

This is a repository copy of Artificial Intelligence in academic library strategy in the United Kingdom and the Mainland of China.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/202883/</u>

Version: Published Version

Article:

Huang, Y., Cox, A.M. orcid.org/0000-0002-2587-245X and Cox, J. (2023) Artificial Intelligence in academic library strategy in the United Kingdom and the Mainland of China. Journal of Academic Librarianship, 49 (6). 102772. ISSN 0099-1333

https://doi.org/10.1016/j.acalib.2023.102772

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Contents lists available at ScienceDirect

The Journal of Academic Librarianship

journal homepage: www.elsevier.com/locate/jacalib

Artificial Intelligence in academic library strategy in the United Kingdom and the Mainland of China

Yingshen Huang^a, Andrew M. Cox^{b,*}, John Cox^c

^a Medical Library, Peking University, Beijing, China

^b Information School, University of Sheffield, Sheffield, UK

^c University Librarian, University of Galway, Galway, Ireland

ARTICLE INFO

Keywords: Artificial intelligence Machine Learning Academic libraries University libraries Librarians Strategy

ABSTRACT

There is growing recognition of the value of applying Artificial Intelligence (AI) in libraries. This study explores how academic libraries have responded to this opportunity at the level of strategy, what is the status of the application of AI, if any, and what are the different emphases of development comparing the UK and China. The data for the study was strategy documentation from high-ranking universities and their libraries. The sample consisted of the top 25 universities from the United Kingdom and top 25 from the Mainland of China according to the QS world university rankings. Explicit mention of Artificial Intelligence and related technologies is rarely found in strategic plans of universities in the UK but most Chinese universities mention them in their vision statements which focus on the development of new majors and research of the technology. Though several libraries have already implemented applications based on AI or claim to be "smart" or "intelligent" most academic libraries as a sector and to compare experiences internationally.

Introduction

It has been suggested that the rapid development of Artificial Intelligence (AI) is causing a scientific and technological revolution and industrial transformation (Phillips & O'Toole, 2014; Spille et al., 2018). Many aspects of our daily lives are undergoing tremendous change due to technologies such as speech recognition, face recognition, computer vision, natural language processing, machine translation, virtual assistants, and intelligent search. AI has shown promising applications in diverse areas such as transportation, health care, and manufacturing, through autonomous driving technology, medical assisted diagnosis, satellite positioning, and robots. It has been seen as heralding the arrival of the 4th Industrial Revolution (Ocholla & Ocholla, 2020) and part of a digital transformation (Hanelt et al., 2021).

In response countries around the world have identified the development of AI as a national strategic priority (OECD, 2023). In 2019, the US government signed an Executive Order on *Maintaining American Leadership in Artificial Intelligence*, which pooled federal government resources to develop AI (Presidential Document of America, 2019). The next year, the European Union issued a white paper On Artificial Intelligence - A European approach to excellence and trust, advocating the establishment of an outstanding and trusted AI ecosystem based on legal regulation (Tiple, 2020). The UK Government (2021) has an AI strategy, as do important UK national institutions such as National Health Service England (2020) and the UK's main research funding body UKRI (2021). In recent years, the Chinese government has also released a series of policies to promote AI research and implementation and put the construction of AI-based smart libraries on the agendas in some key public libraries (The State Council of China, 2021a).

Although the idea of applying AI to libraries has been considered since at least 1985, the last five years have seen a wave of intensified interest. Inevitably some people have expressed the fear that robots and intelligent agents might supersede the professional roles of librarians. In practical terms, however, take-up in the sector seems to have been relatively slow (Cox, 2021). Given the call of other demands, resource limitations, and perhaps a certain caution in the acceptance of new technologies, it is not hard to understand that only when new technologies are saturated in the market and patrons have access to them in multiple ways, will libraries consider introducing them (Wheatley & Hervieux, 2019). The prudent response to AI can be seen to echo the patchy character of past library automation and digitalization process, such as the spread of research data management practices (Huang et al.,

* Corresponding author. *E-mail addresses:* huangys@pku.edu.cn (Y. Huang), a.m.cox@sheffield.ac.uk (A.M. Cox), john.cox@universityofgalway.ie (J. Cox).

https://doi.org/10.1016/j.acalib.2023.102772

Received 7 June 2023; Received in revised form 4 August 2023; Accepted 25 August 2023 Available online 5 September 2023

0099-1333/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2021; Wheatley & Hervieux, 2019). In addition, librarians' lack of knowledge of AI, how to integrate AI with the library's existing systems and services, and the high cost of AI products all pose challenges to the adoption of AI in the library (Buhe, 2017; Deng & Yang, 2021; Li et al., 2022). However, on the whole, libraries and librarianship still seem to hold a positive attitude towards the potential changes brought by AI, and the library could take the initiative to adopt AI in a safe, responsible and effective way to improve its working and user services.

Most previous studies in the debate about AI are based on the experience of a particular library or in a single country or region, and rarely consider activity across the sector and in two countries at the same time from different cultural contexts. The UK could be seen as the birthplace of Artificial Intelligence, and remains a world leader in specific application areas such as healthcare and financial technology, as well as in the development of AI ethics, governance, and security frameworks. AI is a focus of research funding (UKRI, 2021). China also attaches great importance to the improvement of cultural and social services while developing the economy and technology. In the library and information services area, building the functional smart library and providing efficient public services have become one of the country's long-term goals (The State Council of China, 2021b, 2021a). Since 2018, the annual project guidance of The National Social Science Fund of China (2018) has emphasized the research and application of AI in the library and information management discipline.

In a context of change and uncertainty the topic of strategy is of increasing importance. Many institutions are placing greater emphasis on strategy, on envisioning a desired future state, and planning to realize this vision. For libraries a key issue is to position themselves appropriately in relation to wider institutional priorities (Cox, 2018). This can be a form of passive alignment, seeking to demonstrate the library's contribution to the organizational mission, or even proactive in attempting to take a leadership role on campus in certain areas. Examining US library strategies, Saunders (2015) discovers a focus on collections, physical space, collaboration and instruction. Interestingly technology was relatively little mentioned in the plans she examined. Yet given the strategic emphasis placed on AI today it becomes of interest to understand how university libraries have reacted to the current trends of AI from a strategic perspective, how AI and related technologies are being used in academic libraries, and interpret the different approaches to adopting emerging technologies between two very different contexts: the UK and China.

