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a b s t r a c t

Incorporating knowledge graphs (KGs) into recommender systems (RS) has recently attracted increas-

ing attention. For large-scale KGs, due to limited labour supervision, noises are inevitably introduced

during automatic construction. However, the effects of such noises as untrustworthy information in

KGs on RS are unclear, and how to retain RS performing well while encountering such untrustworthy

information has yet to be solved. Motivated by them, we study the effects of the trustworthiness of

the KG on RS and propose a novel method trustworthiness-aware knowledge graph representation

(KGR) for recommendation (TrustRec). TrustRec introduces a trustworthiness estimator into noise-

tolerant KGR methods for collaborative filtering. Specifically, to assign trustworthiness, we leverage

internal structures of KGs from microscopic to macroscopic levels: motifs, communities and global

information, to reflect the true degree of triple expression. Building on this estimator, we then

propose trustworthiness integration to learn noise-tolerant KGR and item representations for RS. We

conduct extensive experiments to show the superior performance of TrustRec over state-of-the-art

recommendation methods.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recommender systems (RS) aim to ease information explosion

and largely reduce users’ effort in finding items of interest. Con-

ventional RS, based on collaborative filtering (CF) [1,2], usually

suffer from the sparsity of interactions and the cold-start prob-

lem. To address these issues, existing works incorporate auxiliary

sources as side information, such as social networks [3].

Knowledge graphs (KGs) as one type of auxiliary source con-

tain rich facts about items in the form of heterogeneous graphs

[4], which are successfully applied to many applications such

as question answering [5] and text classification [6,7]. Facts in

KGs are presented in the form of triples (head entity, relation,

tail entity). For example, (Tom Hanks, IsActorOf, Forrest Gump)

indicates that Tom Hanks is an actor in Forrest Gump. How-

ever, some untrustworthy information1 are inevitably introduced

when constructing KGs.

Inspired by the success of applying KGs in a variety of tasks,

some recent works incorporate KGs into RS via knowledge graph

∗ Corresponding author.

E-mail address: yan.ge@bristol.ac.uk (Y. Ge).
1 In this paper, the untrustworthy information is equivalent to the noise in

KGs.

representation (KGR) that aims to learn low-dimensional dis-

tributed embedding of entities and relations [8–11]. The usage

of KGs within the context of RS can alleviate the item cold-

start and sparsity problem of CF. The reason is twofold: (1) KGs

introduce extra semantic connections among items, which can

provide new items with more interactions to recommendations;

(2) KGs consist of a variety of relation types, which helps extend

a user’s interests reasonably. Therefore, collaborative knowledge-

based embedding (CKE) [12] combines CF with KG embedding

in a unified Bayesian framework. Knowledge translation-based

user preference model [13] transfers relation information from

a KG to recommendations for a better understanding the reasons

that a user likes an item. Knowledge-aware graph neural network

(GNN) with label smoothness regularisation [14] applies GNN

architecture to KGs by using a user-specific relation score func-

tion and aggregating neighbourhood information with different

weights.

However, when incorporating KGs into RS, most existing

methods, including the above three state-of-the-art (SOTA) meth-

ods, do not consider noises in KGs. In real-world KGs, some

noises are inevitably introduced in the process of automatically

constructing large-scale KGs due to limited labour supervision

[15,16]. For example, to construct KGs, the recent model [17]

achieves only around 60% precision when the recall is 20%, which

https://doi.org/10.1016/j.knosys.2023.110865
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Fig. 1. An example to show that a noisy triple (Death Becomes Her, IsDirectedBy,

Christopher Nolan) can degrade the recommendation performance (i.e., recom-

mend interesting Death Becomes Her to the user). It motivates our model to

tolerate such noisy triples.

indicates a large amount of untrustworthy information in KGs.

We argue that such noises in KGs as auxiliary data can degrade

the performance of RS, which will be verified by our experiments.

As illustrated in Fig. 1, the red dashed arrow indicates an interac-

tion to be predicted between a user and a movie Death Becomes

Her. Assuming that this user has interacted with three similar

movies Back to The Future I & II and Forrest Gump due to the

same director Robert Zemeckis by using the KG. The correctness

of the director of Death Becomes Her can determine whether to

recommend it to this user. In this case, we fail to recommend

the Death Becomes Her if a noisy triple (Death Becomes Her,

IsDirectedBy, Christopher Nolan) exists. Therefore, it is essential to

tolerate such noisy triples in the KG incorporated with RS. The

other relation type (e.g., ‘genre’) can affect the recommendations,

which shares the same idea about how the ‘director’ relation

affects recommendations. Therefore, we show a single relation

‘director’ as a representative in this example, and it can be applied

to another relation type, such as ‘starred’ and ‘genre’.

In this paper, we aim to estimate noises in KGs, while con-

structing noise-tolerant KGR to incorporate with RS. However,

there remain two challenges: (1) how to estimate noises in

arbitrary KGs without collecting external information. Some

works [18,19] strongly rely on external information (e.g., web

content, text) but do not have good generalisation to estimate

noises in KGs. (2) Noise estimation integration. Some existing

works [12,13,20–22] study an integration between two mod-

ules (KGR and RS) through, for example, linearly combining the

entity and the corresponding item embeddings. However, build-

ing on this two-module integration, introducing another noise

estimation module is still unclear.

To address the above challenges, we propose a novel method

trustworthiness-aware KGR for recommendations (TrustRec).

