
This is a repository copy of Streamlining the Development of Hybrid Graphical-Textual 
Model Editors for Domain-Specific Languages.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202852/

Version: Published Version

Article:

Predoaia, Ionut orcid.org/0000-0002-2009-4054, Kolovos, Dimitris orcid.org/0000-0002-
1724-6563, Lenk, Matthias et al. (1 more author) (2023) Streamlining the Development of 
Hybrid Graphical-Textual Model Editors for Domain-Specific Languages. Journal of Object 
Technology. ISSN 1660-1769 

https://doi.org/10.5381/jot.2023.22.2.a8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Journal of Object Technology | RESEARCH ARTICLE

Streamlining the Development of
Hybrid Graphical-Textual Model Editors

for Domain-Specific Languages
Ionut Predoaia∗, Dimitris Kolovos∗, Matthias Lenk‡, and Antonio García-Domínguez∗

∗University of York, United Kingdom
‡NetApp, Germany

ABSTRACT A domain-specific language (DSL) can have multiple syntaxes, that can be graphical or textual. When modelling

the behaviour, complex expressions, and fine details of a domain, often it does not make sense to use a graphical syntax, as

this can result in large, crowded diagrams, therefore in such cases, a textual syntax is often more appropriate. As such, the best

of both worlds can be delivered by a DSL that has hybrid (part-graphical and part-textual) syntaxes. In this work, we address

open challenges and apply model-driven engineering techniques to streamline the development of hybrid graphical-textual

model editors for DSLs, by using as little hand-written code as possible.

KEYWORDS Domain-Specific Language, Model Editor, Graphical-Textual Modelling, Language Engineering, Code Generation, EMF, Sirius, Xtext.

1. Introduction

A language, domain-specific or not, has an abstract syntax and

one or more concrete syntaxes. The abstract syntax of a lan-

guage defines the language concepts, the relationships between

the concepts and the constraints, independent of any represen-

tation. The concrete syntax of a language defines how the

concepts of the abstract syntax are presented to the language

user. Concrete syntaxes can be graphical or textual. Textual syn-

taxes use textual tokens following a grammar of syntactic rules

to express domain abstractions, whereas graphical syntaxes use

diagrams, visual notations, and symbols to represent domain

concepts. Diagrams are better suited to represent the high-level

concepts of a system, as it can often be tedious and error-prone

to define and maintain graphically the fine details of a system,

such as precise behaviour, complex expressions, actions, or

documentation, therefore for such cases textual syntaxes are

more appropriate (Cooper & Kolovos 2019). Hybrid graphical-

JOT reference format:

Ionut Predoaia, Dimitris Kolovos, Matthias Lenk, and Antonio

García-Domínguez. Streamlining the Development of

Hybrid Graphical-Textual Model Editors for Domain-Specific Languages.

Journal of Object Technology. Vol. 22, No. 2, 2023. Licensed under

Attribution - NonCommercial - No Derivatives 4.0 International (CC

BY-NC-ND 4.0) http://dx.doi.org/10.5381/jot.2023.22.2.a8

textual model editors can deliver the best of both worlds of

graphical and textual modelling, as textual representations can

reduce the number of clicks when creating and editing models,

whereas graphical representations can reduce the time spent

linking model elements together (Cooper & Kolovos 2019).

State-of-the-art hybrid graphical-textual model editors pose

several open challenges and their development is a non-trivial

endeavour as a large amount of hand-written code is required.

Our main contribution is Graphite, a tool that can be leveraged

to streamline the development of hybrid graphical-textual model

editors for DSLs, with as little hand-written code as possible.

It is important to note that hybrid graphical-textual model edi-

tors can surely be developed with projectional editors such as

JetBrains MPS1. However, projectional editors do not provide

a pure textual editing experience and they are often perceived

as problematic. Therefore, we are interested in making use of

non-projectional editors, i.e., parser-based editors for textual

sub-syntaxes. Accordingly, the envisioned graphical-textual

model editors are EMF-based, and rely on the integration of

the Sirius graphical modelling framework and the Xtext tex-

tual modelling framework. Our focus is on languages that are

predominantly graphical, but which would benefit from em-

bedded textual sub-syntaxes to define complex expressions or

1 https://www.jetbrains.com/mps

An AITO publication



behaviour. This is a pattern that we have often encountered in

interactions with industrial collaborators, particularly where full

code generation is required.

The remainder of this paper is organised as follows. Section 2

presents the envisioned hybrid graphical-textual model editors.

Section 3 introduces the background of our work. Section 4

discusses related work. Section 5 presents the contributions

of this paper. Section 6 evaluates our contributions. Section 7

outlines the limitations of our work. Finally, Section 8 concludes

the paper and provides directions for future research.

2. Hybrid Graphical-Textual Model Editors

This section presents the capabilities that a modeller would typ-

ically require and expect from a hybrid graphical-textual model

editor. The envisioned hybrid graphical-textual model editors

are composed of a diagram, embedded textual editor(s) with as-

sistance features, a view in which one can edit the properties of

a selected model element, a view with various symbols that can

be dragged and dropped on top of the diagram to create model

elements of different types, and a view that displays reported

errors from the model.

2.1. Terminology

In this section, we define various terms that are used throughout

this paper. The term hybrid graphical-textual syntax is used to

refer to a part-graphical and part-textual syntax. In addition,

the term hybrid graphical-textual language is used to refer to a

language that has a hybrid graphical-textual syntax.

When using a hybrid graphical-textual DSL, some parts of

the model are graphical, i.e., they are expressed with a graphical

syntax, whereas others are textual, i.e., they are expressed with

a textual syntax. The term graphical model elements is used to

refer to the graphical parts of the model, and the term textual

model elements is used to refer to the textual parts of the model.

2.2. Motivating example

Listing 1 presents the abstract syntax, i.e., the metamodel of a

minimal contrived DSL for modelling the workloads of projects,

that has been defined in Emfatic2 (a convenience textual syn-

tax for Ecore). In Listing 1, the package keyword marks the

name of the main package, that provides the logical organisa-

tional structure of the metamodel. The attr keyword is used

to specify features with primitive types, such as strings and inte-

gers. The val keyword is used to define containment references,

whereas the ref keyword defines non-containment references.

The metamodel specifies that a Project contains a list of tasks

and a list of people. A Task has a name, a list of efforts, a

leader and a list of dependencies to other tasks. Each Effort is

assigned to a person, and it has a number of months. Finally, a

Cost Centre has a name and it references a list of efforts that are

charged to it.

When modelling the efforts of tasks, we would like to make

use of a textual syntax instead of a graphical syntax as modelling

efforts graphically in the form of further nodes/arrows can cause

the diagram to become crowded and hamper readability.

2 https://eclipse.org/emfatic

Figure 1 Hybrid graphical-textual model editor for the

Project Workloads DSL

1 @namespace(uri="ProjectWorkloadsDSL")

2 package workload;

3

4 class Project {

5 val Task[*] tasks;

6 val Person[*] people;

7 }

8

9 class Task {

10 attr String name;

11 val Effort[*] efforts;

12 ref Person leader;

13 ref Task[*] dependencies;

14 }

15

16 class Person {

17 attr String name;

18 }

19

20 class Effort {

21 ref Person person;

22 attr int months;

23 }

24

25 class CostCentre {

26 attr String name;

27 ref Effort[*] efforts;

28 }

Listing 1 Metamodel of the Project Workloads DSL

Figure 1 displays a modelled project in a hybrid graphical-

textual model editor, in which the tasks and the people are mod-

elled graphically, but the efforts are specified using a YAML-like

textual syntax, for which each effort is specified on a sepa-

rate line, as a key-value pair in the form {person}:{months}.

