
1. Introduction
Ionospheric sporadic E (Es) layers are thin layers of concentrated metallic ions (mainly Fe +, Mg +, Si +, Na +, and 
Ca +) that intermittently appear in the mesosphere and lower thermosphere (MLT) region (Whitehead, 1989). Es 
layers usually have a thickness of 1–5 km (Qiu et al., 2021; Tsai et al., 2018; Zeng & Sokolovskiy, 2010) with a 
horizontal extent of 50–3,000 km (Maeda & Heki, 2014, 2015; Sun et al., 2021). Es layers can cause reflection, 
scattering and fading of radio signals, leading to a transient loss of signal in communication and navigation 
(Deacon et al., 2020; Yue et al., 2016).

The classic and widely accepted midlatitude Es layer formation mechanism is the wind shear theory 
(Whitehead, 1960). This has been confirmed by observations (e.g., Bishop et al., 2005; Yamazaki et al., 2021) and 
simulations (e.g., Andoh et al., 2022; Qiu et al., 2019; Shinagawa et al., 2017; B. Yu et al., 2019). Observations 
from Rockets and satellites show that large wind shear exists around 105 km in the MLT region (e.g., Larsen, 2002; 
Yamazaki et al., 2023). And, the geographical distribution and seasonal variation of mid-latitude Es layers can be 
largely attributed to the geographical and seasonal dependence of vertical wind shear (Qiu et al., 2023; Shinagawa 
et al., 2017; Yamazaki et al., 2021). The layer-forming process is also affected by atmospheric tides forced by 
solar radiation (Haldoupis, 2011). The diurnal, semidiurnal (Arras et al., 2009; Haldoupis, 2004), terdiurnal, and 
quarterdiurnal (Fytterer et al., 2014; Jacobi et al., 2019; Sobhkhiz-Miandehi et al., 2022) tidal components of the 
Es layer occurrence rate have been revealed by observations.

The tidal behavior of Es layers has been satisfactorily modeled (Andoh et al., 2022; Resende et al., 2016). However, 
Es layer variability caused by atmospheric gravity waves (GWs) has not yet been fully understood. GWs with 
periods shorter than atmospheric tides play a significant role in transporting energy and momentum to the MLT 
region (Fritts & Alexander, 2003; Lu et al., 2009), contributing to the production of strong winds and wind shears 
(X. Liu et al., 2014). GWs can affect the distribution of minor species (e.g., atomic oxygen) and electron density 
in the MLT region (Hickey & Walterscheid, 2001; Hocke & Tsuda, 2001; Wang et al., 2021), and even propagate 
into the ionospheric F region to cause electron density disturbances (Hickey et al., 2009; H. Liu  et al., 2017). 
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Huang and Kelley (1996) used a computer simulation to study GW modulation of existing Es layers and demon-
strated that a horizontally stratified Es layer can be deformed by GWs and become a quasi-periodic wavelike 
structure. Using the non-dissipative linear GW model, Didebulidze et al. (2020) simulated the formation of multi-
layered Es and suggested theoretically that GWs can cause heavy metallic ion redistribution.

In the present study we use a 1-D Es layer model (Zuo et  al.,  2006) driven by neutral winds from the 
Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy model (GAIA; Miyoshi & Fujiwara, 2003; 
Kobayashi et  al.,  2015), Whole Atmosphere Community Climate Model with thermosphere and ionosphere 
eXtension model (WACCM-X 2.1; H.-L. Liu et al., 2018), and High Altitude Mechanistic general Circulation 
Model (HIAMCM; Becker & Vadas, 2020; Becker et al., 2022) to examine the physical process of Es layer evolu-
tion, respectively. First, we compare the HIAMCM's capability to reproduce the tidal variation in Es layers with 
GAIA and WACCM-X that were used in previous studies (e.g., Andoh et al., 2022; Wu et al., 2021). Second, 
we focus on the physical process of Es layer evolution modulated by GWs, which is not taken into account in 
previous work.

