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Abstract: One way of optically monitoring molecule concentrations is to utilise the high sensitivity of
the transmission and reflection rates of Fabry-Pérot cavities to changes of their optical properties. Up
to now, intrinsic and extrinsic Fabry-Pérot cavity sensors have been considered with analytes either
being placed inside the resonator or coupled to evanescent fields on the outside. Here we demonstrate
that Fabry-Pérot cavities can also be used to monitor molecule concentrations non-invasively and
remotely, since the reflection of light from the target molecules back into the Fabry-Pérot cavity adds
upwards peaks to the minima of its overall reflection rate. Detecting the amplitude of these peaks
reveals information about molecule concentrations. By using an array of optical cavities, a wide range
of frequencies can be probed at once and a unique optical fingerprint can be obtained.

Keywords: cavity sensing; optical sensors; photonic sensors

1. Introduction

Sensors which offer high specificity and reliably monitor substances in chemical, phys-
ical and biological systems play a vital role in many applications. For example, biosensors
(e.g., Refs. [1–6]) are used in tissue and cell analysis, microbiological investigations and
drug improvement studies. To answer the ever-growing demand for highly sensitive and
selective measurement devices which do not require large lab-based equipment, Fabry-
Pérot cavity sensors have already attracted considerable attention [7,8]. These sensors can
be divided into two main categories: intrinsic and extrinsic Fabry-Pérot cavity sensors. In
the case of intrinsic sensors [9–11], which are the most common, the sample to be measured
is placed inside the resonator (Figure 1a). In the case of extrinsic sensors [12–19], the sample
changes the optical properties of the resonator when in contact with one of its mirrors on
the outside (Figure 1b).

Fabry-Pérot cavities are optical resonators with two highly-reflecting mirrors separated
by a gap of length L0. When monochromatic light enters the cavity, it bounces back and
forth between the mirrors many times before eventually leaking out. The amount of light
that passes through the resonator depends on the frequency of the incoming light compared
to the distance of the mirrors. More concretely, the incoming laser light accumulates a phase
factor during each round trip. If the cavity is in resonance, this phase factor is an integer
multiple of 2π. Hence, all light travelling in the forward direction interferes constructively,
while light travelling in the backwards direction interferes destructively, such that all light
eventually leaves the cavity on the opposite side [20]. Moreover, in the case of mirrors with
absorption and with reduced reflection rates, the transmission peak is broadened, and a
wider range of frequencies is transmitted.

The characteristic reflection and transmission spectrum of a Fabry-Pérot cavity can be
characterised for example by the quality factor Q with Q = ωcav/∆ω, where ωcav denotes
the cavity resonance frequency and ∆ω characterises the line width. In general, the higher
the Q factor of a cavity, the more sensitive are ωcav and ∆ω to the presence of molecule
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concentrations. For example, some Fabry-Pérot cavity sensors take advantage of the effect
of the presence of analytes with distinctive optical transitions on mirror reflection rates or of
refractive index changes inside the resonator. In general, information about concentrations
can be deduced by comparing frequency shifts and the broadening of the line width of the
transmitted light signal to a known baseline [8].

a

b

Figure 1. Current Fabry-Pérot cavity sensors can be divided into two main categories. (a) In the case
of intrinsic sensors, the target molecules are placed on the inside, where they alter the effective cavity
length via a change in refractive index. When driven by a laser field, the resonance frequency of the
cavity shifts and the line width of the signal can broaden. (b) In the case of extrinsic sensors, the
target molecules are placed on the outside of one of the cavity mirrors in order to alter its reflection
rate, thereby also changing the optical properties of the cavity.

Unfortunately, intrinsic Fabry-Pérot cavity sensors tend to suffer from low coupling
efficiency. In the presence of analytes, the sensor is likely to require a re-alignment of its
mirrors in order to produce reliable results, which is experimentally demanding [9–11].
Extrinsic Fabry-Pérot cavity sensors overcome this problem by never changing the inside
of the resonator and have already been used to perform highly sensitive measurements of
small molecules such as proteins and DNA [12–18]. However, like intrinsic Fabry-Pérot
cavity sensors, they are invasive and still need to be in close contact with the sample to
make a measurement, which strongly limits their applications.

To overcome this problem, this paper proposes a Fabry-Pérot cavity sensor, which
can perform remote measurements of molecule concentrations. As we shall see below, the
sensor can be used to continuously and non-invasively monitor a wide range of phys-
ical, chemical and biological processes. No direct contact with the target molecules is
required as long as they are optically accessible. Hence, remote Fabry-Pérot cavity sen-
sors might even be suitable to continuously and non-invasively monitor biomolecule
concentrations [14,15,21,22]. Alternatively, they could be used to monitor the contents of
transparent containers and bottles without the need to open them, which has applications,
for example, in the food industry.

The basic design of the remote Fabry-Pérot cavity sensor, which we propose in this pa-
per, is shown in Figure 2. In the following, we require that the target molecules have optical
transitions and therefore reflect some of the transmitted laser light back into the resonator.
The environment of the analytes needs to be transparent—or at least semitransparent—
in the relevant frequency range. In contrast to extrinsic and intrinsic Fabry-Pérot cavity
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sensors, remote Fabry-Pérot cavity sensors explore the high sensitivity of their reflection
rate R(ω) to the presence of stray light to measure target molecule concentrations. This is
possible, since the interference inside the cavity changes when the analytes reflect some of
the already transmitted light back into the resonator.

a

b

c

Figure 2. In this paper, we propose an alternative way of using Fabry-Pérot cavities in sensing
applications. Here, the substance which we want to analyse is some distance away from the resonator.
Hence, we refer to this type of sensor in the following as a remote Fabry-Pérot cavity sensor. If the
sample contains atomic particles with optical transitions near the resonance frequency of the sensor,
the coherent back reflection of light affects the overall transmission rate of the system. The above
experimental setup effectively consists of many mirrors. The measurement signal is an effective
frequency-dependent reflection rate of the molecules and, as we shall see below, provides information
about their concentration.