Therefore, the tasks and the people model elements represent

the graphical parts of the model, whereas the efforts represent

the textual parts of the model. The edges between the tasks

represent their dependencies, i.e., the Implementation task is

dependent on the Design task, and the Design task is dependent

on the Analysis task. Additionally, an edge between a task and

a person denotes that the person is the leader of the task. The

task named Implementation is selected in the diagram, and its

properties, i.e., the name and the efforts are displayed in the

properties view. Each line from the textual representation of

the efforts represents an effort model element, e.g., the second

line is an effort that refers to a person named Bob and has a

2 Predoaia et al.



value of 6 months. Although users only see and modify the

textual representation of the efforts, behind the scenes they in-

teract directly with the efforts list from the metamodel (i.e.,

val Effort[*] efforts). The textual representation of the

efforts is parsed whenever it is modified, and it produces effort

model elements. Then, reference resolution is carried out to

resolve the references of the efforts to person model elements.

Note that this is a minimal contrived example to demonstrate

the motivation and contributions of this work while keeping

accidental complexity to a minimum. Cases of real-world lan-

guages with a hybrid graphical-textual syntax include 4Diac3,

CaMCOA (Cooper et al. 2021), Matlab Simulink, and various

flavours of state machines that provide a graphical syntax for

states and transitions and a textual syntax for guards and actions.

2.3. Requirements

In the following, we will use the motivating example to illustrate

a set of required capabilities for hybrid graphical-textual model

editors, that are motivated by the requirements and challenges

that have been thoroughly described in (Cooper & Kolovos

2019).

2.3.1. References between Textual and Graphical Parts

For the purpose of defining complex behaviour or expressions,

the textual language must be able to reference model elements

that have been defined graphically in the diagram.

In Figure 1, the textual YAML-like syntax is referencing

graphical model elements of type person from the diagram,

e.g., the first line references a person with the name Alice. The

model editor should support navigation from the textual editor

into the diagram to the referenced graphical model elements.

By performing e.g. control-click on Alice from within the tex-

tual editor, the model editor should navigate to the diagram

definition of the graphically defined person named Alice. Sim-

ilarly, users should be able to find all references to Alice both

within diagrams and within textual expressions in an integrated

manner.

2.3.2. Textual Editors with Assistance Features

The textual languages must benefit from the developer assis-

tance features that are included in most of the modern integrated

development environments (IDEs). These features include syn-

tax highlighting, auto-completion, error detection markers, and

refactoring. Including these features in the textual editors will

eliminate the need for the developer to manually check the typed

text, and this can result in increased productivity.

As the user is typing the name of a person in the textual

editor, an auto-completion menu should be displayed, either

automatically, or on demand by using keyboard shortcuts such

as control+space. The auto-completion menu should display

the names of all people that exist in the diagram. If one types

the name of a person that does not exist in the diagram, the

textual editor should display an error marker that informs the

user about the problem.

3 https://www.eclipse.org/4diac/en_ide.php

2.3.3. Consistency Enforcement

Considering that the textual model elements can reference the

graphical model elements, they must remain consistent and syn-

chronised. As the model evolves, the model editor must auto-

matically enforce consistency between the textual and graphical

parts of the model. For example, if a graphical model element is

deleted from the diagram, then any textual model element that

was referencing the graphical model element must be updated

by unsetting its reference.

In a rename refactoring operation, a model element is re-

named, and the new name is propagated to all model elements

that were referencing the renamed model element. If the per-

son named Charlie is renamed into David, in the context of a

rename refactoring operation, then the textual representation

of any effort that was referencing the person named Charlie

must be updated with the new refactored name. Considering

this scenario in Figure 1, the third line of the efforts textual

representation would be updated as follows: “David:8”. Al-

ternatively, if the person named Charlie is renamed outside of

the context of a rename refactoring operation, or if it is deleted,

then any effort that was referencing the person should lose its

reference to the person, and consequently, the effort’s textual

representation should be updated to reflect the lost reference.

Considering this scenario in Figure 1, the third line of the efforts

textual representation would be updated as follows: “:8”, as

the textual syntax is permissive and allows unset references.

2.3.4. Uniform Error Reporting

The model editor must uniformly report inconsistencies from

the textual and graphical parts of the model as errors. One

should be able to navigate to the problematic model element

from a reported error.

The effort from the first line references the person named

Alice, however, if this person does not exist in the diagram,

this would cause the reference resolution to fail. Therefore,

the model editor must report this model inconsistency as an

error. The user should be able to click on the error marker and

be redirected to the problematic model element, i.e., the task

named Implementation that contains efforts with unresolved

references.

2.3.5. Integrated Abstract Syntax Graph (ASG)

The model that is expressed through a hybrid graphical-textual

syntax must be exposed to model management programs (e.g.

model-to-model or model-to-text transformations) as a single

unified abstract syntax graph (ASG) that integrates elements

from both the textual and graphical parts of the modelled system.

The modelled project from Figure 1 must be exposed to

model management programs as a single ASG that integrates

the textual parts of the model (i.e., the efforts), and the graphical

parts of the model (i.e., the tasks and the people). Therefore,

the textual representation of the efforts must not be exposed as

plain text to model management programs, but rather as a list of

effort model elements.

Streamlining the Development of Hybrid Graphical-Textual Model Editors for Domain-Specific Languages 3



3. Background

This section briefly describes the key notions and technologies

that are required for the proper understanding of this paper.

3.1. Textual and Graphical Modelling

Textual model editing is often realised via a background parsing

strategy (Scheidgen 2008). Background parsing is a circular

process that has the following steps: the user edits text using

a text editor, then the text is parsed according to a grammar,

and a model is derived in memory from the resulting parse-tree

based on a given grammar to metamodel mapping. Finally, the

in-memory representation of the derived model can be validated,

to check whether it satisfies various constraints.

Graphical modelling is done by adding, removing and editing

visual elements such as symbols and icons, on top of diagrams.

Graphical model editors are typically based on the Model-View-

Controller (MVC) pattern (Scheidgen 2008). MVC is a software

design pattern that separates presentation and interaction from

the system data (Sommerville 2010). A graphical model editor

displays representations of model elements (Model) through

view objects (View) (Scheidgen 2008). Users can create new

model elements, edit the values of model element attributes, and

delete model elements by using a set of actions. The actions that

can be executed by the users are specified in controller objects

(Controller). The editor allows users to edit model elements

directly, and the controller reacts to these changes and updates

the representation of the model.

Multi-view modelling makes use of textual and graphical

modelling. Multi-view modelling focuses on the creation of

viewpoints that are materialised through textual and/or graphi-

cal views (Addazi & Ciccozzi 2021). Views are composed of

one or more models. Multi-view modelling aims at providing

consistency across different views. Projectional editors often

support multi-view modelling capabilities, as one can define

multiple projections for an abstract syntax.

Blended modelling is similar to multi-view modelling, never-

theless, the focus is not on identifying viewpoints and views, but

on providing multiple blended editing and visualising notations

to interact with a set of concepts (Ciccozzi et al. 2019). With

blended modelling, one can choose and switch between several

different notations for the same concepts or parts of the abstract

syntax. Blended modelling can be considered orthogonal to

multi-view modelling, as it aims to provide a multi-notation

characterisation that may be used to define viewpoints or views

(Ciccozzi et al. 2019).

3.2. Modelling Technologies

In the following, we present the modelling technologies that

have been used or are related to our research.

– Eclipse Modelling Framework (EMF)4. The Eclipse Mod-

elling Framework (EMF) is the core MDE technology in

Eclipse. EMF uses Ecore for metamodelling, and the XML

Metadata Interchange (XMI) format for storing models. EMF

has code generation facilities that can produce modelling

4 https://www.eclipse.org/modeling/emf

editors from metamodels and a Java-based API that can ma-

nipulate models programmatically (Brambilla et al. 2017).

One advantage of using EMF is that it provides interoperabil-

ity with EMF-based modelling frameworks. Many modelling

frameworks are based on EMF, such as Xtext, Sirius, EMF-

Text, EMF.Cloud, Acceleo, ATL and VIATRA.