TrustRec incorporates noise-tolerant translation-based KGR into

a CF-based method through a trustworthiness estimator, which

gives the degree of certainty of triples. Specifically, to construct

this trustworthiness estimator, we firstly leverage internal struc-

tural information in KGs from microscopic to macroscopic levels:

the motif (co-occurrence in the same type of local connectivity

pattern), communities (co-occurrence in the same high associ-

ation group) and global information (correlation strength on all

paths). Then we use a neural network architecture to fuse the

structural information, and finally yield a trustworthiness value

for every triple. In this way, we can estimate triple trustworthi-

ness in any KG by leveraging internal information to enhance gen-

eralisation capacity, which tackles the first challenge. To address

the second challenge, building on our estimator, we integrate

triple trustworthiness into a proposed neural/weighted pairwise

ranking loss functions for noise-tolerant KGR. Meanwhile, we

integrate entity trustworthiness as a linear combination ratio of

an entity embedding to learn a noise-tolerant item representation

for RS. We summarise our contributions as follows:

1. We investigate the effect of untrustworthy information in

KGs on recommendations and find that the untrustworthy

information degrades the performance of RS.

2. We propose the TrustRec that is trustworthiness-aware RS

to learn noise-tolerant KGR and item representations for

RS, which retains RS performing well while encountering

noises in KGs.

3. We conduct extensive experiments to show the superior

performance of our TrustRec over SOTA methods.

2. Preliminary

2.1. Notations

We denote scalars by lowercase italic letters, e.g., a, vectors

by lowercase boldface letters, e.g., a, and matrices by uppercase

boldface, e.g., A.

We have a KG G = {E,R}, which is comprised of massive

entity–relation–entity triples (eh, r , et ), where eh ∈ E, r ∈ R,

eh ∈ E denote the head, relation, tail. We construct a weighted

directed graph G from a KG G. Each entity e ∈ E is abstracted into

a node. If there are relations from the entities e1 to e2, a directed

edge will exist from node e1 to e2, and the weight of the edge is

the number of relations. Therefore, a KG with n entities can be

mapped as a directed graph G with n nodes. For RS, the user–

item interaction matrix Y is defined according to users’ implicit

feedback.

2.2. Trustworthiness in KG

Most traditional knowledge graph construction methods usu-

ally involve huge human supervision or expert annotation, which

are extremely labour-intensive and time-consuming [15]. Re-

cently, large-scale knowledge graphs (e.g., DBpedia [23], Free-

base [24]) are productively and automatically constructed from

unstructured web text (e.g., NELL [25]). However, some noises

and errors are inevitably introduced in the process of automation

due to limited labour supervision [26,27].

Existing KG-based tasks (e.g., knowledge completion [19]) or

applications (e.g., question answering [28]) assume knowledge in

the existing KG is completely correct. To model errors in KGs,

Xie et al. [15] proposed a triple confidence awareness knowledge

representation learning framework, which detects possible noises

in KGs while learning knowledge representations with confidence

simultaneously. They introduced triple confidence to conven-

tional translation-based methods for knowledge representation

learning. Jia et al. [16] synthetically extracted the trustworthi-

ness of the triples from knowledge graph embedding, entity

resource and path information of the knowledge graph. Most

KGs representations consider deterministic KGs (e.g., Freebase)

that consist of deterministic facts. Chen et al. [29] proposed a

KGs embedding model on uncertain KGs that associate every fact

with a confidence score. Dong et al. [18] built a large-scale un-

certain knowledge graph, and fused multiple extraction sources

with prior knowledge derived from an existing knowledge base.

Focusing on rule-based learning, PTrustE [30] integrates a proba-

bility logic model, based on correlations, with a knowledge graph

representation learning approach, which focuses on the paths

of triples. This combination enhances the model’s generalisation

capability by learning both the matrix of path scores and the

2



Y. Ge, J. Ma, L. Zhang et al. Knowledge-Based Systems 278 (2023) 110865

trustworthiness of different paths. TKGC [31] operates on data

from multiple, noisy sources for the trustworthy completion of

knowledge graphs. It incorporates a comprehensive scoring func-

tion, which assesses the credibility of both relational and literal

facts, regardless of their value types. TrustE [32] employs an

innovative structured embedding method specifically designed

for different types of entities. Furthermore, it leverages an energy

function conscious of trustworthiness, allowing it to establish

robust embeddings for various entity types, even in the context

of knowledge graphs that contain a lot of noise.

Some works [18,19,33] need to collect external information

(e.g., web content, text) to measure the trustworthiness of triples

in a KG. To enhance the flexibility and generalisation, the meth-

ods [15,16] only rely on internal information to construct reach-

able paths for trustworthiness estimation. The number of paths is

enormous in a large-scale KG. Therefore, instead of constructing

paths, our trustworthiness estimator leverage structural infor-

mation (e.g., motif, community, global) to measure noises in

arbitrary KGs without collecting external information.

The definition of untrustworthiness can vary depending on the

task and the context of knowledge graphs (KGs). In this paper,

we focus on a context of KGs for recommendations and follow

the paper [16,29], we formally define the untrustworthy triples

below.

Definition 1 (Untrustworthy Triple). We have a KG (G) that con-

sists of massive weighted triples G = {el, wl} where wl reflects

a credibility score of the triple l. A triple el is an untrustworthy

triple if wl < c , where c is a credibility threshold.