Literature review

As early as the 1980s, the library community began to pay attention to the potential applications of robots and artificial intelligence. Chen and Chen (1992) proposed that with the increasing quantity of books and other literature, Expert Systems based on AI should be made use of to process documents in batches and realize automatic processing for classification, cataloguing, indexing, and abstracting of documents. However, the possibility of the sustainable development of Expert Systems which use specialized knowledge to deal with complex problems has been doubted due to the expensive expertise required, the timeconsuming development process, and the limited scenarios of application. Veaner (1985) believed that the assistance of robots could be leveraged to alleviate library collection management tasks which are labor-intensive, and recommended that the library community should post a systematic watch on AI which might have a greatly different definition and scope from his time. With the development of natural language processing technology and the gradual reduction of hardware costs such as computer processor chips, semantic analysis was seen as having a bright future (Chen & Chen, 1992). It is only much more recently with the continuous enrichment of the definition of AI, the development of technology itself, and the successful application of AI in other fields, that the advocacy for AI application has emerged in higher education and libraries.

A study of the future plans of UK academic libraries in 2017 suggested that the use of AI in libraries was not yet widespread, but that the library community believed that AI adoption was a major issue (Pinfield et al., 2017). Another early study selected a total of 25 influential and top-ranking research-intensive universities from the United States and Canada as a research sample to investigate how they were responding to the increasing use of artificial intelligence technology and research, through the analysis of the official website of universities and their libraries (Wheatley & Hervieux, 2019). The results came as a surprise to the authors, that there was almost no presence of AI in the study sample, and that university or university libraries rarely mentioned AI in their strategic plans. Though it was noted that almost all universities were offering AI courses in departments and schools of computer science and mathematics. At the same time, some university libraries offered programming and services related to AI, data visualization, and 3D printing, but few libraries focused on educating patrons on AI or updated current library standards in relation to concerns brought on by AI (Wheatley & Hervieux, 2019). Over the next few years, the penetration of AI into other fields is likely to have encouraged libraries to accelerate their acceptance of AI. As library patrons are exposed to AI products in the rest of their lives, libraries are prompted to accelerate the pace of introducing AI in their own services (Hervieux & Wheatley, 2021). Library directors, library commentators and experts in education and publishing began to hold a positive attitude and agree that AI and related technologies can help libraries move forward to smart libraries from multiple perspectives, in terms of resource discovery, virtual intelligent agents, machine readable collections, and so on (Cox et al., 2019). Reports from OCLC (Padilla, 2019) and Library of Congress (Cordell, 2020) were critical landmarks in this process of defining responsible AI use in libraries.

From the perspective of 2023, there is emerging a better picture of the range of AI applications and implications for libraries (Cox & Mazumdar, 2022; Hervieux & Wheatley, 2022). There are direct uses in library services, such as knowledge discovery or chatbots, and libraries can also develop services to support communities of data scientists, and there is also a role for libraries in promoting understanding of AI as part of information literacy (Cox & Mazumdar, 2022). Thus the University of Rhode Island Library created an Artificial Intelligence Lab which provides intelligent experimental space and services for staff, students, and the community (Kim, 2019). The Lab is supported by librarians and professors from different departments and the library has emerged as the leader and become a successful case in involvement with AI. Chatbots or Virtual Agents (VA) developed based on MSN, WeChat, and other apps can provide intelligent consulting such as search, navigation, and reminders (Li et al., 2022), and such VAs based on Machine Learning (ML) and Natural Language Process (NLP) most common appearance of AI in the academic library. Physical Robots, based on AI and Radio-frequency Identification (RFID) technology, have been developed for picking, moving, and inventory of books or items autonomously without human intervention (Fan & Shao, 2018), and other robots with functions like autonomous navigation, routine clerical and manual task handling, and assistance in the education of students and patrons are being developed in some pioneer libraries (Vlachos et al., 2020). The National Science Library of Chinese Academy of Sciences (NSLC) constructed an open data ecosystem with big data and AI as the main technologies, which consists of a National Science and Technology Innovation Database, a new generation of AI tool platforms, and AI services system for knowledge management, knowledge discovery, intelligent analysis, and technological decision (Qian et al., 2021).

Although AI in libraries is often talked about as inevitable, there are still challenges in the process of introducing AI and a lag behind the development of frontier industries (Li et al., 2022) as well as concerns around ethics. Most AI projects in libraries rely on the introduction of mature products from commercial companies, which cannot be easily integrated with the library's existing system or services. New intelligent service projects are self-contained and require high-intensity technical

support that most libraries do not have (Cox et al., 2019). There is a long way to go to achieve the "smart" or "intelligent" library and efforts are still needed in the aspects of AI technology itself, the application of AI in libraries, and the librarians' knowledge about AI. As well as these implementation barriers there are significant concerns around the ethics of AI even in library contexts: such as concerns for privacy and around bias and intelligibility.

This study explores how academic libraries are responding to AI which is increasingly ubiquitous in our lives, and answers these research questions:

- 1. How, if at all, is AI being included in university library strategies in the UK and China?
- 2. What evidence is there for sector-wide adoption of AI in academic libraries in the UK and China?
- 3. How do the paths of development between the two countries differ?

Methodology

High-prestige universities possess more abundant funding and, arguably, have a greater ability to take risks. As a consequence, their libraries may be more innovative in accepting cutting-edge concepts or new technical applications (Massis, 2018). Hence, the study selected as its sample the top 25 universities in the UK, and the top 25 in the Mainland of China, based on the QS World University Rankings 2022 (see Table 1). Also, given the need for library strategies to align to university strategies it made sense to analyze both together (Cox, 2018). Given the different official languages of the two countries, the study reviewed research articles published in English and Simplified Chinese, as well as the website search keywords.

Table 1 Sample universities

		00	TT : C
QS	Universities from the UK	QS	Universities from China
гапк		rank	
2	University of Cambridge	12	Peking University
4	University of Oxford	14	Tsinghua University
6	Imperial College London	34	Fudan University
8	UCL	42	Zhejiang University
15	The University of Edinburgh	46	Shanghai Jiao Tong
			University
28	The University of Manchester	94	University of Science and
			Technology of China
37	King's College London	133	Nanjing University
56	The London School of Economics	194	Wuhan University
	and Political Science (LSE)		
61	University of Bristol	212	Tongji University
64	The University of Warwick	217	Harbin Institute of
			Technology
78	University of Southampton	226	Southern University of
			Science and Technology
81	University of Glasgow	262	Beijing Normal University
86	University of Leeds	267	Sun Yat-sen University
91	University of Birmingham	302	Xi'an Jiaotong University
92	Durham University	306	Huazhong University of
			Science and Technology
96	The University of Sheffield	307	Tianjin University
96	University of St Andrews	355	Beijing Institute of
			Technology
114	University of Nottingham	378	Nankai University
122	Newcastle University	396	Shandong University
125	Queen Mary University of	406	Sichuan University
	London		
146	Lancaster University	406	South China University of
			Technology
162	University of York	422	Shanghai University
163	The University of Exeter	422	Xiamen University
166	Cardiff University	428	University of Science and
			Technology Beijing
179	University of Bath	443	Beihang University (former
			BUAA)

A website search was conducted between 15th December 2022 and 30th January 2023, using two search engines, Bing.com and Baidu.com and applying a site-restricted search approach. The search keywords included Artificial Intelligence (人工智能), Machine Learning (机器学 习), deep learning (深度学习), AI hub (AI中心), robot (机器人), and the Simplified Chinese counterparts are shown in the brackets. In addition, the study also checked whether there are AI institutions, departments, or courses in the universities. The needs of large majors or disciplines teaching AI are bound to have an impact on library services, such as collecting.