– Ecore. EMF provides the Ecore metamodelling language,

which is the de facto standard for metamodelling within the

academic MDE community. Ecore is a simplified implemen-

tation of Essential MOF (EMOF), and it is used in the Eclipse

implementation of UML, and in many other modelling tools.

Ecore-based metamodels can be defined using a graphical

syntax or textual syntax. Eclipse Emfatic5 and Xcore are

textual syntaxes for Ecore metamodels.

– Xtext6. Xtext enables the definition of textual syntaxes for

EMF-based modelling languages. Starting from an EBNF-

based grammar specification, Xtext automatically generates

the tooling for a textual language, such as a linker and a parser

(Bettini 2016). From an Xtext grammar, one can derive an

Ecore-based metamodel for representing the abstract syntax.

Alternatively, one can import an existing Ecore-based meta-

model to be used in the grammar. Xtext generates an Eclipse

textual editor that includes developer assistance features, such

as syntax highlighting, auto-completion, and error detection.

The dependency injection facilities in Xtext can be used to

customise features in the generated tooling, such as syntax

highlighting, scoping and refactoring behaviour (Cooper &

Kolovos 2019).

– TEF7. TEF is a textual modelling framework that can auto-

matically generate EMF-based textual editors. TEF provides

a syntax definition language called TSL, that can describe a

textual notation for an Ecore metamodel. Using a TSL speci-

fication, one can automatically generate textual editors with

developer assistance features, such as syntax highlighting,

auto-completion and error detection.

– Graphical Modelling Framework (GMF). GMF is an

Eclipse framework for building graphical DSLs and their

supporting editors. It is built on top of EMF and the Graph-

ical Editing Framework (GEF) (Seehusen & Stølen 2011).

GEF is a framework that enables the creation of rich graphi-

cal editors and views within Eclipse. With GMF, the abstract

syntax of a language is specified using an Ecore-based meta-

model, and the graphical concrete syntax is implemented

using GEF (Seehusen & Stølen 2011).

– Sirius8. Sirius is a framework built on top of GMF that

enables the creation of graphical DSLs and their support-

ing editors (Viyović et al. 2014). The abstract syntax of a

language is specified using an Ecore-based metamodel, and

the graphical concrete syntax is specified using a Viewpoint

Specification Model (VSM). The graphical editors can be

extended by building custom property views and by using

custom Java services (Cooper & Kolovos 2019).

5 https://www.eclipse.org/emfatic
6 https://www.eclipse.org/Xtext
7 https://github.com/markus1978/tef
8 https://www.eclipse.org/sirius

4 Predoaia et al.



4. Related Work

This section presents the state of the art with regard to hybrid

graphical-textual model editors and related previous work.

A technique for embedding textual modelling into graphical

modelling has been presented in (Scheidgen 2008). The integra-

tion is based on TEF and GMF. TEF has been extended to be

able to generate embedded textual editors that can be integrated

with EMF-generated tree-based editors and graphical editors

implemented using GMF. The textual editors include assistance

features, such as syntax highlighting, code completion and er-

ror markers. Parts of the abstract syntax are associated with

a graphical concrete syntax, and one can choose to view the

textual representation of any graphical model element in a TEF

textual editor. Therefore, it can be argued that one cannot have

model elements that are purely textual, as one can only view

the textual representation of a graphical model element. The

advantage of this approach is that one can have a high-level

graphical representation of a domain concept, and can view the

low-level details of the same domain concept using a textual

representation. In the textual representation, one can reference

graphical model elements from the diagram. When the textual

representation is modified and saved, the changes are commit-

ted and merged with the underlying graphical model element.

The modelled system can transparently be exposed to model

management programs as a unified ASG. However, in this work,

consistency between the textual and graphical parts of the model

and uniform error reporting is not addressed.

Obeo9 and Typefox10 have presented two case studies on

the integration of Xtext and Sirius (Obeo & TypeFox 2017).

The first case study presents how the same EMF model can be

edited either graphically or textually. Figure 2 displays the first

case study, and it illustrates a use case for analysing farming

activities, with the goal of optimising the water consumption

used to irrigate a given exploitation. The user can choose to edit

the model either graphically or textually, depending on which

approach is more suitable for editing specific model elements.

Model editing is performed through two different editors, the

Sirius graphical editor and Xtext textual editor. As the model

is modified and saved in one editor, the other editor becomes

synchronised. In this case study, a graphical syntax and a textual

syntax is used, independently of each other, and this approach

does not align with our intent of having hybrid (part-graphical

and part-textual) syntaxes.

In the second case study, which is presented in Figure 3, the

user can edit the model graphically and textually from within

the same model editor. An Xtext textual editor has been em-

bedded in the Sirius graphical model editor. This case study

uses a Sirius-based graphical DSL, and an Xtext-based textual

DSL that references the elements from the graphical DSL. The

graphical model elements have textual properties that contain

textual expressions. When a graphical model element is selected

in the Sirius editor, the embedded Xtext editor is displayed in

the Eclipse “Properties” view. The textual expressions can be

written using assistance features such as syntax highlighting

9 https://www.obeosoft.com
10 https://www.typefox.io

Figure 2 Xtext and Sirius editors - Farming case study (Obeo

& TypeFox 2017)

Figure 3 Hybrid graphical-textual DSL for modelling hard-

ware components (Obeo & TypeFox 2017)

and code completion. In the embedded Xtext editor, a user can

control-click a graphical model element that is referenced from

a textual expression to navigate to the graphical model element

in the Sirius diagram. However, the model editor does not en-

force consistency between the textual and graphical parts of the

model. Errors are only reported when the embedded textual

editor associated with a textual expression is being displayed.

Otherwise, if the embedded textual editor is no longer displayed,

then the user would not be aware of whether an error exists in

the textual expression. Hence, errors are not reported uniformly.

Finally, model management programs only see the textual prop-

erties containing textual expressions as plain text, rather than as

model elements.

Based on (Obeo & TypeFox 2017), further research has been

carried out in (Cooper 2018), with the aim of embedding textual

DSLs into graphical model editors. References between the

textual and graphical parts of the model are supported by the

model editor. For the purpose of enabling rename refactoring

in the textual parts of the model, the textual expressions have

Streamlining the Development of Hybrid Graphical-Textual Model Editors for Domain-Specific Languages 5



Table 1 Requirements fulfilment of state-of-the-art hybrid graphical-textual model editors

Reference
References between

textual and graphical parts

Textual Editors with

Assistance Features

Consistency

Enforcement

Uniform

Error Reporting

Integrated

ASG

(Scheidgen 2008) ✓ ✓ ✗ ✗ ✓

(Obeo & TypeFox 2017) ✓ ✓ ✗ ✗ ✗

(Cooper 2018) ✓ ✓ ✗ ✓ ✗

(Altran 2022) ✓ ✓ ✗ ✗ ✓

been stored in separate files on the file system and links to the

files have been stored in the model. By using this approach, one

can benefit from Xtext’s default refactoring engine that relies on

files, and no further extensions are required to enable rename

refactoring for the textual expressions. Therefore, this work

ensures the synchronisation between the textual and graphical

parts of the model in the event of a rename refactoring opera-

tion. Except for the synchronisation in the event of a rename

refactoring operation, the model editor does not enforce con-

sistency between the textual and graphical parts of the model.

Uniform error reporting has been realised by implementing a

custom builder that is executed each time the project is built,

parsing all textual expressions to identify the potential errors

and report them in the Eclipse “Problems” view. In this work,

no mechanism is provided to transparently expose the textual

expressions as model elements to model management programs.

Altran, which is known now as Capgemini Engineering11,

has extended the work from (Obeo & TypeFox 2017) by em-

bedding Xtext textual editors into Sirius graphical diagrams, in

addition to the Eclipse “Properties” view (Altran 2022). Refer-

ences between the textual and graphical parts of the model are

supported, however the model editor does not enforce consis-

tency between the textual and graphical parts of the model. The

model editor does not report errors in the Eclipse “Problems”

view, as errors are reported only in a pop-up window whenever

the user types syntactically incorrect textual expressions. The

textual editors that are embedded in the diagrams display the

textual representation of the underlying model element. When-

ever the user modifies the textual representation in a textual

editor that is embedded in the diagram, the textual representa-

tion is parsed and the resulting model element is merged with

the underlying model element. Therefore, the textual expres-

sions can transparently be exposed as model elements to model

management programs.