2. Models and Observations
This work used an Es layer model (Zuo et al., 2006) and six ionosondes located at middle latitudes to simulate 
and observe the Es layer evolution process during the summer of 10–11 July 2007. The Es model solves for the 
altitude profile of the Fe + density as a function of time, based on the ion continuity and velocity equations. The 
ion continuity equation is given by

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
+

𝜕𝜕(𝜕𝜕𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖)

𝜕𝜕𝑖𝑖
= 𝑞𝑞𝑖𝑖 − 𝐿𝐿𝑖𝑖𝜕𝜕𝑖𝑖 (1)

where Ni is the number density of Fe +, z is altitude, and qi and Li represent the chemical production and loss 
rates, respectively. Our simulations focus on the dynamical processes of Fe +, assuming chemical steady state 
(qi − LiNi = 0) (Didebulidze et al., 2020). The vertical velocity of Fe +, Viz is given by

𝑉𝑉𝑖𝑖𝑖𝑖 =
𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
=

1

𝛾𝛾2 + 1

[

𝑈𝑈𝑥𝑥 sin 𝜃𝜃 cos 𝜃𝜃 + 𝛾𝛾𝑈𝑈𝑦𝑦 cos 𝜃𝜃 + 𝑈𝑈𝑖𝑖

(

𝛾𝛾2 + sin 𝜃𝜃2
)]

 (2)

where γ is the ratio of the ion-neutral collision frequency (νi) to the ion gyrofrequency (ωi) (Nygren et al., 1984). 
Ux, Uy, and Uz are the southward, eastward and upward winds, respectively. The geomagnetic inclination θ is 
obtained from the International Geomagnetic Reference Field (IGRF11) (Finlay et al., 2010). The neutral winds 
are derived from atmospheric models, which will be described later. The initial density profile of Fe + is derived 
from the WACCM-Fe model, which is a global atmospheric model of meteoric iron (Feng et al., 2013). The ion 
continuity Equation 1 is solved by the finite difference method with a time step of 5 s and an altitude resolution 
of 500 m. The altitude range is from 80 to 150 km. The boundary conditions are set as ∂Ni/∂t = 0.

Three atmospheric models are used to provide neutral wind inputs to the Es layer model: namely, HIAMCM 
(Becker & Vadas, 2020; Becker et al., 2022), GAIA (Kobayashi et al., 2015; Miyoshi & Fujiwara, 2003), and 
WACCM-X 2.1 (H.-L. Liu et al., 2018). HIAMCM is a high-resolution whole atmosphere model that extends from 
the surface to ∼450 km altitude. The model is nudged by the Modern-Era Retrospective analysis for Research and 
Applications version 2 (MERRA-2; Gelaro et al., 2017) reanalysis data up to the altitude of ∼70 km. It can output 
the winds that contains total waves (horizontal wavelengths λh > 156 km) and large-scale waves (λh > 1,350 km) 
(Becker & Vadas, 2020; Becker et al., 2022).

The GAIA model is an upper extension of the Kyushu University General Circulation Model (Miyahara 
et al., 1993) that extends to the exobase at an altitude of ∼500 km. The neutral atmosphere part of GAIA assim-
ilates meteorological reanalysis data below 30 km (Japanese 55-year Reanalysis; Kobayashi et al., 2015) by a 
nudging method (Jin et al., 2008). It has a grid of 2.8° longitude by 2.8° latitude horizontally. The GAIA model 
can simulate the large-scale waves with λh > 1,000 km. The effect of GWs with λh < 1,000 km on the background 
winds is taken into account by GW-drag parameterization (Miyoshi & Fujiwara, 2003; Sato & Yasui, 2018).

The WACCM-X 2.1 is a whole atmosphere model developed by the National Center for Atmospheric Research. 
It can self-consistently resolves the dynamic and physical processes from the surface to ∼700 km altitude (H.-L. 
Liu et al., 2018), which is also constrained by the MERRA-2 reanalysis data. The horizontal resolution is 1.9° in 
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latitude and 2.5° in longitude. As in the case of GAIA, the effect of GWs on the background winds is taken into 
account by GW-drag parameterization, but GWs with λh < 1,000 km are not resolved.