Suppose the Fabry-Pérot cavity is ideal and the incoming laser light is on resonance
with the resonator. In this case, all light is eventually transmitted and the reflection rate
R(ω) = 0. Hence, the only effect that the stray light coming from the target molecules can
have is to increase R(ω). In general, if the reflecting molecules are randomly distributed
within the sample and cover an area wider than the wavelength of the reflected light, the
reflected light accumulates equally distributed random phases, and the resulting R(ω)
depends only on the optical properties of the cavity mirrors and on the concentration and
the optical properties of the reflecting atomic particles.

As we shall see below, randomly distributed molecules therefore add narrow upwards
peaks to minima of the reflection spectrum of the Fabry-Pérot cavity. These peaks can
be detected and their height reveals information about molecular concentrations. The
higher the concentration of the target molecules, the larger the amplitude of the upwards
peaks that are added to the minima of the measurement signal. As one might expect, the
amplitude of these peaks is exactly the same as the amplitude of the reflected light in the
absence of the Fabry-Pérot cavity. A main purpose of the resonator is to filter out one
specific frequency component of the reflected light.

However, notice also that the reflection rate of the target molecules depends strongly
on their atomic level structure. Simultaneously probing the response of a remote Fabry-
Pérot cavity sensor to different frequencies of light can therefore provide a unique optical
fingerprint, which increases the selectivity of the sensor. This is an important feature of
remote Fabry-Pérot cavity sensors, since cavity resonance frequencies can be varied much
more easily than the frequency of particular receptor molecules. For example, this can be
conducted by varying the length of the cavity or by changing the angle of the incident
light. Moreover, as illustrated in Figure 3, a single sensor could contain an array of optical
cavities with different resonance frequencies. Another important advantage of remote
Fabry-Pérot cavity sensors is that they do not need to be adjustable, since they do not need
to be stabilised in direct contact with the target molecules. This means that they can be
fabricated more easily, for example by integrating them into optical fibers [23–26], while
accompanying them with integrated mode-matching optics [27].

This paper contains five sections. Section 2 reviews the optical properties of Fabry-
Pérot cavities. Afterwards, in Section 3, we calculate the overall reflection rates of
mirror arrays, which contain at least three mirrors with the help of a scattering matrix
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approach [28,29]. In Section 4, we use the results obtained in Section 3 to predict the
overall reflection rate of the proposed remote Fabry-Pérot cavity sensor in Figure 2 and
study the dependence of this rate on molecule concentrations. Finally, we summarise
our findings in Section 5.

Figure 3. Alternative design of a remote sensor with increased selectivity, which allows for different
resonant frequencies to be probed at once. The sensor contains a bundle of optical fibres encased in a
protective sheath and embedded with cavities of different lengths L0. By measuring the resultant
change for each resonance frequency from a known baseline, the type and concentration of the sample
to be measured can be determined more easily.

2. The Reflection Rates of Fabry-Pérot Cavities

To be more realistic in our predictions, we consider in the following asymmetric
mirrors with coherent light absorption and allow the media on both sides of an interface
to have a different refractive index. For simplicity, we only consider light propagating
along the x-axis. To introduce the notation for studying light scattering by Fabry-Pérot
cavities, we first have a closer look at the case of a single mirror. As illustrated in Figure 4,
we assume that the mirror is in contact with air on one side and with a dielectric medium
with a refractive index n 6= 1 on the other.

Figure 4. Schematic view of an asymmetric mirror interface with coherent light absorption. The
mirror consists of a reflecting layer which may be covered on both sides by thin layers of absorbing
material. On the right-hand side, it is attached to a dielectric medium with a refractive index n1 6= 1.
On the left, the mirror interface borders on air with a refractive index n0 = 1. Since light approaching
the mirror from different sides might experience different absorption rates, the overall reflection and

transmission rates of the mirror interface, r(1)a , r(1)b , t(1)a and t(1)b , are in general not the same, even
when referring to the case with the mirror being placed in air.
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2.1. The Electromagnetic Field in Air and in a Dielectric Medium

A change in refractive index alters the electric field amplitudes and the frequencies of
incoming wave packets. However, in this subsection, we show that it is possible to simply
ignore this effect as long as we are only interested in overall reflection rates. The reason for
this is that we can always replace an experimental setup, which contains a medium, with
one that only contains air. The predicted interference effects are the same in both cases as
long as the dimensions of the system are changed accordingly. Not having to pay attention
to refractive index changes simplifies the analysis in the following sections, but we will
need to keep in mind that all (complex) reflection and transmission rates in this paper refer
to the case where mirrors are placed in the air.

