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Triangle-free projective-planar graphs with diameter

two: domination and characterization 1
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Abstract

In 1975, Plesńık characterized all triangle-free planar graphs as having a diameter
2. We characterize all triangle-free projective-planar graphs having a diameter
2 and discuss some applications. In particular, the main result is applied to
calculate the analogue of clique numbers for graphs, namely, colored mixed
graphs, having different types of arcs and edges.

Keywords: projective-planar, forbidden minor characterization, domination
number

1. Introduction and main results

In 1975, Plesńık [1] characterized all triangle-free planar graphs2 having
diameter 2 by proving the following result.

Theorem 1 (Plesńık 1975 [1]). A triangle-free planar graph G has a diameter
2 if and only if it is isomorphic to one of the following graphs:

(i) K1,n for n ≥ 2,

(ii) K2,n for n ≥ 2,

(iii) the graph C5(m,n) obtained by adding (m + n) degree-2 vertices to the
5-cycle C5 = v1v2v3v4v5v1, for m,n ≥ 0, in such a way that m of the
vertices are adjacent to v1, v3 and n of the vertices are adjacent to v1, v4.

We prove the analogue of Plesńık’s result for projective-planar graphs, that
is, graphs that can be embedded on the non-orientable surface of Euler genus

1This work is partially supported by the IFCAM project Applications of graph homomor-
phisms (MA/IFCAM/18/39)

2In this article, we use the notation and terminology of “Introduction to Graph Theory” by
D. B. West [2].
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one (also known as the real projective plane) without their edges crossing each
other except, maybe, on the vertices. For convenience, let us refer to the graphs
listed in Theorem 1 as Plesńık graphs.

(i) (ii) (iii) (iv) (v) (vi) (vii)

Figure 1: (i) The Petersen graph P10, (ii) The Wagner graph W8, (iii) The graph W
+

8
,(iv)

The Grötzsch graph M11, (v) The graph M
−

11
, (vi) The graph M=

11
, (vii) The graph K∗

3,4
.

Theorem 2. A triangle-free projective-planar graph G has diameter 2 if and
only if it is isomorphic to one of the following:

(i) a Plesńık graph,

(ii) K3,3 or K3,4,

(iii) the graph K3,3(n) obtained by adding (n− 1) parallel edges e2, e3, . . . , en to
one of the edges e1 of K3,3 and subdividing each ei exactly once for n ≥ 1,

(iv) the graph K3,4(n) obtained by adding (n− 1) parallel edges e2, e3, . . . , en to
one of the edges e1 of K3,4 and subdividing each ei exactly once for n ≥ 1,

(v) one of the seven graphs depicted in Figure 1.

Let us now discuss a few more results regarding properties of graphs having
small diameters that can be embedded on a given surface S to place our work
into context. Since S has an Euler characteristic, it follows from the Euler’s
formula [3] that any graph embedded in S has a bounded minimum degree. This
implies that if we consider such a graph with diameter 2, then its domination
number is at most its minimum degree.

In 1996, MacGillivray and Seyffarth [4] proved that planar graphs with
diameter 2 have domination numbers at most 3. In 2002, Goddard and Hen-
ning [5] showed that there is exactly one planar graph having diameter 2 that
has a domination number equal to 3. They also proved that for each surface
(orientable or non-orientable) S, there are finitely many graphs having diameter
2 and domination number at least 3 that can be embedded in S. A natural
question to ask in this context is the following.

Question 1. Given a surface S, can you find the list of all graphs having
diameter 2 and domination number at least 3 that can be embedded on S?

As we just mentioned, Goddard and Henning [5] answered Question 1 when
S is the sphere (or equivalently, the Euclidean plane). However, it seems that
the question can be very difficult to answer in general as the tight upper bounds
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on the domination number for a family of graphs that can be embedded on a
surface, other than the sphere, is yet to be found. Therefore, it makes sense to
ask the following natural restriction instead.

Question 2. Given a surface S, can you find the list of all triangle-free graphs
having a diameter 2 and domination number at least 3 that can be embedded on
S?

Notice that, Plesńık’s characterization implies that the answer for Question 2
is the empty list when S is the sphere. On the other hand, the following immediate
corollary of Theorem 2 answers the question when S is the projective plane, along
with implying that the domination number of triangle-free projective-planar
graphs having diameter 2 is at most three (following our earlier discussions on
Euler’s characteristic). Note that the domination number of graphs shown in
Figure 1 is three.

Theorem 3. Let G be a triangle-free projective-planar graph having a diameter
2. Then

(a) The domination number γ(G) of G is at most 3.

(b) If γ(G) = 3, then G is isomorphic to one of the seven graphs depicted in
Figure 1.

As Theorem 3 follows directly from Theorem 2, we will focus on proving
Theorem 2. This is done in Section 2. In Section 3, we provide some direct
implications of our results in determining the absolute clique number of the
families of triangle-free projective-planar graphs, which is an important parameter
in the theory of homomorphisms of colored mixed graphs3.

2. Proof of Theorem 2

It is known, due to Euler’s formula [3] for projective-planar graphs, that any
triangle-free projective-planar graph G has minimum degree δ(G) ≤ 3. Therefore,
any triangle-free projective-planar graph having a diameter 2 has a domination
number at most 3.

Notice that as the family of projective-planar graphs is minor-closed, due to
The Graph Minor Theorem [6], there exists a finite set S of graphs such that a
graph G is projective-planar if and only if G does not contain a minor from S.
Actually, an explicit description of the set S is provided in [7] (see [3]) and it
contains 35 graphs. However, we will not need the full list for our proof - to be
precise, we will use only three graphs from that list: (1) K3,5, (2) K

−

4,4, i.e., the
graph obtained from K4,4 by deleting exactly one edge, and (3) the graph F0

depicted in Figure 2.

3The related definitions are deferred to Section 3.
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(a) (b) (c) (d)

Figure 2: The graphs (a) F0, (b) F1, (c) F2, and (d) F3 form the graph family D
′.

Observation 1 ([7]; see [3]). The graphs K3,5, K
−

4,4, and F0 are not projective-
planar.

Thus any graph containing K3,5, K
−

4,4, or F0 as a minor is not projective-
planar as well. Even though the previous statement is obvious, we will present
it as another observation as it will be frequently used in our proofs.

Observation 2 ([7]; see [3]). If G contains K3,5, K
−

4,4, or F0 as a minor, then
G is not a projective-planar graph.

Now we get into the more technical part of our proof. First of all, for
convenience, let us denote the family of all triangle-free projective-planar graphs
having diameter 2 by PP2. Therefore, what we are trying to do here is to
provide a list of all graphs in PP2. We already know that if G ∈ PP2, then its
minimum degree δ(G) is at most 3. We will use this as the basis of our case
analysis. Observe that any G ∈ PP2 is connected. Therefore, the logical first
step is to handle the graphs having a degree one vertex.

2.1. Characterizing graphs in PP2 having minimum degree at most 2

Lemma 1. If δ(G) = 1 for a graph G ∈ PP2, then G is isomorphic to K1,n for
some n ≥ 2.

Proof. Let v be a degree-1 vertex in G having v1 as its only neighbor. As G has
diameter 2, v1 must be adjacent to all the vertices in V (G)\{v, v1}. Moreover, as
G is triangle-free, the set of all neighbors N(v1) of v1 is an independent set.

The next natural step is to consider the graphs having minimum degree equal
to 2.

Lemma 2. If δ(G) = 2 for a graph G ∈ PP2, then G is isomorphic to K2,n+2,
C5(m,n), K3,4(n), or K3,3(n) for some m,n ≥ 0.

Proof. Let v be a degree-2 vertex having N(v) = {v1, v2}. Let

C = (N(v1) ∩N(v2)) \ {v} and Si = N(vi) \ (C ∪ {v})

for i ∈ {1, 2}.
S1 ∪ S2 induces a complete bipartite graph (else the end vertices of any

non-edge would be at a distance greater than 2, a contradiction) and as δ(G) ≥ 2,
both sets are nonempty.
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If |S1| ≥ |S2| ≥ 3, then we find a K−

4,4 by taking the graph induced by
S1 ∪ S2 ∪ {v1, v2}. This is a contradiction due to Observation 2. Thus we must
have |S2| ≤ 2.