An add-on extension has been developed for Capella in

(EclipseFoundation 2022) that integrates an Xtext textual editor

with assistance features in a graphical model editor. Capella12

is a Sirius-based tool for modelling complex and safety-critical

systems in embedded systems development for industries such

as aerospace, transportation, space and automotive. Similarly

to the first case study from (Obeo & TypeFox 2017), one can

choose to edit the model either graphically or textually, depend-

ing on which approach is more appropriate. Synchronisation

11 https://capgemini-engineering.com
12 https://www.eclipse.org/capella

between the textual and graphical editor is provided, as a change

from the textual editor is propagated to the graphical editor and

vice versa. A graphical syntax and a textual syntax is used

independently of each other, and this approach is in contrast

with our intent of having a hybrid graphical-textual syntax.

The work from (Addazi & Ciccozzi 2021) mixes graphical

and textual modelling, as it relies on blended modelling. In (Ad-

dazi & Ciccozzi 2021), textual editors with assistance features

are used, and one can reference graphical model elements from

the textual syntax. However, uniform error reporting is not ad-

dressed in this work. Our hybrid graphical-textual modelling ap-

proach differs from the one of blended modelling. Blended mod-

elling focuses on providing several different notations, which

can be graphical or textual, for the same concepts of the abstract

syntax, and it is concerned with keeping the different notations

of the same part of the abstract syntax synchronised. However,

our work focuses on making use of graphical and textual no-

tations for different concepts of the abstract syntax, and it is

concerned with maintaining the consistency of the references

between the graphical and textual parts of the model.

We conclude that there are four main works that follow the

same line of work as ours. The works from (Scheidgen 2008;

Obeo & TypeFox 2017; Cooper 2018; Altran 2022) focus on

model editors that meet several of the requirements presented in

Section 2.3. Table 1 presents the requirements that are fulfilled

by each of these works.

5. Graphite

We have developed Graphite13, a tool for streamlining the de-

velopment of hybrid graphical-textual Sirius/Xtext-based model

editors, that meet the requirements discussed in Section 2.3.

The tool consists of a set of reusable services and model trans-

formations that contain approximately 2000 lines of code. This

section discusses our contributions, that have been developed

into Graphite.

5.1. Architecture and Usage

This section presents how Graphite can be leveraged to develop

a hybrid graphical-textual model editor, as the one from Figure 1.

The components and the steps involved in developing the model

editor are illustrated in Figure 4.

Figure 4 illustrates that the first step is the definition of the

abstract syntax and of the individual concrete syntaxes. Initially,

13 https://github.com/epsilonlabs/graphite

6 Predoaia et al.



1 class Task {

2 ...

3 @syntax(grammar="workload.xtext_grammar.Efforts", derive="efforts")

4 attr String effortsExpression;

5 val Effort[*] efforts;

6 ...

7 }

Listing 2 Modified metaclass with added textual property and annotation

Figure 4 Graphite architecture

one must define the abstract syntax, i.e., the metamodel of the

Project Workloads DSL. In the case of the motivating example,

the metamodel from Listing 1 has been defined. However, if one

would like to use Graphite, then the metamodel must be modi-

fied. For each property from the metamodel that one would like

to express with a textual syntax, a new textual property must be

added in the metamodel. Modifying the metamodel by adding a

new textual property is not ideal, however, this design decision

has been made to be able to tolerate temporary inconsistencies

in the model editor. Section 5.2 presents how temporary incon-

sistencies are tolerated by having a textual property that stores

the textual representation. Additionally, an annotation must be

added to the metamodel, to define the mapping between the

added textual property and the underlying model element.

To express the efforts with a textual syntax, one must mod-

ify the Task metaclass as in Listing 2. Listing 2 specifies that

the textual representation of the efforts list is stored in the tex-

tual property effortsExpression. The annotation specifies the

grammar that is used to parse the efforts textual expression, and

additionally, it specifies which is the property expressed with a

textual syntax (i.e., the efforts list). Note that in the motivating

example, we would like to express only the efforts property

with a textual syntax, therefore only one textual property and

one annotation has been added to the metamodel. However, if

one wanted to express multiple properties from the metamodel

using a textual syntax, then a textual property and an annotation

would have been added to the metamodel for each of them.

With Graphite, the textual syntax must be specified using

Xtext grammars. For the motivating example, one must define

an Xtext grammar for a YAML-like textual syntax. Listing 3

presents the grammar that is used for parsing the textual rep-

resentation of the efforts, which derives a list of effort model

elements. The grammar must import the metamodel to specify

which parts of the abstract syntax are expressed with a textual

syntax. The grammar from Listing 3 specifies that whenever

the textual representation of the efforts list is parsed, a task that

contains a list of effort model elements is derived. To enable

references between the textual and graphical parts of the model,

the grammar must reference model elements that are expressed

with a graphical syntax. Line 13 from Listing 3 specifies that

the efforts textual expression can reference a model element of

type Person that is modelled graphically.

1 grammar workload.xtext_grammar.Efforts

2 with org.eclipse.xtext.common.Terminals

3

4 import "ProjectWorkloadsDSL"

5 import "http://www.eclipse.org/emf/2002/Ecore"

6

7 Main returns Task:

8 {Task}

9 (efforts += Effort (NEWLINE efforts += Effort)∗)?;

10

11 Effort returns Effort:

12 {Effort}

13 (person =[ Person ])? ’:’ months=INT;

14

15 terminal NEWLINE:

16 (’ ’|’\t’)∗ ’\r’? ’\n’ (’ ’|’\t’)∗;

Listing 3 Efforts Xtext grammar for a YAML-like textual

syntax

A Sirius Viewpoint Specification Model (VSM) must also

be defined to map parts from the abstract syntax to a graphical

syntax. In the motivating example, we would like to model

graphically the tasks and the people. In a Sirius VSM, one must

map model elements of type Task, and model elements of type

Person to various graphical symbols. After the graphical syntax

has been defined, the first step from Figure 4 has been finalised.

In the second step, one must import into the defined Sirius

VSM a custom Sirius VSM provided by Graphite. The custom

Sirius VSM from Graphite overwrites the default properties

view from Sirius, such that for each property that is expressed

with a textual syntax, as defined in the annotated metamodel, an

Xtext textual editor is embedded in the properties view of the

model editor. To realise this behaviour, one must additionally

extend the Java Services class of Sirius with a custom class from

Graphite, that provides services that are required by the custom

Sirius VSM. Note that the Java Services class of Sirius can be

used to define a set of services for enriching the capabilities of

Sirius graphical model editors.

As the third step, one must change the default EMF EObject

type in the EMF generator model to a custom EObject imple-

Streamlining the Development of Hybrid Graphical-Textual Model Editors for Domain-Specific Languages 7



mentation from Graphite. When using EMF-based editors, EMF

attaches to model elements an ordered set of default event lis-

teners (i.e., EMF Adapter objects) that trigger certain actions

to be invoked in response to various events. For addressing

consistency enforcement in Section 5.7, custom event listeners

have been attached to referenced model elements. For a specific

event, multiple event listeners may be triggered, thus the order

in which event listeners are attached to model elements is im-

portant, as invoked actions by different event listeners may be

in conflict with each other. To avoid such conflicts, a custom

EObject type was implemented, to specify that the event lis-

teners which ensure consistency enforcement are the last event

listeners to be triggered.

In the following step, the EMF code generator must be trig-

gered to generate the projects for the model code, the edit code

and the editor code, as illustrated in Figure 4.