As usual, we describe the dynamics of the electromagnetic field in a dielectric medium
with permittivity ε and permeability µ in the absence of any charges and currents by
Maxwell’s equations. For light propagating along the x axis, these predict that

∂2

∂x2 E(x, t) = εµ
∂2

∂t2 E(x, t) , (1)

where E(x, t) denotes the electric field amplitude at position x and time t. From classical
electrodynamics, we know that the basic solutions of Maxwell’s equations are plane travel-
ling waves which can be superposed to form wave packets of any shape that travel at the
speed of light c [30],

c = (εµ)−1/2 . (2)

Suppose s = ±1 indicates the respective direction of propagation, λ = 1, 2 denotes
the polarisation and k is a positive wave number. Then, the basic solutions of Maxwell’s
equations for the electric field amplitudes Eskλ(x, t) for given parameters (s, k, λ) can be
written as

Eskλ(x, t) = E0 eik(x−sct) + c.c. (3)

In the following, we refer to E0 as the complex electric field amplitude for left- and for
right-moving light. In the case of air, we have ε = ε0 and µ = µ0. However, in a general
dielectric medium, the refractive index n,

n = (εµ/ε0µ0)
1/2 , (4)

is different from n = 1. In general, the electric field E(x, t) are superpositions of the above
electric field amplitudes Eskλ(x, t).

For light propagating along the x-axis, we therefore obtain the equivalence relation [31]

Emed(x, t) = (n3ε0/ε)1/2 Eair(nx, t) . (5)

Using Equation (1), it is relatively easy to check that if Eair(x, t) solves Maxwell’s
equations in air, then Emed(x, t) in Equation (5) solves Maxwell’s equations in a dielectric
medium and vice versa. Moreover, suppose Emed(x, t) describes the electric field in a
medium of length L and with an area A around the x-axis, while Eair(x, t) describes the
electric field in a volume of air of length nL and with an area n2 A around the x axis. Then,
one can show, using Equation (5), that

A
∫ L

0
dx ε Emed(x, t)2 = A

∫ L

0
dL n3ε0 Eair(nx, t)2 = n2 A

∫ nL

0
dx ε0 Eair(x, t)2 . (6)

This means the factor on the right-hand side of Equation (5) has been chosen, such
that the electric field energy is exactly the same in both cases.

2.2. The Reflection and Transmission Rates of a Single Mirror

The observations in the previous subsection allows us to model the effect of the two-
sided semitransparent mirror in Figure 4 by simply replacing it with an analogous mirror
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placed in air. In the following, we denote the (complex) transmission and reflection rates
of this effective mirror by t(1)a , t(1)b , r(1)a and r(1)b , respectively. The superscript (1) helps to
distinguish these rates from the rates of other setups with more than one mirror present. The
reflection and transmission rates for light approaching the mirror from different directions
are in general not the same. As we shall see below, they differ in general by a phase factor.
In the presence of absorption, they differ also in size.

In the following, we describe light scattering by a semi-transparent mirror, and later
also by a Fabry-Pérot cavity and other mirror arrays, by time-independent scattering
operators. Suppose Ein

i (x, t) and Eout
i (x, t) with i = a, b are the complex electric field

amplitudes of the incoming and of the outgoing laser light on both sides of an interface,
which has been placed at x = 0. In the case of real transmission and reflection rates,
Eout

a (x, t) and Eout
a (x, t) are given by

Eout
a (x, t) = r(1)a Ein

a (−x, t) + t(1)b Ein
b (x, t) ,

Eout
b (x, t) = t(1)a Ein

a (x, t) + r(1)b Ein
b (−x, t) . (7)

However, here we need to consider complex rates. Their phase factors are later chosen
such that energy is always conserved. The reason for these phases is that the complex
electric field amplitude E0 in Equation (3) is defined with respect to x = 0 and t = 0, while
the mirrors are placed at x = 0 and x = L, respectively. In the case of complex transmission
and reflection rates, by definition,

Eout
a eik(x+ct) + c.c. = r(1)a Ein

a eik(−x−ct) + t(1)b Ein
b eik(x+ct) + c.c. ,

Eout
b eik(x−ct) + c.c. = t(1)a Ein

a eik(x−ct) + r(1)b Ein
b eik(−x+ct) + c.c. (8)

This applies for all times t when(
Eout

a
Eout∗

b

)
=

(
r(1)∗a t(1)b
t(1)∗a r(1)b

)(
Ein∗

a
Ein

b

)
. (9)

The energy of the incoming and of the outgoing light are only the same when

|Eout
a |2 + |Eout

b |
2 = |Ein

a |2 + |Ein
b |

2 . (10)

This equation only holds for all possible electric field amplitudes when∣∣r(1)a
∣∣2 + ∣∣t(1)a

∣∣2 =
∣∣r(1)b

∣∣2 + ∣∣t(1)b

∣∣2 = 1 ,

t(1)b r(1)a + t(1)a r(1)b = 0 . (11)

Hence, the phases of the above scattering matrix elements need to be chosen carefully
for energy to be conserved. For example, we could assume that

r(1)b = −r(1)a , t(1)b = t(1)a . (12)

In the presence of absorption, the energy of the outgoing light must be smaller than
the energy of the incoming light. In this case, the equal sign in Equation (10) is replaced
by a smaller-equal sign and the reflection and transmission rates can assume a wider
range of values [32–34]. Mapping the above outgoing electric field amplitudes onto the
corresponding amplitudes in a medium can be conducted with the help of Equation (3).

2.3. Fabry-Pérot Cavities

Next, we consider two parallel semitransparent mirrors, M1 and M2, separated by a
distance L0. As illustrated in Figure 5, we denote the reflection and transmission rates of
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these mirrors in air by r(2)i and t(2)i , respectively, with i = a, b, c, d. To determine the effect of
both mirrors, we now need to take into account that the complex electric field amplitudes
Ein

i with i = a, d of monochromatic light accumulate phase factors e±iφ0 with

φ0 = n0L0k = n0L0ω/c0 (13)

When travelling the length of the cavity. Here, n0 = 1 and k and ω denote the wave
number and the frequency of the incoming light and c0 is the speed of light in air. Which
sign applies depends on the respective direction of travel.