If |S2| = 2, then |S1| ≤ 3 as otherwise we can contract the edge vv1 to find a
K3,5 induced by S1 ∪ S2 ∪ {v1, v2}. This is a contradiction due to Observation 2.

Now observe that |S1| = 3 and |S2| = 2 implies G is isomorphic to K3,4(n),
where n = |C|+ 1. Similarly, |S1| = 2 and |S2| = 2 implies G is isomorphic to
K3,3(n), where n = |C|+ 1.

If |S2| = 1, |S1| can have any value greater than or equal to 1. In this case,
G is isomorphic to C5(m,n), where m = |C| and n = |S1| − 1.

2.2. Characterizing graphs in PP2 that are 3-regular

This leaves us with the final case: considering the graphs having minimum
degree equal to 3. We break this case into two parts, namely, when G is 3-regular
and when G is not 3-regular, and tackle them separately. Also we will use some
new terminologies.

A vertex u reaches a vertex v if they are adjacent or they have a common
neighbor. In particular, if w is a common neighbor of u and v, then we use the
term u reaches v via w.

Lemma 3. If a 3-regular graph G ∈ PP2, then G is isomorphic to either K3,3

or W8 or P10.

Proof. Let v ∈ V (G) be any vertex having neighbors {v1, v2, v3}. Moreover,
let Si denote the set of vertices in G \ {v} which are adjacent to exactly i

vertices among {v1, v2, v3}. Note that, as G has diameter 2, every vertex in
G \ {v, v1, v2, v3} belongs to exactly one of S1, S2, and S3.

Observe that as G is 3-regular, we must have |S3| ≤ 2. Moreover, if |S3| = 2,
then G is isomorphic to K3,3.

If |S3| = 1, then note that we must have |S2| ≤ 1 as otherwise, it will force
one of the vertices among {v1, v2, v3} to have at least two neighbors in S2, and
hence have at least four neighbors in G, contradicting the 3-regularity of G.

Furthermore, if |S3| = |S2| = 1, then without loss of generality we may
assume that S2 = {u} ⊆ N(v1) ∩N(v2). Thus u must reach v3 via some vertex
u′ ∈ S1∩N(v3). Now each vertex among {v1, v2, v3} already has three neighbors
and thus there cannot be any other vertex in G. Also all vertices except u′

have degree 3 at present. Thus the 3-regularity of G forces us to include a new
vertex adjacent to u′ in the graph, a contradiction. Therefore, G cannot have
|S3| = |S2| = 1.

Thus if |S3| = 1, then we must have S2 = ∅. However, due to the 3-regularity
of G, each vertex among {v1, v2, v3} has exactly one neighbor in S1. Let us
assume that the neighbors of v1, v2, and v3 in S1 are w1, w2, and w3, respectively.
Now, as each vertex among {v1, v2, v3} already has three neighbors, there cannot
be any other vertex in G. In fact, each vertex of G other than w1, w2, and
w3 has degree 3 already. Thus w1, w2, and w3 must reach all of v1, v2, and v3
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either directly or via themselves. That forces w1, w2, and w3 to create a triangle,
contradicting the triangle-free property of G. Therefore, G cannot have |S3| = 1.

Now let us consider the situation where |S3| = 0. First observe that |S2| ≤ 3
in this case, as otherwise one vertex among {v1, v2, v3} has degree at least 4.

If |S2| = 3, then without loss of generality, we may assume that S2 =
{u1, u2, u3} where ui ∈ S2 \ N(vi) for all i ∈ {1, 2, 3}. Now, as every vertex
among {v1, v2, v3} already has three neighbors each, there cannot be any other
vertex in G. Hence S1 = ∅. Thus, in particular, the vertex u1 must reach v1 via
some vertex of S2. That will create a triangle, a contradiction. So |S2| ≤ 2.

If |S2| = 2 with S2 = {u1, u2}, then without loss of generality, assume that
v3 is a common neighbor of u1 and u2. Moreover, the sum of the degrees of
v1, v2, and v3 at the moment is 7 and therefore we must have exactly two more
vertices in G. Thus, |S1| = 2 and we may assume that S1 = {w1, w2}. Observe
that u1 and u2 must have exactly one neighbor each in S1 as they cannot be
adjacent to each other in order to avoid creating a triangle. This implies that
there are exactly two edges between the sets S1 and S2. Thus at least one vertex
of S1 does not have degree 3 unless w1 and w2 are adjacents. Hence w1 and w2

must be adjacent. This implies that w1 and w2 do not have a common neighbor.
Therefore, without loss of generality, we may assume that wi and ui are adjacent
to vi for all i ∈ {1, 2}. Hence the edges u1w2 and u2w1 are in G. Observe that
G is isomorphic to W8 in this case.

We have a total of nine vertices, not possible for a 3-regular graph (as nine
is an odd number).

If |S2| = 0, then each vi has exactly two neighbors wi and w′

i in S1 for all
i ∈ {1, 2, 3}. Without loss of generality, w1 reaches v2 and v3 via w2 and w3,
respectively. As w1 already has three neighbors, w′

2 and w′

3 must reach v1 via
w′

1. Note that, w2 cannot reach v3 via w3 in order to avoid a triangle. Therefore,
w2 reaches v3 via w′

3. Similarly, w3 reaches v2 via w′

2. This implies that G is
isomorphic to P10.

2.3. Characterizing not regular graphs in PP2 having minimum degree 3

Finally, the case where δ(G) = 3 and ∆(G) ≥ 4 is handled. The proof of
Lemma 4 is lengthy; in order to make the proof easier to follow, we have divided
it into several claims and lemmas and presented it in a separate subsection.

Lemma 4. If δ(G) = 3 and ∆(G) ≥ 4 for a graph G ∈ PP2, then G is
isomorphic to K3,4, K

+
3,4, W

+
8 , M11, M

−

11, or M=
11.

We will begin by presenting some basic conventions to be used throughout
this section.

2.3.1. Conventions used in the proof of Lemma 4

Let v ∈ V (G) be a vertex with maximum degree and letN(v) = {v1, v2, v3, v4}∪
X where X may or may not be ∅. Moreover, let Si denote the set of vertices
in G \ {v} which are adjacent to exactly i vertices among {v1, v2, v3, v4} (see
Figure 3). Furthermore, let m2 be the cardinality of a maximum matching in S2.
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2.3.2. Basic structural properties

The proof of Lemma 4 runs via a series of claims and lemmas. In the case of
the claims, we always assume that δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph
G ∈ PP2.

v

v1 v2 v3 v4

S1 S1 S1 S1

v

v1 v2 v3 v4

S2
S2

S2

S2 S2

S2

v

v1 v2 v3 v4

S3 S3

S3
S3

v

v1 v2 v3 v4

S4

Figure 3: Illustrations of our convention

This brings us to our first two observations.

Claim 1. A vertex in S3 ∪ S4 is not adjacent to a vertex in S2 ∪ S3 ∪ S4.

Proof. Any vertex in S4 ∪ S3 has at least one neighbor in common with any
vertex in S2 ∪ S3 ∪ S4. Hence, any edge between S4 ∪ S3 and S2 ∪ S3 ∪ S4 will
create a triangle.

Claim 2. The value of |S4|+ |S3|+m2 is at most 2.

Proof. Observe that each vertex of S3 reaches three of the four vertices among
{v1, v2, v3, v4} directly and one of them via a vertex of S1 (by Claim 1). Therefore,
if we contract all the edges between {v1, v2, v3, v4} and S1, then each vertex of
S3 becomes adjacent to every vertex of {v1, v2, v3, v4}. Moreover, suppose there
is an edge having both its end vertices in S2, then these end vertices cannot have
a common neighbor, else a triangle is induced. Contracting this edge, the new
resulting vertex will correspond to a vertex adjacent to each of {v1, v2, v3, v4}.
Therefore, if |S4|+ |S3|+m2 ≥ 3, then G will contain a K4,4-minor.

Therefore, in particular, the above claim implies that |S4|+ |S3| ≤ 2. This
bound will be the basis of our case study.