For the fifth and sixth steps, one must configure extension

points to Graphite. In the model project (i.e., “workload.emf”),

an extension point must be configured to an Extension Parser

(i.e., “org.eclipse.emf.ecore.extension_parser”). The Extension

Parser maps a specific model resource extension to a custom

resource factory from Graphite, that instantiates resources with

custom behaviour. In Graphite, a custom resource type has been

implemented, that overwrites the default onLoad and onSave

events listeners of a resource. The onLoad event listener has

been overwritten to parse all textual expressions when the re-

source is loaded. Additionally, the onSave event listener has

been overwritten to specify which derived model elements must

be persisted on disk, as described in Section 5.5. The next step

is to configure an extension point (i.e., “org.eclipse.ui.startup”)

in the model editor project (i.e., “workload.emf.editor”), to a

custom Startup class from Graphite that registers the model

validator used for error reporting.

Finally, one must execute a model-to-text (M2T) transfor-

mation, which is also part of Graphite, that takes as input the

annotated metamodel and generates glue code that delegates

API calls to Graphite. The generated code is added to the model

project (i.e., “workload.emf”), and to the grammar project (i.e.,

“workload.xtext_grammar”). A set of classes are added to the

model project, that provide facilities for expressing properties

with a textual syntax. Additionally, the code added to the Xtext

grammar provides facilities for global scoping, that enable ref-

erences between the graphical model elements defined in the

Sirius diagram and the textual model elements defined in the

embedded Xtext textual editors.

With Graphite, one can develop such model editors for any

DSL, by defining an annotated metamodel, one or more Xtext

grammars, a Sirius VSM, and a minimal configuration of exten-

sion points. Note that the developed hybrid graphical-textual

model editors fulfil all requirements presented in Section 2.3.

5.2. Tolerating Temporary Inconsistencies

This section discusses the decision to use additional string at-

tributes to record textual expressions, the alternatives consid-

ered, and their strengths and weaknesses.

To express a property from the metamodel with a textual syn-

tax, one option is to project its textual representation whenever

it is accessed. When the textual representation is modified, it

is parsed and the result is merged with the underlying model

element. If a user types a syntactically incorrect textual ex-

pression, parsing fails and model elements cannot be derived

from it, which should have been merged with the underlying

model element. Therefore, the textual model editor will report

an error and ask the user to write a valid textual expression.

Alternatively, the textual model editor may ask the user to con-

firm whether they agree to discard the syntactically incorrect

textual expression and revert to the previous textual expression.

The shortcoming of this approach is that it makes textual model

editing unnecessarily restrictive, as temporary inconsistencies

are not tolerated.

To be able to tolerate temporary inconsistencies in our

model editors, a textual property has been added to the

metamodel to store the textual representation of the under-

lying model element. Therefore, a textual property (i.e.,

attr String effortsExpression) has been added to the

Task metaclass in the metamodel from Listing 1, to store the

efforts in a textual format, as presented in Listing 2. The disad-

vantage of this technique is that textual expressions are stored

in the model, therefore depending on the complexity and num-

ber of textual expressions stored, the file size of the model can

increase substantially. The textual editors display the content of

the textual property that has been added to the metamodel. The

textual property represents a textual projection of the underlying

model element, i.e., the effortsExpression string is a projection

of the efforts list.

We will present an example to illustrate how temporary in-

consistencies are tolerated by having a textual property that

stores the textual representation of the underlying model el-

ement. The initial value of the efforts textual expression is

“Michael:18”, as the list of efforts contains only one effort

that references a person named Michael and has a value of 18

months. In the textual editor, the user changes the value of the

months to 36 and then accidentally enters a typo, e.g., a dot

between the digits of the number. At this point, the textual

editor and the textual expression have the following content:

“Michael:3.6”. However, the textual expression is syntacti-

cally incorrect, due to the fact that the months must be an integer,

and the user has specified a float (i.e., the float 3.6). The efforts

textual expression cannot be parsed successfully and an effort

model element could not be derived. Currently, there is a state

of temporary inconsistency, as the textual expression from the

textual editor does not represent an equivalent projection of the

underlying model element. The syntactically incorrect textual

expression indicates 3.6 number of months, however, the effort

model element from the efforts list has a value of 18 months. To

conclude, the model editor tolerates temporary inconsistencies,

by adding to the metamodel additional string attributes to store

textual expressions.

The textual representation and the underlying model element

must remain synchronised. A change in the textual represen-

tation must be reflected in the underlying model element and

vice versa. Therefore, the textual property that stores the textual

expression and the underlying model element must be bidirec-

tionally synchronised.

8 Predoaia et al.



Figure 5 Bidirectional synchronisation via serialisation and

deserialisation

5.3. Bidirectional Synchronisation between the Textual

Representation and the Underlying Model Element

Each time the efforts textual expression changes, its content is

parsed and model elements of type effort are derived and then

assigned to the efforts list. To realise this behaviour, we have

not used any out-of-the-box solution, however, we rely on Xtext

APIs that provide parsing facilities to derive model elements. To

facilitate the discussion from this section, we will call the efforts

list a derived property (i.e., val Effort[*] efforts). It is

called a derived property for the reason that it contains the model

elements that are derived from parsing the textual property. The

derived property represents the underlying model element(s)

that is expressed through a textual syntax, and its content is an

equivalent projection of the textual property.

The bidirectional synchronisation between the textual rep-

resentation and the underlying model element is achieved via

serialisation and deserialisation, as presented in Figure 5. When-

ever the content of the derived property is modified, by e.g.,

adding or removing effort model elements or by modifying the

properties or order of existing effort model elements, the content

of the derived property is serialised as a textual expression that

overwrites the value of the textual property. For this purpose, an

event listener is attached to the derived property to trigger the

serialisation of its content whenever it is modified. The event

listener is implemented in Graphite and the glue code generated

in the seventh step from Figure 4 is responsible for attaching

the event listener to derived properties. The serialisation is

triggered whenever model elements are added into or deleted

from the derived property. Additionally, the serialisation is trig-

gered whenever the value of any property of an existing model

element stored in the derived property changes. By following

this approach, the textual expression that is stored in the textual

property is bidirectionally synchronised with the underlying

model element, i.e., the derived property.

1 Alice :3

2 Bob:6

3 Charlie :8

Listing 4 Initial efforts textual expression

In the following, we will consider that the effortsExpression

property has the value from Listing 4. Three effort model ele-

ments are derived by parsing the textual expression. Each line

from Listing 4 represents an effort, e.g., the second line repre-

sents an effort that refers to a person named Bob and has a value

of 6 months. If one changes the months value of the second

effort model element to 25, then the textual expression will be

updated as in Listing 5.

1 Alice:3

2 Bob :25

3 Charlie :8

Listing 5 Updated efforts textual expression after changing

the months value

Whenever an effort model element is removed from the de-

rived property, e.g., the third effort is deleted from the list of

efforts, then the value of the textual property would be the same

as Listing 4, excluding the third line. Correspondingly, when-

ever an effort model element is added to the derived property,

e.g., an effort that has a value of 5 months and references a

person named David, then the textual property would be up-

dated as in Listing 6.

1 Alice:3

2 Bob:6

3 Charlie :8

4 David:5

Listing 6 Updated efforts textual expression after adding a

new effort model element

5.4. Managing Invalid Textual Expressions

A textual expression is considered to be in an invalid state

whenever it cannot be parsed successfully or whenever reference

resolution fails.

We will consider an example in which a textual expression is

initially syntactically correct. The derived property contains one

or more model elements, that represent an equivalent projection

of the textual expression. The user accidentally enters a typo

in the textual expression, and the textual expression becomes

syntactically incorrect. The textual expression cannot be parsed

successfully, and incomplete model elements or no model ele-

ments are derived. In this case, to avoid losing the content of the

derived property, we do not overwrite its content. The content

of the derived property remains the same as when the textual

expression was syntactically correct. Therefore, the content of

the derived property represents a projection of the last valid

textual expression. Note that at this point, the model editor is in

a state of temporary inconsistency.

