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The advent of the fourth industrial revolution has led to
an influx of novel methods seeking to automate assem-
bly processes. Lu (2017) notes that in the last several
years there has been an increase in citations regarding
Industry 4.0 with innovative methods described by Her-
mann et al. (2016) increasing in popularity. One area
of development is the localisation of components within
assemblies, allowing autonomous or human operators to
determine their accurate position. The surge towards In-
dustry 4.0 has seen a considerable push towards developing
sensing infrastructure that forms an intelligent machine
with feedback to the overarching operation, mainly to
avoid unaligned components leading to increased future
maintenance costs (Resnick et al. (2018)). This sensing
is the catalyst for data-driven actions within intelligent
manufacturing using metrology-based adaptable sensing
machines. An additional benefit of introducing sensing
infrastructure into manufacturing is the ability to reduce
errors that occur during the assembly process. Large-scale
component assembly still poses as one of the most difficult
section of production, due to the small tolerances and
large components that are being used, as Jamshidi et al.
(2010) notes for wing-box assembly mating to the larger
aerostructure.

The motivation for this research is centered around the
assembly of large components that require high accuracy

1 Corresponding author.

1. INTRODUCTION

2.1 Dimensional Metrology in Manufacturing

Digital manufacturing provides an opportunity for pro-
duction lines to gain insight into process information and
feedback regarding the position, orientation and status
of sub-components. To this end, Large-Scale Dimensional

placement. These components, such as the landing gear
of an aircraft, cannot have sensors attached to them as
there is the possibility of damage, nor can they be aligned
using camera-based metrology due to the high accuracy
requirements (Currey (1988)). Therefore, a method for
allowing accurate mating of large-scale components needs
to be developed that isn’t using invasive sensor methods.

This paper will introduce a novel method for the assembly
mating of two large components within manufacturing.
This would give an operator or autonomous assembly
method information to localise the component within the
assembly structure and reduce the assembly offset error.
Section 2 will discuss the literature surrounding sensor
technology and large scale manufacturing. Section 3 will
introduce the sensing template and the purpose of multi-
sensor fusion from a manufacturing perspective. Section 4
will outline the experimentation procedure, detailing how
the sensing template is being used to assist the process
operator in the manufacturing task. Finally, section 5 will
discuss the results of the experimentation on an industrial
representative component assembly.

2. LITERATURE REVIEW
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Abstract: The size of large components within manufacturing processes leads to complications
with automating the processes required to assemble them into larger structures. In recent
years, development of multi-sensor networks and breakthroughs in measuring algorithms have
allowed for the creation of novel methods of mating large components. One major challenge with
deploying sensor networks into production environments is the ability to attach sensors to large
volume components. This can be remedied with the use of a sensing template that acts as a
pseudo-virtual jig for the assembly process where sensors are embedded onto the template, thus
not interfering with the physical assembly. The key step for this sensing template is creating an
algorithmic process for accurate component localisation. This paper will introduce an innovative
method of using data fusion attached to a sensing template embedded in an aerospace assembly
process. A sensing algorithm utilising a Kalman filter allows for accurate component mating
with a low error offset and high repeatability. The results of the sensing template show how it
is capable of reducing the error offset and improves the repeatability of measurements.

∗ Department of Automatic Control & Systems Engineering,
University of Sheffield, UK

(e-mail: {ecanzini1}{mauledasnoguera1}{a.tiwari}@sheffield.ac.uk)
∗∗ Industrial Architecture & Manufacturing Research, Airbus UK

(e-mail: dominique.chasteau@airbus.com)

Ethan Canzini ∗,1, Marc Auledas ∗, Dominique Chasteau ∗∗,
Ashutosh Tiwari ∗

A Novel Sensing Template Using Data

Fusion for Large Volume Assembly



284 Ethan Canzini  et al. / IFAC PapersOnLine 55-2 (2022) 283–288

Fig. 1. Example of complete aerospace fuselage mating
using an automated jig. Extracted from Rüscher and
Mayländer (2001)

Metrology (LSDM) seeks to provide operators the same
level of precision for the increased tolerances for manufac-
turers to achieve. Franceschini et al. (2014) explains how,
as the demands of manufacturing regarding tolerances and
increasingly small measurements increased, the need for
more accurate measuring systems became more apparent.
Franceschini et al. (2014) also note how hybrid and multi-
sensor systems produce better results. Such novel sensing
methods have seen prevalence in the automotive industry
where sensor technology has been used for both manufac-
turing and post-production dimensional inspection of com-
ponents as shown by Kiraci et al. (2020). LSDM systems
comprise of large volume components, which in aerospace
manufacturing can be wing boxes, sections of the fuse-
lage or components inserted into aircraft sub-assemblies.
Measuring these components accurately requires metrol-
ogy systems capable of handling large structures with
small tolerances. These systems can be separated into
two distinct methods: non-contact and contact methods
(Jamshidi et al. (2010)). Contact systems such as Coordi-
nate Measurement Machines(CMMs) require either pre-
programmed paths or external sensing tools to localise
themselves. However, in a production line environment
these tools can interfere with the components within the
assembly. Jamshidi et al. (2010) states the use of such con-
tact methods can prove to be a complex topology problem,
leading to long development times and design periods for
developing such Collaborative Robots (COBOTs) requiring
safety measures when operating in human environments,
described by Muijs and Snijders (2017).

