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Abstract

Referring image segmentation aims to segment the tar-

get object referred by a natural language expression. How-

ever, previous methods rely on the strong assumption that

one sentence must describe one target in the image, which

is often not the case in real-world applications. As a re-

sult, such methods fail when the expressions refer to either

no objects or multiple objects. In this paper, we address

this issue from two perspectives. First, we propose a Dual

Multi-Modal Interaction (DMMI) Network, which contains

two decoder branches and enables information flow in two

directions. In the text-to-image decoder, text embedding is

utilized to query the visual feature and localize the corre-

sponding target. Meanwhile, the image-to-text decoder is

implemented to reconstruct the erased entity-phrase condi-

tioned on the visual feature. In this way, visual features

are encouraged to contain the critical semantic informa-

tion about target entity, which supports the accurate seg-

mentation in the text-to-image decoder in turn. Secondly,

we collect a new challenging but realistic dataset called

Ref-ZOM, which includes image-text pairs under different

settings. Extensive experiments demonstrate our method

achieves state-of-the-art performance on different datasets,

and the Ref-ZOM-trained model performs well on various

types of text inputs. Codes and datasets are available at

https://github.com/toggle1995/RIS-DMMI.

1. Introduction

Referring image segmentation aims to segment the tar-

get object described by a given natural language expres-

sion. Compared to the traditional semantic segmentation

task [32, 41, 3], referring image segmentation is no longer

restricted by the predefined classes and could segment spe-

cific individuals selectively according to the description of

*Equal contribution.
†Corresponding author.
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Figure 1: (a) Taking the autonomous driving as an example,

text expression may refer to varying number of targets, de-

pending on the specific real-world scenario. (b) When the

sentences refer to multiple or no targets, existing methods

cannot realize accurate segmentation.

text, which has large potential value for various applications

such as human-robot interaction [43] and image editing [2].

Despite the recent progress, there are still several important

challenges that need to be addressed in order to make this

technology more applicable in real-world scenarios.

In referring image segmentation, most previous meth-

ods only concentrate on the one-to-one setting, where each

sentence only indicates one target in the image. However,

as shown in Fig. 1(a), one-to-many and one-to-zero set-

tings, where the sentence indicates many or no targets in

the image, respectively, are also common and critical in the

real-world applications. Unfortunately, previous methods

tend to struggle when confronting one-to-many and one-to-

zero samples. As illustrated in Fig. 1(b), the recent SOTA

method, LAVT [48], only localizes one person in the image

when given the description “Three persons playing base-

ball”. As for one-to-zero input, previous methods still seg-

ment one target even if it is completely irrelevant to the

given text. Therefore, it is imperative to enable the model

to adapt to various types of text inputs.



We attribute this problem to two main factors. First, al-

though existing methods design various ingenious modules

to align multi-modal features, most of them only supervise

the pixel matching of the segmentation map, which cannot

ensure the significant semantic clues from the text are fully

incorporated into the visual stream. As a result, visual fea-

tures lack the comprehensive understanding of the entity be-

ing referred to in the expression, which limits the capacity

when the model confronts various types of text inputs. Sec-

ond, all popular datasets [21, 38, 36] for referring image

segmentation are established under the one-to-one assump-

tion. In the training, the model is enforced to localize one

entity that is most related to the text. As a result, the model

trained on these datasets is prone to overfitting and only re-

members to segment the object with the largest response,

which leads to the failure when segmenting one-to-many

and one-to-zero samples.

To address the aforementioned issues, this paper pro-

poses a Dual Multi-Modal Interaction Network (DMMI)

to achieve robust segmentation when given various types

of text expressions, and establishes a new comprehensive

dataset Ref-ZOM (Zero/One/Many). In the DMMI net-

work, we address the referring segmentation task in a dual

manner, which not only incorporates the text information

into visual features but also enables the information flow

from visual stream to the linguistic one. As illustrated in

Fig. 2, the whole framework contains two decoder branches.