Figure 5. Schematic view of a Fabry-Pérot cavity, which consists of two mirrors, M1 and M2, with a
distance L0 between them. On its right-hand side, the cavity borders with a medium with a refractive

index n1 6= 1. All other spaces are filled with air. As in Figure 4, the r(2)i and t(2)i denote transmission
and reflection rates, while the Ein

i and Eout
i with i = a, b, c, d denote complex electric field amplitudes.

Suppose light approaches the Fabry-Pérot cavity only from the right (i.e., Ein
a = 0)

and Eout
a and Eout

a are the complex electric field amplitudes of outgoing light. Then, by
definition, we now have

Eout
d eik(x−ct) + c.c. = r(2)d Ein

d eik(2L0−x+ct) + c.c.

+t(2)c t(2)d r(2)b

∞

∑
N=0

(
r(2)b r(2)c

)N
Ein

d eik(−x−2NL0+ct) + c.c. , (14)

If the two mirrors of the Fabry-Pérot cavity are placed at x = 0 and at x = L0. This
equation holds at all times t, when

Eout∗
d =

[
r(2)d e2iφ0 + t(2)c t(2)d r(2)b

∞

∑
N=0

(
r(2)b r(2)c e−2iφ0

)N
]

Ein
d . (15)

Having a look also at other cases, we therefore find that(
Eout

a
Eout∗

d

)
=

(
S(2)

11 S(2)
12

S(2)
21 S(2)

22

)(
Ein∗

a
Ein

d

)
(16)

with the scattering matrix elements

S(2)
11 = r(2)∗a + t(2)∗a t(2)∗b r(2)∗c e−2iφ0

∞

∑
N=0

(
r(2)∗b r(2)∗c e−2iφ0

)N
,

S(2)
12 = t(2)b t(2)d

∞

∑
N=0

(
r(2)b r(2)c e−2iφ0

)N
, (17)
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while

S(2)
21 = t(2)∗a t(2)∗c

∞

∑
N=0

(
r(2)∗b r(2)∗c e−2iφ0

)N
,

S(2)
22 = r(2)d e2iφ0 + t(2)c t(2)d r(2)b

∞

∑
N=0

(
r(2)b r(2)c e−2iφ0

)N
. (18)

Since the factors r(2)i r(2)j in this equation are in general smaller than one, the above
sums can be simplified using the geometric series equation. Doing so, we find that

S(2)
11 = r(2)∗a +

t(2)∗a t(2)∗b r(2)∗c e−2iφ0

1− r(2)∗b r(2)∗c e−2iφ0
, S(2)

12 =
t(2)b t(2)d

1− r(2)b r(2)c e−2iφ0
,

S(2)
21 =

t(2)∗a t(2)∗c

1− r(2)∗b r(2)∗c e−2iφ0
, S(2)

22 = r(2)d e2iφ0 +
t(2)c t(2)d r(2)b

1− r(2)b r(2)c e−2iφ0
. (19)

In the absence of absorption and gain, the energy of the incoming and of the outgoing
light must be the same. In analogy to Equation (10), this now applies when

|Eout
a |2 + |Eout

d |
2 = |Ein

a |2 + |Ein
d |

2 . (20)

Substituting Equation (16) into this equation, we observe that the scattering matrix
elements of the Fabry-Pérot cavity must be such that∣∣S(2)

11

∣∣2 + ∣∣S(2)
21

∣∣2 =
∣∣S(2)

12

∣∣2 + ∣∣S(2)
22

∣∣2 = 1 ,

S(2)∗
11 S(2)

12 + S(2)∗
21 S(2)

22 = 0 , (21)

In analogy to Equation (11). Because of Equation (19), these conditions now only hold
when all transmission and reflection rates are real, when r(2)2i and t(2)2i add up to one for
all i and when

t(2)a = t(2)b , t(2)c = t(2)d , r(2)b = −r(2)a , r(2)d = −r(2)c . (22)

Suppose laser light enters the Fabry-Pérot cavity in Figure 5 only from the left and
Ein

d = 0. Using the above equations, one can then demonstrate that the overall reflection
rate R(2)(ω) in the absence of absorption is simply given by [35]

R(2)(ω) = |Eout
a |2/|Ein

a |2 =
∣∣S(2)

11

∣∣2 =

∣∣∣∣∣ r(2)a + r(2)c e2iφ0

1 + r(2)a r(2)c e2iφ0

∣∣∣∣∣
2

. (23)

When the distance L0 tends to zero, the cavity mirrors turn into a single mirror
interface and φ0 = 0. For symmetry reasons and since we do not want R(2)(ω) to assume a
minimum in a case when there is essentially only a single mirror, the reflection rates r(2)a

and r(2)c need to have the same sign. Again, in the presence of absorption, a wider range of
mirror parameters can be taken into account.