5.5. Storage of Derived Model Elements

When the model is loaded by e.g. opening it in a model editor

or accessing it in model management programs, all textual prop-

erties that contain textual expressions are parsed according to

their associated grammars, and for each of them, the derived

model elements are assigned to the respective derived prop-

erty. For example, the model elements derived by parsing the

effortsExpression property of each task element are assigned to

the efforts list of the task.

One may argue that there is little benefit in storing the de-

rived model elements on disk (i.e., the efforts list), as one can

retrieve them at runtime by parsing the textual expressions.

Therefore, we considered labeling the derived model elements

as transient, to not store them on disk, as we can produce them

at runtime. However, this becomes problematic in a state of

temporary inconsistency, when a textual expression is in an

Streamlining the Development of Hybrid Graphical-Textual Model Editors for Domain-Specific Languages 9



invalid state. For example, the efforts textual expression has

the initial content of “Michael:18”. The efforts list contains

one effort that references a person named Michael and has a

value of 18 months. Additionally, a cost centre is referencing

the effort model element from the efforts list. In the textual

editor, the user accidentally enters a typo, e.g., a dot between

the digits of the number. At this point, the textual expression

is “Michael:1.8”. As the textual expression is syntactically

incorrect, it cannot be parsed successfully. This is a state of

temporary inconsistency in which the textual representation of

the efforts list does not represent an equivalent projection. In

the case that the model resource is closed and saved, and the

efforts list is not serialised on disk, then the efforts list cannot

be recovered. When the model resource is loaded again, the

syntactically incorrect textual expression cannot be parsed suc-

cessfully, therefore effort model elements cannot be derived.

Consequently, the list of efforts is lost. Furthermore, the cost

centre that was referencing the effort model element loses its

reference to the effort.

One mechanism to tackle this issue is to store on disk the

derived model elements when the model resource is saved, but

only in the case that the textual expression is in an invalid state,

i.e., it cannot be parsed successfully or reference resolution fails.

Hence, the derived model elements are stored on disk if the

textual property is in an invalid state, but if the textual property

is in a valid state, the derived model elements are not stored

on disk, as they can be recovered when the model resource

is loaded. To realise this behaviour, we customised the event

that is triggered when the model is saved, to store on disk only

the derived model elements that represent the projection of the

textual expressions that are in an invalid state. For example, if

the textual representation of the efforts list from the task named

Implementation is in an invalid state, then we store the efforts

list on disk. However, if the textual representation of the efforts

list from the task named Design is in a valid state, then we do

not store the efforts list on disk, as we can recover it when the

model is loaded.

5.6. Managing References to Derived Model Elements

Whenever the value of the textual property changes, it is parsed

and the derived model elements must be assigned to the derived

property. One option we considered was to overwrite the derived

property each time with newly derived model elements. The

limitation of this approach occurs whenever another model

element holds a reference to a derived model element that is

stored in the derived property. As new model elements (i.e., a

list of effort model elements) are derived each time the textual

property is parsed, a consistency issue occurs due to the direct

assignment of the list of derived model elements to the derived

property. If another model element was referencing any of

the previous model elements stored in the derived property,

whenever the value of the textual property changes, new model

elements would overwrite the content of the derived property,

and the referring model element would lose the reference to

the previous model element. For example, a cost centre is

referencing the first effort from Figure 1. If the user modifies the

textual representation of the third effort from Figure 1, then the

textual representation is parsed, and new effort model elements

are derived, that will overwrite the content of the efforts list.

Although the textual representation of the first effort is the same

as before, in memory a new object has been produced and

assigned to the efforts list. As the previous effort model element

does not exist anymore in the model, the cost centre loses its

reference to the previous effort.

We tackled this issue by not overwriting the derived prop-

erty each time with new derived model elements, and instead

applying a merging operation before assignment. For instance,

if the textual property has the value as in Listing 4, the derived

property would contain three effort model elements. When a

fourth effort is defined in the textual property, as in Listing 6,

the textual property is then parsed and four new effort model el-

ements are derived. These four new effort model elements must

be merged with the previous three effort model elements, and

the resulting merged efforts are assigned to the derived property.

In this example, the first three initial effort model elements are

kept, and the three new effort model elements are discarded.

Note that the merging operation is also applied for textual ex-

pressions that derive a single model element by parsing, rather

than a list of model elements. The merging is performed by

matching the identifier of objects. By default, the name property

represents the identifier of a model element, however, we are

able to customise this behaviour by using a data structure that

maps a specific model element type to an identifier property.

The data structure can be defined with minimal hand-written

code in the glue code that is generated in the seventh step from

Figure 4. When matching is performed, the data structure is

queried to retrieve the identifier property of a specific model

element type. Whenever there is a match between an old de-

rived model element and a new derived model element, the old

derived model element is kept and all its properties are over-

written with the values of the new derived model element, and

then the new derived model element is discarded. Any of the

old derived model elements that are not matched in the list of

new derived model elements are discarded. Additionally, any

of the new derived model elements that are not matched in the

list of old derived model elements are kept as is, without per-

forming any merging. Note that the order of model elements

is preserved when using this merging technique. By applying

this merging technique, the model elements that are referencing

derived model elements do not lose their reference whenever

the textual property is parsed.

5.7. Consistency Enforcement

This section discusses various challenges and solutions for con-

sistency enforcement.

Each time a model element that is referenced by a textual

expression changes its identifier, then the content of the derived

property must be serialised to update the content of the textual

expression. With regard to this, the challenge is to trigger the

serialisation in an efficient way. A naive approach would be to

trigger the serialisation whenever any property from the model

changes its value, and if the new textual expression is different

than the previous value of the textual property, overwrite it.

In our work, we applied an efficient technique that attaches an

10 Predoaia et al.



event listener to each referenced model element, which triggers

the serialisation of the content of the derived property only when

the identifier of the referenced model element has changed.

This efficient technique is applied at the instance level. The

event listener is provided by Graphite, as each time a textual

expression is parsed, Graphite identifies the references from

the textual expression, and attaches the event listener to each

reference. Each event listener is aware of all model elements that

are referring to the referenced model element. In the example

from Figure 5, after parsing the efforts textual expression, the

referenced person model elements are identified, and an event

listener is attached to each referenced person. In this case, an

event listener is attached to the persons named Alice, Bob and

Charlie, whereas to the person named David, no event listener

is attached. For example, when the name of the person Alice

is changed, then the serialisation of the content of the derived

property is triggered, and the textual expression is updated.

If the change of the identifier’s value is performed outside

the context of a rename refactoring operation, then all model

elements that are referring to the referenced model element

lose their reference, and then serialisation is performed. In

the case of a rename refactoring operation, the references are

kept, and only serialisation is performed. However, this efficient

technique does not work when reference resolution fails, as the

person model elements cannot be identified.

5.8. Uniform and Efficient Error Reporting

To realise uniform and efficient error reporting, our solution is

to store in memory the diagnostics information, i.e., the errors

that are produced when parsing a syntactically incorrect textual

expression and when reference resolution fails. As the textual

expressions are parsed only when necessary, the efficiency of

this solution is ensured.

When a validation operation is triggered in the model, then

the diagnostics information that is stored in memory is used to

populate error markers in the problems view.

This solution does not work in the case that the textual ex-

pression is in an invalid state. For example, the efforts textual

expression has been initially parsed successfully, and no errors

have been yielded. A person is then deleted, which was previ-

ously referenced by the textual expression. At this point, the

textual expression is in an invalid state, as it references a per-

son that does not exist. As the reference resolution operation

has not been triggered, the model editor is not aware that the

textual expression is in an invalid state. Therefore, no errors

are reported in the problems view, as the last time the textual

expression was parsed, no errors have been yielded.

The solution to store in memory the diagnostics information

only works when used in conjunction with the consistency en-

forcement techniques that have been applied in Section 5.7. By

applying the consistency enforcement techniques, in the context

of the previous example, when the referenced person is deleted,

then the textual expression is updated to reflect the lost refer-

ence, and now the textual expression is in a valid state, therefore

no errors must be reported.