On the one hand, in the text-to-image decoder, linguistic

information is involved into the visual features to segment

the corresponding target. On the other hand, we randomly

erase the entity-phrase in the original sentence and extract

the incomplete linguistic feature. Then, in the image-to-

text decoder, given the incomplete text embedding, we uti-

lize the Context Clue Recovery (CCR) module to recon-

struct the missing information conditioned on the visual fea-

tures. Meanwhile, multi-modal contrastive learning is also

deployed to assist the reconstruction. By doing so, the vi-

sual feature is encouraged to fully incorporate the semantic

clues about target entity, which promotes the multi-modal

feature interaction and leads to more accurate segmentation

maps. Additionally, to facilitate the two decoder parts, we

design a Multi-scale Bi-direction Attention (MBA) module

to align the multi-modal information in the encoder. Be-

yond the interaction between single-pixel and single-word

[48], the MBA module enables the multi-modal interaction

in the local region with various sizes, leading to a more

comprehensive understanding of multi-modal features.

In the Ref-ZOM, we establish a comprehensive and chal-

lenging dataset to promote the referring image segmentation

when given various types of text inputs. On the one hand,

compared to the existing widely-used datasets [21, 38, 36],

the text expressions are more complex in Ref-ZOM. It is

not limited to the one-to-one assumption, and instead, the

expression can refer to multiple or no targets within the im-

age. Additionally, the language style in our Ref-ZOM is

much more flowery than the short phrases found in [21].

On the other hand, Ref-ZOM also surpasses most main-

stream datasets in terms of size, containing 55078 images

and 74942 annotated objects.

We conduct extensive experiments on three popular

datasets [21, 38, 36] and our DMMI achieves state-of-the-

art results. Meanwhile, we reproduce some representative

methods on our newly established Ref-ZOM dataset, where

DMMI network consistently outperforms existing methods

and exhibits strong ability in handling one-to-zero and one-

to-many text inputs. Moreover, the Ref-ZOM-trained net-

work performs remarkable generalization capacity when

being transferred to different datasets without fine-tuning,

highlighting its potential for real-world applications.

The main contributions of this paper are summarized as

follows:

• We find the deficiency of referring image segmenta-

tion when meeting the one-to-many and one-to-zero

text inputs, which strongly limits the application value

in real-world scenarios.

• We propose a Dual Multi-Modal Interaction (DMMI)

Network to enable the information flow in two direc-

tions. Besides the generation of segmentation map,

DMMI utilizes the image-to-text decoder to recon-

struct the erased entity-phrase, which facilitates the

comprehensive understanding of the text expression.

• We collect a new challenging dataset, termed as Ref-

ZOM, in which the text inputs are not limited to the

one-to-one setting. The proposed dataset provides a

new perspective and benchmark for future research.

• Extensive experimental results show the proposed

DMMI network achieves new state-of-the-art results

on three popular benchmarks, and exhibits superior ca-

pacity in handling various types of text inputs on the

newly collected Ref-ZOM.

2. Related Work

2.1. Referring Image Segmentation

Referring image segmentation is first introduced by [15].

Early approaches [15, 27, 29, 37] generally employ Con-

volutional Neural Networks (CNNs) [3, 40, 13] and Re-

current Neural Networks (RNNs) [14, 17] to extract rel-

evant visual and linguistic features. After feature extrac-

tion, the concatenation-convolution operation is employed

to fuse multi-modal features. However, it fails to exploit the

inherent interaction between image and text. To overcome

this shortcoming, some approaches [16, 18, 47] establish

relation-aware reasoning based on the multi-modal graph.
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Figure 2: The whole framework of the proposed Dual Multi-Modal Interaction (DMMI) Network. (a) The feature encoder,

in which the visual encoder and text encoder are utilized to extract visual and linguistic feature, respectively. Meanwhile,

MBA module is employed to perform multi-modal feature interaction. Notably, wi,j denotes the j-th point in the i-th row of

attention weight. (b) Text-to-image decoder, in which the text embedding is utilized to query the visual feature to generate the

prediction map. (c) Image-to-text decoder, in which CCR module is utilized to reconstruct the erased linguistic information

condition on the visual feature. Lcon and Lsim are implemented to assist the reconstruction.

Recently, due to the breakthrough of Transformer in

computer vision community [8, 46, 12, 1], Transformer-

based backbones have become dominant in referring image

segmentation for both visual and linguistic feature extrac-

tion [31, 6, 19, 20]. Meanwhile, the self-attention mecha-

nism [42] in the Transformer also inspired numerous studies

that employ cross-attention blocks for better cross-model

alignment. For instance, VLT [7] utilizes the cross-attention

module to generate the query vectors by comprehensively

understanding the multi-model features, which are then

used to query the given image through the Transformer de-

coder. LAVT [48] finds that early fusion of multi-modal fea-

tures via cross-attention module brings better cross-modal

alignments. Moreover, CRIS [44] utilizes the Transformer

block to transfer the strong ability of image-text alignment

from the pre-trained CLIP model [39].