The authors collected materials or documents that reflected the universities and their libraries' strategic priorities or key areas of development in future years, such as strategic plans, visions, development programmes, agendas, and statements which can be found on the official websites of both universities and libraries. A simple content analysis approach was used to discover the appearance of AI-related keywords as above in documents of strategy or vision or plan, and the word frequency was recorded.

As the study sought to interpret the topic from the academic libraries' perspective, the paper also explored the websites of sample libraries to examine whether AI applications such as intelligent virtual agents have existed or are planned to implement in the future. Though developing for decades, there is no unified and standard definition of AI, and various scholars and institutions have their interpretations (Cox & Mazumdar, 2022). For librarians, artificial intelligence may be confused with the concepts of library automation, intelligent or smart library, as a consequence of lacking knowledge and lower perceptions of AI. So, it is understandable that libraries take automatic products as AI and advertise services as AI which might not be considered such. Furthermore, not all the robots and chatbots which are beginning to be used in libraries are based on AI (Cox & Mazumdar, 2022). Hence, during the search for AI-related or intelligent products or services in the libraries, the authors collected all the items which were claimed to be intelligent products or services, and did not identify strictly whether those items are based on AI technology or not, then showed all of them in the next section.

Findings

AI in universities

According to the results of the website study, all the sample universities have future strategic plans, however, the time span of each strategy is different, ranging from 4 to 10 years, most commonly 4 to 6 years. They also vary in style and approach: from high-level visions to detailed plans. The strategy documents collected were relatively new, and the strategic plans of 38 of the universities had been released after 2020, so could be expected to reflect current thinking about AI since this date is after the major national policy was released in both countries. The authors conducted a content analysis of those strategic plans and counted the word frequency of AI-related keywords (see Table 2). The results showed that AI/ML was mentioned in the strategies of 24 universities, 3 of which were from the UK and 21 were from China, the total number of times that AI-related words appeared in the documents is 171, 3 % (5 out of 171 times) are from British universities and 97 % (165 out of 171 times) are from Chinese ones, the maximum is 22 which from the Fudan University, and the average value is 3.4, which might imply the unevenly distributed of these words in the strategies. However, the content mentioned about AI/ML was about the development of AI majors, disciplines, and colleges, which was less directly relevant to the application of AI in the university library. However, it was also found that 5 universities have set out the goal of building smart libraries in the vision section of their strategies.

With the rapid development of artificial intelligence technologies and the demand for AI professionals in various industrial sectors, universities around the world have been offering AI-related courses which aim to promote the cultivation of AI professionals. Nearly every

Table 2

number of wrong answers, the library had to stop using the robot for

enquiry or chatting. However, several years after that, the library improved and upgraded Xiaotu, the first-generation robot, and launched the Intelligent Question and Answer System, an information service

Table 2				Table 2 (continued)				
AI in universities and l University	libraries. The frequency of AI- related keywords in University Library		Service/Products/	University	The frequency of AI- related keywords in		Service/Products/ Collaborations in libraries	
			Collaborations in libraries		University strategy	Library strategy	-	
	strategy	strategy					search engine company, to	
University of	0	0	-	The second state in the second second	7		build the AI library.	
Cambridge University of Oxford	0	0	Some data mining tools	Harbin Institute of	10	_	– Hosting smart library forum.	
emitersity of emotio	0	0	including ML tools.	Technology			0 2	
Imperial College	1	0	-	Southern University of Science and	2	-	-	
UCL	2	0	_	Technology				
Peking University	11	_	Automated Storage and	Beijing Normal	0	0	-	
			Retrieval System (AS/RS)	University	2			
Tsinghua University	1	-	Smart talking robot Xiaotu	Sun Yat-sen University	3	-	-	
			(2012), Intelligent Q&A System (2020)	Xi'an Jiaotong	10	0	Intelligent assistants	
The University of	2	0	Hosting events	University			0	
Edinburgh			0	Huazhong University	1	-	_	
The University of	0	0	-	of Science and				
Manchester				Technology	0		Intelligent assistants	
Fudan University	22	-	Enquiry robots, hosting	Beijing Institute of	0	-	Hosting events Intelligent	
King's College London	0	0	events	Technology	1	0	assistants	
Zheijang University	2	-	Hosting events, AI search	Nankai University	12	-	Intelligent enquiry based on	
			engine				apps in mobile phone.	
Shanghai Jiao Tong	12	0	Future Library Intelligent	Shandong University	0	-	-	
University			Service Joint Research and	Sichuan University	6	-	Intelligent enquiry	
			Development Centre,	South China	13	-	-	
			Robot	Technology				
The London School of	0	_	_	Shanghai University	21	_	_	
Economics and	0			Xiamen University	4	-	-	
Political Science				University of Science	1	-	-	
(LSE)				and Technology				
University of Bristol	0	0	-	Beijing Beibang University	10		Intelligent aggistants	
Warwick	0	0	-	(former BUAA)	12	-	interingent assistants	
University of	0	_	_					
Southampton				Note: "-" means strates	gies or product	ts or services	are not found or not available.	
University of Glasgow	0	-	-					
University of Leeds	0	0	-	university in the sar	nple has int	roduced suc	ch courses on AI, and some	
University of	0	-	-	universities have e	stablished A	I research	institutes or departments.	
Durham University	0	_	_	Others have establi	shed an AI/	ML curricu	llum in the department of	
University of Science	0	_	Enquiry robots, hosting	Computer Science of	r Data Scien	ce, and all i	mplemented AI research or	
and Technology of			events	learning centers mo	st of which	are located	l in academic departments	
China				rather than in the li	brary.			
The University of	0	0	-					
University of St	0	_	_	AI in libraries				
Andrews	0							
University of	0	0	_	The analysis sho	wed that 19	libraries ha	ve strategic plans, of which	
Nottingham				15 plans are officiall	v released do	ocuments ar	nd 4 plans are in the form of	
Newcastle University	0	0	-	visions or agendas.	Keyword sea	rches found	that none of the strategic	
Queen Mary University of	0	0	Resource guides of machine	nlans mentions AL/	MI. 18 libra	ries have al	ready introduced AI appli-	
London			intelligence.	cations or offer AI se	rvices or mo	re accurate	v some intelligent services	
Nanjing University	3	-	Nanjing University Library	including 2 in the U	K and 16 in	China Acc	bown in Fig. 1 there are 9	
			Service Platform, next	libraries that provi	de intellige	onna. no o	agents enquiry robots or	
			generation library manage	Chathat comuiage his	t most of th		agents, enquiry robots, or	
			system, Intelligent Inventory	provious Of A white	h are not str		s are based on a dataset of	
			2017) Intelligent enquiry	previous Q&A, which	in are not su	icity AI age	and has The authors found one	
			Collection indoor	real Al Dased smart	taiking rot	ot develop	ed by Isinghua University	
			positioning.	Library from the life	erature revie	w, not web	site exploration (Yao et al.,	
Lancaster University	0	0	-	2015). The robot Xia	iotu nad Dee	n pre-traine	u with a significant volume	
University of York	0	-	-	of data and was able	e to learn fro	om commur	incation data to improve its	
i ne University of	U	-	-	answers continuous	y. After beir	ng put into	use for some years, certain	
Cardiff University	0	_	_	users discovered th	e robot's se	It-learning	and self-improvement fea-	
University of Bath	0	_	_	tures, and intentiona	ally fed the r	obot with f	alse data, resulting in some	
Wuhan University	12	-	The library has partnered	toxic language expre	essions in its a	answers. As	a consequence of a growing	