Figure 6 shows the overall reflection rate R(2)(ω) in Equation (23) as a function of
ω for different symmetric mirrors without absorption. When r(2)a and r(2)c are the same,
R(2)(ω) = 0 when cos(2φ0) = −1. This applies, for example, when φ0 equals π and the
length L0 of the cavity equals half the wavelength of the incoming light. In general, these
minima occur at angles φ0, which are exactly 2π apart. As expected, the spectral response
is sharply peaked about the cavity resonance frequencies when the mirror reflections rates
|r(2)a | and |r(2)c | are close to one. Lower reflections rates increase the line width of the
reflection spectrum. Absorption, moreover, decreases the amplitude of the reflection peak,
but the general shape of the curves remains the same.
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Figure 6. The dependence of the overall reflection rate R(2)(ω) in Equation (23) on the on the
frequency ω of the incoming light. Here, we consider symmetric mirrors without absorption and
choose all reflection and transmission rates as suggested in Equation (22). In addition, we assume that

|r(2)a |2 = |r(2)c |2 = 0.36 (blue), 0.49 (red), 0.64 (yellow) and 0.81 (purple). The figure shows the typical
reflection spectrum of a Fabry-Pérot cavity. At the resonance frequency of the resonator, R(2)(ω) = 0,
independent of the reflection rates of the two mirrors. Increasing the mirror reflection rates, increases
the quality factor Q of the cavity and results in a narrower downwards peak in the cavity resonance
fluorescence spectrum R(ω).

3. The Overall Reflection Rates of Different Mirror Arrays

In this Section, we study the effect of additional mirrors on the reflection rate R(2)(ω)
of the Fabry-Pérot cavity in Figure 5. In the following, we are especially interested in the
case where a relatively large collection of tiny, randomly-distributed mirrors is placed
behind the resonator.

3.1. The Overall Reflection Rates of Three-Mirror Systems

However, first we have a closer look at the three-mirror system with mirrors M1, M2
and M3 in Figure 7. To analyse their optical response, we first replace the mirrors M1 and
M2 by a single effective mirror and denote the reflection and transmission rates of this
effective mirror by r(3)i and t(3)i with i = a, b. (The superscript (3) indicates that these rates
describe an effective mirror in a three-mirror setup). Suppose the mirrors M1 and M2 have
the same optical properties as the mirrors M1 and M2 of the Fabry-Perot cavity in Figure 5.
Then, we can use the results that we obtained in Section 2.3 to show that

r(3)a = S(2)∗
11 , t(3)a = S(2)∗

21 , r(3)b = S(2)
22 , t(3)b = S(2)

12 (24)

with S(2)
11 , S(2)

12 , S(2)
21 and S(2)

22 given in Equation (16). Moreover, we denote the reflection rate

of M3 in the following by r(3)c . As in the previous section, k and ω denote the wave number
and the frequency of the incoming laser light.

Next we notice that the effective mirror and the additional mirror M3 form a Fabry-
Pérot cavity of length L1 which contains a medium with a refractive index n1 6= 1 (Figure 7).
To simplify our discussion, we further replace this Fabry-Pérot cavity in the following by a
Fabry-Pérot cavity of length n1L1, which contains air (cf. discussion in Section 2.1). Now
suppose Ein

i and Eout
i with i = a, d denote the incoming and outgoing (complex) electric

field amplitudes near the respective mirror surface in air and the phase φ1 is given by

φ1 = n1L1k = n1L1ω/c0 . (25)
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Figure 7. Schematic view of a three-mirror system, which contains two mirrors M1 and M2, separated
by a distance of L0 and a third mirror, M3, a distance of L1 away from the M1-M2 cavity. In a realistic
scenario, the setup might be attached to a dielectric medium with a refractive index n 6= 1. The figure
also shows the relevant electric field amplitudes Ein

i and Eout
i with i = a, b, c, d near the relevant

mirror interfaces. However, notice that these reflect the case where the medium is replaced by air, as
described in Section 2.1.

Combining Equations (19) and (24), one can now show that(
Eout

a
Eout

d

)
=

(
S(3)

11 S(3)
12

S(3)
21 S(3)

22

)(
Ein

a
Ein

d

)
(26)

With the scattering matrix element S(3)
11 given by

S(3)
11 = S(2)

11 +
S(2)∗

12 S(2)
21 r(3)∗c e−2iφ1

1− S(2)∗
22 r(3)∗c e−2iφ1

. (27)

When the setup is only driven by monochromatic laser light from the left, the reflection
rate R(3)(ω) of the three-mirror interferometer therefore equals

R(3)(ω) =
∣∣S(3)

11

∣∣2 =

∣∣∣∣∣S(2)∗
11 +

S(2)
12 S(2)∗

21 r(3)c e2iφ1

1− S(2)
22 r(3)c e2iφ1

∣∣∣∣∣
2

. (28)

As long as the reflection rate of the third mirror is relatively small, we expect that this
rate resembles the reflection rate R(2)(ω) of a Fabry-Pérot cavity relatively well. How much
it changes in the presence of the third mirror M3 depends, for example, on the frequency of
the incoming light and on the distance L1 between M2 and M3.

3.2. The Effect of a Randomly Positioned Third Mirror

In this paper, we are especially interested in the case where the distance L1 of the
third mirror varies randomly over a range that is much larger than the wavelength of
the incoming laser light. In this case, the corresponding reflection rate R(3)(ω) of the
three-mirror system in Figure 7 depends no longer on L1. It can be obtained by averaging
over all possible values of φ1,

R(3)(ω) =
1

2π

∫ 2π

0
dφ1 R(3)(ω). (29)

A closer look at Equation (28) shows that we do not need to know the phase of the
reflection rates r(3)c of the additional mirror, since the dependence on this phase disappears
when the above average is taken.
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In the absence of absorption, the mirror parameters of the Fabry-Pérot cavity need to
be in agreement with Equations (21) and (22). These imply for example that S(2)

12 = S(2)
21 .

