

intersects some segment in D. There is an O(n5)-time algorithm to compute a set D′ ⊆ S2

which gives a feasible solution of C and |D′| ≤ 18 · OPT (Cl) where n = |S1 ∪ S2| and Cl is
the relaxed LP of C.

Theorem 2 follows from Theorem 8. Moreover, we shall use Theorem 8 to prove Theo-
rem 3. In the next section, we give an overview of our algorithm.

6.1. Overview

First, we solve the relaxed LP formulation Cl of C and create two subproblems. Since C
consists of n variables where n = |S2|, solving Ql takes O(n5) time [41]. We shall show that
these subproblems are equivalent to one of the following optimisation problems.
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1. The Subset Unit Interval Domination (SUID) problem: In this problem, the
input is (i) a setX of horizontal unit length segments, (ii) a set Y of vertical unit-length
segments, and (iii) two sets X ′, Y ′ such that X ′ ⊆ X and Y ′ ⊆ Y . The objective is
to find a minimum cardinality subset D of X ∪ Y such that every horizontal (resp.
vertical) segment in X ′ (resp. Y ′) intersects at least one horizontal (resp. vertical)
segment in D ∩X (resp. D ∩ Y ). Through out this article, SUD(X ′, X, Y ′, Y ) shall
denote an SUID instance.

2. The Unit Orthogonal Segment Stabbing (UOSS) problem: In this problem, the
input is (i) two sets X1, X2 containing horizontal unit length segments and (ii) two sets
Y1, Y2 containing vertical unit length segments. The objective is to find a minimum
cardinality subset D of X2 ∪ Y2 such that every horizontal (resp. vertical) segment in
X1 (resp. Y1) intersect at least one vertical (resp. horizontal) segment in D∩Y2 (resp.
D ∩X2). Through out this article, US(X1, Y1, X2, Y2) shall denote a UOSS instance.

We shall prove the following lemmas.

Lemma 8. Let X (resp. Y ) be a set of horizontal (resp. vertical) unit length segments.
For X ′ ⊆ X and Y ′ ⊆ Y , let A be the ILP formulation of the SUD(X ′, X, Y ′, Y ) instance.
Then OPT (A) = OPT (Al) where Al is the relaxed LP of A. Moreover, OPT (A) can be
computed in O(n log n) time where n = |X|+ |Y |.

Lemma 9. Let X1, X2 (resp. Y1, Y2) be sets of horizontal (resp. vertical) unit length
segments. Let B be the ILP formulation of the US(X1, Y1, X2, Y2) instance. Then there is
an O(n5)-time algorithm to compute a set D′ ⊆ X2 ∪ Y2 which gives a feasible solution of
B with |D′| ≤ 8 ·OPT (Bl) where n = |X1 ∪X2 ∪ Y1 ∪ Y2| and Bl is the relaxed LP of B.

In Section 6.2, we prove Lemma 8. Then in Section 6.3, we shall prove Lemma 9 using
Lemma 1. Using the above lemmas we shall complete the proof of Theorem 8 in Section 6.4.

6.2. Proof of Lemma 8

Recall that X is a set of horizontal unit length segments, Y is a set of vertical unit length
segments, X ′ ⊆ X,Y ′ ⊆ Y and A is the ILP formulation of the SUD(X ′, X, Y ′, Y ) instance.

Let A′ be the ILP formulation of the problem of finding a subset D1 of X with minimum
cardinality such that any segment in X ′ intersects a segment in D1. Let A′′ be the ILP
formulation of the problem of finding a subset D2 of Y with minimum cardinality such
that any segment in Y ′ intersects a segment in D2. Observe that, OPT (A) = OPT (A′) +
OPT (A′′) and OPT (Al) = OPT (A′

l) + OPT (A′′
l ) where A′

l and A′′
l are the relaxed LP

formulations of A′ and A′′, respectively. Now we have the following observation.

Observation E. OPT (A′) = A′
l and OPT (A′′) = OPT (A′′

l ).

Proof. We shall only prove the observation for OPT (A′) as similar arguments will suffice
for the other case. Let X ′

i ⊆ X ′ be the set of all horizontal segments whose y-coordinate is i.
Similarly let Xi ⊆ X be the set of all horizontal segments whose y-coordinate is i. Let A′

i be
the ILP formulation of the problem of finding a subset D′

i of X with minimum cardinality
such that any segment in X ′

i intersects a segment in D′. Since for i ̸= j, Xi ∩Xj = ∅ and
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X ′
i ∩X ′

j = ∅, observe that, OPT (A′) =
∑

i

OPT (A′
i) and OPT (A′

l) =
∑

i

OPT (A′
i,l) where

A′
i,l is the relaxed LP formulation of A′

i. Now we prove the following claim.

Claim 1. For each i, OPT (A′
i) = OPT (A′

i,l).

To prove the claim first define for each horizontal segment h ∈ Xi, let l(h) denote the left
endpoints of h. Let h1, h2, . . . , hk be the segments in Xi sorted in the ascending order of
the x-coordinates of l(h). For a segment h′ ∈ X ′

i, let N(h′) denote the set of intervals in
Xi that intersect h′. Let M be the coefficient matrix of A′

i such that the ith column of
M corresponds to the variable corresponding to hi ∈ Xi. Observe that in each row ofM,
the set of 1’s are consecutivel. Therefore,M is a totally unimodular matrix [46]. Thus any
optimal solution of A′

i,l is integral. Thus we have the proof.

Hence OPT (A′) =
∑

i

OPT (A′
i) =

∑

i

OPT (A′
i,l) = OPT (A′

l). This completes the

proof.

Using the above observation, we have that OPT (A) = OPT (A′) + OPT (A′′) =
OPT (A′

l) +OPT (A′′
l ) = OPT (Al). This completes the proof of the lemma.

6.3. Proof of Lemma 9

Recall that X1, X2 are sets of horizontal unit length segments, Y1, Y2 are sets of vertical
unit length segments and B is the ILP formulation of the US(X1, Y1, X2, Y2) instance.

Let B′ be the ILP formulation of the problem of finding a subset D′ of Y2 with minimum
cardinality such that any segment in X1 intersects a segment in D′. Let B′′ be the ILP
formulation of the problem of finding a subset D′′ of X2 with minimum cardinality such
that any segment in Y1 intersects a segment in D′′. Observe that, OPT (B) = OPT (B′) +
OPT (B′′) and OPT (Bl) = OPT (B′l) + OPT (B′′l ) where B′l and B′′l are the relaxed LP
formulations of B′ and B′′, respectively. Now we prove the following proposition.

Proposition 9. OPT (B′) ≤ 8 ·OPT (B′l) and OPT (B′′) ≤ 8 ·OPT (B′′l ).