The library has partnered with Baidu - the world's largest Chinese language

4

Fig. 1. AI services in academic libraries.

conversation system (Tsinghua University Library, 2021).

In the sample, seven libraries held AI-themed forums, lectures, seminars, etc., and two libraries provided AI-related resources, such as the introduction of AI/ML tools, and AI/ML-related resource navigation and guidelines. Four libraries cooperated with third-party companies or academic departments to participate in the development and application of AI products, or to introduce intelligent products. Nanjing University Library has made the most outstanding achievements, participating in the development of AI-related products such as the intelligent inventory robot, Nanjing University library service platform, prototype of nextgeneration intelligent library management system, and so on. Peking University Medical Library introduced the Automated Storage and Retrieval System (AS/RS) after the rebuilding and redesigning project of its main body, which frees up space from bookshelves for users. Wuhan University Library has worked with Baidu Inc., the largest Chinese search company, to build an AI library, but no further details or implementation steps can be found on the website.

Discussion

Strategies of universities and libraries

Even if AI is mentioned in the strategic plans of some universities, this mainly refers to the development of majors in AI and has little to do with the library or the application of AI to university operations. What is interesting is that most universities (88 %, 21 out of 24 universities) that mention AI in their strategies are from the Mainland of China, while AI/ ML or relevant keywords are sporadic in strategies collected from the sample British universities. This phenomenon may be related to the different approaches of the two countries' universities in drafting future strategies. We have a very small sample in our study but it appears that the strategic plans of Chinese universities are typically concrete plans with detailed roadmaps in every discipline, which also emphasize the majors and institutional structures that need to be developed as priority in the next few years, such as research on new technologies. In contrast, the strategic plans of British universities appear to consist of a vision and mention aspirations including high quality, impactful research, excellent student experiences, global reach, and a civic role, with, as emerging themes, an emphasis on well-being and equality, diversity, and inclusion. They say far less about specific majors and technologies.

In addition, we suggest that the research and development of AIrelated technologies and products have been highlighted at the Chinese national strategic level, so vigorously promoting the development of AI in every sector including HE. The circumstances in the UK are subtly different. Although the government has in recent years embraced AI as an engine for industrial development (Wang, 2022) and issued the AI Roadmap to further clarify the UK's AI development strategy and priorities (Office for artificial intelligence, 2021), universities have autonomy in developing their values, principles, characteristics, and development priorities, and do not unquestioningly pursue technological hotspots or show evidence of being strongly influenced by government policy.

Consistent with Saunders' (2015) findings that technology is rarely the focus of library plans, neither British nor Chinese universities mention the application of AI in libraries in their strategic documents. This does not mean, however, that universities or academic libraries are not interested in AI. Quite the contrary, several UK universities in the sample published digital strategies, which do not necessarily mention AI/ML either, but that does show that some institutions are thinking in terms of fundamental digital transformations. The University of Leeds (2021) has released digital strategies that directly talk about support for research areas including high-performance computing, artificial intelligence/deep learning, Internet of Things, robotics, etc. Similarly, the Digital Strategic Delivery Plan from the University of Nottingham (2021) defines digital as an effective combination of organizational and technological processes to generate value, which organization and technology are key elements. Since digital technology refers to a wide range of technical solutions including analytics, data visualization, and decision logic, and so on, it can be seen that the attractions of emerging technologies to universities do exist, with an emphasis on digital skills. Therefore, it is worth considering whether the focus of the future strategy will shift from AI to digital as a whole, and digital transformation as a cultural and workforce priority as much as a technological one (Brooks & McCormack, 2020; Iosad, 2020; Skelton, 2023).

Service and products in libraries

Although the study expanded the search from AI-related services to intelligent services during the explorations of libraries' websites, few applications, products or services based on artificial intelligence or machine learning could be found in the sample academic libraries, which suggests the slow progress of their adoption. Several libraries claim to have developed intelligent virtual agents or chatbots, but only the smart talking robot Xiaotu developed by Tsinghua University Library and the book inventory robots developed by Nanjing University Library are real AI products. The former is based on Natural Language Processing (Yao et al., 2015), the latter has combined robot technology and RFID (Fan & Shao, 2018; Ni, 2017), and the rest use little artificial intelligence technologies. In most cases, the automatic reply agents or robots can only deal with some simple enquiries which are phrased in a standard way. When facing more complex questions, since they do not have the ability to process natural language they cannot respond directly to requests.

Comparison of the two countries

There is an obvious difference in that all the eight libraries making available intelligent enquiry or assistants or chatbot services are from China, and the British libraries have not yet created such services. But we cannot conclude that the introduction of intelligent assistants or chatbots in the British academic library lags behind that of China, because the previous literature review section shows that artificial intelligence originated in the UK, and China often appears to lag behind European and American countries in many aspects including library and information science sector (such as in the case of RDM (Huang et al., 2021). The efficiency of chatbots applications in the library is still controversial. Although stakeholders are inclined to introduce chatbot technology to deliver diverse services (Kaushal & Yadav, 2022), there is lacking user experience to evaluate the applications. Studies have proved that chatbots are not very successful in library application in the North American context (Lin, 2022). Another issue is how to collect user behavior data which is used to train the machine to make the robothuman communication more in line with user habits (Yang & Deng, 2021). Since mature AI products are relatively expensive (Cox et al., 2019) and require a large scale of training data and a certain number of technical professionals, the overall cost may outweigh that of librarians to carry out consulting services by themselves. Therefore, it may be that Chinese libraries are still in the early stages of introducing chatbots, while British libraries may have already reached a realization that they are not effective.