2.3. KGR

KGR is used to embed entities and relations into low-

dimensional vectors while preserving semantic and structural

information [34]. Translational models are popular to exploit

distance-based energy functions and a relation is regarded as

a translation in the embedding space. TransE [35] follows an

assumption that eh and et are connected by r with a low error

if a triple (eh, r, et ) holds, and thus formulates an energy function

gE = ∥eh + r − et∥ (1)

However, TransE has flaws when dealing with 1-to-N, N-to

−1 and N-to-N relations. To address these issues, TransH [36]

introduces relation specific hyperplanes, which each relation r as

a vector r on a hyperplane with wr . The embeddings eh and et are

first projected to the hyperplane of relation r to obtain vectors

e⊥
h = eh − w⊥

r ehwr , e⊥
t = et − w⊥

r etwr (2)

and then e⊥
h + r ≈ e⊥

t . For TransE and TransH, the embeddings of

entities and relations are in the same space. However, entities and

relations are different types of objects. It is insufficient to model

them in the same space. To address this issue, In TransR [37], eh
and et are projected to a new space so that the relation r focuses

on through a matrix Mr and then

gR = ∥Mreh + r − Mret∥. (3)

TransD [38] constructs dynamic mapping matrices

Mrh = rphp + I , Mrt = rptp + I (4)

by the projection vectors hp, tp, rp ∈ R
n and an identity matrix

I ∈ R
n×n, with the formulation as

gD = ∥
(

rph
⊤
p + I

)

h + r −
(

rpt
⊤
p + I

)

t∥. (5)

2.4. Knowledge-aware recommendation

The existing methods on integrating the KG into recommen-

dations can be roughly categorised into embedding-based and

path-based methods. Path-based methods encode the connection

pattern of user–item pair or item–item pair into latent vectors.

For example, to capture the semantics of different paths and

distinctive saliency of user preferences, Zhu et al. [39] use re-

current networks to encode different paths. It further determines

different path saliency through a pooling operation to generate

recommendations. To provide explainability, knowledge-aware

path recurrent network [40] generates path representations by

composing the semantics of both entities and relations to infer

the underlying rationale of a user–item interaction. However, for

path-based methods, the number of possible paths in a large-

scale knowledge graph can grow countless. Therefore, it may

hinder the performance of the recommendation.

Embedding-based methods leverage fruitful triple facts in the

KG to enrich the representation of items or users. Knowledge

graph attention network for recommendation [41] models the

high-order connectivities in KGs and then recursively propagates

the node embeddings. To learn both the KG embedding task and

the recommendation task, Wang et al. [42] propose a multi-task

learning approach. This approach designs a cross&compress unit

to associate the two tasks, which can automatically learn high-

order interactions [43] of item and entity features and transfer

knowledge between the two tasks. Cao et al. [13] model various

implicit relations between users and items and transfer knowl-

edge learned from TransH, which reveals the users’ preferences

in consuming items.

2.5. Matrix Factorisation (MF)

To build RS, CF models users’ preferences for items based

on historical interactions. MF [1] is a popular technique. It is

formulated as:

ŷui = pT
uqi, (6)

where pu and qi denote the latent vector for user u and item i.

Bayesian personalised ranking (BPR) optimises the above equa-

tion with a pairwise ranking loss [44]

Lr =
∑

(u,i)∈Y,(u,i′)∈Y′

− log δ(ŷui − ŷui′ ), (7)

where δ(·) is a sigmoid function and Y′ contains negative in-

teractions by randomly corrupting an interacted item to a non-

interacted one for each user.

3. Methodology

In this section, we propose to estimate trustworthiness of

triples through internal structural information: motifs, communi-

ties and global information. We then integrate triple trustworthi-

ness into a weighted/neural loss function of KGR to learn noise-

tolerant KGR. Meanwhile we integrate entity trustworthiness into

RS to learn noise-tolerant item representations for RS.

3.1. Motif-aware trustworthiness

Motifs are fundamental subgraph patterns in graphs and show

complex local connectivity patterns beyond a direct relation be-

tween nodes [45]. Triangular Motifs (shown in left bottom of

Fig. 3) demonstrate very important local structures underlying

various complex networks, such as social networks.

3
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Fig. 2. An example to show (1) a strong tie occurs in the triple (Tom Hanks,

actor, Forrest Gump) through the motif I; (2) high association in the triple (Tom

Hanks, actor, Forrest Gump) within a community (shadow); (3) high correlation

(an orange dashed arrow) occurs in an entity pair (Drama, Robert Zemeckis)

through all paths.

We use the strength of a tie between head and tail linked

by a relation to measure the trustworthiness of triple (eh, r , et ).

If head eh and tail et have a strong tie, the relation r between

head eh and tail et is expected to be strong. Motif modelling is an

effective approach to measure the strength of a tie between two

entities [45,46]. For example, in a social network, two people who

have a common friend are likely to be friends, so this common

friend and two people constitute a triangular motif connectivity

pattern. Intuitively, if two people have more common friends, the

stronger strength of a tie between them can occur. Additionally,

considering motifs can capture the rich context of relations to

diversify strengthen of ties while direct edges relation cannot. For

example, in Fig. 2, if only considering the simple edge relation,

triples (Tom Hanks, actor, Bridge of Spies) and (Tom Hanks, actor,

Forrest Gump) have the same strength of a tie. However, when

considering a motif type I in Fig. 2, the triple (Tom Hanks, actor,

Forrest Gump) has a rich context (e.g., with Robert Zemeckis) to

enhance its strength of a tie. This paper will focus on all triangular

motifs as shown in Fig. 3, though our proposed method can be

easily extended to other motifs.

Based on the above analysis, we take the input (eh, r, et ) from

G, and quantify the strength of a tie for it by counting the number

of the motif types Mi containing this triple. Different type of

triangular motifs reflect different connectivity patterns. Thus, we

construct a feature vector m(eh, r, et ) to consider all, and the ith

entry in m(eh, r, et ) are decided by:

mi(eh, r, et ) =
∑

eh,et∈E,r∈R

1 (eh, r, et occur in Mi) (8)

where 1(s) is the truth-value indicator function, i.e., 1(s) = 1 if

the statement s is true and 0 otherwise. We form a feature vector

m(eh, r, et ) where the ith element indicates the number of motif

typeMi containing (eh, r, et ). We then compress the motif feature

vector m(eh, r, et ) into a value m(eh, r, et ) by a trainable weight

wm as

m(eh, r, et ) = m(eh, r, et ) · δ(wT
m). (9)

We interpret the value wm(i) as the importance of motif type Mi.