However, most previous methods only supervise the vi-

sual prediction and cannot ensure the semantic clues in the

text expressions have been incorporated into the visual fea-

tures. As a result, these methods tend to struggle when han-

dling the text expressions that refer to either no objects or

multiple objects. In this work, we establish a dual network

and emphasize that the information flow from image to text

is beneficial for comprehensive understanding of text ex-

pression. Furthermore, we collect a new dataset called Ref-

ZOM, which contains various types of text inputs and com-

pensates for the limitations of existing benchmarks.

2.2. VisualLanguage Understanding

Video-Language understanding has received rapidly

growing attention in recent years and plays an important

role in various tasks such as video-retrieval [10], image-text

matching [24] and visual question answering [53, 25]. In

these tasks, effective multi-modal interaction and compre-

hensive understanding of both visual and linguistic features

are critical in achieving great performance. Some previous

works employ masked word prediction (MWP) to achieve

this goal, where a proportion of words in a sentence are

randomly masked, and the masked words are predicted un-

der the condition of visual inputs [23, 11, 54]. Most MWP

methods directly predict the value of the token. In our work,

instead of predicting the single token, we reconstruct the

holistic representation of text embedding and measure the

global similarity, leading to the comprehensive understand-

ing of the entire sentence.

Moreover, recently popular vision-language pre-training

models [39, 26, 49, 50] have demonstrated the remarkable

ability of contrastive learning in cross-modal representation

learning. Motivated by their success, we incorporate the

contrastive loss in our image-to-text decoder to facilitate

text reconstruction. The experimental results reflect that the

two components are highly complementary and effectively

enhance the semantic clues in visual features.

3. Method

The Dual Multi-Modal Interaction (DMMI) network

adopts the encoder-decoder paradigm, which is illustrated

in Fig. 2. In the encoder part, the visual encoder and text

encoder are utilized to extract visual and linguistic fea-

tures, respectively. During this process, the Multi-scale Bi-

direction attention (MBA) module is employed to perform

cross-modal interaction. After feature extraction, the two



modalities are delivered to the decoder part. In the text-to-

image decoder, the text embedding is utilized to query the

visual feature and generate the segmentation mask. While

in the image-to-text decoder, we employ the Context Clue

Recovery (CCR) module to reconstruct the erased infor-

mation of target entity conditioned on the visual features.

Meanwhile, the contrastive loss is utilized to promote the

learning of CCR module. We elaborate each component of

the DMMI network in detail in the following sections.

3.1. Feature Encoder

Given the text expression T , we randomly mask the

entity-phrase via TextBlob Tool [33] and generate its cor-

responding counterpart T ′. Then, we feed both T and T ′

into the text encoder to generate the linguistic features E =
{el}

L

l=1 and E′ = {e′l}
L

l=1 ∈ R
Ct×L, where Ct and L indi-

cate the number of channels and the length of the sentence.

For the input image X , we utilize the visual encoder to ex-

tract the multi-level visual features Vn ∈ R
Cn×Hn×Wn .

Here, Cn, Hn and Wn denote the number of channels,

height and width, and n indicates features in the n-th stage.

During the feature extraction, MBA module is hierarchi-

cally applied to perform cross-modal feature interaction.

3.1.1 Hierarchical Structure

As illustrated in Fig. 2 (a), the visual encoder is imple-

mented as a hierarchical structure with four stages, which is

conducted with the MBA module alternately. For the shal-

low layer feature V1 extracted from the first stage of visual

encoder, we deliver it to MBA module with linguistic fea-

ture E1 and obtain V ∗
1 and E∗

1 . Then, V ∗
1 is sent back to

the visual encoder, based on which V2 is extracted through

the next stage. Meanwhile, E∗
1 is also noted as the E2 that

will be utilized in the next MBA module. Similarly, V2 and

E2 are fed to MBA module again, and the generated V ∗
2

will be delivered to the next part of visual encoder. By do-

ing so, the visual and linguistic features are jointly refined,

achieving cross-modal alignment in both text-to-image and

image-to-text directions.