A promising area of the application of AI is knowledge discovery of content such as large-scale image collections, sound collections, hand-written text, etc., where AI can efficiently describe content at scale (Cox & Mazumdar, 2022). However, for academic libraries it is logical to assume that these may not be so central issues compared to delivering book and journal content to students, where library catalogues already perform adequately. This is another possible reason for AI not to have developed very far to date. We see much more innovation in these areas from national libraries which have large unique collections requiring advanced search (Lorang et al., 2020; Qian et al., 2021). It may be that we are too early in the cycle of AI adoption to expect to see more reference to it in strategies.

Though not using the same terminology, the sample universities from the two countries both mentioned concepts or terms which are more wide-ranging than AI, for example, "digital strategy" or "transformation" in some Britain universities, and "intelligent libraries" in Chinese ones. These concepts are closely connected to a diverse spectrum of newly emerging technologies that include but are not limited to AI. Hence, universities and libraries may locate AI as a part of a wider digital transformation strategy or one of the approaches to achieve an intelligent library but not the center of a strategy, which is in line with the lack of AI-related keywords in university strategic plans.

The similarity between the two countries is that there are various challenges in the process of introducing AI in the library, such as the lag of development behind frontier economic industries (Li et al., 2022) and the lack of funds and professional skills which are necessary for applying

AI products. We can speculate that slow progress in adopting AI may reflect that libraries from both countries seek relatively easy and feasible ways to follow the trend of AI and progress smart library goals, with limited funds and human resources.

Challenges of applying AI in academic libraries

AI has significant technical barriers for libraries, e.g. it may be hard to apply algorithms trained on contemporary material to historic collections because they have different characteristics. An algorithm trained on contemporary images may be less effective with historic images, for example, because many objects such as buildings, décor and clothing look different. Significantly, from the authors' experience most UK academic libraries also lack large technical development teams and tend to buy off-the-shelf solutions. This is partly because IT departments tend to control technical development and also because libraries' identities focus on other things such as access to content. Also, the application of technologies entails risk. By reputation libraries have often been seen as somewhat risk averse (e.g. Joint, 2007) though we know of no systematic study of this. Libraries probably adopt a more professional approach to risk management today, but our results can be seen as reflecting a degree of risk aversity with a concentration on delivering reliable services at scale. Most AI products manufactured by commercial companies are not easily integrated with the library's existing systems and services which seems a common issue when introducing new products in academic libraries (Kaushal & Yaday, 2022). The new intelligent service projects are self-contained and require a high level of technical support that most libraries are not able to supply. A few libraries with strong technical resources cooperate with a third party to develop products suitable for their libraries, but these may be difficult to diffuse widely. Ultimately, echoing Saunders' (2015) findings, academic libraries have many priorities which compete with applying the latest technologies and tend to focus on the roles in user education and traditional services, such as the managing and access to collections, and maintenance of physical and virtual learning space and this may lead to hesitancy in keeping up with technologies that are partly suspected of being hype.

An overabundance of caution?

The technical and resourcing overhead of AI partly helps to explain the limited academic library engagement with AI reported in this study, but other factors such as mindset may also come into play. A cautious library stance towards technological change has been noted and this has deep roots. Almost five decades ago, Lancaster (1978) expressed frustration at what he saw as a "myopic" view in the library profession towards the future and in particular the coming shift from print to digital formats and communications. He observed a sense of denial, with the profession seeming to have its "head in the sand". More generally, there are questions about the level of attention which academic libraries afford towards appreciating and anticipating radical change. Their laudable commitment to service brings a risk that resources are prioritised towards internal processes rather than external engagement, with a focus on the immediate term at the expense of future thinking. The emphasis on collections and space over technology in the 63 academic library strategies studied by Saunders (2015) reflects a strong internal focus. Budd (2018) has identified a librarian tendency towards linear thinking, seeing related issues in isolation, and failing to connect developments in the outside world with the local environment. This can make it difficult to contemplate and appreciate the scale of change potentially associated with AI.

The struggle to understand AI may be linked to a recent finding that only 16 % of US academic library directors in a 2022 survey (Hulbert, 2023) agreed that their library had a clear vision of futureproofing that takes into account technological and socio-political trends. This finding, unlikely to be exclusive to academic library leadership in the US, indicates a lack of confidence which could be holding back a deeper engagement with, and strategic commitment towards, AI. Another inhibiting factor may be an overly conservative approach to discontinuing past activities and the library literature contains few references to Peter Drucker's concept of planned abandonment (Martin & Sheehan, 2018). A tendency to continue with services of interest to dwindling audiences can consume resources otherwise available for experimentation and exploration (Stoffle et al., 2008). The concerns of the library profession with the ethical implications of AI are wellfounded. Librarian values of privacy, intellectual freedom, neutrality, transparency, equality and diversity are all at risk of compromise through AI or ML. Anxiety about AI technologies and their consequences may be a further source of hesitation towards, and refrain from, deeper engagement by academic libraries.

An alternative view, and indeed mindset, would be that the ethical issues associated with AI are the very reason why academic libraries should give priority to engaging with it, thereby upholding their values strongly. Such involvement can be relatively low-cost but highly impactful and welcomed by others grappling with how to make the most of these technologies. An obvious case in point would be a deep engagement with the implications for information literacy and academic integrity of generative AI tools such as ChatGPT which are currently exercising a lot attention among academic staff. Too much caution may itself carry risk and academic libraries could be significantly disadvantaged if they fall behind the curve, leaving it to vendors to develop products, possibly with in-built bias, in areas of interest to libraries and higher education, notably rapid citation analysis and digests of the literature (Williams & Grove, 2023), as well as applications specific to libraries such as collections as data and automated generation of metadata. A stronger focus on the potential benefits of AI for academic libraries may be appropriate, noting opportunities to bring efficiency to labour-intensive operations and to divert resources to activities that can move libraries further up the institutional value chain. Embracing AI constructively but judiciously seems sensible, making time for experimentation and signaling an appreciation of the potential for profound change by giving prominence to AI in academic library strategy.