Note that all triples in the KG share the same trainable weight

wm to largely avoid the increase of the model complexity with

the increase of KG size.

For an input triple (eh, r, et ), we quantify all 13 different tri-

angular motif types (shown in left bottom of Fig. 3) in a directed

graph involving this triple by matrix operation. For example, for

the triangular motif with three bidirectional edges, we use A·A◦A

Fig. 3. The framework of the proposed trustworthiness estimator by leveraging internal structure information of KGs: motifs, communities and global information. We

utilise internal structural information in KGs, ranging from microscopic to macroscopic levels: motifs, communities, and global information. We extract a motif-aware

feature vector indicating the number of motif types involving the input triple. The entry in the community-aware feature vector represents whether the input triple

is in the same community. Furthermore, we define the correlation strength for triples by considering all paths throughout the entire graph. We then employ a neural

network architecture to integrate the structural information, ultimately producing a trustworthiness value for each triple.
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to quantify any triple involving this motif, where A is the edge
adjacency matrix, ‘·’ is matrix multiplication, and ‘◦’ is Hadamard
product. We set a trainable weight vector wm to quantify the
influence of different triangular motifs. We consider the value
wm(i) to represent the significance of motif type Mi. It is impor-
tant to note that all triples in the KG share the same trainable
weight wm, which effectively prevents the model’s complexity
from increasing as the KG size grows.

3.2. Community-aware trustworthiness

The motif-aware trustworthiness estimator based on the local
neighbours is straightforward but cannot take fully advantage of
rich structural information of KGs. To capture a more complete
picture of triples, we consider a community structure that con-
sists of a group of entities. Community structure refers to the
occurrence of groups of nodes in a graph that are more densely
connected than the rest of the graph. Some existing works [47,48]
show that entities within a community have relatively higher
association than entities in different communities. If head eh and
tail et have a higher association, head eh and tail et are more likely
to have a trusted relation. For example, in Fig. 2, the same relation
actor connecting an intra-community entity pair (Tom Hanks,
Forrest Gump) is more trustful than it in an inter-community
entity pair (Tom Hanks, Bridge of Spies).

Inspired by the above, we thus perform community detection
task on G. Since our focus is the association of triples, we first con-
vert all directed edges in G to undirected ones and form a graph
Gu. For the graph Gu, we then use a spectral clustering (SC) [49]
method to cluster Gu into k communities S = {S1, . . . , Sk}. Let
A ∈ R

n×n be an adjacency matrix of weighted graph Gu where
the entry A(i, j) is the number of relations between ei and ej. The
degree matrix D is a diagonal matrix with diagonal entries

D(i, i) =

n
∑

j=1

A(i, j), (10)

where D(i, i) is the degree of the entity ei. We then construct a
Laplacian matrix L as follows:

L = In − D− 1
2 AD− 1

2 , (11)

where In is an identity matrix. SC aims to learn a spectral embed-
ding Z ∈ R

n×k by optimising a function as follows:

min
Z

tr
(

ZTLY
)

, s.t. ZTZ = I, (12)

where tr(·) is the trace function. The above function can be solved
by eigenvalue decomposition of L, i.e., Z = [z1, z2, . . . , zk] are the
eigenvectors corresponding to the smallest k eigenvalues of L. To
find clusters, SC then uses Z as an input to perform k-means.

The changing number of communities can determine the state
that whether a triple (eh, r , et ) are in the same community. Our
model thus contains multiple states to represent community-
aware trustworthiness by constructing a community indicator
vector c. The ith entry in c(eh, r, et ) is determined by:

c
j

i(eh, r, et ) =

{

1 (eh, r, et ) ∈ Sn with j partitions,

0 otherwise,
(13)

where 1 ⩽ j ⩽ k. From the Eq. (13), instead of using a sin-
gle defined number of communities, we use the number of the
community from 10 to 100 with an interval of 10. Therefore,
instead of using only one community information, we use many
by constructing a community-aware feature vector that indicates
whether the head and tail entity are in the same community
or not. Consistent with compression operation in motif-aware
trustworthiness, we have a community-aware trustworthiness

c(eh, r, et ) = c(eh, r, et ) · δ(wT
c ), (14)

where wc is a shared trainable weight to indicate the importance

of the number of communities.

Since community-aware trustworthiness relies on the commu-

nities identified within a network, the choice of the community

detection method can theoretically impact the results. In this

paper, we use spectral clustering (SC) to identify communities

because SC is less sensitive to noise and outliers than some other

clustering algorithms. By transforming the data into a lower-

dimensional space using eigenvectors, spectral clustering can re-

duce the influence of noise and make the clustering process more

robust [49]. It contributes to our TrustRec that aims to retain

recommendation performing well while encountering such noise

in the KG.

3.3. Global-structure-aware trustworthiness

Motif-aware and community-aware estimators mainly focus

on microscopic and mesoscopic structural information. The global

structure, one important macroscopic description of the graph

structure, is a complementary component to represent the trust-

worthiness of triples in KGs. Therefore, to consider the global

structure, we introduce the concept of correlation strength that

captures how difficult to reach a tail entity et from a head entity

eh through a sequence of relations in a whole graph. For example,

in Fig. 2, there are dense paths from Drama to Robert Zemeckis

(e.g., Drama → Tom Hanks → Robert Zemeckis), that is, there is

a high correlation between them. By contrast, it is impossible to

research from Drama to Matt Charman following all paths in the

graph.