3.1.2 Multi-scale Bi-direction attention Module

The MBA module jointly refines the visual feature V and

linguistic feature E to achieve text-to-image and image-to-

text alignment. To simplify the notation, here we drop the

subscript of features from different stages. Inspired by the

success of self-attention [42], most recent works utilize the

cross-attention operation to perform the cross-modal feature

interaction. During this process, the visual feature V is first

flattened to R
C×N , where N = W ×H . Then, the feature

interaction is formulated as:

V ∗ = softmax(
(WqV )T (WkE)

√

Ĉ
) (WvE)

T
(1)

where Wq , Wk and Wv are three transform functions uni-

fying the number of channels to Ĉ. However, Eq. 1 only

establishes the relationship between a single pixel and a sin-

gle word. In fact, beyond the single point representation,

local visual regions and text sequences also store critical

information for the comprehensive understanding of multi-

modal features. Following this idea, we design two align-

ment strategies in MBA to capture the relationship between

visual features and text sequences in different local regions.

Text-to-Image Alignment. To fully leverage the struc-

ture information in various regions, we compute the affini-

ties coefficients W
α,r
att between each token and different lo-

cal regions Ωα
r , in which r indicates different spatial sizes

and its value ranges from 1 to R. Ωα
r will slide across the

whole spatial plane of the visual feature. Then, given region

Ωα
r (i) centered at the position i, the i-th row weight w

α,r
i

in attention matrix W
α,r
att ∈ R

N×L is calculated as:

w
α,r
i = softmax(

∑

m∈Ωα
r (i)

(Wα
q V

m)T (Wα
k E)

√

Ĉ
) (2)

where w
α,r
i ∈ R

1×L, m enumerates all spatial positions in

Ωα
r (i) and V m ∈ R

Ĉ×1 denotes one specific feature vector

in Ωα
r (i). Then, for all Ωα

r , the final affinities coefficient is

calculated as:

Wα
att =

R
∑

r=1

λαrW
α,r
att (3)

where λαr is a learnable parameter reflecting the importance

of regions in different sizes. Finally, after the process of

transform function Wα
v , the linguistic information is incor-

porated into the visual feature:

V ∗ =Wα
att(W

α
v E)T (4)

Image-to-Text Alignment. In human perception, to

fully comprehend the language expression, we will asso-

ciate the context information rather than understanding each

word separately. Therefore, for each visual pixel, we also

establish the connection with various text sequences Ωβ
r ,

where r indicates different lengths of the sequence and Ωβ
r

slides across the whole sentence. For text sequence Ωβ
r (i)

starting at position i, we calculate the i-th row weight w
β,r
i

in affinity coefficients W
β,r
att ∈ R

L×N as:

w
β,r
i = softmax(

∑

m∈Ωβ
r (i)

(W β
q E

m)T (W β
k V )

√

Ĉ
) (5)

where w
β,r
i ∈ R

1×N , m enumerates all tokens in Ωβ
r (i)

and Em ∈ R
Ĉ×1 represents one specific feature vector in

Ωβ
r (i). Then, similar to Eq. 3, we average theW

β,r
att through



a set of learnable parameters λβr to obtain the W
β
att. Af-

terwards, the visual information is involved to generate the

refined text embedding as follows:

E∗ =W
β
att(W

β
v V )T (6)

3.2. TexttoImage Decoder

The whole structure of text-to-image decoder is depicted

in Fig. 2(b). As advocated in [41, 3], we implement skip-

connections between the encoder and decoder to introduce

the spatial information stored in the shallow layers. Specif-

ically, the text-to-image decoder can be described as:
{

Y4 = V ∗
4

Yn = ψ (φ (Yn+1, V
∗
n ) , E

∗
4 ) n = 3, 2

(7)

in which ψ (·) indicates the Transformer decoder layer. φ (·)
consists of two 3×3 convolutions followed by batch nor-

malization and the ReLU function, in which features from

the shallow parts of the encoder are aggregated with the de-

coder feature. Then, a 1×1 convolution is applied on Y2 to

produce two class score maps Ŷ1, which is considered as the

final visual prediction of DMMI network. Finally, we cal-

culate the binary cross-entropy loss for Ŷ1 with Ygt, which

is denoted as Lce.

3.3. ImagetoText Decoder

3.3.1 Context Clue Recovery Module

Besides the text-to-image decoder, DMMI network pro-

motes the referring segmentation in a dual manner and fa-

cilitates the information flow from visual to text, which is

illustrated in Fig. 2(c). For the incomplete linguistic fea-

ture E′ = {e′l}
L

l=1, we utilize CCR module to reconstruct

its masked information under the guidance of visual feature

V ∗
4 . To support the precise reconstruction, the visual feature

is encouraged to contain essential semantic clues stored in

the E = {el}
L

l=1, which boosts the sufficient multi-modal

interaction in the encoder part and support the accurate seg-

mentation in the text-to-image decoder.