Conclusion

This study is one of the first to analyze the status of the application of AI in Chinese and British academic libraries at the sector level and explore the adoption of AI from the perspectives of strategy and practical application. In the sample of high-ranking university libraries, the authors found some applications of AI products and services. Although the types of applications are relatively simple, mainly focusing on virtual assistants, resource navigation, events or lectures, and robots, it is certain that libraries have actively explored AI in recent years. But the engagement in this emerging technical trend is uneven, some academic libraries are able to design and develop products based on AI technology while some have no information or content about AI/ML/intelligence on their websites. Librarians' application of AI seems to remain at a low

level to date. We have to acknowledge a number of limitations to the study and further investigations are needed to fully understand how the use of AI is developing, in a rapidly developing context. Fundamentally, the approach we took relied heavily on material published on web sites. This does not necessarily fully or consistently represent actual activity. It is indicative of major commitments, but it may well miss many initiatives which are in their early stages. Follow up interviews with library directors or a survey would be a useful way to determine the facts here. Surveys of current practice, projects in hand and technology adopted across the sector in both countries would be very useful, as AI does start to be adopted. Also, we focused on high status institutions on the assumption that they have the resources to lead development in the sector, but it may well be that there was more activity in the large number of institutions not investigated. Studies of other institutions and, of course, in other countries are needed. It would also be useful to expand the study to discover how current change is being driven, eg whether it is on specific technologies like AI, on a wider digital transformation, or whether it is rooted in other drivers. Research to better understand how libraries develop their strategies in the context of their institution and national policy trends would also help place studies like this in context.

Libraries' attitudes towards AI can be summed up as prudent. This approach could be argued to be the optimal plan for current conditions. The library, as a function-oriented unit within the university, should choose feasible technical routes to meet the demands of its role, rather than chasing the hottest technologies indiscriminately. If new technologies, like AI/ML/NLP, can accelerate the process of achieving goals or raise the efficiency of professional processes, then active exploration is undoubtedly justified, but concrete application needs to consider other factors, such as whether there is sufficient funding, what the value generated is, what support is available from the institution, and the technical ability and skills of librarians. If there are strong barriers or well-established approaches already work well technology may not be adopted. Yet the prominence of AI in current HE agendas should prompt a level of active engagement with a stress on finding useful and ethical applications.

CRediT authorship contribution statement

Yingshen Huang: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Writing – review & editing. Andrew M. Cox: Conceptualization, Methodology, Writing – review & editing. John Cox: Writing – review & editing.

Declaration of competing interest

None.

Data availability

Data summary is Appendix.

Appendix 1.	The strategies	of universities

University	Referencing link	Date of released	Span of the strategy	Date of found	AI-related words frequency
University of Cambridge	https://www.governance.cam.ac.uk/Pages/University-s trategies.aspx	_	-	2 January 2023	0
University of Oxford	https://www.ox.ac.uk/about/organisation/strategic-pla n-2018-24	Approved by Council 9 July 2018 and by Congregation on 30 October 2018	2018–2024	10 January 2023	0
Imperial College London	https://www.imperial.ac.uk/strategy/	-	2020-2025	28 January 2023	1
				(a a m tim	

(continued on next page)

Y. Huang et al.

(commuter)					
University	Referencing link	Date of released	Span of the strategy	Date of found	AI-related words frequency
UCL	https://www.ucl.ac.uk/strategic-plan-2022-27/	11 January 2023: UCL Strategic	2022-2027	13 January	2
Peking University	https://zys.pku.edu.cn/docs/20211122113124985739.	October 2021	2021-2025	2023 24 December	11
Tsinghua University	pdf https://www.tsinghua.edu.cn/info/1624/88432.htm	October 2021	2021–2025	20222 24 December 20 222	1
The University of	https://www.ed.ac.uk/about/strategy-2030	Sep, 2022	Strategy 2030	13 January	2
The University of Manchester	https://www.manchester.ac.uk/discover/vision/	-	-	2023 13 January 2023	0
Fudan University	https://xxgk.fudan.edu.cn/72/e2/c12546a422626 /nage.htm	October 2021	2021-2025	2 January 2023	22
King's College London	https://www.kcl.ac.uk/about/strategy	-	Vision 2029	13 January 2023	0
Zhejiang University	https://www.zju.edu.cn/xxgk/2021/1117/c179	November 2021	2021-2025	5 January	2
Shanghai Jiao Tong	https://plan.sjtu.edu.cn/info/1011/1838.htm	October 2021	2021-2025	5 January	12
The London School of Economics and Political	https://www.lse.ac.uk/2030	-	LSE2030	2023 14 January 2023	0
University of Bristol	https://www.bristol.ac.uk/university/strategy/	November 2022	2022–2030	17 January 2023	0
The University of Warwick	https://warwick.ac.uk/about/strategy/		Strategic	17 January	0
University of Southampton	https://www.southampton.ac.uk/susdev/our-approach	developed in mid-2020	2020–2025	17 January	0
University of Glasgow	https://www.gla.ac.uk/explore/strategy/		2020-2025	2023 28 January 2022	0
University of Leeds	https://www.leeds.ac.uk/about/doc/strategies-plans		2020-2030	2023 17 January 2023	0
University of Birmingham	https://www.birmingham.ac.uk/university/our-strat		Birmingham	2023 28 January 2023	0
Durham University	https://www.durham.ac.uk/about-us/university-str		2017-2027	28 January 2023	0
University of Science and Technology of China	https://xxgk.ustc.edu.cn/13824/list.htm	December 2016	2016-2020	6 January	0
The University of Sheffield	https://www.sheffield.ac.uk/vision	-	2020-2025	1 January 2023	0
University of St Andrews	https://www.st-andrews.ac.uk/about/governance/un iversity-strategy/	October 2022	2022–2027	19 January 2023	0
University of Nottingham	https://www.nottingham.ac.uk/Strategy/Home.aspx	-	-	19 January 2023	0
Newcastle University	https://www.ncl.ac.uk/flippingbook/vision/visi	-	-	-	0
Queen Mary University of	https://www.qmul.ac.uk/strategy-2030/	-	Strategy 2030	-	0
Nanjing University	https://xxgk.nju.edu.cn/15409/list.htm	October 2021	2021-2025	5 January	3
Lancaster University	https://www.lancaster.ac.uk/strategic-planning-and- governance/strategic-plan/#innovating-for-excellence-	_	2021-2026	-	0
University of York	480500-5 https://www.york.ac.uk/about/mission-strategies/visio	October 2021	2020-2030	23 January	0
The University of Exeter	n-for-york/ https://www.exeter.ac.uk/about/strategy2030/	-	Strategy 2030	2023 23 January	0
Cardiff University	https://www.cardiff.ac.uk/about/our-profile/strategy	-	2018-2023	2023 23 January	0
University of Bath	https://www.bath.ac.uk/topics/the-university-of-bath		2021-2026	2023 27 January	0
Wuhan University	-strategy-2021-to-2026/ http://info.whu.edu.cn/info/1509/22475.htm	January 2022	2021-2025	9 January	12
Tongji University	http://xxgk.tongji.edu.cn/index.php?classid=3098≠	October 2021	2021-2025	9 January	7
Harbin Institute of	wstu-15054ct=silow http://xxgk.hit.edu.cn/2021/1124/c12140a265344/	October 2021	2021-2025	9 January	10
Southern University of	page.num https://www.sustech.edu.cn/zh/information-open.html	May 2022	2021-2025	2023 9 January	2
Science and Technology Beijing Normal University	http://fzghc.bnu.edu.cn/zlgh/ztgh/index.html	July 2016	2016-2020	2023 9 January	0
Sun Yat-sen University	https://xxgk.sysu.edu.cn/article/105	October 2021	2021-2025	2023 9 January	3
Xi'an Jiaotong University	http://xxgk.xjtu.edu.cn/list_lm.jsp?urltype=egovinfo. EgovCustomURl&wbtreeid=1001&type=subcattree	October 2021	2021–2025	2023 9 January 2023	10