Equation (28) can therefore be used to show that

R(3)(ω) =

∣∣∣∣∣S(2)∗
11 +

∣∣S(2)
12

∣∣2 r(3)c e2iφ1
∞

∑
n=0

(
S(2)

22 r(3)c e2iφ1
)n
∣∣∣∣∣
2

. (30)

Hence performing the integration in Equation (29), we obtain the average reflection rate

R(3)(ω) =
∣∣S(2)

11

∣∣2 + ∣∣S(2)
12

∣∣4 · ∣∣r(3)c
∣∣2 ∞

∑
n=0

∣∣∣S(2)
22 r(3)c

∣∣∣2n

=
∣∣S(2)

11

∣∣2 + ∣∣S(2)
12

∣∣4
1−

∣∣S(2)
22 r(3)c

∣∣2 ∣∣r(3)c
∣∣2 . (31)

From Equations (21) and (22), we also observed that |S(2)
12 |2 = 1− |S(2)

11 |2 and |S(2)
11 |2 =

|S(2)
22 |2. These relations can be used to simplify Equation (31) into

R(3)(ω)− R(2)(ω) =

[
1− R(2)(ω)

]2
1− R(2)(ω)

∣∣r(3)c
∣∣2 ∣∣r(3)c

∣∣2 . (32)

For relatively small values of r(3)c , the overall reflection rates R(2)(ω) and R(3)(ω) given
in Equations (23) and (32) are essentially the same. Moreover, it is relatively straightforward
to check that R(3)(ω) =

∣∣r(3)c
∣∣2 at the resonance frequency of the cavity, where all incoming

laser light is normally transmitted and R(2)(ω) = 0.
Figure 8 shows the difference R(3)(ω) − R(2)(ω) as a function of the frequency ω

for different values of |r(3)c | and illustrates clearly that the presence of a third randomly-
positioned mirror adds small upwards peaks to the usual minima of the reflection spectrum
of the Fabry-Pérot cavity. This is not surprising, since, in the absence of absorption, R(2)(ω)
is zero at the cavity resonance frequencies. Hence, anything that changes the amount of
interference between the mirrors can only have one effect, namely an increase in the overall
reflection rate of the system. As one would expect, these peaks increase in size but also
become slightly broader as |r(3)c | increases.

3.3. The Effect of a Relatively Large Number of Tiny, Randomly-Positioned Mirrors

In this final subsection, we consider the experimental setup in Figure 9 which contains
a single Fabry-Pérot cavity as well as a relatively large collection of N tiny, identical,
randomly-positioned, weakly-reflecting mirrors. In analogy to the previous subsection, we
denote the reflection rate of the additional mirrors by r(3)c . Moreover, ∆A and ∆L denote
the surface area of a single tiny mirror and the optical depth of the sample. In addition, α
denotes the area covered by the incoming laser field. Hence, V = α · ∆L is the size of the
total illuminated and randomly occupied volume.

Before calculating the reflection rate R(ω) of the experimental setup in Figure 9, we
first consider the case with only one randomly positioned tiny mirror present in V. In this
case, the probability P1(1) of finding this mirror within a small volume
∆V = ∆A · ∆L equals

P1(1) =
∆A
α

. (33)
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Figure 8. To illustrate the effect of randomly-positioned mirrors on the overall reflection rate of a
Fabry-Pérot cavity, the figure shows the dependence of R(3)(ω)− R(2)(ω) in Equation (32) on the

frequency ω of the incoming light. Here, |r(2)a |2 = |r(2)c |2 = 0.81, while |r(3)c |2 = 0.01 (blue), 0.04 (red),
0.07 (yellow) and 0.1 (purple). The difference is a small and narrow upwards peak of a certain full
width at half the maximum (FWHM) and with an amplitude given by |r(3)c |2.

a

b

Figure 9. Schematic view of an experimental setup, which contains a Fabry-Pérot cavity as well as
a group of tiny mirrors, which are randomly positioned in a medium with refractive index n 6= 1.
These additional mirrors occupy a volume of length ∆L and covering an area α, which is placed some
distance L1 away from the cavity. An incoming laser with its cross section given by α approaches the
cavity and the additional mirrors from a perpendicular direction. For simplicity, we assume here that
the additional mirrors only cover a relatively small percentage of the area such that each one of them
is likely to be observed by the incoming laser light.

Hence, the probability P1(0) for this ∆V not to contain the mirror is

P1(0) = 1− ∆A
α

. (34)

Now, suppose there are N identical tiny reflectors in the volume V. In this case, the
probability PN(0) for not finding a tiny mirror in a given volume ∆V becomes

PN(0) =
(

1− ∆A
α

)N
. (35)
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Hence, the overall reflection rate R(ω) of the experimental setup in Figure 9 is
given by

R(ω) = PN(0) R(2)(ω) + (1− PN(0)) R(3)(ω). (36)

This applies since PN(0) is also the probability for a tiny laser beam with cross section
∆A not to encounter a tiny mirror. In this case, the reflection rate equals R(2)(ω). Moreover,
1− PN(0) is the probability that the thin laser beam meets a randomly positioned tiny
mirror and that its reflection rate equals R(3)(ω).