Specifically, given the visual feature V ∗
4 , we employ a

Transformer decoder layer D(E′, V ∗
4 ) to recover the missed

information in the E′ = {e′l}
L

l=1, where visual feature V ∗
4

is employed to query the E′. The output of D(E′, V ∗
4 ) is

considered as the reconstructed text embedding, which is

denoted as Ê = {êl}
L

l=1.

To enforce the CCR module to precisely recover the

missing information, we measure the similarity distance be-

tween the reconstructed embedding Ê and E∗
4 , and calcu-

late Lsim as:

Lsim = δ ∗
(

1− cos
[

Detach (E∗

4 ) , Ê
])

(8)

Here, δ is an indicator that will be set to 0 if this sample is

a one-to-zero case, where the text input is unrelated to the

corresponding image, making it impossible to reconstruct

linguistic information. Additionally, Detach(E∗
4 ) refers to

stopping the gradient flow of E∗
4 in Eq. 8, which prevents

E∗
4 from being misled by Ê in the optimization.

3.3.2 Multi-modal Contrastive Learning

We calculate the contrastive loss to reduce the distance be-

tween visual feature and its corresponding linguistic one,

which is helpful in reconstructing the text embedding from

the visual representation. Specifically, for visual feature

Ṽ ∗
4 ∈ R

B×N×C and linguistic feature Ẽ∗
4 ∈ R

B×L×C in

a batch, we first pool them into Vo and Eo ∈ R
B×C . Then,

the contrastive loss is computed as:

Lcon = LI→T + LT→I (9)

where LI→T and LT→I denote image-to-text and text-to-

image contrastive loss respectively:

LI→T = −
1

B

B
∑

i=1

δ(i) ∗ log
exp

(

V
(i)
o · E

(i)
o /τ

)

∑

B

j=1 exp
(

V
(i)
o · E

(j)
o /τ

) (10)

LT→I = −
1

B

B
∑

i=1

δ(i) ∗ log
exp

(

E
(i)
o · V

(i)
o /τ

)

∑

B

j=1 exp
(

E
(i)
o · V

(j)
o /τ

) (11)

where V
(i)
o ∈ R

C and E
(i)
o ∈ R

C denote ith sample in a

batch, B indicates the batch size. Meanwhile, δ is the one-

to-zero indicator, τ is the temperature hyper-parameter that

scales the logits. Finally, the total loss is combined as the

summation of Lce, Lsim and Lcon over the batch.

4. Ref-ZOM Dataset

We collect Ref-ZOM to address the limitations of main-

stream datasets [21, 38, 36] that only contain one-to-one

samples. Following previous works [21, 38, 36], images in

Ref-ZOM are selected from COCO dataset [28]. Generally,

Ref-ZOM contains 55078 images and 74942 annotated ob-

jects, in which 43,749 images and 58356 objects are utilized

in training, and 11329 images and 16,586 objects are em-

ployed in testing. Notably, Ref-ZOM is the first dataset that

contains one-to-zero, one-to-one, and one-to-many samples

simultaneously. It is worthwhile to mention that although

the VGPHRASECUT dataset [45] includes some one-to-

many samples, it lacks one-to-zero cases and all its expres-

sions are generated using fixed templates, which makes it

less applicable than Ref-ZOM. Due to the space limitation,

we only illustrate a selection of representative samples from

Ref-ZOM in Fig. 3. More detailed information can be found

in the supplementary materials.

One-to-many. We collect one-to-many samples in three

different ways, as illustrated in the first row of Fig. 3 from

left to right. (1) We manually create some image-text pairs

based on the expressions from COCO Caption and anno-

tate the corresponding target in a two-player game [21, 52].



“The pedestrian on the 

right side”

“An airplane sits on a 

runway at an airport”

“Duck with foot going 

over the edge”

“Dish with a piece of shrimp” “A man catches the ball 

wearing a red cap”

“umpire and batter”“Two young ladies and the kite 

between them”

“Motorcycle in picture”

“a guy and a girl looking at the 

Taco truck”

Figure 3: Selected samples from our newly collected Ref-

ZOM datasets. From top to down are image-text pairs under

one-to-many, one-to-zero and one-to-one settings.