(continued on next page)

Y. Huang et al.

(continued)

University	Referencing link	Date of released	Span of the strategy	Date of found	AI-related words frequency
	&sccode=fzgh&subtype=3&gilevel=2&openitem=fzgh :2				
Huazhong University of Science and Technology	http://xxgk.hust.edu.cn/info/1165/1933.htm	December 2017	2017–2020	9 January 2023	1
Tianjin University	http://xxgkw.tju.edu.cn/xxfzgh/	July 2016	2016-2020	9 January 2023	0
Beijing Institute of Technology	https://xxgk.bit.edu.cn/docs/20190925095123374130. pdf	November 2018	2016-2020	9 January 2023	1
Nankai University	http://xxgk.nankai.edu.cn/_upload/article/files/3d/e1/ 93afde4d4a15ae2ffadaedccbf41/556aafb4-c0 44-4469-a27b-16dfc7f757bc.pdf	November 2021	2021–2025	9 January 2023	12
Shandong University	https://www.fzgh.sdu.edu.cn/info/1003/2428.htm	December 2016	2016-2020	9 January 2023	0
Sichuan University	https://xxgk.scu.edu.cn/_local/C/1C/36/65C5EE9 1E1ECF3F54D2708FEA35_1660CD61_A1993.pdf	October 2021	2021-2025	9 January 2023	6
South China University of Technology	https://xxgk.scut.edu.cn/36/list.htm	October 2021	2021-2025	9 January 2023	13
Shanghai University	https://xxgk.shu.edu.cn/ziliao/145.pdf	October 2021	2021-2025	10 January 2023	21
Xiamen University	https://gk.xmu.edu.cn/info/1025/2168.htm	October 2021	2021-2025	9 January 2023	4
University of Science and Technology Beijing	https://odp.ustb.edu.cn/docs/2019-04/201904171620 27485659.pdf	-	2017-2020	9 January 2023	1
Beihang University (former BUAA)	http://xxgk.buaa.edu.cn/syljs.htm	May 2022	2021–2025	9 January 2023	12

Note: "-" means not found or not available.

References

- Brooks, D. C., & McCormack, M. (2020). Driving digital transformation in higher education. Boulder, CO: EDUCAUSE. Available at https://www.educause.edu/ecar/research-pu blications/driving-digital-transformation-in-higher-education/2020/introduction-an d-key-findings.
- Budd, J. M. (2018). The changing academic library: Operations, culture, environments (3rd ed.). Chicago: Association of College and Research Libraries.
- Buhe, B. (2017). The application, challenge, and developing trend of AI technology in library. Library & Information, 06, 48–54.
- Chen, J., & Chen, H. (1992). The application of artificial intelligence and the automation of document processing. [Ren gong zhi neng de ying yong he wen xian jia gong gong zuo zi dong hua]. Library and Information Service, 1, 18–21.
- Cordell, R. (2020). Machine learning + libraries: A report on the state of the field. Library of Congress. https://labs.loc.gov/static/labs/work/reports/Cordell-LOC-ML-report. pdf?.
- Cox, A. M. (2021). The impact of AI, machine learning, automation and robotics on the information professions: A report for CILIP. https://www.cilip.org.uk/genera l/custom.asp?page=researchreport.
- Cox, A. M., & Mazumdar, S. (2022). Defining artificial intelligence for librarians. Journal of Librarianship and Information Science, 11. https://doi.org/10.1177/ 09610006221142029
- Cox, A. M., Pinfield, S., & Rutter, S. (2019). The intelligent library thought leaders' views on the likely impact of artificial intelligence on academic libraries. *Library Hi Tech*, 37(3), 418–435. https://doi.org/10.1108/Lht-08-2018-0105
- Cox, J. (2018). Positioning the academic library within the institution: A literature review. New Review of Academic Librarianship, 24(3–4), 217–241.
- Deng, L., & Yang, W. (2021). Rational thinking of artificial intelligence use in library. Library Work and Study, 04, 57–64. https://doi.org/10.16384/j.cnki. Iwas.2021.04.010
- Fan, H., & Shao, B. (2018). Reflection and innovative practice of book inventory with intelligent robot, case study of Nanjing University Library. *Library*, 09, 96–100.
- Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. *Journal of Management Studies*, 58(5), 1159–1197.
- Hervieux, S., & Wheatley, A. (2021). Perceptions of artificial intelligence: A survey of academic librarians in Canada and the United States [article]. Journal of Academic Librarianship, 47(1), 11, Article 102270. https://doi.org/10.1016/j. acalib.2020.102270
- Hervieux, S., & Wheatley, A. (Eds.). (2022). The rise of AI. Implications and applications of artificial intelligence in academic libraries. Association of College and Research Libraries.
- Huang, Y., Cox, A. M., & Sbaffi, L. (2021). Research data management policy and practice in Chinese university libraries. *Journal of the Association for Information Science and Technology*, 72, 493–506.
- Hulbert, I. G. (2023). Ithaka S+R US library survey 2022: Navigating the new normal (doi: 10.18665/sr.318642).

Iosad, A. (2020). Digital at the core: A 2030 strategy framework for university leaders. JISC. https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-lea ders.