The six ionosondes used in this study are located at Rome (USRI-Code: RO041, 12°E, 42°N), San Vito 
(USRI-Code: VT139, 18°E, 40°N), Athens (USRI-Code: AT138, 24°E, 38°N), An Yang (USRI-Code: AN438, 
127°E, 37°N), Pt Arguello (USRI-Code: PA836, 240°E, 35°N), and El Arenosillo (USRI-Code: EA036, 354°E, 
37°N). The foEs (critical sporadic E frequency) is used to quantify the Es layer variability. The time resolution is 
30 min at An Yang and El Arenosillo stations and 15 min at other stations.

3. Results
Figure 1 compares the simulated Fe + densities derived from the Es layer model driven by HIAMCM with total 
waves, HIAMCM with only large-scale waves, GAIA, and WACCM-X in panels (a–d), to confirm the HIAM-
CM's capability to reproduce the tidal variation in Es layers and highlight what was not taken into account in 
previous work. The semidiurnal variation in Fe + density is reproduced through the Es layer model driven by 
HIAMCM, which is consistent with previous results (e.g., Andoh et al., 2022), suggesting that the Es layer (Fe + 
density >∼3.5 × 10 3 cm −3) occurrences are mainly controlled by neutral wind shears associated with atmospheric 
tides (Figure S1 in Supporting Information S1). Compared with the simulations in Figures 1b–1d, Figure 1a 
shows some fine structures of Es layers, which is not simulated in previous results (e.g., Andoh et al., 2022; Wu 

Figure 1. Examples of the temporal variations of simulated Fe + density at San Vito (18°E, 40°N) derived from Es layer 
model driven by neutral winds from (a) High Altitude Mechanistic General Circulation Model (HIAMCM) with total waves 
(horizontal wavelength larger than ∼156 km), (b) HIAMCM with only large-scale waves (horizontal wavelength larger than 
∼1,350 km), (c) GAIA, and (d) WACCM-X. The simulations were run for 72 hr and the first 24 hr were discarded. ◦ and ▿ 
on the horizontal axis represent the local noon (12:00 LT) and local midnight (24:00 LT), respectively.
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et al., 2021). This is because HIAMCM can simulate GWs down to horizontal wavelengths of 156 km (Becker 
& Vadas, 2020), which drive the short-period perturbations in Fe + density within the Es layers. Note that the 
difference between Figures 1b–1d may be caused by differences in parameterizations of the physical processes, 
such as GW drag parameterization and solar radiation parameterization, and meteorological reanalysis data used 
in the atmospheric models.

Figure 2 shows the temporal variations of simulated Fe + density and observed foEs over six mid-latitude stations 
during 10–11 July 2007. The Es layer model is driven by neutral winds from HIAMCM with total waves. The 
black solid lines represent the foEs recorded by ionosondes. First, both simulations and observations show that 
the Es layers tend to exhibit semidiurnal variations. Second, the longitudinal variations of simulated Fe + density 
also agree reasonably well with the observations. Third, short-period perturbations (1.2–3 hr) in the Es layers are 
displayed in both simulations and observations.

Figure 3 shows the relative Fe + density perturbation (ΔFe +) due to GWs (1,350 km > λh > 156 km), over the six 
mid-latitude stations during 10–11 July 2007. The ΔFe + is given by 𝐴𝐴 (Fe+

total waves
− Fe+

large−scalewaves
)∕(Fe+

large−scalewaves
) 

where the 𝐴𝐴 Fe
+

total waves
 is the simulated Fe + density with total waves, and 𝐴𝐴 Fe+

large−scalewaves
 is the simulated Fe + density 

with only the large-scale waves. On the one hand, GWs modulate the Fe + density more effectively at higher 
altitudes (above 120 km) than at lower altitudes. The Fe + density can be increased by 200%–600% or completely 
dispersed above 120 km, but changes by only about 60% below 120 km. On the other hand, Fe + density pertur-
bations also show clear longitudinal dependence, being stronger over An Yang (127°E, 37°N) than other stations.