Specifically, given an image with caption expressions and

annotations, the first annotator selects and modifies the sen-

tence to describe the masked objects. Then, only given the

image, the second annotator is asked to select the targets ac-

cording to the text expression from the first one. The image-

text pair will be collected only when the second annotator

selects the targets correctly. (2) Based on the existing one-

to-one referring image segmentation dataset, we combine

the text expression describing different targets in one image

to compose the one-to-many expressions. (3) We utilize the

category information with the prompt template to compose

some text samples. Generally, Ref-ZOM contains 41842

annotated objects under one-to-many settings.

One-to-zero. We carefully select 11937 images from

COCO dataset [28], which are not included in [21, 38, 36].

Next, we randomly pair each image with a text expres-

sion taken from either the COCO captions or the text pools

in [21, 38, 36]. Finally, we conduct a thorough double-

checking process to verify that the selected text expressions

are unrelated to the corresponding images.

One-to-one. First, we randomly select some samples

from existing datasets [21, 38, 36]. Meanwhile, we manu-

ally create some new samples based on the category infor-

mation with the prompt template, which is similar with the

third strategy in the creation of one-to-many samples. In

total, there are 42421 one-to-one objects in the Ref-ZOM.

5. Experiments

5.1. Implementation Details

We evaluate the performance of DMMI with two dif-

ferent visual encoders, ResNet-101 and Swin-Transformer-

Base (Swin-B), which are initialized with classification

weights pre-trained on ImageNet-1K and ImageNet-22K

[5], respectively. Our text encoder is the base BERT model

with 12 layers and the hidden size of 768, which is initial-

ized with the official pre-trained weights [6]. In the training,

we utilize AdamW as the optimizer with a weight decay of

0.01, and the model is trained for 60 epochs with a batch

size of 8. Moreover, the initial learning rate is set to 5e-5

with a polynomial learning rate decay policy. The images

are resized to 448 × 448 and the maximum sentence length

is set to 20. Additionally, we only randomly erase one word

in each iteration for each sentence.

In DMMI network, the values of r for Ωα
r and Ωβ

r are

set to [1, 2, 3]. Specifically, Ωα
1 , Ωα

2 , and Ωα
3 correspond to

spatial regions of size 1× 1, 3× 3, and 5× 5, respectively.

In addition, when r = 1, 2, 3, Ωβ
r corresponds to text se-

quences with 1, 2, and 3 tokens, respectively. Furthermore,

all Transformer layers in the decoder are set with 8 heads

and temperature τ in Lcon equals to 20.

5.2. Datasets and Metrics

In addition to our newly collected Ref-ZOM, we eval-

uate our method on three mainstream referring image seg-

mentation datasets, RefCOCO[21], RefCOCO+[21] and G-

Ref[38, 36]. Notably, G-Ref has two different partitions,

which are established by UMD [38] and Google, respec-

tively [36]. We evaluate our method on both of them.

In the test, for one-to-one and one-to-many samples,

we employ the overall intersection-over-union (oIoU), the

mean intersection-over-union (mIoU), and prec@X to eval-

uate the quality of segmentation masks. The oIoU measures

the ratio between the total intersection area and the total

union area added from all test samples, while the mIoU av-

erages the IoU score of each sample across the whole test

set. Prec@X measures the percentage of test images with

an IoU score higher than the threshold X ∈ {0.5, 0.7, 0.9}.

As for the one-to-zero samples, since there is no target in-

cluded in the image, IoU-based metrics are not applicable.

Thus, we utilize image-level accuracy (Acc) to evaluate the

performance. For each one-to-zero sample, its Acc value

is 1 only when all points in the prediction mask are classi-

fied as the background. Otherwise, the Acc value is 0. We

average the Acc value across the whole test set.

5.3. Comparison with Stateofthe Arts

In Table 1, we compare the proposed DMMI net-

work with the state-of-the-art methods on RefCOCO, Re-

fCOCO+, and G-Ref in terms of the oIoU metric. The table

is divided into two parts according to their visual encoder.

The first part reports the performance of methods equipped

with CNNs as the visual encoder, while the second part

presents the methods using Transformer-based structure or

pre-trained backbones beyond ImageNet as the visual en-

coder. Generally speaking, DMMI delivers the best perfor-

mance in two conditions. Here, taking the second part as

the example for analysis. On the RefCOCO dataset, we sur-

pass the second-best method by 1.4%, 1.31%, and 1.37% on



Table 1: Comparison with state-of-the-art methods in terms of oIoU(%) on three datasets. In G-Ref, U and G denote the

UMD and Google partition, respectively. The best results are in bold.