- Joint, N. (2007). Applying general risk management principles to library administration. Library Review, 56(7), 543–551.
- Kaushal, V., & Yadav, R. (2022). The role of chatbots in academic libraries: An experience-based perspective. Journal of the Australian Library and Information Association, 71(3), 215–232. https://doi.org/10.1080/24750158.2022.2106403
- Kim, B. (2019). AI and creating the first multidisciplinary AI lab. Library Technology Reports, 55, 16.
- Lancaster, F. W. (1978). Whither libraries? Or, wither libraries? College & Research Libraries, 39(5), 345–357. https://doi.org/10.5860/crl 39 05 345
- Li, Y., Lu, C., & Ma, B. (2022). Research and outlook on the application of artificial intelligence in library under the background of innovation driven. *Library Theory and Practice*, 03, 64–71. https://doi.org/10.14064/j.cnki.issn1005-8214.2022.03.002
- Lin, H. (2022). Machine learning and academic library National Science and Technology Library, the 17th series of Fronties trends report: Towards a data library, Beijing, China.
- Lorang, E. M., Soh, L., Liu, Y., & Pack, C. (2020). Digital libraries, intelligent data analytics, and augmented description: A demonstration project.
- Martin, E. A., & Sheehan, L. A. (2018). The new "jack of all": The evolution of the functionality and focus of the academic librarian in new spaces and new roles Challenging the "jacks of all trades but masters of none" librarian syndrome. (Advances in Library Administration and Organization 39) (pp. 67–90). Bradford: Emerald Publishing Limited. https://doi.org/10.1108/S0732-067120180000039006
- Massis, B. (2018). Artificial intelligence arrives in the library. Information and Learning Science, 119(7–8), 456–459. https://doi.org/10.1108/ils-02-2018-0011
- NHS England Transformation Directorate. (2020). The NHS AI roadmap. https://transf orm.england.nhs.uk/ai-lab/ai-lab-programmes/the-national-strategy-for-ai-in-heal th-and-social-care/.
- Ni, J. (2017). Design and development of RFID intelligent book inventory robots. *New Century Library*, 02(69–72+81). https://doi.org/10.16810/j.cnki.1672-514X.2017.02.017
- Ocholla, D. N., & Ocholla, L. (2020). Readiness of academic libraries in South Africa to research, teaching and learning support in the fourth industrial revolution. *Library Management*, 41(6–7), 355–368. https://doi.org/10.1108/lm-04-2020-0067

OECD. (2023). OECD policy observatory. https://oecd.ai/en/.

Office for artificial intelligence. (2021). UK AI council AI roadmap. https://www.gov. uk/government/publications/ai-roadmap.

- Padilla, T. (2019). Responsible operations: Data science, machine learning, and AI in libraries. In OCLC. https://doi.org/10.25333/xk7z-9g97
- Phillips, P. J., & O'Toole, A. J. (2014). Comparison of human and computer performance across face recognition experiments. *Image and Vision Computing*, 32, 74–85.
- Pinfield, S., Cox, A. M., & Rutter, S. A. (2017). Mapping the future of academic libraries: A report for SCONUL.
- Presidential Document of America. (2019). Maintaining American leadership in artificial intelligence. https://www.federalregister.gov/documents/2019/02/14/2019-02 544/maintaining-american-leadership-in-artificial-intelligence.
- Qian, L., Liu, X., Zhang, Z., & Liu, H. (2021). Design and application of ecological system of intelligent knowledge service based on AI, an example of building of intelligent

Y. Huang et al.

The Journal of Academic Librarianship 49 (2023) 102772

service platform of National Science Library, CAS. *Library and Information Service, 65* (15), 78–90. https://doi.org/10.13266/j.issn.0252-3116.2021.15.010 Saunders, L. (2015). Academic libraries' strategic plans: Top trends and under-

recognized areas. *The Journal of Academic Librarianship*, 41(3), 285–291. Skelton, N. (2023). Digital strategies in higher education: Making digital mainstream.

- JJSC. thrs://beta.jisc.ac.uk/reports/digital-strategies-in-uk-higher-education-m aking-digital-mainstream.
- Spille, C., Kollmeier, B., & Meyer, B. T. (2018). Comparing human and automatic speech recognition in simple and complex acoustic scenes. *Computer Speech and Language*, 52, 123–140. https://doi.org/10.1016/j.csl.2018.04.003
- Stoffle, C. J., Leeder, K., & Sykes-Casavant, G. (2008). Bridging the gap: Wherever you are, the library. Journal of Library Administration, 48(1), 3–30. https://doi.org/ 10.1080/01930820802028948
- The National Social Science Fund of China. (2018). 2018 National Social Science Foundation project application announcement. National Office of Philosophy and Social Sciences. http://www.nopss.gov.cn/n1/2017/1221/c219469-29721987.html.
- The State Council of China. (2021a). Opinions of the Ministry of Culture and Tourism, the National Development and Reform Commission and the Ministry of Finance on Promoting the High-quality Development of Public Cultural Services. Ministry of Culture and Tourism, National Development and Reform Commission, Ministry of Finance. http://www.gov.cn/zhengce/zhengceku/2021-03/23/content 5595153.htm.
- The State Council of China. (2021b). The 14th five-year plan for national economic and social development of the People's Republic of China and outline of the vision for 2035. Xinhua News Agency. http://www.gov.cn/xinwen/2021-03/13/content_5592681. htm.
- The University of Leeds. (2021). Digital transformation, University of Leeds Strategy, 2020 to 2030. https://spotlight.leeds.ac.uk/strategy-digital-transformation/index. html#article.
- The University of Nottingham. (2021). 26th April. Digital Strategic Delivery Plan http: s://www.nottingham.ac.uk/Strategy/documents/Digital-Strategic-Delivery-Plan.pdf.

- Tiple, V. (2020). Recommendations on the European Commission's WHITE PAPER on artificial intelligence - A European approach to excellence and trust, COM(2020) 65 final (the "AI White Paper"). ISN: Other Legal Perspectives in Information Systems (Topic).
- Tsinghua University Library. (2021). Introduction to the service of "Qing, Xiaotu" intelligent Q&A System. Retrieved Feb 15, 2023 from https://lib.tsinghua.edu.cn/in fo/1073/4018.htm.
- UK Government. (2021). National AI strategy. https://www.gov.uk/government/publi cations/national-ai-strategy.
- UK Resarch and Innovation. (2021). Transforming our world with AI: UKRI's role in embracing the opportunity. https://www.ukri.org/wp-content/uploads/2021/02/ UKRI-120221-TransformingOurWorldWithAI.pdf.
- Veaner, A. B. (1985). 1985 to 1995: The next decade in academic librarianship, part I. College & Research Libraries, 46, 209–229.
- Vlachos, E., Hansen, A. F., & Holck, J. P. (2020). A robot in the library. In M. Rauterberg (Ed.), Culture and computing international conference on human-computer interaction, Cham.
- Wang, J. (2022). UK artificial intelligence roadmap and its enlightenment to China. Global Science, Technology and Economy Outlook, 37(01), 71–76.
- Wheatley, A., & Hervieux, S. (2019). Artificial intelligence in academic libraries: An environmental scan. Information Service & Use, 39(4), 347–356.
- Williams, T., & Grove, J. (2023). Five ways AI has already changed higher education. Times Higher Education (15 May 2023). https://www.timeshighereducation. com/news/five-ways-ai-has-already-changed-higher-education.
- Yang, W., & Deng, L. (2021). Research on current situation, construction dilemma and optimization paths of smart libraries. *Library Theory and Practice*, 02, 52–58. https:// doi.org/10.14064/j.cnki.issn1005-8214.2021.02.010
- Yao, F., Zhang, C. Y., & Chen, W. (2015). Smart talking robot Xiaotu: Participatory library service based on artificial intelligence. *Library Hi Tech*, 33(2), 245–260. https://doi.org/10.1108/lht-02-2015-0010