2.3.3. Case: |S4|+ |S3| = 2

Claim 3. If |S4|+ |S3| = 2, then S2 = ∅.

Proof. Recall that each vertex of S3 reaches three of the four vertices among
{v1, v2, v3, v4} directly and one of them via a vertex of S1 (by Claim 1). If
|S4|+ |S3| = 2, then m2 = 0 (by Claim 2). Now if S2 6= ∅, then each vertex of S2

reaches two of the four vertices among {v1, v2, v3, v4} directly and two of them
via vertices of S1. This is implied by Claim 1 and the following: any vertex in S2

cannot reach the two non-adjacent vertices in {v1, v2, v3, v4} via a vertex in S2

(as m2 = 0). Hence, contract all edges between S1 and {v1, v2, v3, v4} to obtain
a K4,4, a contradiction.
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Claim 4. If S4 ∪ S3 = {u1, u2} and vi is a common neighbor of u1 and u2 for
some i ∈ {1, 2, 3, 4}, then no vertex w ∈ S1 is adjacent to vi.

Proof. By Claim 3, we know that S2 = ∅. Therefore, each vertex in S4∪S3 would
reach non-adjacent vertices in {v1, v2, v3, v4} via some vertices in S1. If there
exists a vertex w ∈ S1 ∩N(vi), where vi is as defined in the lemma statement,
then w cannot be adjacent to any of {u1, u2} (else a triangle is induced). Since
S2 = ∅ (by Claim 3), the vertex w reaches vertices in {v1, v2, v3, v4} \ {vi} via
vertices in S1. Contract all the edges between S1 and {v1, v2, v3, v4} except wvi
to obtain a K4,4, a contradiction.

Claim 5. If |S4|+ |S3| = 2, then X = ∅.

Proof. Assume that S4 ∪ S3 = {u1, u2} and there exists an x ∈ X.
If |S4| = 2, then x reaches u1 and u2 directly or via some other vertices

not adjacent to {v1, v2, v3, v4} (else a triangle is induced). Contract the edges
between x and those vertices (if they exist) via which x reaches u1, u2 to obtain
a K3,5, a contradiction.

If |S4| = 1 and without loss of generality u1 ∈ S4 and u2 ∈ S3, then x reaches
u1 directly or via some other vertex w1 not adjacent to {v1, v2, v3, v4} (else a
triangle is induced). Contract the edge xw1 if it exists. Observe that u2 is
adjacent to some vertex w2 ∈ S1 in order to reach all of {v1, v2, v3, v4}. Contract
u2w2. Note that x reaches u2 directly, or via w2 or via some other vertex w3

which is not adjacent to {v1, v2, v3, v4}. Contract xw3, if it exists, to obtain a
K3,5, a contradiction.

If |S4| = 0 and thus u1, u2 ∈ S3, then u1 and u2 may be non-adjacent to the
same or different vertices in {v1, v2, v3, v4}.

Case 1. If they are non-adjacent to different vertices of {v1, v2, v3, v4}, then without
loss of generality assume that ui is not adjacent to vi for i ∈ {1, 2}. In this
case, ui must reach vi via some wi ∈ S1 (by Claim 1) and x must reach
ui directly or via wi or via some w′

i ∈ S1 with w′

i 6∈ {w1, w2}. Contract
the edges uiwi and xw′

i (if they exist) for all i ∈ {1, 2} to obtain a K3,5, a
contradiction.

Case 2. If they are non-adjacent to the same vertex, without loss of generality say,
v4 of {v1, v2, v3, v4}, then v4 must have at least two neighbors w1, w2 as
the degree of v4 is at least three. Also w1, w2 ∈ S1 (by Claim 1). Due to
Claims 3 and 4, we know that the only way for wi to reach v1 is via u1

or u2. Moreover, for each i ∈ {1, 2}, ui must reach v4 via some vertex of
S1 (by Claim 1). Therefore, we must have a perfect matching between
{u1, u2} and {w1, w2}. Without loss of generality, assume that perfect
matching be {u1w1, u2w2}. Furthermore, observe that if x is adjacent to
any one of u1 or u2, we can rename the vertices of N(v) to reduce this
to a case where |S4| ≥ 1, which we have already handled earlier in the
proof of this lemma. Therefore, x must reach ui via wi or via some vertex

8



w′

i 6∈ {u1, u2, w1, w2} for all i ∈ {1, 2}. Contract the edges uiwi and xw′

i

(if they exist) for all i ∈ {1, 2} to obtain a K3,5, a contradiction.

This concludes the proof.

Now that we have shown the set X = ∅ when |S4|+ |S3| = 2, we can try to
characterize the graphs for this case.

Lemma 5. If δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph G ∈ PP2, then the
following holds: if |S4| = 2, then G is isomorphic to K3,4.

Proof. If |S4| = 2, then X = S3 = S2 = S1 = ∅ due to Claims 2, 3, 4 and 5. The
only vertices in the graphs other than {v, v1, v2, v3, v4} are the two vertices in
S4. Thus G is isomorphic to K3,4.

Claim 6. It is not possible to have |S4| = |S3| = 1.

Proof. If |S4| = |S3| = 1, then without loss of generality assume that u1 ∈ S4,
u2 ∈ S3 \ N(v4). Observe that X = S3 = S2 = ∅ due to Claims 2, 3 and 5.
Moreover, all the vertices in S1 are adjacent to v4 due to Claim 4. As u2 must
reach v4 via some vertex of S1, the set S1 is not empty. However, any vertex of
S1 has exactly two neighbors, namely v4 and u2, contradicting δ(G) = 3.

Lemma 6. If δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph G ∈ PP2, then the
following holds: if |S3| = 2, then G is isomorphic to W+

8 .

Proof. Assume that S3 = {u1, u2}. Thus X = S4 = S2 = ∅ due to Claims 5, 2
and 3. Observe that it is enough to consider the following two cases: (i) u1 and
u2 are both non-adjacent to v4, and (ii) ui is non-adjacent to vi for i ∈ {1, 2}.

Case (i). If u1 and u2 are both non-adjacent to v4, then all the vertices in S1 are
adjacent to v4 due to Claim 4. The vertices v, v1, v2, v3, v4, u1, and u2 and
the vertices belonging to S1 are all of the vertices of G. As δ(G) = 3, each
vertex of S1 must be adjacent to both u1 and u2. Furthermore, S1 must
have at least two vertices, say w1 and w2, as δ(G) = 3. Now contract
vv4 to obtain a K3,5 induced by {u1, u2, (vv4)} ⊔ {v1, v2, v3, w1, w2} where
(vv4) denotes the new vertex obtained by contracting the edge vv4. Thus
this case is not possible since K3,5 is not projective planar.

Case (ii). If ui is non-adjacent to vi for i ∈ {1, 2}, then all the vertices in S1

are adjacent to either v1 or v2 due to Claim 4. Therefore, the ver-
tices v, v1, v2, v3, v4, u1, and u2 and the vertices belonging to S1 are all
of the vertices of G. Suppose that S1 = {w1, w2, . . . , wk, w

′

1, w
′

2, . . . , w
′

r}
where wis are adjacent to v1 and w′

js are adjacent to v2 where (i, j) ∈
{1, 2, . . . , k} × {1, 2, . . . , r}. Each wi reaches v3 via u1 and each w′

j is
reaches v3 via u2 for all (i, j) ∈ {1, 2, . . . , k} × {1, 2, . . . , r}. Furthermore
as δ(G) = 3, each wi must be adjacent to some w′

j and each w′

p must be
adjacent to some wq. Without loss of generality and due to symmetry,

9



we may assume that 1 ≤ r ≤ k. If k ≥ 2, then contract the edges u2w
′

j

for all j ∈ {1, 2, . . . , r} to obtain the new vertex (u2w
′

j), and contract the
edge vv1 to obtain the new vertex (vv1). Observe that, in this contracted
graph, the vertices {u1, (vv1), (u2w

′

j)} ⊔ {w1, w2, v2, v3, v4} induce a K3,5

subgraph, a contradiction. Therefore, k = r = 1. Thus G is isomorphic to
W+

8 .

This ends the proof of the lemma.