Proof. We shall only prove the proposition for OPT (B′′) as similar arguments suffice for the
other case. Let X2 = S and Y1 = T and let IS be the set of intervals obtained by projecting
the horizontal segments in S onto the x-axis. Observe that IS is a set of unit intervals.

We assume that (i) no two interval in IS contain each other, and (ii) x-coordinate of
any vertical segment in T is distinct from the left and right endpoints of any interval in IS .
Since no two interval in IS contain each other, there exists a set P of real numbers such
that each interval in IS contains exactly one real number from P . (To see this, consider
the right endpoints of the intervals in the maximum cardinality subset of IS with pairwise
non-intersecting intervals which is obtained using the greedy algorithm [47]). Add in P two
more dummy values q, q′ which are not contained in any interval in IS and q (resp. q′) is less
than (resp. greater than) that of all values in P . Let p1, p2, . . . , pt be the values in P sorted
in the ascending order (notice that p1 = q and pt = q′). For each i ∈ {1, 2, . . . , t− 1}, let Ti

denote the vertical segments of T that lies inside the strip bounded by the lines y = pi and
y = pi+1. Due to our general position assumption for any i ̸= j, Ti and Tj are disjoint. For
each i ∈ {1, 2, . . . , t − 1}, and each vertical segment v ∈ Ti, let Sleft

v (resp. Sright
v ) be the

subset of S that intersects v and the line y = pi (resp. y = pi+1). Since any interval in IS
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contains exactly one value from P and therefore from {pi, pi+1}, S
left
v ∩Sright

v = ∅, for each
vertical segment v ∈ T . Based on these we have the following equivalent ILP formulation
(say W ) of B′′.

minimize
∑

v∈S

xv

subject to
∑

v∈S
left
u

xv +
∑

v∈S
right
u

xv ≥ 1,∀u ∈ T

xv ∈ {0, 1}, ∀v ∈ S
W

Let Wl = {xv : v ∈ S} be an optimal solution of the relaxed LP formulation (say Wl) of
W . Consider the following sets.

A1 =







u ∈ T :
∑

v∈S
left
u

xv ≥
1

2







, A2 =







u ∈ T :
∑

v∈S
right
u

xv ≥
1

2







L =
⋃

v∈A1

Sleft
v , R =

⋃

v∈A2

Sright
v

Based on these, we consider the following two integer programs W ′ and W ′′.

minimize
∑

v∈L

x′
v

subject to
∑

v∈S
left
u

x′
v ≥ 1,∀u ∈ A1

x′
v ∈ {0, 1}, v ∈ L

minimize
∑

v∈R

x′′
v

subject to
∑

v∈S
right
u

x′′
v ≥ 1,∀u ∈ A2

x′′
v ∈ {0, 1}, v ∈ R

W ′ W ′′

Let W ′
l and W ′′

l be the corresponding relaxed LPs of W ′ and W ′′ respectively. The
union of the solutions of W ′ and W ′′ is a solution for W implying OPT (W ) ≤ OPT (W ′)+
OPT (W ′′). For each xv ∈ Wl, define yv = min{1, 2xv} and define Yl = {yv}xv∈Wl

.
Notice that Yl gives a solution to W ′

l (and W ′′
l ). Hence, OPT (W ′

l ) ≤ 2 · OPT (Wl) and
OPT (W ′′

l ) ≤ 2 ·OPT (Wl). Therefore, OPT (W ′
l )+OPT (W ′′

l ) ≤ 4 ·OPT (Wl). Notice that,
solving W ′ (resp. W ′′) is equivalent to the problem of finding a minimum cardinality subset
of the horizontal segments in L (resp. R) to intersect all vertical segments in A1 (resp. A2).
Now we have the following claim.

Claim 2. OPT (W ′) ≤ 2 ·OPT (W ′
l ) and OPT (W ′′) ≤ 2 ·OPT (W ′′

l ).

We shall prove the above claim only for W ′ as proof for the other case is similar. Recall
that solving W ′ is equivalent to the problem of finding a minimum cardinality subset of the
horizontal segments in the set L (defined earlier) to intersect all vertical segments in A1.
For each i ∈ {1, 2, . . . , (t − 1)} let T1,i = A1 ∩ Ti and Li be the set of horizontal segments
in L that intersect some vertical segment in T1,i. Formally, Li =

⋃

v∈T1,i

Sleft
v . For any

i ̸= j, T1,i ∩ T1,j = ∅ and Li ∩ Lj = ∅ (this follows from the fact no horizontal segment in
S intersects both y = pi and y = pj). For each i ∈ {1, 2, . . . , (t − 1)}, let Di (resp, Di,l)
denote the ILP (resp. relaxed LP) of the problem of selecting minimum subset Di horizontal
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segments in Li such that all vertical segments in T1,i intersect at least one horizontal segment

in Di. Clearly, OPT (W ′) =
∑t−1

i=1 OPT (Di) and OPT (W ′
l ) =

∑t−1
i=1 OPT (Di,l). For each

i ∈ {1, 2, . . . , (t − 1)} notice that, all horizontal segments intersect the vertical line y = pi
and all vertical segments in T1,i lies to the left of the vertical line y = pi. For each i ∈
{1, 2, . . . , (t− 1)} if we consider the segments in Li to be leftward-directed rays then solving
Di is equivalent to solving an SSR instance with T1,i and Li as input. Due to Lemma 1,
for each i ∈ {1, 2, . . . , (t− 1)}, OPT (Di) ≤ 2 ·OPT (Di,l). Hence,

OPT (W ′) =
t−1
∑

i=1

OPT (Di) ≤ 2 ·
t−1
∑

i=1

OPT (Di,l) = 2 ·OPT (W ′
l )

This completes the proof of the claim.

Using the above claim and previous observations, we can infer that

OPT (W ) ≤ OPT (W ′) +OPT (W ′′) ≤ 2(OPT (W ′
l ) +OPT (W ′′

l )) ≤ 8 ·OPT (Wl)

This completes the proof of the proposition.

Hence, Observe that, OPT (B) = OPT (B′) +OPT (B′′) ≤ 8(OPT (B′l) +OPT (B′′l )) = 8·
OPT (Bl). This completes the proof of the lemma.

6.4. Completion of proof of Theorem 8

Recall that S1 and S2 are sets of orthogonal unit length segments, C is an ILP formulation
of the problem of finding a minimum cardinality subset D of S2 such that every segment in
S1 intersects some segment in D. We shall give an O(n5)-time algorithm to compute a set
D′ ⊆ S2 which gives a feasible solution of C and |D′| ≤ 18 · OPT (Cl) where n = |S1 ∪ S2|
and Cl is the relaxed LP formulation of C.