4. Discussion
The simulation experiments in this study suggest that GWs can modulate the intensity and structure of Es layers. 
The Fe + density shows short-period perturbations (1.2 hr at ∼135 km altitude, 3 hr at ∼100 km altitude) (Figure S2 
in Supporting Information S1), when GWs (1,350 km > λh > 156 km) are included in the simulation. This means 

Figure 2. The temporal variations of simulated Fe + density and observed foEs (Es critical frequency) over six mid-latitude stations during 10–11 July 2007. The Es 
layer model is driven by neutral winds from High Altitude Mechanistic General Circulation Model with total waves (horizontal wavelength larger than ∼156 km). 
The black solid lines represent the foEs recorded by ionosondes. The simulations were run for 72 hr and the first 24 hr were discarded. ◦ and ▿ on the horizontal axis 
represent the local noon (12:00 LT) and local midnight (24:00 LT), respectively.
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that upward-propagating GWs can cause sharp density gradient within Es layers. Miyoshi and Fujiwara (2008) 
examined the characteristics of GWs in the MLT region and found that the dominant periods of GWs for zonal 
wave number 80 (λh ≈ 500 km) is 1.5–2 hr at 100 km altitude, which is basically consistent with the period of the 
Fe + density perturbations in our simulation results. The observations of foEs (Figure 2) also show perturbations 
at this period range.

The altitude dependences can be seen in the amplitude of ΔFe +. The ΔFe + is largest at 120–150 km (Figure 3). 
At lower altitudes (below 120 km), the GWs can still increase or reduce the Fe + density by about 60%. The 
modulation of GWs on metallic ion density is more effective at higher altitudes where the geomagnetically-driven 
vertical plasma transport is less hindered by ion-neutral collisions (Haldoupis, 2018). It is also worth mentioning 
that ion-molecule chemistry reactions (Plane et al., 2015) and ion ambipolar diffusion (Didebulidze et al., 2020) 
may affect the modulation of GWs on the Es layer intensity, which should be further examined through simulation 
and observation in the future. Besides, the Fe + perturbations moving downward with time, indicating an upward 
energy propagation of GWs. Above 120 km their phase velocity (or vertical wavelength) is very large, so they 
appear to have “quasi-vertical” structure.

Figure 3 also shows that the amplitude of the GW-induced ΔFe + relates to the longitude. This is further high-
lighted in Figure 4a using the vertical ion convergence (VIC = −∂Viz/∂z, where Viz is the vertical velocity of 
Fe +). It is known that VIC is that main physical parameter which controls the metallic ion density (Shinagawa 
et al., 2017). VIC is affected by both the wind shear caused by GWs and the geomagnetic field. Figure 4a shows 
the longitudinal distribution of the VIC perturbations due to GWs forcing (1,350 km > λh > 156 km) at an altitude 
of 120 km and a latitude of 36°N. The variance of the VIC perturbations evaluated at each longitude is displayed 
in Figure 4b (blue line). The VIC variance shows a double-peak longitudinal structure. One local maximum is in 
the East Asian region (∼100°E) and another local maximum is in the American region (∼300°E).

The longitudinal dependence of the VIC variance can result from (a) the longitudinal variation of GWs activity 
and (b) the longitudinal variation of the geomagnetic field. In what follows, the relative importance of the two is 
examined. Figure 4c shows the global distribution of the kinetic energy of GWs (Ek) at 120 km altitude during 
10–11 July 2007, which is given by 𝐴𝐴 𝐴𝐴𝑘𝑘 = 1∕2

[

𝑢𝑢′2 + 𝑣𝑣′2 +𝑤𝑤′2

]

 (Tsuda et al., 2000), where u′, v′, and w′ are the 

Figure 3. The Fe + density perturbations caused by gravity waves (horizontal wavelength larger than 156 km and smaller than 1,350 km) over six mid-latitude stations 
during 10–11 July 2007. ◦ and ▿ on the horizontal axis represent the local noon (12:00 LT) and local midnight (24:00 LT), respectively.
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zonal, meridional, and vertical wind perturbations caused by GWs (1,350 km > λh > 156 km). At mid-latitudes 
in the northern hemisphere, there are two GWs energy enhancements over East Asia and America, which corre-
sponds to the two peak regions of the VIC variance. Miyoshi et al. (2014) investigated the global view of GWs 
activity (λh > 380 km) in the lower thermosphere. At mid-latitudes in the northern hemisphere, there are two 
regions with enhanced GWs activity near ∼100°E and ∼300°E, which agrees with our results (Figure 4c).