To instantiate the above idea, we adopt source allocation the-

ory in PageRank [50] to characterise the correlation strength for

triples. We assume that the trustworthiness between entity pairs

(eh, et ) will be higher, and more resource is passed from the

head eh through all paths to the tail et in a whole graph G. The

amount of resource aggregated into et indicates the trustworthi-

ness between eh and et . Specifically, starting from eh each node

in the graph should be reached. In the initial state, the resource

amount of eh is 1, and all others are 0. In the process of resource

allocation, the sum of all resources of nodes is always 1. We

simulate resource flowing until distribution steady. The value

of the resource on the tail entity is p(et |eh), it is calculated as

follows:

p(et |eh) = (1 − α)
∑

ei∈D

p(ei | eh) · weit

d(ei)
+

α

n
, (15)

where D is a set of entities that have outgoing links to the entity

et , weit is the weight from the ei to et , d(ei) is the out-degree of

the entity ei. Thus, for each entity ei in D, the resource flows from

ei to et should be
p(ei|eh)·weit

d(ei)
. The entities without outgoing links

can cause the absorption of the resource. To prevent it, resource

flow from each entity may directly jump to a random entity with

the same probability α. This part of the resource that flows to et
randomly is 1

n
.

3.4. Fusion of estimators

We use a neural network structure multi-layer perceptron

(MLP) to extract a final trustworthiness from three estimators.

Note that the way of extraction is not limited to MLP, and we

can use a more elaborate design of the neural network. For

the triple (eh, r, et ), we first concatenate the above three-level

trustworthiness

x(eh, r, et ) = [m(eh, r, et ), c(eh, r, et ), p(et |eh)]. (16)
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The vector x(eh, r, et ) will be input into the MLP and transformed

passing L hidden layers as follows:

t̂(eh, r, et ) = M(M(· · ·M(x(eh, r, et ))))

= M
L(x(eh, r, et )), (17)

where M(x) = σ (Wmx+bm) is a fully-connected neural network

layer with weight Wm, bias bm, and nonlinear ReLU activation

function σ (·). In the output layer of ML(·), we use a sigmoid

function δ(·) to ensure the returned t̂(eh, r, et ) in the range 0 to 1.

The whole framework of the trustworthiness estimator is shown

in Fig. 3.

3.5. Trustworthiness integration

After obtaining trustworthiness of triples, TrustRec follows the

conventional translation-based KGR to incorporate with CF. To

inject auxiliary information from KG to RS, some existing works

study the integration between two modules KGR and RS (e.g., lin-

early combine the entity and the corresponding item embed-

dings). When considering an additional trustworthiness estimator

module, we propose trustworthiness integration with both KGR

and RS. Specifically, we propose triple trustworthiness integration

to learn noise-tolerant KGR, and entity trustworthiness integra-

tion to learn noise-tolerant item representations of RS. For the

triple trustworthiness integration, we propose a weighted and a

neural margin-based ranking loss (MRL) of KGR.

Weighted MRL. The idea is that a triple with higher trustwor-

thiness should be more important when training KGR. Based on

it, we construct a weighted MRL as below

L
(w)

k =
∑

(eh,r,et )∈G

(e′
h
,r,e′t )∈G

−

t̂(eh, r, et )·[γ +gR(eh, r, et )−gR(e
′
h, r, e

′
t )]+, (18)

where [·]+ ≜ max(0, ·), G− contains incorrect triplets constructed

by replacing head entity or tail entity in a valid triple randomly,

and γ controls the margin between positive and negative triples,

and gR(·) is the energy function of TransR. We choose TransR

because TrustRec is equivalent with CKE if our trustworthiness

estimator is neglected, which can gain insights about the effect

of our estimator. To learn noise-tolerant KGR, trustworthiness

t̂(eh, r, et ) instructs our model to pay more attention on those

more trustful triples.

Neural MRL. The idea is that if t̂(eh, r, et ) is involved in a

parameterised way to determine the score of the energy function,

TrustRec itself will learn to integrate trustworthiness for noise-

tolerant KGR. For example, if t̂(eh, r, et ) negligibly contributes

to the energy score of (eh, r, et ), TrustRec can assign very low

trustworthiness to it. Thus, we first perform a concatenation

operation

n(eh, r, et ) = [t̂(eh, r, et ), gD(eh, r, et )]. (19)

We then construct a neural MRL as below:

L
(n)

k =
∑

(eh,r,et )∈G

(e′
h
,r,e′t )∈G

−

[

γ + N
L(n(eh, r, et )) − gD(e

′
h, r, e

′
t )
]

+
, (20)

where N (x) = σ (Wnx+ bn). Here, we use the energy function of

TransD because of a consideration of different types of entities in

KGs and a study of the diverse KGR methods on TrustRec.

Integration with RS. Some existing works linearly combine

the entity and corresponding item embedding as the final item

embedding as i′ = e + qi. However, the final item embedding

i′ contains noises from knowledge. Therefore, to learn noise-

tolerant item representations of RS, we assume that if an entity

is likely to be involved in triples with high trustworthiness,

Table 1

Statistics of DBbook2014 and MovieLens-1M.

DBbook2014 MovieLens-1M

Rec

# Users 5576 6040

# Item 2680 3240

# Ratings 65,961 998,539

# Avg. ratings 12 165

# Completeness 0.4% 5.1%

KG

# Entity 13,882 14,708

# Relation 13 20

# Triple 334,511 434,189

this entity has high combination ratio to form i′. We propose

entity trustworthiness that is an averaged summation of the triple

trustworthiness it involves. It is formulated as below:

t̂(e) =

∑

e′t∈E,r′∈R t̂(e, r ′, e′
t )

nh

+

∑

e′
h
∈E,r′∈R t̂(e′

h, r
′, e)

nt

, (21)

where nh and nt are the number of triples that the entity e acts

as heads and tails. TrustRec treats t̂(e) as an integration ratio of

entity e, and formulates

q′
i = t̂(e) · e + qi, (22)

where qi is a learned latent vector of item i by MF. We then

develop two variants of TrustRec depending on the overall loss.