Figure 6 Case study - code generation

6. Evaluation

This section evaluates Graphite by means of an industrial case

study provided by NetApp.

6.1. Case Study

NetApp14 is a global software company that delivers hybrid

cloud data services and data management services. Within

NetApp, infrastructure automation is often realised via Infras-

tructure as Code (e.g., Ansible).

Infrastructure as Code (IaC) is a DevOps practice that en-

ables infrastructure automation using software development

practices. The management and provisioning of infrastructure is

performed through definition files that contain declarative code.

Once the infrastructure is defined using code, it is rolled out to

systems through automated processes (Morris 2016). Ansible15

is one example of infrastructure automation technology that

delivers IaC. Ansible Playbooks are the core component of

Ansible, and use the human-readable syntax of YAML.

When planning enterprise data storage environments, typi-

cally several parties and roles are involved, e.g., cloud architects,

storage architects, security experts, operational teams and legal

departments. Thereby, non-technical professionals often have

a lack of shared understanding of the described infrastructure.

For this industry scenario, we have developed a dedicated hy-

brid graphical-textual DSL for modelling NetApp Public Cloud

Services (PCS), to lower the entry barrier to cloud services

adoption and to support a shared understanding of the involved

parties. The DSL uses a graphical syntax for simplification of

high-level infrastructure components, and textual syntaxes for

defining low-level details of NetApp PCS.

Figure 6 illustrates how the DSL simplifies cloud automation.

A storage designer models an infrastructure environment by

collaborating with the previously mentioned parties. Then, an

equivalent Ansible Playbook of the modelled infrastructure is

automatically derived. A DevOps engineer may further elab-

orate on the derived Ansible Playbook for fine-tuning or for

including sensitive credentials. Finally, the Ansible Playbook

is executed, and all infrastructure components that have been

defined in the model editor are deployed to the cloud.

An excerpt from the metamodel of the DSL is presented in

Figure 7, which contains the main concepts of the domain.

Open Network Technology for Appliance Products (ONTAP)

is NetApp’s proprietary operating system that offers many stor-

age efficiencies, and it is deployed on physical or virtual ap-

14 https://www.netapp.com
15 https://www.ansible.com

Streamlining the Development of Hybrid Graphical-Textual Model Editors for Domain-Specific Languages 11



Figure 7 Excerpt of the NetApp Infrastructures metamodel

Figure 8 Infrastructures Hybrid Graphical-Textual Model

Editor

pliances. Cloud Volumes ONTAP16 (CVO) is an instance of

the ONTAP operating system that is deployed to the cloud. A

Deployment configuration contains a SnapshotPolicy and a list

of NetApp infrastructure PCS that will be deployed to a specific

Environment (e.g., NetApp BlueXP17), in a specific public cloud

(AWS is currently supported). The list of NetApp infrastructure

PCS can contain instances of CloudBackup, CloudTiering, Repli-

cationPolicy, SnapMirror and CVO. A CVO instance contains a

list of volumes that define logical storage areas. SnapMirror is

a proprietary protocol for replicating data from a source volume

to a target volume of a CVO instance. A SnapMirror instance

takes a SnapshotPolicy and maximum transfer rates (measured

in mebibyte per second) into account. A ReplicationPolicy con-

tains a list of replication mappings, i.e., multiple SnapMirror

instances.

Figure 8 presents the hybrid graphical-textual model editor

that has been developed for the DSL, by leveraging Graphite.

The majority of the NetApp infrastructure PCS are represented

16 https://cloud.netapp.com/ontap-cloud
17 https://www.netapp.com/bluexp

with a graphical syntax, i.e., CVO, SnapshotPolicy, Cloud-

Backup, CloudTiering, AWSNetworking and Environment. How-

ever, the replication mappings of a ReplicationPolicy are better

suited to be represented using textual expressions. In Figure 8,

the textual editor of the property Replication Mappings Expres-

sion is an embedded Xtext editor with assistance features. The

first line specifies a bidirectional replication, whereas the second

line specifies a unidirectional replication. The second line states

that volumeB from CVO_1 must be replicated into volume3

from CVO_2 with a maximum transfer rate of 50 mebibytes per

second. Additionally, a JSON-like textual syntax was used to

define the volumes of CVO instances. In this case, the volumes

can be defined graphically, but also textually. The advantage

of defining the volumes with a textual JSON-like syntax is that

engineers can reuse JSON files containing data of volumes from

NetApp internal systems. As the replication mappings and the

volumes are expressed with a textual syntax, a textual property

and an annotation has been added for each in the metamodel.

6.2. Discussion

In this section, we evaluate the model editor that has been

developed for the case study by using Graphite.

In Figure 8, the textual expression references multiple graph-

ical model elements. It references CVO_1, CVO_2, volumeA,

volumeB, volume3, and snapshotPolicyDefault. By performing

control-click over snapshotPolicyDefault from within the textual

editor, the model editor navigates to the snapshotPolicyDefault

graphical model element in the diagram.

The textual editor for the replication mappings textual ex-

pression has developer assistance features. It includes syntax

highlighting, as the properties policy and maxTransferRate are

highlighted in the textual expression. When typing the name

of a volume, an auto-completion menu is displayed in Figure 8,

which lists all volumes from CVO_2. The reference to volume4

cannot be resolved, as it is not defined in the diagram. Accord-

ingly, an error detection marker is displayed in the textual editor.

After replacing volume4 with volume1 in the textual expression,

reference resolution is carried out successfully. Therefore, the

error marker from the textual editor disappears.

12 Predoaia et al.



1 CVO_1.volumeA <−> CVO_2.volume1 { policy: snapshotPolicyDefault , maxTransferRate : 20 }

2 CVO_1.volumeB −> CVO_2.volume3 { maxTransferRate : 50 }

Listing 7 Textual representation of the replication mappings list

1 − source_cvo_name: CVO_1

2 destination_cvo_name: CVO_2

3 source_volume_name: volumeA

4 destination_volume_name: volume1

5 max_transfer_rate: 20

6 policy: snapshotPolicyDefault

7

8 − source_cvo_name: CVO_2

9 destination_cvo_name: CVO_1

10 source_volume_name: volume1

11 destination_volume_name: volumeA

12 max_transfer_rate: 20

13 policy: snapshotPolicyDefault

14

15 − source_cvo_name: CVO_1

16 destination_cvo_name: CVO_2

17 source_volume_name: volumeB

18 destination_volume_name: volume3

19 max_transfer_rate: 50

Listing 8 Generated Ansible Playbook from the replication

mappings list

When volumeB is renamed in the diagram into volumeD,

then the textual expression is updated by replacing volumeB

with volumeD. Additionally, when snapshotPolicyDefault is

removed from the diagram, the first line of the textual expression

is updated, such that the policy property is removed from the

curly braces, as it is not referring to any model element.

In Figure 8, there are two reported errors. As the replication

mappings textual expression is referencing a volume that does

not exist, an error is reported in the Eclipse “Problems” view.

The textual representation of the volumes from CVO_3 is syn-

tactically incorrect, therefore an additional error is reported in

the Eclipse “Problems” view. When the user clicks on the first

error marker, the model editor redirects the user to the problem-

atic model element, i.e., the replicationPolicy that has a textual

expression with an unresolved reference to volume4.

The modelled infrastructure environment is exposed to model

management programs as a single ASG that integrates the tex-

tual and the graphical parts of the model. A model-to-model

transformation was used to convert the list of replication map-

pings into an Ansible Playbook. The Epsilon Transformation

Language (ETL)18 and the EMC YAML driver19 have been used

to transform the EMF model into an YAML model. The YAML

model represents the generated Ansible Playbook. For every

replication mapping that is not bidirectional (->), a YAML map-

ping node is added to the Ansible Playbook, that contains all

properties of the replication mapping. However, if a replication

mapping is bidirectional (<->), two YAML mapping nodes are

added to the Ansible Playbook, that contain the same properties,

with the exception that the source CVO and source volume are

swapped with the destination CVO and destination volume.