Let V1 and H1 are the sets of vertical and horizontal segments in S1, respectively. Simi-
larly, let V2 and H2 are the sets of vertical and horizontal segments in S2, respectively. For
v ∈ V1 ∪H1, let N(v) ⊆ V2 ∪H2 denote the set of segments that intersects v. For w ∈ H1,
let No(w) = N(w) ∩H2. For w ∈ V1, let No(w) = N(w) ∩ V2. Based on these we have the
following equivalent ILP formulation (say Z) of C.

minimize
∑

w∈V2∪H2

xw

subject to
∑

w∈No(u)

xw +
∑

w∈N(u)\No(u)

xw ≥ 1,∀u ∈ V1 ∪H1

xw ∈ {0, 1}, ∀w ∈ V2 ∪H2

Z

The first step of our algorithm is to solve the relaxed LP formulation (say Zl) of Z. Let
Zl = {xw : w ∈ V2 ∪H2} be an optimal solution of Zl. Let

A1 =







u ∈ V1 ∪H1 :
∑

w∈No(u)

xw ≥
1

2






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A2 =







u ∈ V1 ∪H1 :
∑

w∈N(u)\No(u)

xw ≥
1

2







,

B1 =
⋃

u∈A1

No(u), B2 =
⋃

u∈A2

N(u) \No(u)

Based on these, we consider the following two integer programs Z ′ and Z ′′.

minimize
∑

w∈B1

x′
w

subject to
∑

w∈No(v)

x′
w ≥ 1,∀v ∈ A1

x′
w ∈ {0, 1}, w ∈ B1

minimize
∑

w∈B2

x′′
w

subject to
∑

w∈N(v)\No(v)

x′′
w ≥ 1,∀v ∈ A2

x′′
w ∈ {0, 1}, w ∈ B2

Z ′ Z ′′

Let Z ′
l and Z ′′

l be the corresponding relaxed LPs of Z ′ and Z ′′ respectively. Clearly, the
union of the solutions of Z ′ and Z ′′ is a solution for Z. Hence, OPT (Z) ≤ OPT (Z ′) +
OPT (Z ′′). For each xv ∈ Zl, define yv = min{1, 2xv} and define Yl = {yv}xv∈Zl

. Notice
that Yl gives a solution for Z ′

l and Z ′′
l . Hence, OPT (Z ′

l) ≤ 2 · OPT (Zl) and OPT (Z ′′
l ) ≤

2 ·OPT (Zl). Now we prove the following lemma.

Lemma 10. OPT (Z ′) = OPT (Z ′
l) and OPT (Z ′′) ≤ 8 ·OPT (Z ′′

l ).

Proof. To prove the first part, let X (resp. Y ) be the set of horizontal (resp. vertical)
segments in B1 and X ′ (resp. Y ′) be the set of horizontal (resp. vertical) segments in A1.
Notice that X ′ ⊆ X and Y ′ ⊆ Y . Hence, Z ′ is the ILP formulation of finding minimum
cardinality subset D of X ∪ Y such that every horizontal (resp. vertical) segment in X ′

(resp. Y ′) intersects at least one horizontal (resp. vertical) segment in D∩X (resp. D∩Y ).
By Lemma 8, we have that OPT (Z ′) = OPT (Z ′

l).
To prove the second part, let X1 and X2 (resp. Y1 and Y2) be the sets of horizontal

(resp. vertical) segments in A2 and B2, respectively. Notice that Z ′′ is the ILP formulation
of finding minimum cardinality subsetD ofX2∪Y2 such that every horizontal (resp. vertical)
segment in X1 (resp. Y1) intersects at least one vertical (resp. horizontal) segment in D∩Y2

(resp. D ∩X2). By Lemma 9, we have that OPT (Z ′′) ≤ 8 ·OPT (Z ′′
l ).

Using Lemma 10 and previous arguments, we can conclude that in O(n5) time it is
possible to compute a set D′ ⊆ S2 which gives a feasible solution of Z where n = |S1 ∪ S2|.
Moreover, |D′| ≤ OPT (Z ′) + OPT (Z ′′) ≤ OPT (Z ′

l) + 8 · OPT (Z ′′
l ) ≤ 18 · OPT (Zl) ≤

18 ·OPT (Cl). This completes the proof of the theorem.

7. Algorithm for unit Bk-VPG graphs

Let R be a unit Bk-VPG representation of a unit Bk-VPG graph G = (V,E). Through-
out this section, we assume that the segments of each path P ∈ R are numbered consec-
utively, starting from a segment containing one of the endpoints of P , by 1, 2, . . . , t where
t(≤ k + 1) is the number of segments in P . For a path P ∈ R, let N(P ) denote the set of
paths in R that intersect P .
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Define Φ: R × R → N × N such that for two paths P,Q ∈ R, Φ(P,Q) = (i, j) if and
only if the ith segment of P intersects the jth segment of Q, and for all 1 ≤ a < i, the ath

segment of P does not intersect any segment of Q.
For a path P ∈ R, let XP (i, j) = {Q ∈ N [P ] : Φ(P,Q) = (i, j)}. For distinct pairs (i, j)

and (i′, j′) the sets XP (i, j) and XP (i
′, j′) are disjoint. Let K denote the set {1, 2, . . . , k +

1} × {1, 2, . . . , k + 1}. Based on these we have the following ILP formulation of the MDS
problem on G.

minimize
∑

Q∈R

xQ

subject to
∑

(i,j)∈K

∑

Q∈XP (i,j)

xQ ≥ 1, ∀P ∈ R

xQ ∈ {0, 1}, ∀P ∈ R
Z

First step of our algorithm is to solve the relaxed LP formulation (say Zl) of Z. Let
Zl = {xQ : Q ∈ R} be an optimal solution of Zl. For each path P ∈ R, there is a pair
(i, j) ∈ K such that

∑

Q∈XP (i,j)

xQ ≥
1

(k+1)2 . For each pair (i, j) ∈ K, define

A(i, j) =







P ∈ R :
∑

Q∈XP (i,j)

xQ ≥
1

(k + 1)2







,B(i, j) =
⋃

P∈A(i,j)

XP (i, j)

Based on these, we have the following ILP formulation for each pair (i, j) ∈ K.

minimize
∑

Q∈B(i,j)

x′
Q

subject to
∑

Q∈XP (i,j)

x′
Q ≥ 1, ∀P ∈ A(i, j)

x′
Q ∈ {0, 1}, ∀Q ∈ B(i, j)

Z(i, j)

For each pair (i, j) ∈ K, let Zl(i, j) be the relaxed LP formulation of Z(i, j). We have
the following

OPT (Z) ≤
∑

(i,j)∈K

OPT (Z(i, j))

For each xP ∈ Zl, define yP = min{1, xP (k + 1)2} and define Yl = {yP }xP∈Zl
. Clearly,

Yl gives a solution to Zl(i, j) for each (i, j) ∈ K. Moreover,

∑

(i,j)∈K

OPT (Zl(i, j)) ≤ (k + 1)4 ·OPT (Zl)

Now we have the following lemma.