This concludes the case when we have |S4|+ |S3| = 2. We will present the
summary of it in the following lemma.

Lemma 7. If δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph G ∈ PP2, then the
following holds: if |S4|+ |S3| = 2, then G is isomorphic to K3,4 or W+

8 .

Proof. Follows directly from Lemma 5, Claim 6, and Lemma 6.

It remains to analyse the situations when |S4|+ |S3| ≤ 1. The first case is
when |S4|+ |S3| = 1.

2.3.4. Case: |S4|+ |S3| = 1

Claim 7. If |S4|+ |S3| = 1, then S2 6= ∅.

Proof. Let us assume the contrary and suppose that S2 = ∅. Furthermore,
assume that S4 ∪ S3 = {u1} and that u1 is adjacent to {v1, v2, v3}. First we will
show that it is not possible for any vi, for i ∈ {1, 2, 3}, to have two neighbors in
S1.

Hence without loss of generality assume that v1 is adjacent to w1, w2 ∈ S1.
Observe that both w1 and w2 must reach v2, v3, and v4 via some vertices from
S1 \ {w1, w2} and u1 must reach v4 via some vertex from S1 \ {w1, w2} (all due
to Claim 1). Now contract all the edges between {v2, v3, v4} and S1 \ {w1, w2}
to obtain a K4,4-minor, a contradiction. Thus each vis, for i ∈ {1, 2, 3}, can
have at most one neighbor in S1.

However, δ(G) = 3 implies that each vi must be adjacent to exactly one
vertex (say) wi from S1 for i ∈ {1, 2, 3}. Now note that w1 must reach v2 and v3
via w2 and w3, respectively and w2 must reach v3 via w3. This creates a triangle
induced by {w1, w2, w3} in G, a contradiction.

Claim 8. If |S4| = 1 and |S3| = 0, then X = ∅.

Proof. Let S4 = {u1} and let x ∈ X. Claim 7 implies the existence of a vertex
w1 ∈ S2. Without loss of generality assume that w1 is adjacent to v1 and v2.

Note that x reaches u1 directly or via some vertex a (say) not adjacent to any
of {v1, v2, v3, v4} in order to avoid creating a triangle in G. Moreover, w1 reaches
x, v3, and v4 via some vertices not adjacent to any of {v1, v2}. Let A denote the
set of vertices via which w1 reaches x, v3, and v4. Contract the edges between
A\{a} and w1 and the edge xa. The vertices {v, w1, u1}⊔{x, v1, v2, v3, v4} form
the partition of a K3,5-minor, a contradiction.
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Claim 9. If |S4| = 1 and |S3| = 0, then m2 = 1.

Proof. By Claim 2, m2 ≤ 1. Next, suppose that S4 = {u1} and m2 = 0. That
means every vertex of S2 (which is non-empty by Claim 7) must reach its
non-adjacent vis via vertices of S1 (by Claim 1 and m2 = 0). Therefore, if
|S2| ≥ 2, then contracting the edges between S1 and {v1, v2, v3, v4} will create a
K4,4-minor.

Thus, we have |S2| = 1. Without loss of generality assume that S2 = {w}
and that w is adjacent to v1 and v2.

Notice that w must reach v3 and v4 via w3, w4 ∈ S1, respectively (by Claim 1
and m2 = 0). Thus to avoid creating a triangle, w3 must reach v4 via w′

4 ∈ S1.
Moreover, to avoid creating a triangle, w′

4 must reach v1 via some w1 ∈ S1.
Notice that, w1 reaches v2, v3, and v4 via some elements of S1. Thus, if we

contract all the edges between S1 and {v2, v3, v4}, we will create a K4,4-minor.
Therefore, m2 ≥ 1. Since m2 ≤ 1 by Claim 2, we have m2 = 1.

Lemma 8. If δ(G) = 3 and ∆(G) ≥ 4 for a graph G ∈ PP2, then the following
holds: if |S4| = 1 and |S3| = 0, then G is isomorphic to K∗

3,4.

Proof. Let S4 = {u1} and, thus, by Claim 9 we know that m2 = 1. Then
without loss of generality we may assume the existence of an edge w1w2 such
that w1, w2 ∈ S2, w1 is adjacent to v1 and v2, and w2 is adjacent to v3 and v4.
If there are no other vertex or edge in G, then G is isomorphic to K∗

3,4.
However, if there is another vertex w3 ∈ S2 and if w3 reaches {v1, v2, v3, v4}

directly or via some vertices except w1 and w2, then contract the edge w1w2.
Also contract the edges between w3 and the vertices via which w3 reaches vis,
for i ∈ {1, 2, 3, 4}. This will result in a K4,4-minor.

On the other hand, if there is a w3 ∈ S2 and if w3 reaches {v1, v2, v3, v4}
directly or via wi for some i ∈ {1, 2}, then G is the graph F1 (depicted in
Fig. 2(b)) that contains the graph F0 (depicted in Fig. 2(a)) as a subgraph, and
thus as a minor.

So far we were dealing with the case when G is a graph with |S4| = 1 and
|S3| = 0. Now we turn our attention towards the case when G is a graph
with |S4| = 0 and |S3| = 1. Initially, we will observe some properties that this
condition implies. However, finally, the satisfaction of those properties will turn
out to be impossible, thereby proving that there are no required graphs with
|S4| = 0 and |S3| = 1.

Claim 10. If |S4| = 0 and |S3| = 1, then X = ∅.

Proof. Suppose that X 6= ∅ and x ∈ X. Let S3 = {u1} and without loss of
generality let u1 be adjacent to v1, v2, v3. Therefore, u1 must reach v4 via
w4 ∈ S1 (by Claim 1). We know that S2 6= ∅ due to Claim 7. Also let u2 ∈ S2.

If u2 reaches v4 directly or via any vertex other than w4, then contract the
edge u1w4, all the edges connecting u2 to its neighbors via which u2 reaches
v1, v2, v3 or v4, and all the edges connecting x to its neighbors via which x reaches
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u1 and u2, in order to obtain a K3,5-minor (see the vertices in the partition
{v, u1, u2} ⊔ {x, v1, v2, v3, v4}).

Thus u2 reaches v4 via w4 and nothing else. Hence without loss of generality,
we may assume that u2 is adjacent to v1 and v2 and that u2 reaches v3 via
w3 ∈ S1 (if w3 ∈ S2, then w3 must be adjacent to v3, v4 and by similar arguments
as the previous case existence K3,5 minor can be shown). Moreover, as δ(G) = 3,
there must be a w′

4 ∈ S1 adjacent to v4. On the other hand, v1 cannot have
a neighbor in S1, as otherwise we may contract all the edges between S1 and
{v2, v3, v4} to obtain a K4,4-minor. Therefore, w′

4 must reach v1 via u1 (if w′

4

reaches v1 via u2, then a K3,5-minor is formed: see the vertices in the partition
{v, u1, u2} ⊔ {x, v1, v2, v3, v4}). Now contract the edges u1w

′

4, u2w3, u2w4, and
all the edges connecting x to its neighbors via which x reaches u1, u2. If x is
adjacent to w4, then also contract the edge connecting x to its neighbor via
which x reaches w′

4. This creates a K3,5-minor (see the vertices in the partition
{v, u1, u2} ⊔ {x, v1, v2, v3, v4}).

Claim 11. If |S4| = 0 and |S3| = 1, then m2 = 1.

Proof. We already know that m2 = 0 or 1 due to Claim 2.
If m2 = 0, then |S2| ≤ 1 as otherwise we can contract all the edges between

S1 and {v1, v2, v3, v4} to obtain a K4,4-minor. Thus |S2| = 1 due to Lemma 7.
Without loss of generality assume that S3 = {u1}, S2 = {u2}, u1 is adjacent to
v1, v2, v3 and u2 is adjacent to v1. If v1 is adjacent to some vertex of S1, then we
can contract all the edges between S1 and {v2, v3, v4} and obtain a K4,4-minor.
Thus v1 cannot have a neighbor in S1. Hence every vertex of S1 must reach v1
via u1 or u2.