TrustRec(W) uses the overall loss

L
(w) = L

(w)

k + Lr , (23)

while TrustRec(N) uses the overall loss

L
(n) = L

(n)

k + Lr . (24)

In addition, compared to our previous work [51], this paper

has two main advancements: non-linearity modelling and ex-

perimental verification. To capture the non-linearity of noises,

we propose to fuse estimators with fully-connected layers and

a neural margin-based ranking loss. Moreover, in this paper, we

conduct comprehensive experiments to demonstrate the superior

performance of TrustRec in comparison to state-of-the-art rec-

ommendation methods using real-world datasets. In contrast, our

previous paper [51] does not consider the non-linearity of noises

and does not conduct experimental results and analysis.

4. Experiments

In this section, we conduct extensive experiments with the

aim of answering the following research questions:

• RQ1: How do noisy triples in KGs affect the performance of

KG-aware RS?

• RQ2: For recommendation, how does TrustRec perform com-

pared with SOTA KG-aware recommendation methods?

• RQ3: For KG completion, can TrustRec show superior perfor-

mance over SOTA KG-aware RS that can learn KGR?

4.1. Dataset

We use two public datasets in the book and movie domains:

DBbook2014,2 MovieLens-1M.3 Items in these two domains are

mapped into DBPedia entities if there is a mapping available,

which is released by the paper [13]. Table 1 shows the statistics

of datasets.

Following most item recommendation works that models im-

plicit feedback, we treat existing ratings as positive interactions,

2 http://2014.eswc-conferences.org/important-dates.html.
3 https://grouplens.org/datasets/movielens/1m/.
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and generate negative ones by randomly corrupting items. To
study the effect of noisy triples, we generate noisy triples to
be 10%, 20%, 30% and 100% of existing triples by the following
protocol: for an existing triple (eh, r , et ) in a training set, we
generate a corresponding noisy one by randomly replacing its
head (e′

h, r , et ) or tail (eh, r , e
′
t ) while ensuring that (1) it cannot be

found in the existing KG; (2) it contains at least one item; (3) for
noise injection, triple (eh, r , et ) is replaced with (e′

h, r , et ) (or (eh, r ,
e′
t )) to ensure the total number of triples is unchanged. To validate
the effect of KG-aware methods, we consider an item cold-start
and sparsity scenarios. For both datasets, 25% of items in valid
and test sets cannot be found in the train set. We randomly
sparsify 70% interactions of MovieLens-1M since from Table 1 its
completeness is more than ten times than the completeness of
DBBook2014.

4.2. Baselines

We compare TrustRec with the following six SOTA RS meth-
ods:

1. Collaborative Filtering with Knowledge Graph (CFKG)4 [52]:
This method constructs an user–item KG and the relation
is decided by user behaviours (i.e., review, brand, category,
bought-together). This KG will be combined with the item-
side KG by shared common items. It then uses translational
recommendation to minimise the loss.

2. Collaborative Knowledge Embedding (CKE) [12]: This ap-
proach applies matrix-factorisation-based CF to
knowledge-base embedding for recommendation, which
uses TransR to learn entity and relation embedding.

3. Knowledge Co-Knowledge factorisation model (CoFM) [53]:
It studies the effect of knowledge transfer between item
recommendations and KG completion via a co-factorisation
model which can be seen as a transfer learning model.

4. Knowledge Translation-based User Preference model
(KTUP) [13]: KTUP models various implicit relations be-
tween users and items and transfer knowledge learned
from TransH, which reveals the preferences of users on
consuming items. Additionally, it provides explainability
via aligned relations and preferences.

5. Knowledge Graph Convolutional Networks (KGCN)5 [14]: It
extends the GCN to the KG by aggregating neighbourhood
information selectively and biasedly, which simultaneously
learns both structural information and semantic informa-
tion from the KG as well as users’ preferences and potential
interests.

6. Knowledge-aware Graph Neural Networks (GNN) with La-

bel Smoothness regularisation (KGNN-LS)6 [14]: This ap-
proach incorporates GNN architecture into KGs after con-
verting KGs to weighted homogeneous graphs. This con-
version uses a user-specific relation scoring functions and
then aggregates neighbourhood information with different
weights. In addition, KGNN-LS proposes label smoothness
constraint to provide strong regularisation for learning the
edge weights in KGs.

7. Multi-task feature learning approach for knowledge graph
enhanced recommendation (MKR) [42]. MKR is a deep end-
to-end framework that employs knowledge graph embed-
ding tasks to aid recommendation tasks. This framework
has the ability to autonomously share hidden features and
acquire advanced interactions between items in recom-
mender systems and entities present in the knowledge
graph.

4 https://github.com/TaoMiner/joint-kg-recommender.
5 https://github.com/hwwang55/KGCN.
6 https://github.com/hwwang55/KGNN-LS.

4.3. Training details

We construct the training set, validation set and testing set by

randomly splitting the dataset with the ratio of 7 : 1 : 2. Each

experiment is repeated five times, and the average performance

is reported. For hyperparameters, the learning rate of all methods

is searched in {0.0005, 0.001, 0.005, 0.01}, the embedding size in

{16, 32, 64}, We use an open-source PyTorch library to study all

methods under the same software framework released by [13].

All trainable parameters are optimised by Adam algorithm. The

coefficient of L2 regularisation is 10−5. The batch size is 512.

We perform early stopping strategy on validation sets. All other

hyperparameters use default settings. At the beginning of train-

ing, we assume all triples are correct, and initialise the triple

trustworthiness as 1. All experiments were performed on a Linux

machine with 2.4 GHz Intel Core and 8G memory. The code for

TrustRec has been uploaded to Supplementary Material.