Lemma 11. For each pair (i, j) ∈ K, there is a solution D(i, j) for Z(i, j) such that
|D(i, j)| ≤ 18 ·OPT (Zl(i, j)). Moreover, D(i, j) can be found in O(n5) time.

Proof. For any (i, j) ∈ K, solving Z(i, j) is equivalent to finding a minimum cardinality
subsetD of B(i, j) such that each path P ∈ A(i, j) intersects at least one path isD∩XP (i, j).
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Notice that, for each P ∈ A(i, j) the set Xu(i, j) is non-empty and for each Q ∈ XP (i, j),
the ith segment of P intersects the jth segment of Q. Let S1 = {ith segment of P : P ∈
A(i, j)}, S2 = {jth segment of Q : Q ∈ B(i, j)}.

Solving Q(i, j) is equivalent to the problem finding a minimum cardinality subset D of S2

such that every segment in S1 intersect at least one segment in D. Moreover, every segment
in S1∪S2 have unit length. Hence by Theorem 8, we have a solution (say D(i, j)) for Z(i, j)
such that |D(i, j)| ≤ 18 ·OPT (Zl(i, j)). The running time also follows from Theorem 8.

For each pair (i, j) ∈ K, due to Lemma 11, we have a solution D(i, j) of Z(i, j) such that
|D(i, j)| ≤ 18 · OPT (Zl(i, j)). Let D be the union of D(i, j)’s for all (i, j) ∈ K. We have
that

|D| =
∑

(i,j)∈K

|D(i, j)|

≤
∑

(i,j)∈K

18 ·OPT (Zl(i, j))

≤ 18 · (k + 1)4 ·OPT (Zl) ≤ 18 · (k + 1)4 ·OPT (Z)

Since |K| is O(k2) and due to Lemma 11, in O(k2n5) time it is possible to construct the set
D. This completes the proof of Theorem 3.

8. Algorithm for stabbed rectangle overlap graphs

Given a stabbed rectangle overlap representation of a graph G with n vertices, we shall
give a 656-approximation algorithm for the MDS problem on G. Below we give an overview
of the algorithm.

8.1. Overview

First, we solve the relaxed LP formulation of the ILP formulation of the MDS problem
on the input graph G and create eight subproblems. We shall show that these subproblems
are equivalent to one of the following optimisation problems.

1. The local vertical segment covering (LVSC) problem: In this problem, the
input is a set H of disjoint horizontal segments intersecting a common straight line l
and a set V containing disjoint vertical segments none of which intersects l. The ob-
jective is to select a minimum number of horizontal segments that intersect all vertical
segments. Throughout this article, we let LVSC(V,H) denote an LVSC instance.

2. The local horizontal segment covering (LHSC) problem: In this problem, the
input is a set H of disjoint horizontal segments all intersecting a common straight
line and a set V of disjoint vertical segments. The objective is to select a minimum
number of vertical segments that intersect all horizontal segments. Throughout this
article, we let LHSC(V,H) denote an LHSC instance.

20



We note that Bandyapadhyay and Mehrabi [48] considered restricted cases of LVSC and
LHSC problem. They proved that LVSC problem remains NP-hard even if all horizontal
segments in the input instance intersect a common vertical line. We also note that PTAS
are known for both LVSC and LHSC problems [49]. However, to prove Theorem 6, we
need to prove the following lemmas.

Lemma 12. Let C be an ILP formulation of an LVSC(V,H) instance. There is an O(n5)
time algorithm to compute a set D ⊆ H which gives a feasible solution of C and |D| ≤
4 ·OPT (Cl) where n = |V ∪H| and Cl is the relaxed LP formulation of C.

Lemma 13. Let C be an ILP formulation of an LHSC(V,H) instance. There is an O(n5)
time algorithm to compute a set D ⊆ V which gives a feasible solution of C and |D| ≤
8 ·OPT (Cl) where n = |V ∪H| and Cl is the relaxed LP formulation of C.

In Section 8.2 and Lemma 8.3, we shall use Lemma 1 and Lemma 2 to prove Lemma 12
and Lemma 13, respectively. In Section 8.4 we complete the proof of Theorem 6.

8.2. Proof of Lemma 12

Let l be the straight line intersecting all horizontal segments in H. We assume that l
passes through the origin at an angle in [π2 , π). (Otherwise, first, we translate all segments to
the first quadrant and reflect the segments w.r.t the y-axis). For a vertical segment v ∈ V ,
let N(v) denote the set of horizontal segments intersecting v. Let V1 ⊆ V be the set of
vertical segments that lie above l and V2 = V \ V1. Based on these, consider the following
equivalent ILP formulation of C.

minimize
∑

h∈H

xh

subject to
∑

h∈N(v)

xh ≥ 1, ∀v ∈ V1

∑

h∈N(v)

xh ≥ 1, ∀v ∈ V2

xh ∈ {0, 1}, ∀h ∈ H
Q

Let Ql be the relaxed LP formulation of Q. Now consider the following two ILPs.

minimize
∑

h∈H

x′
h

subject to
∑

h∈N(v)

x′
h ≥ 1,∀v ∈ V1

x′
h ∈ {0, 1}, h ∈ H

minimize
∑

h∈H

x′′
h

subject to
∑

h∈N(v)

x′′
h ≥ 1,∀v ∈ V2

x′′
h ∈ {0, 1}, h ∈ H

Q′ Q′′

Observe that OPT (Q′
l)+OPT (Q′′

l ) ≤ 2 ·OPT (Ql) where Q
′
l and Q′′

l are the relaxed LP
formulation of Q′ and Q′′ respectively. We have the following claim.

Claim 3. OPT (Q′) ≤ 2 ·OPT (Q′
l) and OPT (Q′′) ≤ 2 ·OPT (Q′′

l ).

We shall only prove the first part as similar arguments suffice for the latter. Since all
segments in H intersect the straight line l, we can consider the horizontal segments in H
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as leftward-directed rays and all vertical segments in V1 lie above l. Hence, solving Q′

is equivalent to solving an ILP formulation, say E , of the problem of finding a minimum
cardinality subset of leftward-directed rays in H that intersects all vertical segments in the
set V1. Hence solving E is equivalent to solving an SSR instance with H and V1 as input.
By Lemma 1, we have that

OPT (Q′) = OPT (E) ≤ 2 ·OPT (El) ≤ 2 ·OPT (Q′
l)

where El is the relaxed LP formulation of E . Hence we have proof of the claim.