Next, we notice that PN(≥ 1) = 1− PN(0) is the probability for at least one mirror
present in a given volume ∆V. This observation allows us to write Equation (36) as

R(ω)− R(2)(ω) = PN(≥ 1)
[

R(3)(ω)− R(2)(ω)
]
. (37)

An analytical expression for R(3)(ω)− R(2)(ω) can be found in Equation (31). For
very small reflection rates r(3)c , the reflection rates R(ω) and R(2)(ω) are essentially the
same. However, as illustrated in Figure 10, the reflection rate no longer becomes zero at the
cavity resonance frequencies. Instead, the minimum of the curves are now given by

Rmin = PN(≥ 1)
∣∣r(3)c

∣∣2. (38)

This rate increases, as the reflectivity and the number N of the tiny mirrors increases
until saturation sets in and PN(≥ 1) tends to one. Notice also that Rmin is the reflection rate
that the tiny, randomly-positioned mirrors would have in the absence of the Fabry-Pérot
cavity. The main purpose of the resonator is to filter one frequency. As we shall see below,
we can deduce additional information about the optical properties of the mirrors from the
shape of R(ω) in the presence of the resonator.

Figure 10. The dependence of the overall reflection rate R(ω) in Equation (37) of the Fabry-Pérot
cavity in Figure 9 on the frequency ω of the incoming light. Here the mirror parameters are

|r(2)a |2 = |r(2)c |2 = 0.81, while |r(3)c |2 = 0.1. In addition, PN(≥ 1) equals 0.6 (blue), 0.7 (red), 0.8
(yellow) and 0.9 (purple). The graphs have again been calculated using Equations (23) and (32) and
shows that the presence of a relatively large number of tiny, randomly-positioned mirrors increases
the minimum of the reflection rate R(ω) of the Fabry-Pérot cavity. Instead of zero, the minimum now
equals Rmin in Equation (38).
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4. Remote Fabry-Pérot Cavity Spectroscopy

In this final section, we utilise the above-described interference effects for label-free
sensing. Figure 11 shows an alternative schematic view of the remote Fabry-Pérot cavity
sensor in Figure 2. Similar to the experimental setup in Figure 9, the sensor contains
a laser-driven Fabry-Pérot cavity. Its transmitted light approaches the target molecules,
which can be located some distance away from the sensor from the left. Our measurement
signal is the overall reflection rate R(ω) of the device. A comparison of the experimental
setups in Figures 9 and 11 shows that both have the same optical response when:

a

b Figure 11. An alternative view on the remote Fabry-Pérot cavity sensor in Figure 2. Here, the target
molecules are randomly distributed within a volume V of length ∆L a distance L1 away from the
resonator. Moreover, ∆A and α denote the cross section of a single molecule and α is the area that
the incoming laser light excites. Our hypothesis here is that the molecules closely resemble tiny
semitransparent mirrors, which suggest the same optical response of the above experimental setup
and the experimental setup shown in Figure 9.

1. The target molecules closely resemble tiny, semitransparent mirrors, which reflect at
least some of the incoming light back into the Fabry-Pérot cavity without changing
its frequency. This applies to a very good approximation, if the frequency of the
laser falls within their resonance fluorescence spectrum. As we have observed above,
it does not matter whether the reflected light accumulates a random phase in the
reflection process. It anyway accumulates a random phase due to the randomness of
the position of every molecule within the sample.

2. Moreover, the environment surrounding the target molecules should be mostly trans-
parent to the incoming light. If the environment reflects some of the incoming light
even in the absence of the target molecules, the sensor needs to be more sensitive and
needs to be more carefully calibrated before measurements can be performed.

3. The target molecules are randomly distributed within the finite volume V, as it applies,
for example, naturally when they are dissolved in a liquid.

Under these conditions, we can use the reflection rate R(ω), which we derived in
the previous section to obtain the overall reflection rate R(ω) of the remote Fabry-Pérot
cavity sensor in Figure 11 in the presence of analytes. All we need to do is to replace
the variables N, ∆A and r(3)c by the total number of target molecules in the illuminated
sample, the average scattering cross section of a single target molecule and its reflection
rate, respectively.

4.1. Optical Signatures of the Presence of Target Molecules

Section 3 suggests that the reflection of light from the target molecules back into the
resonator adds small upwards peaks to the minima of the overall reflection rate R(ω) of the
remote Fabry-Pérot cavity sensor. This can be detected, since the amplitude of the minima
is no longer zero but equals instead Rmin in Equation (38). To produce visible peaks, the
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frequency of the driving laser light must lie within the resonance fluorescence spectrum of
the target molecules. If the incoming laser light is not in resonance, the target molecules
become transparent and their reflection rate r(3)c becomes zero. The specificity of remote
Fabry-Pérot cavity sensors comes from the fact that the reflection rate r(3)c depends strongly
on the atomic level structure of the target molecules.

As we can observe from Figures 8 and 10, the amplitude of these additional peaks is
in general relatively small. In addition to measuring Rmin, we therefore recommend to plot
the difference R(ω)− R(2)(ω) between the measured signal R(ω) and the overall reflection
rate R(2)(ω) of the Fabry-Pérot cavity in the absence of target molecule concentrations.
This difference has a distinct shape. From Equations (32) and (37), we observe that the so-
called full width at half the maximum (FWHM) of the upwards peak near a cavity resonance
frequency depends only on the molecule reflection rate |r(3)c |2. It is therefore possible to
deduce |r(3)c |2 from the measurement signal and to obtain additional information about the
species of the analytes.