4.4. Evaluation metrics

In recommendation, we use the trained model to select K

items with highest predicted click probability for each user in the

test set, and choose F1@K , Precision@K (P@K ) and Recall@K . For

KG completion, we use Hit ratio@K .

1. Hit ratio@K : It is 1 if a correct items are recommended

within the top K items, otherwise 0. We compute the mean

of all users as the final hit ratio score.

2. F1-score@K : It is the combination mean of precision at

rank K and recall at rank K .

3. Precision@K : It is the fraction of the items recommended

that are relevant to the user. We compute the mean of all

users as the final precision.

4. Recall@K : It is the proportion of the items relevant to

the user that have been successfully recommended. We

compute the mean of all users as the final recall.

4.5. Effect of noisy triples (RQ1)

Firstly, we study the effect of noisy triples on recommen-

dations. In Fig. 4, we show the performance of three existing

KG-aware RS methods CoFM, CKE and CFKG on DBBook2014

w.r.t F1@5. We observe that (1) with the increase of noise ratio

the overall performance of all three methods are degraded. It

indicates that noisy triples negatively affect the performance of

KG-aware methods. (2) The effect of noisy triples is different for

different methods. For example, noisy triples have more effect on

CFKG than CoFM. This is because the embedding of entity with

noise in CoFM is reweighted to determine ratings while CFKG are

not.

4.6. Performance for recommendations (RQ2)

For recommendations, we evaluate methods in three scenarios

w.r.t KG datasets without noise injection, effect of noisy triples

and top-K recommendations.

In Table 2, we show the performance comparison on

DBook2014 and MovieLens-1Mwith DBPedia without noise injec-

tion. We observe that (1) our proposed TrustRec(N) consistently

achieves the best performance and TrustRec(W) achieves the

second best 5 out of 6 settings. (2) TrustRec(N) outperforms

TrustRec(W) because it can flexibly learn a proper way to incor-

porate triple trustworthiness into the energy function. (3) Two

GNN-based methods do not show superior performance because

their node features are randomly generated and thus such fea-

tures are not related with information of KGs. (4) TrustRec(W) is

7
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Fig. 4. Effect of noisy triples in DBBook2014 (The y-axis indicates the metric Precision@5). It indicates that noisy triples negatively affect the performance of KG-aware

methods.

Table 2

The comparison results about recommendation on the KG dataset without noise

injection. The best results are in bold and the second best ones are underlined.

DBBook2014 (@5, %) MovieLens-1M (@10, %)

F1 Precision Recall F1 Precision Recall

CoFM 2.56 2.04 4.39 2.71 2.72 4.01

CKE 6.08 4.86 10.07 3.47 3.46 5.38

CFKG 2.70 2.14 4.55 2.51 2.67 3.54

KTUP 4.72 3.82 7.78 3.54 3.64 5.16

KGCN 2.10 1.54 3.31 2.02 1.89 2.23

KGNN-LS 2.15 1.65 3.11 1.88 1.85 1.94

MKR 3.16 2.36 4.99 1.80 1.73 1.90

TrustRec (N) 6.33 5.04 10.64 3.80 3.84 5.57

TrustRec (W) 6.25 5.02 10.17 3.66 3.80 5.27

superior over CKE, which indicates the efficacy of our trustwor-
thiness estimator.

In Table 3, we show performance comparison over the effect
of noisy triples. We observe that (1) with the increase of noisy
triples our TrustRec(N) consistently outperforms compared meth-
ods. Also our TrustRec(W) can achieve the second best 10 out
of 16 settings. It indicates our both methods are noise-tolerant.
(2) The overall performance of all methods is degraded with the
increase of noisy triples. (3) The trustworthiness estimator is a
key component of our model, which aims to learn the degree of
trustworthiness of triples. For the ablation study, our proposed
TrustRec (W) is equivalent with CKE [12] if our trustworthiness
estimator is neglected. To verify the effectiveness of our pro-
posed trustworthiness estimator, our TrustRec (W) outperforms
the CKE in five out of six scenarios on three evaluations over two
real-world datasets, and improves CKE by 3.4%.

For top-K recommendation, in Table 4, we report the perfor-
mance of KG-aware methods over precision at K = {3, 5, 10, 15,

20}. For each K , we report the averaged performance over a range

of noise ratio {0, 0.1, 0.2, 0.3, 1.0} because noises in KGs can

significantly affect performance. We can see that our TrustRec(N)

is consistently superior over all baselines.

For the sensitivity analysis for hyper-parameters, we show the

learning rate and embedding size of the user and item on both

datasets DBbook2014 and MovieLens-1M. From Fig. 5, with the

increase of embedding size and learning rate, the performance of

TrustRec(N) and TrustRec(W) is generally improved.

We give a significance test and show the p− value for our

best TrustRec(N) and the best baseline CKE. From Table 5 in

this response, the p-value obtained in our analysis is greater

than 0.05. Our TrustRec(N) does not significantly outperform the

best baseline CKE, although the performance of TrustRec(N) has

practical implications in both large datasets. It can be caused

by the small sample size since each experiment is repeated five

times. Therefore, in our future work, we will run each experiment

more times (e.g., 20 times).

4.7. Performance for KG completion (RQ3)

We evaluate on a KG completion task that predicts the missing

entity eh or et . For each missing entity, we take all entities as

candidates and rank them according to the scores computed

based on entity and relation embeddings. Fig. 6 shows the over-

all performance with the increase of ratio of noisy triples. We

do not show the performance of TrustRec(N) since feeding all

unseen triples (more than 100 billion in DBBook2014) to our

neural energy function is unfeasible. From Fig. 6, we observe that

TrustRec(W) has superior performance over SOTA KG-aware RS.