By Lemma 1, we can solve both Q′ and Q′′ in polynomial time. Let D′ and D′′ be
solutions of Q′ and Q′′, respectively. Observe that, D′ ∪ D′′ is a feasible solution to the
LVSC(V,H) instance. Hence,

|D′ ∪D′′| ≤ 2(OPT (Q′
l) +OPT (Q′′

l ) ≤ 4 ·OPT (Ql)

This completes the proof.

8.3. Proof of Lemma 13

Let l be the straight line that intersects all horizontal segment in H. We assume that l
passes through the origin at an angle in [π2 , π). (Otherwise, first, we translate all segments
to the first quadrant and reflect the segments w.r.t the y-axis). For a horizontal segment
h ∈ H, let N(h) denote the set of vertical segments intersecting h, A(h) be the set of vertical
segments that intersect h above l and B(h) = N(h) \ A(h). Observe that for a horizontal
segment h and a vertical segment v ∈ B(h), v intersects h on or below l.

Based on these, we have the following ILP formulation of the LHSC(V,H) instance.

minimize
∑

v∈V

xv

subject to
∑

v∈A(h)

xv +
∑

v∈B(h)

xv ≥ 1, ∀h ∈ H

xv ∈ {0, 1}, ∀v ∈ V
Q

Let Ql be the the relaxed LP formulation of Q and Ql = {xv : v ∈ V } be an optimal
solution of Ql. Now we define the following sets.

H1 =







h ∈ H :
∑

v∈A(h)

xv ≥
1

2







, H2 =







h ∈ H :
∑

v∈B(h)

xv ≥
1

2







V1 =
⋃

h∈H1

A(h), V2 =
⋃

h∈H2

B(h)

Based on these, we consider the following two integer programs Q′ and Q′′.
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minimize
∑

v∈V1

x′
v

subject to
∑

v∈A(h)

x′
v ≥ 1,∀h ∈ H1

x′
v ∈ {0, 1}, v ∈ V1

minimize
∑

v∈V2

x′′
v

subject to
∑

v∈B(h)

x′′
v ≥ 1,∀h ∈ H2

x′′
v ∈ {0, 1}, v ∈ V2

Q′ Q′′

Let Q′
l and Q′′

l be the relaxed LP formulation of Q′ and Q′′ respectively. Clearly, the
solutions of Q′ and Q′′ gives a feasible solution for Q. Hence OPT (Q) ≤ OPT (Q′) +
OPT (Q′′). For each xv ∈ Ql, define yv = min{1, 2xv} and define Yl = {yv}xv∈Ql

. Notice
that Yl gives a feasible solution to Q′

l and Q′′
l . Therefore, OPT (Q′

l) + OPT (Q′′
l ) ≤ 4 ·

OPT (Ql). We have the following claim.

Claim 4. OPT (Q′) ≤ 2 ·OPT (Q′
l) and OPT (Q′′) ≤ 2 ·OPT (Q′′

l ).

To prove the first part, note that for each vertex h ∈ H1, A(h) is non-empty and for each
v ∈ A(h), v intersects h above the line l (the straight line which intersects all segments in
H). Since all segments in H1 intersect the straight line l we can consider the horizontal
segments in H1 as leftward-directed rays and all vertical segments in V1 lie above l. Hence,
solving Q′ is equivalent to solving an ILP formulation, say E , of the problem of finding a
minimum cardinality subset of vertical segments in V1 that intersects all leftward-directed
rays in the set H1. Hence solving E is equivalent to solving an SRS instance with V1 and
H1 as input. By Lemma 2, we have that

OPT (Q′) = OPT (E) ≤ 2 ·OPT (El) ≤ 2 ·OPT (Q′
l)

where El is the relaxed LP formulation of E . Hence we have proof of the first part. For the
second part, using similar arguments as above, we can show that solving Q′′ is equivalent to
solving an SRS instance and therefore by Lemma 2, we have that OPT (Q′′) ≤ 2 ·OPT (Q′′

l ).
Hence the proof of the claim follows.

By Lemma 2, we can solve both Q′ and Q′′ in polynomial time. Let D′ and D′′ be solu-
tions of Q′ and Q′′, respectively. Clearly, D′ ∪D′′ is a feasible solution to the LHSC(V,H)
instance. Hence,

|D′ ∪D′′| ≤ 2(OPT (Q′
l) +OPT (Q′′

l ) ≤ 8 ·OPT (Ql)

Hence we have the proof of Lemma 13.

8.4. Completion of proof of Theorem 6

Let R be a stabbed rectangle overlap representation of a graph G = (V,E) and l be the
line that intersects all rectangles in R. We shall also refer to l as the cutting line.

For a vertex u ∈ V , let Ru denote the rectangle corresponding to u in R. We assume
that the coordinates of all corner points of all the rectangles in R are distinct and that the
cutting line passes through the origin at an angle in [π2 , π) with the positive x-axis.

Each rectangle Ru consists of four boundary segments i.e. left segment, top segment,
right segment and bottom segment. We assume that the cutting line intersects exactly
two boundary segments of each rectangle in R. (Otherwise we can perturb the rectangles
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R

R′′

R′

segment-0

segment-1

segment-2

segment-3

(a) (b)

Figure 5: (a) In this example R′
∈ N ′(R) and R′′

∈ N ′′(R). (b) Nomenclature for the four boundadry
segments of a rectangle.

without changing the corresponding overlap graph so that the cutting line intersects exactly
two boundary segments of each rectangle). For a rectangle R ∈ R, let B(R) denote the set
of boundary segments of R that intersect the cutting line. Similarly, let B(R) denote the
set of boundary segments of R that do not intersect the cutting line. For a rectangle R ∈ R,
let N(R) denote the set of rectangles which overlap with R. Let

N ′(R) = {X ∈ N(R) : ∃ a ∈ B(X), ∃ b ∈ B(R), a ∩ b ̸= ∅}

See Figure 5(a) for an example. Now define N ′′(R) = N(R) \ N ′(R). We have the
following observation.

Observation F. For a rectangle R ∈ R and a rectangle X ∈ N ′′(R), there is a segment of
B(R) that intersects some boundary segment of X.

Proof. Suppose X has a segment in B(X) that intersects some boundary segment s of R. In
this case, s must be in B(R), and we are done. Suppose, there is a segment s ∈ B(X) such
that no boundary segment of R intersects s. Since R intersects at two different boundary
segments ofX, in this case, there exists one segment s′ ∈ B(X) that intersect some boundary
segment of R. Then again, s′ ∈ B(R) and we are done.