Method
Visual

Encoder

RefCOCO RefCOCO+ G-Ref

val test A test B val test A test B val (U) test (U) val (G)

RRN [16] ResNet-101 55.33 57.26 53.93 39.75 41.25 36.11 – – 36.45

MAttNet [51] ResNet-101 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61 –

CAC [4] ResNet-101 58.90 61.77 53.81 – – – 46.37 46.95 44.32

LSCM [18] ResNet-101 61.47 64.99 59.55 49.34 53.12 43.50 – – 48.05

CMPC+ [30] ResNet-101 62.47 65.08 60.82 50.25 54.04 43.47 – – 49.89

MCN [35] DarkNet-53 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 –

EFN [9] ResNet-101 62.76 65.69 59.67 51.50 55.24 43.01 – – 51.93

BUSNet [47] ResNet-101 63.27 66.41 61.39 51.76 56.87 44.13 – – 50.56

CGAN [34] ResNet-101 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54

LTS [19] DarkNet-53 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 –

VLT [7] DarkNet-53 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 49.76

DMMI (Ours) ResNet-101 68.56 71.25 63.16 57.90 62.31 50.27 59.01 59.23 55.13

ReSTR [22] ViT-B 67.22 69.30 64.45 55.78 60.44 48.27 – – 54.48

CRIS [44] CLIP-R101 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36 –

LAVT [48] Swin-B 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50

DMMI (Ours) Swin-B 74.13 77.13 70.16 63.98 69.73 57.03 63.45 64.18 61.98

Table 2: Comparisons with some representative methods on

the newly collected Ref-ZOM datasets.

Method oIoU mIoU Acc

MCN [35] 55.03 54.70 75.81

CMPC [16] 56.19 55.72 77.01

VLT [7] 60.21 60.43 79.26

LAVT [48] 64.45 64.78 83.11

DMMI (Ours) 68.77 68.21 87.02

val, testA, and testB subsets, respectively. On RefCOCO+

dataset, our DMMI network achieves a significant gain over

the SOTA method, with increases of 1.84%, 1.35%, and

1.93% on the val, testA, and testB subsets, respectively. On

the UMD partition of G-Ref dataset, 2.21% and 2.09% oIoU

improvements are obtained, while a 1.48% increase is also

observed on the Google partition. Such improvements are

consistent in the first part of Table 1.

In addition, we reproduce some representative methods

on the newly collected Ref-ZOM dataset and evaluate our

DMMI against these methods. The performance compari-

son is presented in Table 2. Here, our DMMI is equipped

with Swin-B as the visual encoder. As shown, our method

achieves the best performance in handling the one-to-many

and one-to-zero settings. To be more specific, DMMI out-

performs the second-best method by 4.32% and 3.43% in

terms of oIoU and mIoU. Moreover, in terms of the met-

ric for one-to-zero samples, DMMI surpasses the secondary

method by 3.91% in Acc results.

5.4. Ablation Study

In this part, we perform several ablation studies to eval-

uate the effectiveness of the key components in our DMMI

network on both G-Ref (U) and Ref-ZOM datasets. The

results are listed in Table 3.

Effect of Image-to-Text Decoder. The first three rows

in Table 3 verify the effectiveness of the image-to-text de-

coder. First, we remove the whole image-to-text decoder

and report the performance in the first row of Table 3, where

a 1.69% performance degradation could be observed on G-

Ref. This reflects the image-to-text decoder contributes a lot

to producing accurate segmentation result. Next, we add the

similarity loss Lsim and report the results in the second row

of Table 3. We can find Lsim brings significant improve-

ments. Especially, on the Ref-ZOM, the accuracy improves

by 1.38% and 1.55% in terms of oIoU and Acc. Meanwhile,

0.71% oIoU gain is also found on G-Ref when the network

is equipped with Lsim. This demonstrates that through the

reconstruction of incomplete text embedding in the training,

DMMI is learned to fully incorporate the semantic clues

about the entity targets into the visual features, which brings

superior performance when facing various types of text in-

puts. Additionally, we verify the effectiveness of Lcon in

the third row. Compared to the baseline in the first row, per-

formance goes up by 0.54% and 0.76% on the Ref-ZOM in

terms of oIoU and Acc. This suggests Lcon also contributes

to the comprehensive understanding of target entity by pair-

ing corresponding multi-modal features. Moreover, in the

seventh row, we can find the best performance is achieved

when the network equipped with Lsim and Lcon simulta-

neously, reflecting the contrastive learning and text recon-

struction are highly complementary.