The geomagnetic field configuration also affects the VIC (Haldoupis, 2011; Whitehead, 1960). In Figure 4b, 
the red line represents VIC variances as the blue line but the intensity B and inclination θ of the geomagnetic 
field are replaced with their corresponding zonal mean values (blue and red dashed lines in Figure 4d) so that 
the geomagnetic field is longitudinally invariant. The difference between the blue and red lines represents the 
effect of the inhomogeneous geomagnetic field. The difference is relatively small, suggesting that the longitu-
dinal dependence of the VIC variance is primarily caused by the longitudinal variation of GWs activity rather 
than the longitudinal variation of the geomagnetic field. Nevertheless, the effect of the geomagnetic field on the 
VIC variance is visible, especially in the East Asian (∼120˚E) and American (∼270˚E) sectors. According to the 
zonal wind shear mechanism, 𝐴𝐴 (𝑈𝑈𝑦𝑦𝜈𝜈𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵∕𝑚𝑚𝑖𝑖)cos 𝜃𝜃 × (𝑚𝑚𝑖𝑖

2)∕(𝑚𝑚𝑖𝑖
2𝜈𝜈𝑖𝑖𝑖𝑖

2 + 𝐵𝐵2𝐵𝐵2) , the stronger magnetic intensity B and 
lower magnetic inclination θ favor the formation of Es layer, where mi is the ion mass, e is the ion charge, and 
νin is ion-neutral collision frequency. Figure 4d shows the longitudinal variations of B (blue solid line) and θ (red 

Figure 4. (a) Longitudinal variability of vertical ion convergence (VIC = −∂Viz/∂z) at an altitude of 120 km and a latitude of 
36°N. The black star symbols represent the locations of the five ionosondes. (b) Longitudinal variability of VIC variances. 
The blue line represents the results where the geomagnetic field is derived from IGRF11 (blue and red solid lines in panel 
(d)). The red line represents the results when the geomagnetic field is assumed to be longitudinally invariant (blue and red 
dashed lines in panel (d)). (c) Global distribution of the kinetic energy of gravity waves at 120 km altitude. (d) Longitudinal 
variability of magnetic intensity B (blue solid line) and inclination θ (red solid line) at an altitude of 120 km and a latitude of 
36°N. The zonal mean magnetic intensity B (blue dashed line) and inclination θ (red dashed line).
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solid line) at a latitude of 36°N. In the East Asian sector, the strong magnetic field and low magnetic inclina-
tion contribute to an increase of the VIC variance, while in the American sector, the large magnetic inclination 
suppresses the VIC variance.

The Es layer model in this paper successfully simulates the short-period variations within Es layers. However, 
the model does not simulate all the observed foEs peaks (Figure 2), firstly because variability of the electric 
field, turbulence, and sudden injection of meteoric ions all affect Es layer formation; and secondly, because our 
1-D model does not capture the horizontal advection of metallic ions and inhomogeneity of the horizontal wind.

5. Conclusions
This work examined the physical process of Es layer evolution at middle latitudes during the summer of the 10–11 
July 2007 by using an Es layer model driven by neutral winds from the HIAMCM model that includes the GWs 
(λh > 156 km). The simulation results reproduce the tidal variations in Es layers, which agrees with the previous 
results from the Es layer model driven by GAIA and WACCM-X models. Besides, the inclusion of GWs in the 
simulations reveals fine structure in the Es layers caused by short-period (1.2–3 hr) GW-driven perturbations of 
the metallic ion density. The ion density can be increased by 200%–600% or completely dispersed between 120 
and 150 km altitudes. The amplitude of ion density perturbations is about 60% between 90 and 120 km altitudes. 
In addition, metallic ion density perturbations also show longitudinal dependence, being stronger over East Asia 
(∼50–150°E), which is mainly explained by the geographical distribution of GW activity in the MLT region.

Data Availability Statement
The ionosonde data for this paper are available at: https://giro.uml.edu/didbase/scaled.php. The GAIA data are 
available at: https://gaia-web.nict.go.jp/data_e.html. The WACCM-X model source code can be found here 
(https://www2.hao.ucar.edu/modeling/waccm-x). The HIAMCM model simulations were performed by Erich 
Becker. Model documentations can be found in Becker and Vadas (2020) and Becker et al. (2022). The data used 
in the present simulations can been found in T. Yu (2023).
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