Otherwise, observe that X contains two boundary segments s1, s2 ∈ B(X) such that
R intersects both of them. If s1 and s2 belong to opposite sides of the cutting line, then
both s1 and s2 are horizontal or both of them are vertical. In either case, R must have
a boundary segment t ∈ B(R) that intersect both s1, s2. Consider the case when both
s1 and s2 lie below the cutting line. Then without loss of generality, we can assume that
s1 is a vertical segment and s2 is a horizontal segment. Hence, R must have a horizontal
boundary segment w that intersects s1 and a vertical boundary segment z that intersects
s2. If neither w nor z intersects the cutting line, then observe that the top-right corner of
R must lie below the cutting line, implying that R does not intersect the cutting line. This
is a contradiction. Similarly, the case when both s1, s2 lie above the cutting line also leads
to a contradiction.

We shall denote the left segment of a rectangle R ∈ R also as the segment-0 of R.
Similarly segment-1, segment-2 and segment-3 of Ru shall refer to the top segment, the right
segment and the bottom segment of R, respectively. See Figure 5(b) for an illustration. Let
S = {(0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3), (3, 0), (3, 2)}. Since no two horizontal segments
or two vertical segments intersect, we have the following observation.
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Observation G. If two rectangles R,R′ ∈ R overlap there must be a pair (i, j) ∈ S such
that segment-i of R intersects segment-j of R′.

Based on the above observation, we partition the sets N ′(R) and N ′′(R) in the following
way. For each rectangle R ∈ R and (i, j) ∈ S, a rectangle X ∈ N ′(R) belongs to the set
Z ′
R(i, j) if and only if (i, j) is the smallest pair in the lexicographic order such that (a)

segment-i of R intersects the segment-j of X and (b) segment-j of X intersects the cutting
line.

Similarly, for each rectangle R ∈ R and (i, j) ∈ S, a rectangle X ∈ N ′′(R) belongs to the
set Z ′′

R(i, j) if and only if (i, j) is the smallest pair in the lexicographic order such that (a)
segment-i of R intersects the segment-j of X and (b) segment-i of R intersects the cutting
line. The next observation follows from the above definitions.

Observation H. For each R ∈ R, {Z ′
R(i, j)}(i,j)∈S is a partition of N ′(R) and

{Z ′′
R(i, j)}(i,j)∈S is a partition of N ′′(R).

For each R ∈ R, define the sets S ′R = {(i, j) ∈ S : Z ′
R(i, j) ̸= ∅} and S ′′R = {(i, j) ∈

S : Z ′′
R(i, j) ̸= ∅}. Recall that according to our assumption, each rectangle intersect the

cutting line exactly two times. Since the boundary segment of a retangle intersect exactly
two boundary segments of another rectangle, we have the following observation.

Observation I. For each R ∈ R, |S ′R| ≤ 4 and |S ′′R| ≤ 4.

Proof. Observe that if there is a rectangleX ∈ Z ′
R(i, j) for some (i, j) ∈ S ′R thenX intersects

a boundary segment of B(R). There are exactly two segments in B(R). Let B(R) contains
segment-i and segment-j of R. Hence S ′R is a subset of {(i, i−1), (i, i+1), (j, j−1), (j, j+1)}
where all addition operations are modulo 4. Therefore |S ′R| ≤ 4. To prove the second part,
we use Observation F to infer that if a rectangle X ∈ Z ′′

R(i, j) for some (i, j) ∈ S ′′R then
X intersects a boundary segment of B(R). Now using similar arguments as above we have
that |S ′′R| ≤ 4.

Let Q denote the following ILP formulation of the MDS problem on G and Ql be the
corresponding relaxed LP formulation.

minimize
∑

R∈R

xR

subject to
∑

(i,j)∈S′

R

∑

R′∈Z′

R
(i,j)

xR′ +
∑

(i,j)∈S′′

R

∑

R′′∈Z′′

R
(i,j)

xR′′ ≥ 1, ∀R ∈ R

xR ∈ {0, 1}, ∀R ∈ R
Q

Let Ql = {xR : R ∈ R} be an optimal solution of Ql. By Observation I, for each
rectangle R ∈ R, we have |S ′R|+ |S

′′
R| ≤ 8. Hence, there is a pair (i, j) ∈ S ′R ∪ S

′′
R such that

either
∑

R′∈Z′

R
(i,j)

xR′ ≥ 1
8 or

∑

R′∈Z′′

R
(i,j)

xR′ ≥ 1
8 . For each pair (i, j) ∈ S, define

A′(i, j) =







R ∈ R : (i, j) ∈ S ′R,
∑

R′∈Z′

R
(i,j)

xR′ ≥
1

8






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B′(i, j) =
⋃

R∈A′(i,j)

Z ′
R(i, j)

A′′(i, j) =







R ∈ R : (i, j) ∈ S ′′R,
∑

R′∈Z′′

R
(i,j)

xR′ ≥
1

8







B′′(i, j) =
⋃

R∈A′′(i,j)

Z ′′
R(i, j)

Based on these, we have the following two ILP formulations for each pair (i, j) ∈ S.

minimize
∑

R′∈B′(i,j)

x′
R′

subject to
∑

R′∈Z′

R
(i,j)

x′
R′ ≥ 1,∀R ∈ A′(i, j)

x′
R′ ∈ {0, 1}, R′ ∈ B′(i, j)

minimize
∑

R′′∈B′′(i,j)

x′′
R′′

subject to
∑

R′′∈Z′′

R
(i,j)

x′′
R′′ ≥ 1,∀R ∈ A′′(i, j)

x′′
R′′ ∈ {0, 1}, R′′ ∈ B′′(i, j)

Q′(i, j) Q′′(i, j)

For each pair (i, j) ∈ S, let Q′
l(i, j) and Q′′

l (i, j) be the relaxed LP formulation of Q′(i, j)
and Q′′(i, j), respectively. Observe that

OPT (Q) ≤
∑

(i,j)∈S

(OPT (Q′(i, j)) +OPT (Q′′(i, j)))

For each xR ∈ Ql, define yR = min{1, 8xR} and Yl = {yR}xR∈Ql
. Due to Observation H

and I, Yl gives a feasible solution to Q′
l(i, j) and Q′′

l (i, j) for all (i, j) ∈ S. Therefore,
OPT (Q′

l(i, j)) ≤ 8 ·OPT (Ql) and OPT (Q′′
l (i, j)) ≤ 8 ·OPT (Ql) for all (i, j) ∈ S. Now we

have the following lemma.