If u2 is adjacent to v4 as well, then u2 must reach v2, v3 via some w2, w3 ∈ S1,
respectively. Now w2 must reach v3 via some vertex w′

3 ∈ S1. Observe that it is
not possible to have w3 = w′

3 as G is triangle-free. Now w′

3 must reach v1 via u1

or u2. In any case, this will create a triangle. Therefore, u2 is not adjacent to
v4. Thus we may assume without loss of generality that u2 is adjacent to v2.

If u2 is adjacent to v2, then u2 must reach v3 via some w3 ∈ S1 and w3 must
reach v4 via some w4 ∈ S1. Observe that u2 cannot be adjacent to w4 in order
to avoid creating a triangle. Therefore, u2 must reach v4 via some w′

4 ∈ S1.
Note that w′

4 must reach v3 via some distinct w′

3 ∈ S1 in order to avoid creating
triangle.

By what we have already noted above in this proof, we know that the only
way for w′

3 to reach v1 is via u1 or u2. In each case a triangle will be created.

Claim 12. If |S4| = 0, then it is not possible to have |S3| = 1.

Proof. Suppose the contrary. We already know that m2 = 1 due to Claim 11.
Thus note that without loss of generality we may assume that S3 = {u1},
u2, u3 ∈ S2, u2u3 ∈ E(G), u1 is adjacent to {v1, v2, v3}, u2 is adjacent to
{v1, v2}, u3 is adjacent to {v3, v4} and u1 reaches v4 via w1 ∈ S1.
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Observe that any vertex in S2 \ {u2, u3} will force a K4,4-minor or a F2

(depicted in Fig. 2(c) which contains F0, depicted in Fig. 2(a), as a minor) as a
subgraph of G (this is similar to the second half of the proof of Lemma 8). Thus
we may infer that S2 = {u2, u3}. Note that, according to the partial description
of G till now w1 has two neighbors. Due to the minimum degree requirement, it
must have another neighbor. If u2 is a neighbor of w1, then note that v1, v2, v3,
and w1 are neighbors of u1 such that v is adjacent to three of them and u2 is
adjacent to three of them. This reduces the case to where |S3| = 2, which is
already taken care of.

Therefore, w1 is adjacent to another vertex w2 ∈ S1. Note that, if w2 reaches
v1, v2, v3, and v4 directly or via vertices from S1, then contracting the edge u2u3

and all the edges between S1 and {v1, v2, v3, v4} except for the edge having w2

as an endpoint creates a K4,4-minor. If w2 is adjacent to either of v1 or v2
(without loss of generality assume it is adjacent to v1), then it reaches v2 and v3
via vertices of A ⊆ S1. Now contracting edges w1v4, u2u3 and edges between
w2 and A, we get a K4,4-minor. Thus, the following situation is forced: w2 is
adjacent to v3 and u2. This creates the subgraph F2 (depicted in Fig. 2(c)) in G

which contains F0 (depicted in Fig. 2(a)) as a minor, a contradiction.

This concludes the case when we have |S4|+ |S3| = 1. We will present the
summary of it in the following lemma.

Lemma 9. If δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph G ∈ PP2, then the
following holds: if |S4|+ |S3| = 1, then G is isomorphic to K∗

3,4 or W+
8 .

Proof. Follows directly from Lemma 8 and Claim 12.

This brings us to the case where |S4|+ |S3| = 0.

2.3.5. Case: |S4|+ |S3| = 0

Claim 13. It is not possible to have |S4| = |S3| = |S2| = 0.

Proof. As δ(G) ≥ 3, each vi must have at least two neighbors in S1. Thus
without loss of generality assume that vi is adjacent to wi, w

′

i ∈ S1 for all
i ∈ {1, 2, 3, 4}. Moreover, without loss of generality, we may suppose that w1

reaches vi via wi for all i ∈ {2, 3, 4}. Note that as G is triangle-free, {w2, w3, w4}
is an independent set. Therefore, contracting the edges between the vertices of
{v1, v2, v3, v4} and the vertices of (S1 \ {w2, w3, w4}) creates a K4,4-minor.

Now we will consider the case when |S2| ≥ 1.

Claim 14. If |S4| = |S3| = 0, then it is not possible for vi, for all i ∈ {1, 2, 3, 4},
to have three or more neighbors in S2.

Proof. Let us assume the contrary. Without loss of generality suppose that v1 is
adjacent to u1, u2, u3 ∈ S2. Furthermore suppose that u1 is adjacent to v2 as
well. Observe that {u1, u2, u3} is an independent set as G is triangle-free.
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If u2 or u3 is also adjacent to v2, then by renaming v1 as v, the case reduces
to |S3|+ |S4| ≥ 1 which has been handled before.

Thus without loss of generality, we may assume that u2 is adjacent to v3 and
u3 is adjacent to v4. Then u1 must reach v3 and v4; u2 must reach v2 and v4;
and u3 must reach v2 and v3, via some vertices of S1 ∪ S2. If they use vertices
from S2, then those vertices must be distinct. Let A be the vertices via which
u1, u2, and u3 reach v2, v3, and v4. Contract the edges between A ∩ S2 and
{u1, u2, u3}. Also, contract the edges between A ∩ S1 and {v2, v3, v4}. We will
obtain a K4,4-minor, a contradiction.

Thus we have considered all the cases up to symmetry and have proved the
claim.

Claim 15. If |S4| = |S3| = 0 , then it is not possible to have u1, u2 ∈ S2 having
N(u1) ∩ {v1, v2, v3, v4} = N(u2) ∩ {v1, v2, v3, v4}.

Proof. Let us assume the contrary. Without loss of generality suppose that u1

and u2 are adjacent to both v1 and v2.
Note that it is not possible to have any vertex other than v, u1, and u2

adjacent to v1 (or v2) as otherwise our case will get reduced to the case where
|S3|+ |S4| ≥ 1 by renaming v1 as v which we have already taken care of.

Therefore, every vertex from V (G) \ (N [v] ∪ {u1, u2}) = A (say) is adjacent
to either u1 or u2 in order to reach v1 and v2. Since δ(G) ≥ 3, v3 has two more
neighbors. Both these neighbors are adjacent to u1 or u2. If any vertex from A

is adjacent to both u1 and u2, then one of u1 or u2, without loss of generality
assumes u1, has degree 4. Then our case will get reduced to the case where
|S3|+ |S4| ≥ 1 by renaming u1 as v which we have already taken care of.

As diameter of G is 2, u1, u2 must reach N(v) \ {v1, v2} via some vertices
from A. Let Ai be the set of vertices from A via which ui reaches the vertices of
N(v) \ {v1, v2} where i ∈ {1, 2}. Due to the observation made in the previous
paragraph, we know that the sets A1 and A2 are disjoint.

If X 6= ∅, then contract the edges between Ai and {ui} for each i ∈ {1, 2} to
obtain a K3,5-minor, a contradiction (see the vertices in the partition {v, u1, u2}⊔
{x, v1, v2, v3, v4}, where x ∈ X). Thus we may assume that X = ∅.

If there exists u3 ∈ S2, it must be adjacent to both u1 and u2 in order to
reach them. This follows from Claim 14. But we have already shown that this is
not possible. Thus there are no vertices in S2 other than u1 and u2.

However as δ(G) ≥ 3, there are at least two neighbors wi1, wi2 ∈ S1 of vi for
i ∈ {3, 4}. Without loss of generality suppose that w31 reaches v1 and v2 via u1.
Therefore, w31 have to reach v4 via a vertex of S1 ∩N(v4), say w41. Now as G
is triangle free, w41 reaches v1 and v2 via u2. If w32 is adjacent to w41, then a
triangle is induced as w32 has to be adjacent to u1 or u2 in order to reach v1
and v2. Thus w32 is not adjacent to w41. Next, observe that w32 must reach w41

via u2. Finally, w32 must reach v4 via some vertex in S1 ∩N(v4), say w42 and,
then w42 must reach v1 and v2 via u1.

This so-obtained graph is isomorphic to the graph F3 depicted in Fig. 1.
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Claim 16. If |S4| = |S3| = 0, then it is not possible to have three vertices of S2

non-adjacent to vi, for all i ∈ {1, 2, 3, 4}.