18 https://www.eclipse.org/epsilon/doc/etl
19 https://www.eclipse.org/epsilon/doc/articles/yaml-emc

Listing 7 contains the textual representation of the list of

replication mappings. As the first replication mapping is bidi-

rectional, it is added twice to the Ansible Playbook, as in List-

ing 8.

To conclude, with only four hand-written lines of code, two

grammars, and minimal configurations, we were able to leverage

Graphite to develop a model editor that fulfils all requirements

presented in Section 2.3.

7. Limitations

The merging operation of model elements is performed by

matching their identifiers. One can specify the identifier of a

model element type, however, no mechanism is provided to en-

force model elements with unique identifiers, therefore conflicts

and inconsistencies can result during the merging operation.

When the model is loaded, all textual expressions are parsed

and the derived model elements are assigned to their associated

derived property. There are cases in which one textual expres-

sion refers to the elements of another textual expression. To

exemplify, the derived model elements from a textual expression

may reference the derived model elements from another textual

expression. In such cases, the order in which the textual expres-

sions are parsed is important. References cannot be resolved if a

primary textual expression is parsed before a secondary textual

expression that is referenced by the primary textual expression.

Our contribution does not currently address this limitation, how-

ever, it is useful in its current state, for textual expressions that

do not refer to each other.

It is essential that a grammar used for parsing a textual prop-

erty contains a grammar rule which populates all properties

of the derived model element(s). We will consider the case in

which a grammar only sets the value of person for each effort,

without setting the value of the months property. The textual

property would be parsed, and it would derive effort model ele-

ments that have no value for months. If one changes the value of

an effort’s months in a model editor, then whenever new efforts

are derived that will overwrite the old efforts, the months value

that was set in the model editor would be lost. To avoid this

issue, one could validate that the grammar contains a grammar

rule that sets all properties of a derived model element (i.e., for

each effort it must set the person and months).

8. Conclusions and Future Work

In this paper, we motivated a set of requirements for hybrid

graphical-textual model editors and addressed several open chal-

lenges. We presented our main contribution, Graphite, which

is a tool for streamlining the development of hybrid graphical-

textual model editors, by using as little hand-written code as

possible. We then evaluated Graphite in an industrial case study.

Streamlining the Development of Hybrid Graphical-Textual Model Editors for Domain-Specific Languages 13



In future work, we will conduct experimental evaluations

related to performance aspects, as the evaluation of Graphite

is currently limited to a case study. We plan to address the

limitations of our solution by enforcing model elements with

unique identifiers, enabling textual expressions to reference

other textual expressions, and validating that grammars con-

tain a grammar rule that sets all properties of a derived model

element. Additionally, we would like to extend the capabili-

ties of the model editors, by providing facilities for finding all

references of a model element, both in diagrams and textual

expressions. Furthermore, we would like to investigate consis-

tency enforcement techniques in the context of model elements

that must satisfy various constraints.

Acknowledgments

The work in this paper has been funded by NetApp and through

the HICLASS InnovateUK project (contract no. 113213).

References

Addazi, L., & Ciccozzi, F. (2021). Blended graphical and textual

modelling for UML profiles: A proof-of-concept implemen-

tation and experiment. Journal of Systems and Software, 175,

110912.

Altran. (2022). Xtext Sirius integration [Computer software

manual]. ([Online]. Available: https://altran-mde.github.io/

xtext-sirius-integration.io)

Bettini, L. (2016). Implementing Domain-Specific Languages

with Xtext and Xtend. Packt Publishing.

Brambilla, M., Cabot, J., Wimmer, M., & Baresi, L. (2017).

Model-Driven Software Engineering in Practice (Second ed.).

Morgan & Claypool Publishers.

Ciccozzi, F., Tichy, M., Vangheluwe, H., & Weyns, D. (2019).

Blended Modelling - What, Why and How. In 2019

ACM/IEEE 22nd International Conference on Model Driven

Engineering Languages and Systems Companion (MODELS-

C) (pp. 425–430).

Cooper, J. (2018). A Framework to Embed Textual Domain

Specific Languages in Graphical Model Editors (Unpublished

master’s thesis). University of York.

Cooper, J., De la Vega, A., Paige, R., Kolovos, D., Bennett, M.,

Brown, C., . . . Rodriguez, H. H. (2021). Model-Based Devel-

opment of Engine Control Systems: Experiences and Lessons

Learnt. In 2021 ACM/IEEE 24th International Conference on

Model Driven Engineering Languages and Systems (MOD-

ELS) (p. 308-319).

Cooper, J., & Kolovos, D. (2019). Engineering Hybrid

Graphical-Textual Languages with Sirius and Xtext: Require-

ments and Challenges. In ACM/IEEE 22nd International

Conference on Model Driven Engineering Languages and

Systems Companion (MODELS-C) (pp. 322–325).

EclipseFoundation. (2022). Capella Textual Editor Extension

[Computer software manual]. ([Online]. Available: https://

github.com/eclipse/capella-textual-editor)

Morris, K. (2016). Infrastructure as Code: Managing Servers

in the Cloud. "O’Reilly Media".

Obeo, & TypeFox. (2017). Xtext Sirius integration -

white paper [Computer software manual]. ([Online]. Avail-

able: https://www.obeodesigner.com/resource/white-paper/

WhitePaper_XtextSirius_EN.pdf)

Scheidgen, M. (2008). Textual Modelling Embedded into

Graphical Modelling. In European Conference on Model

Driven Architecture-Foundations and Applications (pp. 153–

168).

Seehusen, F., & Stølen, K. (2011). An Evaluation of the Graph-

ical Modeling Framework (GMF) Based on the Development

of the CORAS Tool. In International Conference on Theory

and Practice of Model Transformations (pp. 152–166).

Sommerville, I. (2010). Software Engineering (Ninth ed.).

Pearson.

Viyović, V., Maksimović, M., & Perisić, B. (2014). Sirius: A

rapid development of DSM graphical editor. In IEEE 18th

International Conference on Intelligent Engineering Systems

INES 2014 (pp. 233–238).

About the authors

Ionut Predoaia is a PhD candidate and Research Associate in

the Department of Computer Science at the University of York.

He is also an R&D Software Engineer at NetApp, where he

focuses on the development of model editors for system man-

agement and infrastructure automation. His current research

revolves around model-based software engineering, domain-

specific languages, model editors and infrastructure as code.

You can contact the author at ionut.predoaia@york.ac.uk.

Dimitris Kolovos is a Professor of Software Engineering in the

Department of Computer Science at the University of York,

where he researches and teaches automated and model-driven

software engineering. He is also an Eclipse Foundation commit-

ter, leading the development of the open-source Epsilon model-

driven software engineering platform, and an editor of the Soft-

ware and Systems Modelling journal. He has co-authored more

than 150 peer-reviewed papers and his research has been sup-

ported by the European Commission, UK’s Engineering and

Physical Sciences Research Council (EPSRC), InnovateUK and

by companies such as Rolls-Royce and IBM. You can contact

the author at dimitris.kolovos@york.ac.uk.

Matthias Lenk During his time at NetApp, Matthias Lenk held

the role of a Global Technology Strategist and focused on cloud

and data services for the automotive industry. His academic

background is within model-driven software development and

model transformations in the domain of VR/AR. You can con-

tact the author at matthias.lenk@posteo.net.

Antonio García-Domínguez is a Lecturer at the Department

of Computer Science of the University of York. Antonio’s

main research interest is model-driven software engineering,

with lines of work on scalable model management and runtime

models for explainability of self-adaptive systems. In addition to

over 60 publications across international conferences, journals,

and book chapters, Antonio is a core contributor to the Eclipse

Epsilon model management languages and tools, and leads the

Eclipse Hawk model indexing project. You can contact the

author at a.garcia-dominguez@york.ac.uk.

14 Predoaia et al.