Lemma 14. For each (i, j) ∈ S there is a set D′(i, j) ⊆ B′(i, j) such that D′(i, j) gives a
feasible solution of Q′(i, j) and |D′(i, j)| ≤ 4 ·OPT (Q′

l(i, j)).

Proof. For any (i, j) ∈ S, solving Q′(i, j) is equivalent to finding a minimum cardinality
subset D of B′(i, j) such that each rectangle R ∈ A′(i, j) overlaps a rectangle in D∩Z ′

R(i, j).
For each R ∈ A′(i, j) the set Z ′

R(i, j) is non-empty. Moreover for each R′ ∈ Z ′
R(i, j), the

segment-j of R′ intersects the cutting line and segment-i of R. Moreover, the segment-i
of R does not intersect the cutting line. Let S = {segment-i of R : R ∈ A′(i, j)}, T =
{segment-j of R′ : R′ ∈ B′(i, j)}.

Solving Q′(i, j) is equivalent to the problem finding a minimum cardinality subset D
of T such that every segment in S intersect at least one segment in D. Every segment
in T intersects the cutting line and no segment in S intersects the cutting line. Without
loss of generality we can assume that S consists of vertical segments. Therefore T consists
of horizontal segments. Hence solving Q′(i, j) is equivalent to solving the LVSC(S, T ) in-
stance. Hence by Lemma 12, we have a feasible solution (say D′(i, j)) for Q′(i, j) such that
|D′(i, j)| ≤ 4 ·OPT (Q′

l(i, j)).

Lemma 15. For each (i, j) ∈ S there is a set D′′(i, j) ⊆ B′′(i, j) such that D′′(i, j) gives a
feasible solution of Q′′(i, j) and |D′′(i, j)| ≤ 8 ·OPT (Q′′

l (i, j)).
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Proof. For any (i, j) ∈ S, solving Q′′(i, j) is equivalent to finding a minimum cardinality
subset D of B′′(i, j) such that each rectangle R ∈ A′′(i, j) overlaps a rectangle in D ∩
X ′′

R(i, j). Notice that, for each R ∈ A′′(i, j) the set X ′′
R(i, j) is non-empty. Moreover for

each R′′ ∈ X ′′
R(i, j), the segment-i of R intersects the cutting line and segment-j of R′′. Let

S = {segment-i of R : R ∈ A′′(i, j)}, T = {segment-j of R′′ : R′′ ∈ B′′(i, j)}.
Solving Q′′(i, j) is equivalent to the problem finding a minimum cardinality subset D

of T such that every segment in S intersect at least one segment in D. Moreover, every
segment in S intersects the cutting line. Without loss of generality we can assume that S
consists of horizontal segments. Therefore T consists of vertical segments. Hence solving
Q(i, j) is equivalent to solving the LHSC(S, T ) instance. Hence by Lemma 13, we have a
feasible solution (say D′′(i, j)) for Q′′(i, j) such that |D′′(i, j)| ≤ 8 ·OPT (Q′′

l (i, j)).

For each R ∈ R, let T ′
R = {(i, j) ∈ S : R ∈ B′(i, j) and T ′′

R = {(i, j) ∈ S : R ∈ B′′(i, j)}.
The following observation follows from the definitions of B′(i, j) and B′′(i, j).

Observation J. For each R ∈ R, we have that |T ′
R| ≤ 4 and |T ′′

R | ≤ 8.

Proof. Let i, j be two integers such that (i, j) ∈ T ′
R. Then segment-j must be in B(R). As

B(R) contains exactly two segments of R, we have that |T ′
R| ≤ 4. The second part follows

from the fact that |S| ≤ 8.

For each pair (i, j) ∈ S, due to Lemma 14 and Lemma 15, we have a feasible solution
D′(i, j) of Q′(i, j) and a feasible solution D′′(i, j) such that |D′(i, j)| ≤ 4 · OPT (Q′

l(i, j))
and |D′′(i, j)| ≤ 8 · OPT (Q′′

l (i, j)). Let D be the union of D′(i, j)’s and D′′(i, j) for all
(i, j) ∈ S. We have that

|D| =
∑

(i,j)∈S

|D′(i, j)|+
∑

(i,j)∈S

|D′′(i, j)|

≤ 4 ·
∑

(i,j)∈S

OPT (Q′
l(i, j)) + 8 ·

∑

(i,j)∈S

OPT (Q′′
l (i, j))

≤ 144 ·OPT (Ql) + 512 ·OPT (Ql) [Due to Observation J, Lemma 14 and 15]

= 656 ·OPT (Ql) ≤ 656 ·OPT (Q)

This completes the proof of Theorem 6.

9. Proof of Lemma 3

In this section, we prove Lemma 3. Recall that, H = (V ′, E′) is a (n, n)-grid for some
even integer n. The set X is {(i, j) ∈ V ′ : i, j have same parity} and Y = V ′ \X. First, we
note the following.

Observation K. For any edge e ∈ E′, one of the endpoints of e belongs to X and the other
endpoint belongs to Y .

Let ϵ = 1
n2 . For each (i, j) ∈ Y , we define two real values xi,j and yi,j as follows.
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xi,j =







































⌈

j
2

⌉

when i = 1

⌈

j
2 − ϵ

⌉

when i = 2

xi−1,j+1 +
xi−2,j − xi−1,j+1

2 when i ≥ 3, i ≡ 0 mod 2

xi−1,j−1 +
xi−2,j − xi−1,j−1

2 when i ≥ 3, i ≡ 1 mod 2

yi,j =
i

2
+

⌈

j

2

⌉

ϵ

Notice that for i ≥ 3, if (i, j) ∈ Y , then (i − 2, j) ∈ Y . Moreover, if i is even then
(i − 1, j + 1) ∈ Y and if i is odd then (i − 1, j − 1) ∈ Y . Therefore, the values xi,j for all
(i, j) ∈ Y are well-defined. We have the following observation.