Proof. Assume the contrary and let u1, u2, u3 ∈ S2 be non-adjacent to v4.
Contract all edges between S2 \ {u1, u2, u3} and {u1, u2, u3}. Also, contract
the edges between S1 and {v1, v2, v3, v4}. This will create a K4,4-minor, a
contradiction.

Claim 17. If |S4| = |S3| = 0, then |S2| ≤ 4.

Proof. Follows directly from Claims 14, 15 and 16.

Lemma 10. If δ(G) = 3 and ∆(G) ≥ 4 for a graph G ∈ PP2, then the following
holds: if |S4| = |S3| = 0 and |S2| = 4, then G is isomorphic to M=

11,M
−

11, or
M11.

Proof. Assume that S2 = {u1, u2, u3, u4}. Thus due to Claims 14, 15 and 16
without loss of we may suppose that ui is adjacent to vi and vi+1, for all
i ∈ {1, 2, 3, 4} and the + operation on the indices is taken modulo 4. If S2 does
not have a perfect matching, then it will force a K4,4-minor. Thus we must have
the edges u1u3 and u2u4. Also X = ∅, as otherwise there will be a K3,5-minor
in G (see the partition {v, (u1u3), (u2u4)} ⊔ {x, v1, v2, v3, v4}, where x ∈ X).

Next, we claim that for all i ∈ {1, 2, 3, 4}, |N(vi) ∩ S1| ≤ 1. Suppose
|N(v1) ∩ S1| ≥ 2. Let w1, w2 ∈ N(v1) ∩ S1. Then w1 reaches v2 either via
u2 or some vertex in N(v2) ∩ S1, and w1 reaches v4 either via u3 or some
vertex in N(v4) ∩ S1. Similarly w2 reaches v2 and v4. Contract the edge v2u2

and v4u3 and the edges between S1 and {v2, v4} to obtain a K3,5-minor, a
contradiction (see the partition {v1, (v2u2), (v4u3)} ⊔ {w1, w2, u1, u4, v}). Thus
|N(v1) ∩ S1| ≤ 1. A similar analysis holds for v2, v3, and v4. Hence, for all
i ∈ {1, 2, 3, 4}, |N(vi) ∩ S1| ≤ 1.

Next, we claim that |S1| ≤ 2. If |S1| ≥ 3, then without loss of generality
assume that w1 ∈ N(v1)∩S1. If w1 does not reach {v2, v3, v4} via u2, u3, then it
uses vertices from S1, forcing a K4,4-minor in G. Thus w1 has to use at least one
of u2, u3 to reach {v2, v3, v4}. Suppose w1 is not adjacent to u2, then it is adjacent
to u3. Then w1 reaches v2 via w2 ∈ S1. Now w2 cannot reach v3 via u2 or u3, else
a triangle is induced in G. Thus w2 reaches v3 via w3 ∈ S1. This forms a K−

4,4-
minor in G (see the partition {v, (u1u3), (u2u4), (w1w2w3)} ⊔ {v1, v2, v3, v4}).
Next, suppose w1 is not adjacent to u3, then it is adjacent to u2. Then, similarly,
a K−

4,4-minor is obtained in G. Thus |S1| ≤ 2.

Observe that if |S1| = 0, 1, or 2, then G is isomorphic to M=
11,M

−

11, or M11,
respectively. It is easy to observe the cases when |S1| = 0, 1. For |S1| = 2,
without loss of generality we will have two cases: when the two vertices of S1 are
adjacent to v1 and v2; and when the two vertices of S1 are adjacent to v1 and v3.
In the first case, we get a graph isomorphic to M11. In the second case, we get a
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K4,4-minor in G. We briefly describe the second case. Let N(v1) ∩ S1 = {w1}
and N(v1) ∩ S3 = {w2}. Then w1 reaches v2 via u2, and v4 via u3. And w2

reaches v4 via u4, and v2 via u1. All these edges are forced, or else a triangle
is induced in G. The only possible way that w1 reaches w2, without inducing
a triangle in G, is directly by an edge. This forms a K4,4-minor in G (see the
partition {w1, (vv3), u1, u4)} ⊔ {w2, v1, (u3v4), (u2v2)}).

Lemma 11. If δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph G ∈ PP2, then
the following holds: if |S4| = |S3| = 0 and |S2| = 3, then G is isomorphic to
M=

11,M
−

11, or M11.

Proof. Assume that S2 = {u1, u2, u3}. Thus due to Claims 14, 15, and 16,
without loss of generality, we may suppose that ui is adjacent to vi and vi+1,
for all i ∈ {1, 2, 3}. If u1 is not adjacent to u3, then it will force a K4,4-minor.
Thus we must have the edge u1u3.

If N(v2) ∩ S1 6= ∅, then let w1 ∈ N(v2) ∩ S1. Now w1 reaches v3 via
w2 ∈ S1. This forces a K4,4-minor (see the partition {v, (u1u3), u2, (w1w2)} ⊔
{v1, v2, v3, v4}). Thus N(v2) ∩ S1 = ∅. Similarly, by symmetry, N(v3) ∩ S1 = ∅.

Therefore, every vertex in S1 is adjacent to u2 to reach v2 and v3. Also,
every vertex in N(v1) ∩ S1 is adjacent to u3 to reach v3, and every vertex in
N(v4) ∩ S1 is adjacent to u1 to reach v2.

Next to satisfy δ(G) ≥ 3, N(v1) ∩ S1 and N(v4) ∩ S1 have at least one
vertex. If |N(v1) ∩ S1| ≥ 2, then let w1, w

′

1 ∈ N(v1) ∩ S1 and w2 ∈ N(v4) ∩ S1.
This forces a K3,5-minor (see the vertices in the partition {(u1u3), u2, (v1vv4)}⊔
{w1, w

′

1, v2, v3, w2}). Thus N(v1) ∩ S1 = {w1} and N(v4) ∩ S1 = {w2}.
Now let us consider X. Suppose X 6= ∅: let x ∈ X. Both u1 and u3 are not

adjacent to x, else |S3| ≥ 1 which we have dealt earlier. If u1 and u3 do not use
w2 and w1, respectively, to reach x, then a K3,5-minor is forced (see the vertices
in the partition {(u1u3), (w1u2w2), v} ⊔ {x, v1, v2, v3, v4}). Hence x is adjacent
to w1, w2.

If |X| ≥ 2, then replacing v by w1 we have |S3| ≥ 1 which we have dealt
earlier. Hence |X| ≤ 1.

Observe that if |X| = 0 or 1, then G is M−

11 or M11, respectively.

Lemma 12. If δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph G ∈ PP2, then the
following holds: if |S4| = |S3| = 0 and |S2| = 2, then G is isomorphic to K3,4,
K∗

3,4, or W+
8 .

Proof. Assume that S2 = {u1, u2}. Thus due to Claims 14, 15 and 16 without
loss of generality we may suppose one of the two scenarios: (i) u1 is adjacent
to v1, v2, and u2 is adjacent to v2 and v3, (ii) u1 is adjacent to v1, v2, and u2 is
adjacent to v3 and v4.

Case (i): First suppose u1 is adjacent to v1, v2, and u2 is adjacent to v2
and v3. Observe that v2 cannot be adjacent to any vertex of S1, as otherwise a
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K4,4-minor will be created. Also |N(v4) ∩ S1| ≥ 2 as δ(G) ≥ 3. Every vertex in
N(v1) ∩ S1 reaches v2 via u2, and every vertex in N(v3) ∩ S1 reaches v2 via u1.

Now u1 reaches v4 via w4 ∈ N(v4) ∩ S1. w4 cannot reach v3 via any vertex
in N(v3) ∩ S1, as a triangle is induced. Thus w4 reaches v3 via u2.

Now w′

4 ∈ (N(v4) ∩ S1) \ {w4} reaches v2 via u1 or u2. Next, w′

4 cannot use
N(v3) ∩ S1 or N(v1) ∩ S1 to reach the yet unreached vertex in {v1, v3}, else a
triangle is induced. Thus w′

4 is adjacent to both u1 and u2. Similarly, every
vertex in N(v4) ∩ S1 is adjacent to u1 and u2.