For KG completion, our TrustRec (W) improves CKE by 65.1% in

terms of averaging hit ratio in two datasets.

Table 3

The comparison results about recommendation on the effect of noisy triples. The best results are in bold and the second best ones are underlined.

Datasets Noise ratio CoFM CKE CFKG KTUP KGCN KGNN-LS MKR TrustRec (N) TrustRec (W)

DBBook (F1@5, %)

0.1 2.62 6.08 2.30 4.29 1.92 2.16 3.04 6.25 6.14

0.2 2.47 5.91 2.17 4.61 2.28 2.12 3.13 6.23 6.12

0.3 2.54 5.84 1.81 4.95 2.01 2.36 3.09 6.15 5.96

1 2.38 5.88 1.03 4.10 2.33 2.26 3.00 6.02 5.75

DBBook (P@5, %)

0.1 2.06 4.88 1.86 3.46 1.48 1.61 2.25 4.98 4.96

0.2 2.00 4.72 1.76 3.72 1.68 1.60 2.33 4.98 4.86

0.3 1.98 4.70 1.40 3.98 1.50 1.79 2.31 4.92 4.76

1 1.90 4.70 0.84 3.24 1.74 1.76 2.20 4.80 4.56

MovieLens (F1@10, %)

0.1 2.83 3.54 2.13 3.46 2.31 2.05 1.66 3.63 3.61

0.2 2.82 3.53 2.26 3.41 1.82 1.92 1.77 3.63 3.46

0.3 2.71 3.44 1.92 3.37 1.96 2.18 1.88 3.71 3.52

1 2.54 3.31 1.14 3.44 1.75 1.95 1.80 3.45 3.49

MovieLens (P@10, %)

0.1 2.89 3.62 2.28 3.51 2.11 1.90 1.62 3.66 3.61

0.2 2.89 3.59 2.38 3.45 1.70 1.84 1.70 3.61 3.51

0.3 2.83 3.47 2.10 3.43 1.84 1.92 1.74 3.71 3.53

1 2.56 3.33 1.27 3.50 1.53 1.76 1.69 3.48 3.46
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Table 4

The comparison results on top-K recommendation. The best results are in bold and the second best ones are underlined.

Top K DBBook2014 (P, %) MovieLens-1M (P, %)

@3 @5 @10 @15 @20 @3 @5 @10 @15 @20

CoFM 2.62 2.00 1.47 1.35 1.23 3.34 3.05 2.78 2.69 2.57

CKE 5.89 4.77 3.43 2.83 2.46 4.41 4.05 3.49 3.29 3.10

CFKG 1.83 1.60 1.33 1.15 1.04 2.53 2.32 2.14 2.05 2.02

KTUP 4.21 3.64 2.73 2.32 2.02 3.98 3.69 3.51 3.24 3.03

KGCN 2.11 1.59 1.06 0.83 0.68 2.52 2.16 1.81 1.56 1.45

KGNN-LS 2.16 1.68 1.13 0.88 0.72 2.29 2.15 1.85 1.64 1.46

MKR 2.74 2.27 1.59 1.33 1.09 2.16 2.01 1.69 1.50 1.38

TrustRec (N) 6.07 4.94 3.59 2.92 2.53 4.48 4.09 3.66 3.39 3.19

TrustRec (W) 5.96 4.83 3.48 2.84 2.44 4.25 4.01 3.58 3.33 3.12

Fig. 5. Sensitivity analysis for the hyper-parameters embedding size of the user and item and learning rate on both datasets DBBook2014 and MovieLens-1M.

Table 5

This table shows the p-value for our best TrustRec(N) and best baseline (CKE).

DBBook2014 (@5, %) MovieLens-1M (@10, %)

F1 Precision Recall F1 Precision Recall

p−value 0.59 0.65 0.54 0.33 0.26 0.75

Fig. 6. The comparison results on the KG completion task for DBPedia in

DBBook2014 (left) and MovieLens-1M (right). The higher Hit Ratio@5 indicates

the better performance. TrustRec(W) outperforms the current state-of-the-art

KG-aware recommendation system. Specifically, in the task of KG completion,

TrustRec(W) shows a significant improvement of 65.1% in terms of the average

hit ratio across two datasets compared to CKE.

4.8. Computational time

We show computational time of all compared methods in
Table 6. We observe that (1) KGCN and KGNN-LS are not efficient
due to personalised relation score function. (2) Our TrustRec(N)
and TrustRec(W) are not efficient because both need to train a
trustworthiness estimator while all baselines do not need to train
it. (3) Our TrustRec(W) is more efficient than TrustRec(N) because
TrustRec(W) uses a direct weighted loss function to avoid to train
an additional neural network.

5. Conclusion

In this paper, we proposed TrustRec that can estimate trust-
worthiness of triples in KGs through an estimator that uses

motifs, communities and global information. Based on it, we pro-

posed triple trustworthiness integration to learn noise-tolerant

KGR, and entity trustworthiness to learn noise-tolerant item

representations of RS. We conducted experiments to show that

TrustRec outperforms SOTA methods. Graph convolutional neural

networks (GCNs) [54,55] have achieved great success in various

applications, such as natural language processing, and computer

vision, due to their excellent expressive power. Motivated by

it, our structure-aware trustworthiness estimator can be further

elaborately designed to capture motif, community and global

structure for knowledge graph representation with GCNs.
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Table 6

Computational time (in seconds).

CoFM CKE CFKG KTUP KGCN KGNN-LS Trust Rec(N) Trust Rec(W)

DBBook2014 596 856 654 912 3281 1221 1536 1167

Movie Lens-1M 2105 2955 1986 2230 7556 5393 7219 5368
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