Observation L. Let for some pair (i, j) we have {(i, j−1), (i, j+1), (i+1, j), (i−1, j)} ⊆ Y .
Then

(i) xi,j−1 + 1 = xi,j+1 and yi,j−1 = yi,j+1 − ϵ;
(ii) xi+1,j < xi,j+1 < (xi+1,j) + 1 and xi−1,j < xi,j+1 < xi−1,j + 1;
(iii) when i ≡ 1 mod 2, yi−1,j = yi,j+1 − 0.5 and yi+1,j = yi,j+1 + 0.5; and
(iv) when i ≡ 0 mod 2, yi−1,j = yi,j−1 − 0.5 and yi+1,j = yi,j−1 + 0.5

Now for each (i, j) ∈ Y , we define a horizontal line segment si,j as follows.

si,j = [xi,j , xi,j + 1]× [yi,j , yi,j ]

Let S = {si,j}(i,j)∈Y . Observe that no two segment in S intersect each other and length
of every segment in S is one. Now for each (i, j) ∈ X, we define the real values x′

i,j and y′i,j
as follows.

x′
i,j =

{

xi,j+1 when i ≡ 1 mod 2
xi,j−1 + 1 when i ≡ 0 mod 2

y′i,j =

{

yi,j+1 − 0.5 when i ≡ 1 mod 2
yi,j−1 − 0.5 when i ≡ 0 mod 2

Notice that, for each (i, j) ∈ X if i is odd then (i, j + 1) ∈ Y and if i is even then
(i, j− 1) ∈ Y . Therefore, the values x′

i,j are well defined. Now for each (i, j) ∈ X, we define
a vertical segment ti,j as follows.

ti,j = [x′
i,j , x

′
i,j ]× [y′i,j , y

′
i,j + 1]

Let T = {ti,j}(i,j)∈X . Observe that no two segment in T intersect each other and length
of every segment in T is one. Moreover we have the following observation about T .

Observation M. For a pair (i, j) ∈ X, let Si,j be the set of segments in S that intersect
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ti,j. Then

Si,j =































{si+1,j , si,j+1} when i = 1, j = 1
{si+1,j , si,j+1, si,j−1} when i = 1, 2 ≤ j ≤ n− 1
{si−1,j , si,j+1, si,j−1} when i = n, 2 ≤ j ≤ n− 1
{si+1,j , si−1,j , si,j+1} when 2 ≤ i ≤ n, j = 1
{si+1,j , si−1,j , si,j−1} when 2 ≤ i ≤ n, j = n
{si+1,j , si−1,j , si,j+1, si,j−1} when 2 ≤ i ≤ n− 1, 2 ≤ j ≤ n− 1

Proof. We shall prove the observation only for the case when 2 ≤ i ≤ n−1, 2 ≤ j ≤ n−1 and
i is odd. For the remaining cases similar arguments will suffice. Notice that when (i, j) ∈ X,
we have {(i+1, j), (i−1, j), (i, j+1), (i, j−1)} ⊊ Y and therefore si+1,j , si−1,j , si,j+1, si,j−1

exists.
Since i is odd, the bottom and top endpoints of ti,j are (xi,j+1, yi,j+1 − 0.5) and

(xi,j+1, yi,j+1+0.5), respectively. Recall that the left endpoint of si,j+1 is (xi,j+1, yi,j+1) and
using Observation L(i) we can infer that the right endpoint of si,j−1 is (xi,j+1, yi,j+1 − ϵ).
These facts imply that the segment ti,j∩si,j−1 is the right endpoint of si,j−1 and ti,j∩si,j−1

is the left endpoint of si,j+1. Due to Observation L(ii) and L(iii), the bottom endpoint of
ti,j lies between the left and right endpoints of si−1,j and has the same y-coordinate as that
of si−1,j . Hence ti,j ∩ si−1,j = {(xi,j+1, yi,j+1−0.5)} = {(x′

i,j , y
′
i,j)}. Similarly, we can show

that si+1,j = {(xi,j+1, yi,j+1 + 0.5)} = {(x′
i,j , y

′
i,j + 1)}. This completes the proof.

Using Observation K and Observation M we can infer that S∪T is a valid unit B0-VPG
representation of H.

10. Conclusion

In this paper, we studied the SSR problem and the SRS. Improvements on the lemmas
regarding the SSR and the SRS problems will immediately imply better approximation
ratios for several optimisation problems, including a few studied by Bandyapadhyay and
Meharbi [31]. Therefore the following question might be interesting.

Question 1. What are the integrality gaps of the SSR and the SRS problems?

We gave the first constant-factor approximation algorithm for the MDS problem on unit
B0-VPG graphs. However, we believe that obtained approximation ratio of 18 to be far from
being tight. This motivates the following question.

Question 2. Is there a c-approximation algorithm for the MDS problem on unit B0-VPG
graphs with c < 18?

Using our results on the SSR and the SRS problems, we gave an O(k4)-approximation
algorithm for the MDS problem on unit Bk-VPG graphs. On the other hand, it is unlikely
that the MDS problem admit a o(log k)-approximation algorithm on Bk-VPG graphs. The
reason is as follows. It is known that unless P = NP , the MDS problem does not admit a
o(log n)-approximation algorithm on split graphs (graphs whose vertex set can be partitioned
into a clique and an independent set) of order n [14]. On the other hand, given any split graph
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G of order n, it is not hard to construct a BO(n)-VPG representation of G in polynomial
time as follows.

Let G be a split graph whose vertex set can be partitioned into a clique C and an
independent set I. Let the vertices of I are v1, v2, . . . , vt. For each i ∈ {1, 2, . . . , t}, let si
denote the vertical segment whose bottom point is at (i, i − 0.1) and the top point is at
(i, i + 0.1). For each vertex u ∈ C, let NI [u] denote the set of vertices of I adjacent to
u. For each vertex u ∈ C, we shall define a path Pu with O(NI [u]) bends. For a vertex
u ∈ C, let NI [u] = vi1 , vi2 , . . . , vik with i1 < i2 < . . . < ik. Then let Pu be the rectilinear
path joining the points (0, 0), (0, i1), (i1, i1), (i1, i2), . . . , (ik−1, ik), (ik, ik) in the same order.
Observe that Pu has at most 2k+1 bends and Pu intersect a vertical segment si if and only
if i ∈ {i1, i2, . . . , ik}.

The above construction imply that unless P = NP , the MDS problem does not ad-
mit a o(log n)-approximation algorithm on Bk-VPG graphs. This motivates the following
question.

Question 3. Is there a constant-factor approximation algorithm for the MDS problem on
B0-VPG graphs? Is there an O(log k)-approximation algorithm for the MDS problem on
Bk-VPG graphs?

In this paper, we introduce the class of stabbed rectangle overlap graphs and study
the MDS problem. Using our results on the SSR and the SRS problems, we gave a 656-
approximation algorithm for the MDS problem on stabbed rectangle overlap graphs. As a
corollary to Theorem 6, we have the following.

Corollary 1. Let R be a stabbed rectangle intersection representation of a graph G =
(V,E) such that no two rectangles in R contain each other. There is an O(|V |5)-time 656-
approximation algorithm for the MDS problem on G.

Since the approximation ratio of 656 seems to be far from being tight, the following
question is interesting.

Question 4. Is there a c-approximation algorithm for the MDS problem on stabbed rect-
angle overlap graphs with c < 656?
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