Thus any vertex in N(v1) ∩ S1 cannot reach any vertex in N(v3) ∩ S1 via
any vertex of N(v4) ∩ S1. Hence every vertex in N(v1) ∩ S1 is adjacent to every
vertex in N(v3) ∩ S1. This will reduce the case to the case of |S3| + |S4| ≥ 1
where u1 plays the role of v (note that u1 and u2 share at least three common
neighbors).

Case (ii): Next assume that u1 is adjacent to v1, v2, and u2 is adjacent to v3
and v4. Here u1 is adjacent to u2, as otherwise a K4,4-minor will be created.

Note that |N(vi) ∩ S1| ≥ 1 as δ(G) ≥ 3. All vertices of N(v1) ∩ S1 and
N(v2) ∩ S1 cannot be adjacent to u2 as a vertex in N(v1) ∩ S1 reaches v2 via a
vertex in N(v2)∩ S1. Without loss of generality assume that w1 ∈ N(v1)∩ S1 is
not adjacent to u2. If x ∈ X, then a K3,5-minor will be created (see the partition
{v, w1, (u1u2)} ⊔ {x, v1, v2, v3, v4}). Hence X = ∅.

Next, we claim that |N(vi) ∩ S1| ≤ 1. Suppose w1, w
′

1 ∈ N(v1) ∩ S1. Both
of them cannot be adjacent to u2, else this case reduces to |S3| + |S4| ≥ 1
where v1 plays the role of v (note that v1 and u2 have at least three neighbors
in common). Without loss of generality assume that w1 ∈ N(v1) ∩ S1 is not
adjacent to u2. Thus it reaches v2, v3, v4 via vertices in S1. If w

′

1 also reaches
v2, v3, v4 via vertices in S1, then a K4,4-minor will be created (see the partition
{v, w1, w

′

1, (u1u2)} ⊔ {v1, v2, v3, v4}). If w′

1 reaches v3, v4 via u2, then let w′

1

reach v2 via w2. Now w2 cannot be adjacent to u2, else a triangle is induced.
Thus w2 reaches v3, v4 via vertices in S1. This forces a K4,4-minor (see the
partition {v, w1, (w

′

1w2), (u1u2)} ⊔ {v1, v2, v3, v4}). Hence |N(vi) ∩ S1| ≤ 1; and
since |N(vi) ∩ S1| ≥ 1 as δ(G) ≥ 3, we have |N(vi) ∩ S1| = 1.

Suppose N(vi)∩S1 = {wi}, for all i ∈ {1, 2, 3, 4}. Then w1 reaches v2 via w2,
and w3 reaches v4 via w4. Thus w1w2 and w3w4 are edges in G. Moreover, due
to symmetry, without loss of generality, we may assume the edges w2u2, w3u1 as
forced as well.

This reduces the case to Case (i) of this proof where u1 plays the role of
v.

Claim 18. If |S4| = |S3| = 0, then it is not possible to have |S2| = 1.

Proof. Assume that S2 = {u1} and u1 is adjacent to v1, v2. Note that as |S2| = 1,
u1 must reach v3, v4 via (say) w31, w41 ∈ S1, respectively.

Notice that u1 and vi cannot have two common neighbors from S1, as
otherwise the case will be reduced to |S2| ≥ 2 where u1 plays the role of v.
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Furthermore as δ(G) ≥ 3, v3 must have another neighbor w32 ∈ S1. As w32

cannot be adjacent to u1, it must reach v1, v2 via w11, w21 ∈ S1, respectively.
Observe that w11 is not adjacent to w21 in order to avoid creating a triangle.
Thus w21 must reach v1 via some w12 ∈ S1.

Now contract all the edges between S1 and {v2, v3, v4}. This will create a
K4,4,-minor, a contradiction (see the partition {v, u1, w11, w12}⊔{v1, v2, v3, v4}).

This concludes the case when we have |S4|+ |S3| = 0. We will present the
summary of it in the following lemma.

Lemma 13. If δ(G) = 3 and d(v) = ∆(G) ≥ 4 for a graph G ∈ PP2, then the
following holds: if |S4|+ |S3| = 0, then G is isomorphic to K3,4 K∗

3,4, W
+
8 , M=

11,

M−

11, or M11.

Proof. Follows directly from Lemmas 10, 11, and 12, and Claims 13 and 18.

Finally, we are ready to prove Lemma 4.

Proof of Lemma 4. The result readily follows from Lemmas 7, 9, and 13.

2.4. Concluding the proof of Theorem 1

At last, we can conclude the proof of Theorem 2.

Proof of Theorem 2. The result readily follows from Lemmas 1, 2, 3, and 4.

3. Direct implications

In Theorem 2, we have characterized all triangle-free projective-planar graphs
having diameter 2. This has an immediate theoretical implication in the theory
of graph homomorphisms of colored mixed graphs, signed graphs, and oriented
graphs. We are going to discuss them here.

First let us start with colored mixed graphs which were introduced by Nešetřil
and Raspaud [8]. An (m,n)-colored mixed graph G is a graph having m different
types of arcs and n different types of edges. Moreover, colored homomorphism
from an (m,n)-colored mixed graph G to another (m,n)-colored mixed graph
H is a vertex mapping f : V (G) → V (H) such that for any arc (resp., edge)
uv of G, the induced image f(u)f(v) is also an arc (resp., edge) of the same
type in H. Observe that for (m,n) = (0, 1), (1, 0), (0, 2), and (0, k) the study of
colored homomorphism of (m,n)-colored mixed graphs is the same as studying
homomorphisms of undirected graphs [9], oriented graphs [10], 2-edge-colored
graphs [11], and k-edge-colored graphs [12], respectively. Each of these is a
well-studied topic.

Generalizing the notion of oriented absolute cliques and oriented absolute
clique number4 [13], Bensmail, Duffy, and Sen [14] introduced the notion of

4The same is also known as oriented cliques or ocliques and oriented clique number or
oclique number.
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(m,n)-clique and (m,n)-absolute clique number. An (m,n)-clique C is an (m,n)-
colored mixed graph that does not admit a colored homomorphism to any other
(m,n)-colored mixed graph having strictly fewer vertices. Given a family F of
(m,n)-colored mixed graphs,

ωa(m,n)(F) = max{|V (G)| : G ∈ F is an (m,n)-clique}.

A handy characterization of an (m,n)-clique is proved by Bensmail, Duffy,
and Sen [14].

Proposition 1 ([14]). An (m,n)-colored mixed graph C is an (m,n)-clique if
and only if every pair of non-adjacent vertices u,w of C are connected by a
2-path uvw of one of the following types:

(i) uv and vw are edges of different colors,

(ii) uv and vw are arcs (possibly of the same color),

(iii) vu and wv are arcs (possibly of the same color),

(iv) uv and wv are arcs of different colors,

(v) vu and vw are arcs of different colors,

(vi) exactly one of uv and vw is an edge.

A 2-path in an (m,n)-graph is a special 2-path if it is one among the six
types of path listed in Proposition 1. If a 2-path uvw is a special 2-path, then we
say that u sees w via v and that u and w disagrees on v. If uvw is not a special
2-path, then we say that u and w agrees on v. Due to the above proposition,
we know that any underlying graph of an (m,n)-clique must have a diameter
of at most 2. Moreover, the underlying graph of an (m,n)-clique is called an
underlying (m,n)-clique.

Observation 3. An underlying (m,n)-clique has a diameter at most 2.

Theorem 2 and Proposition 1 directly imply the following.

Theorem 4. For the family PP2 of (m,n)-colored mixed triangle-free projective-
planar graphs

(i) ωa(1,0)(PP2) = 9

(ii) ωa(0,2)(PP2) = 8

(iii) ωa(m,n)(PP2) = (2m+ n)2 + 2, for all 2m+ n ≥ 3.

Proof. (i) Observe that the graph W+
8 is an underlying (1, 0)-clique on 9 vertices

(see Fig. 4(a) for the relevant instance). This implies ωa(1,0)(PP2) ≥ 9.
Let G∗ be a triangle-free projective planar (1, 0)-clique having at least 9

vertices. Thus, by Observation 3 its underlying graph, say G, must belong to
PP2. We are going to show that such a G∗ does not exist. Due to Theorem 2,
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(a) (b)

Figure 4: (a) A (1, 0)-clique on 9 vertices. (b) A (0, 2)-clique on 8 vertices.

it is enough to restrict ourselves to checking whether any graph listed in the
theorem can be G or not.