Effect of MBA module. In the fourth to sixth row of

Table 3, we conduct experiments to investigate the effec-

tiveness of MBA module. On the one hand, as shown in the

fifth and seventh row, if we prohibit the multi-modal inter-

action between various local regions, and only implement

the interaction between single-word and single-pixel, the



Groundtruth LAVT Ours Groundtruth LAVT Ours

Two cars in front

Two boys playing wii in a living room An airplane sits on a runway at an airport

White cars on two side

Figure 4: Comparisons of segmentation maps generated by LAVT and our DMMI network.

Table 3: Ablation study of different components in DMMI

network on G-Ref and Ref-ZOM datasets. Notably, “Bi-D”

indicates the bi-direction operation in MBA module and I2T

denotes the “Image-to-Text”.

MBA I2T Decoder G-Ref Ref-ZOM

Bi-D MS Lsim Lcon oIoU oIoU Acc

1 ✓ ✓ 61.76 65.64 83.95

2 ✓ ✓ ✓ 62.47 67.02 85.50

3 ✓ ✓ ✓ 62.13 66.18 84.71

4 ✓ ✓ 62.05 66.93 85.09

5 ✓ ✓ ✓ 62.20 67.27 85.84

6 ✓ ✓ ✓ 62.48 67.39 86.05

7 ✓ ✓ ✓ ✓ 63.45 68.77 87.02

segmentation results drop significantly. Specifically, 1.52%

and 1.93% degradation are observed on Ref-ZOM, which

demonstrates the interaction in a large region benefits the

comprehensive understanding of multi-modal features. On

the other hand, we forbid the bi-direction mechanism in

MBA module by removing the image-to-text alignment and

only retaining the text-to-image one. The results are listed

in the sixth row in Table 3, in which the performance drops

a lot compared to the whole network. This reflects that mu-

tually refining the multi-modal features in the interaction

contributes to producing the accurate segmentation map.

5.5. Visualization

In this section, we visualize some segmentation maps

generated from DMMI and LAVT [48] to further demon-

strate the superiority of our method.

Zero-shot to Ref-ZOM. We first visualize some seg-

mentation maps when the model is trained on the G-Ref

and transferred to Ref-ZOM under the zero-shot condition.

The results are illustrated in the first row of Fig. 4. Since G-

Ref only contains one-to-one samples, it is challenging to

directly utilize the G-Ref-trained model to address the one-

to-many and one-to-zero cases. As shown in the first sam-

ple, our DMMI network could precisely localize two boys

and distinguish the women in the background. However,

LAVT could only localize one boy with the largest size in

the image. As for the second sample in the first row, DMMI

also handles the one-to-zero case successfully.

Zero-shot to Cityscapes. To further verify the general-

ization ability of DMMI, we directly transfer the Ref-ZOM-

trained networks to the Cityscapes dataset and give the

model some expressions as the text input. The training im-

ages in Ref-ZOM all come from the COCO dataset, where

the image style is quite different from that in Cityscapes.

Thus, it is challenging to produce satisfactory performance

when the model is transferred to Cityscapes without fine-

tuning. As shown in the second row of Fig. 4, DMMI

presents the satisfactory performance. Specifically, when

we give the text “White cars on two side”, DMMI could pre-

cisely localize the corresponding targets while LAVT seg-

ment many irrelevant cars and fails to produce accurate seg-

mentation map, demonstrating the great generalization abil-

ity of our method.

6. Conclusion

In this paper, we point out the limitations of existing

referring image segmentation methods in handling expres-

sions that refer to either no objects or multiple objects. To

solve this problem, we propose a Dual Multi-Modal Interac-

tion (DMMI) Network and establish the Ref-ZOM dataset.

In the DMMI network, besides the visual prediction, we re-

construct the erased entity-phrase based on the visual fea-

tures, which promotes the multi-modal interaction. Mean-

while, in the newly collected Ref-ZOM, we include image-

text pairs under one-to-zero and one-to-many settings, mak-

ing it more comprehensive than previous datasets. Ex-

perimental results show that the proposed method outper-

forms the existing method by a large margin, and Ref-ZOM

dataset endows the network with remarkable generalization

ability in understanding various text expressions. We hope

our work provides a new perspective for future research.
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