How much light of a given frequency and polarisation is reflected by the target
molecule depends on the strength of their dipole moments and on the level spacings
of their energy eigenstates. Every molecule has its own unique resonance fluorescence
spectrum and therefore also its own frequency-dependent reflection rate r(3)c = r(3)c (ω).
This observation can be exploited to further enhance the specificity of remote Fabry-Pérot
cavity sensors. For example, a sensor which simultaneously probes the response of a
sample to several laser frequencies should be enough to distinguish any species with atomic
transitions in the optical regime. One way of implementing this idea is to incorporate an
array of cavities into the sensor design, as illustrated in Figure 3.

4.2. The Dependence of Reflection Rates on Molecule Concentrations

Given the above definitions of the variables N, L and α, the number density of the
target molecules equals

C =
N
V

=
N

α · ∆L
(39)

when the particles are placed in air. (As discussed in Section 2.1, a correction is needed, if
the particles are hosted in a medium with a refractive index n that is different from one.)
Hence the probability PN(≥ 1) in Equation (37), which now coincides with the relative
amount of laser light that encounters at least one target molecule within the illuminated
sample, depending in general on C. By measuring how the overall reflection rate R(ω) of a
remote Fabry-Pérot cavity sensor changes at the resonance frequency, it is therefore also
possible to obtain information about target molecule concentrations. As we can observe
from Equation (38), this can be conducted by measuring the minimum reflection rate Rmin
of the sensor.

For example, suppose every volume element ∆V = ∆A · ∆L contains in general at
most one target molecule. This applies to a very good approximation if the scattering cross
section ∆A of a single molecule multiplied by the total number of molecules N within the
sample is much smaller than the laser cross section α, i.e.,

N · ∆A� α. (40)

In this case, the probability PN(0) in Equation (35) simplifies to PN(0) = 1− N∆A/α.
Hence, PN(≥ 1) = N∆A/α to a very good approximation and Equation (37) becomes

R(ω)− R(2)(ω) =
[

R(3)(ω)− R(2)(ω)
]N∆A

α

=
[

R(3)(ω)− R(2)(ω)
]

∆A · ∆L · C (41)
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Up to first order in C. Since R(3)(ω)− R(2)(ω) in Equation (32) does not depend on C,
this difference depends linearly on the molecular concentrations.

If we want to measure C with accuracy, the concentration of the target molecules
should therefore not be too high. Ideally, C should be such that a relatively high percentage
of the analytes sees the incoming laser light. If the concentration C becomes too high,
all of the incoming laser field is reflected by molecules and PN(≥ 1) = 1. In this case,
the sensor saturates and the overall reflection rate R(ω) depends no longer on C. In
general, remote Fabry-Pérot cavity sensors need to be calibrated carefully, since Rmin in
Equation (38) depends also on the molecular scattering cross section ∆A and the the optical
depth ∆L of the sample.

5. Conclusions

This paper takes advantage of the fact that Fabry-Pérot cavities are very sensitive to
any changes that affect the interference of light inside the resonator. However, in contrast
to intensive and extensive Fabry-Pérot cavity sensors, we do not rely on refractive index
changes or on changes of the reflection and transmission rates of its mirrors. Instead, our
main research hypothesis is that randomly distributed atomic particles diffract laser light in
a similar fashion as tiny, randomly distributed semitransparent mirrors. The remote Fabry-
Pérot cavity sensor works since its overall reflection rate R(ω) changes in a unique way
when any of the outgoing light is reflected back into the cavity. Here, the only difference
between semitransparent mirrors and the target molecules is that reflection rates by the
latter is in general weaker and depends more strongly on the frequency and possibly also
on the polarisation of the incoming light.

In the absence of any target molecules, the reflection rate R(ω) of a Fabry-Pérot cavity
sensor assumes a minimum at the cavity resonance frequency. For example, in the case of
an ideal cavity, all incoming resonant light is transmitted and R(ω) = 0. In the presence
of the target molecules, this minimum is reduced and a small upwards peak is added,
which can be detected. The new minimum reflection rate Rmin depends on the size of the
reflection rate r(3)c and the concentration C of the target molecules. The strong dependence
of |r(3)c | on the resonance fluorescence spectrum of the target molecules contributes to the
selectivity of the proposed sensing device. Moreover, the size of the upwards peak provides
information about molecular concentrations.

Although this is a theoretical paper, we expect that the proposed remote Fabry-Pérot
cavity sensor can be used for the non-invasive, label-free detection of molecule concentra-
tions in a wide range of scenarios. For example, as we have observed above, the sample
that contains the target molecules does not need to be in direct contact with the resonator.
Moreover, by probing a wide range of frequencies with an array of optical cavities, a unique
optical fingerprint of the target molecules can be obtained. However, some conditions need
to hold for remote Fabry-Pérot cavity sensors to work:

1. Optical access to the sample that contains the molecules is required.
2. The laser frequency and therefore also the resonance frequency of the incoming light

should lie within the resonance frequency spectrum of the molecules, such that they
absorb and re-emit light at that frequency with a relatively high rate.

3. The concentrations of the molecules should be neither too low nor too high to obtain
a significant response without saturating the device.

4. The positions of the target molecules should be sufficiently random in order to remove
any dependence of the sensor reflection rate R(ω) on the exact distances between the
Fabry-Pérot cavity and the molecules.

Since these requirements can be met, at least in principle, we are optimistic that the
idea which we present here will find a wide range of applications in sensing physical,
chemical, and biological processes in real time, remotely and without perturbing them.
Being limited mainly by their quality factor, remote Fabry-Pérot cavity sensors might
even find applications as difficult as monitoring molecule concentrations in the human
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blood [14,15,21,22], if they can be engineered and calibrated well enough to work in realistic
uncertain environments.
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