As all Plesńık graphs are triangle-free planar graphs, and as it is known [15]
that the largest triangle-free planar underlying (1, 0)-clique has six vertices.
Moreover, K3,3,K3,4,W8,W

+
8 ,M=

11, and K∗

3,4 has less or equal to nine vertices.

Furthermore, using Proposition 1 it is possible to verify that P10,M11, and M−

11

are not underlying (1, 0)-cliques. Hence, we are only left with verifying whether
it is possible to have K3,4(t) or K3,3(t) as G or not, where t ≥ 3.

Let us suppose that G is either K3,4(t) or K3,3(t) for some t ≥ 2, and
a1, a2, . . . , at are its vertices of degree two. Notice that, all the ais are adjacent
to exactly two vertices, say b1, b2. Note that, there are vertices b′1 and b′2 such
that b′j is non-adjacent to ai and the only 2-path connecting b′j to ai is bj , for
all j ∈ {1, 2}. Thus in G∗, all ais must see b′j via bj , which implies that all ais
must agree with each other on both b1 and b2. Thus, a1 is neither adjacent to
a2 nor there is a special 2 path among them. Hence G cannot be an underlying
(1, 0)-clique if it is either K3,4(t) or K3,3(t) for some t ≥ 2.

(ii) Observe that the graph W8 is an underlying (0, 2)-clique on 8 vertices
(see Fig. 4(b) for the relevant instance). This implies ωa(0,2)(PP2) ≥ 8. The
proof of the upper bound can be done similarly to the proof of (i).

(iii) It is known [15] that ωa(m,n)(P
′) = (2m+n)2+2, for all 2m+n ≥ 3 for the

family of triangle-free planar graphs. This implies ωa(m,n)(PP2) = (2m+n)2+2,
for all 2m+ n ≥ 3.

For the upper bound, as (2m + n)2 + 2 ≥ 11 for all 2m + n ≥ 3, and
as every non-planar graphs except K3,4(t) and K3,3(t) for t ≥ (2m + n)2 − 4
from the graphs listed in Theorem 2 has less than or equal to 11 vertices, it is
enough to show that K3,4(t) and K3,3(t) are not underlying (m,n)-cliques for
t ≥ (2m+ n)2 − 4.

Let G∗ be an (m,n)-clique having at least (2m+ n)2 + 3 vertices such that
its underlying graph G is K3,4(t) and K3,3(t) for some t ≥ (2m+ n)2 − 4. Let
a1, a2, . . . , at be the vertices of degree two of G. Notice that, all the ais are
adjacent to exactly two vertices, say b1, b2. Note that, there are vertices b′1 and
b′2 such that b′j is non-adjacent to ai and the only 2-path connecting b′j to ai is
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bj , for all j ∈ {1, 2}. Thus in G∗, all ais must see b′j via bj . This implies that
the adjacency between ai and bj is different from the adjacency between b′j and
bj , for each i and j. This implies that the adjacency between ai and bj can be
one of the (2m+ n)− 1 types (each type of arc gives two adjacency options due
to directions, and each type of edge gives one adjacency option). As ai also must
see each other via b1 or b2, the number of ais is bounded by

t ≤ (2m+ n− 1)2 = (2m+ n)2 − 2(2m+ n) + 1 ≤ (2m+ n)2 − 5

for all (2m + n) ≥ 3. However, this is a contradiction as we assumed t ≥
(2m+ n)2 − 4.

Now we turn our focus towards variants of colored homomorphism of (0, 2)
and (1, 0)-colored mixed graphs (that is, 2-edge-colored graphs and oriented
graphs). The variants are known as homomorphisms of signed graphs [16] and
pushable homomorphisms of oriented graphs [17], respectively.

Homomorphisms of signed graphs were introduced by Naserasr, Rollová,
and Sopena [16] who also defined and characterized signed absolute clique
and signed absolute clique numbers. Naserasr, Rollová, and Sopena [16] also
showed how using the notion of homomorphism of signed graph one can capture,
as well as extend, many of the classical graph theory results and conjectures
including the Four-Color Theorem and Hadwiger’s Conjecture [18]. It motivated
a number of research works and generated a lot of interest within a short span of
time [19, 20, 21, 16, 11]. In order to avoid a long series of definitions, we would
like to define the notion using its equivalent characterization.

A signed graph (G,Σ) is a graph with either positive or negative sign assigned
to its edges. A signed absolute clique (C,Λ) is a signed graph whose any two
non-adjacent vertices are part of a 4 cycle having an odd number of negative
edges. Given a family F of signed graphs,

ωas(F) = max{|V (G)| : G ∈ F and (G,Σ) is a signed absolute clique}.

On the other hand, pushable homomorphism of oriented graphs were intro-
duced by Klostermeyer and MacGillivray [13] which motivated some further
research works on that topic. These include one work due to Bensmail, Nandi,
and Sen [22] that introduced and characterized the notion of pushable absolute
clique of oriented graphs. In order to avoid a long series of definitions, we would
like define the notion using its equivalent characterization.

An oriented graph
−→
G is a directed graph without any directed cycle of length

1 or 2. A pushable absolute clique
−→
C is an oriented graph whose two non-adjacent

vertices are part of a 4 cycle having an odd number of arcs in a clockwise direction.
Given a family F of oriented graphs,

ωap(F) = max{|V (
−→
G)| :

−→
G ∈ F is a pushable absolute clique}.

Thus from Theorem 2 and the two characterizations (definitions), we have
the following theorem.
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(a) (b)

Figure 5: (a) A pushable absolute clique on 7 vertices. (b) A signed absolute clique on 7
vertices.

Theorem 5. For the families PP2 (resp. PP2) of oriented (resp. signed)
triangle-free projective-planar graphs

ωap(PP2) = ωas(PP2) = 7.

Proof. Observe that there exist a signed absolute clique and a pushable absolute
clique havingK3,4 as their underlying graphs (see Fig. 5 for the relevant instances).
This implies ωas(PP2) ≥ 7 and ωap(PP2) ≥ 7.

For the upper bound, note that if G is the underlying graph of a pushable
absolute clique or a signed absolute clique, then it must have the following
property: any two non-adjacent vertices of G must be connected by two internally
disjoint 2-paths. Observe that, among the graphs listed in Theorem 2, the only
graphs that have this property are K3,3, K3,4, and K2,t for t ≥ 2. However, notice
that a pushable absolute clique (resp., signed absolute clique) is, in particular,
a (1, 0)-clique (resp., (0, 2)-clique). Moreover, the (1, 0)-absolute clique number
(resp., (0, 2)-absolute clique number) for the family of triangle-free planar graphs
is at most 6 [15]. As K2,t is a triangle-free planar graph, for all t ≥ 2, we are
done.

4. Conclusions

In this paper, we gave a characterisation of triangle-free projective planar
graphs of diameter 2 and proved that the domination number of this class of
graphs is at most 3. Moreover, there are only seven triangle-free projective
planar graphs with a diameter 2 for which the equality holds. This raises a
natural question.

Question 3. Given a surface S, can you find a tight upper bound on the
domination number of triangle-free graphs with diameter 2 that can be embedded
on S?

Goddard and Henning [5] proved that for any integer g ≥ 0 the number of
graphs with orientable genus g, diameter 2, and domination number greater
than 2 is finite. For the g = 0 case, that is for planar graphs, they reported [5]
that there exists only one planar graph of diameter two and domination number
greater than two. However, the analogous problem for higher genus surfaces is
still unsolved. This motivates the following question.

Question 4. Given a positive integer g, how many triangle-free graphs of genus
g and diameter 2 are there with a domination number greater than or equal to 3?
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We observed that the maximum order of a triangle-free projective planar
graph with diameter 2 and domination number 3 is 11. This motivates the
following.

Question 5. Given a positive integer g, what is the highest order of a triangle-
free graph of genus g and diameter 2 with a domination number greater than
3?
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