One method to develop autonomous build processes for
manufacturing is through specially designed jigs and fix-
tures suited to specific tasks or sections of the production
line. The benefit of such methods are their high repeatabil-
ity and reliability when performing manufacturing tasks.
Such machines as those described by Mei and Zhu (2021)
and Rüscher and Mayländer (2001) show how dedicated
sections of the production line can be automated to a high
degree of success by tailoring the process to the exact
specifications of the sub-assembly in question. However,
as Rüscher and Mayländer (2001) show in figure 1, their
solution is only applicable to the specific method being
performed. Additionally, attaching the sensors to the air-
craft components can damage them prior to deployment,
which within the context of aerospace manufacturing can
be a costly process.

2.2 Sensing Innovation

Due to the increasing desire for more accurate methods of
measuring distances in manufacturing, sensing innovation
has become a priority within academic research. Sensor
design has progressed to the point where sensor networks
described by Franceschini et al. (2014) are more appropri-
ate than single sensor systems, especially considering how
the overall displacement error in an autonomous platform
is based on the error propagation through the sub-systems
in the process. Jayaweera et al. (2010) explains how the
overall error is a factor of both the sensor and robot error.
Sensor fusion can provide a robust distance measurement
method by ensuring the movement of the autonomous
machine - as well as the final error in the displacement
- is governed by the smallest tolerance of the network.
Furthermore, Jayaweera et al. (2010) shows that relying
purely on a robotic arm for a pre-programmed path would
still result in a propagation of uncertainty, with the result
being a jig which is off it’s desired position and has no
method of determining it’s pose. This reason alone drives
the industry to develop sensing infrastructure to aid in
both human and machine operated tasks.

One area of major development for sensing technology is
the use of photogrammetry. Although cameras are not
prevalent within manufacturing environments, the devel-
opment of multi-sensor data fusion has allowed camera-
based measurement to act as a separate measuring tool
that assists the main sensors in their operation. Such
systems are denoted by Luhmann (2010) as on-line sys-
tems that utilise process control and data acquisition in a
feedback loop to allow for greater control of components.
Methods described by Luhmann (2010) are industry-
appropriate when used in partnership with classical sensor
types. Recent novel methods for camera metrology have
also led to the ability for measuring distances and generate
dimensions and 3D models from single images such as
that from Criminisi (2001). Criminisi notes that image and
subject resolution influence the ability to accurately deter-
mine dimensions of objects in the field of view. Therefore,
using camera metrology as the sole measurement tool in
an automated system would be an unwise choice, where it
should alternatively be used to complement other classical
sensor types.

2.3 Multi-sensor Systems

Classical sensor methods all present some form of error or
offset when used in isolation of one another. This can be in
the form of randomly distributed noise spread across the
data stream causing uncertainty in measurements. Such
sensor noise can be the reason why many manufacturers
abstain from using them in their production facilities,
despite the ability to perform calibration during field op-
erations as shown in Luhmann (2010). One approach is to
combine multiple sensors each providing information re-
garding the pose of the component. This method has been
defined as multi-sensor fusion and has seen prevalence in
research when developing robust information systems for
complex systems. Additionally, these sensor networks are
subjected to the same statistical distribution, notably as
a multivariate probability distribution:
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fX{x1, ..., xk} =
exp (− 1

2
(x− µ)TΣ−1(x− µ))
√

(2π)k|Σ|
(1)

Where µ is the vector of means for the sensors and
Σ is the covariance matrix. In equation 1, the joint
probability density function (PDF) of k signals allow for
the estimation and tracking of multiple sensors values in
a single application. Ahmadi-Pour et al. (2017) shows the
statistical models of the sensors on a self-driving car can
be combined to provide a position estimate of the car
and it’s surroundings, allowing safe navigation through the
environment with little operator input.

Multi-sensor fusion has seen extensive use for the design of
fault resilient systems. Such systems rely on a level of toler-
ance for faults to become compliant for certain engineering
applications, particularly when these systems operate in
non-permissive environments. Nelson (1990) details how
fault tolerant systems are used to avoid the possibility
of systems being unable to report on their status when
working in non-permissive dangerous environments. These
N -modular systems can sustain failures to the sensors
whilst still maintaining the capacity to deliver information
to the operator. This is also commented on by Elmenreich
(2002) where the competitive fusion of various sensors can
be used to make systems resilient to failure. Sensors can
also be aligned in cooperative fusion where sensors are used
in collaboration to provide a complete view of an observed
situation. For assembly procedures, cooperative fusion
would allow for pose tracking of a component through
the measurement of multiple sensors, as shown in figure
2. The systems that these configurations are deployed in
can be shown to have temporal constraints, where there
is hard and soft real-time constraints concerning actions
undertaken by the systems. Unlike soft systems, hard real-
time systems have temporal constraints which would lead
to catastrophic failure if these constraints are not met.
These systems have at least one hard deadline that must
be met benefiting from a sensor network that allows for a
redundancy and, combined with a cooperative fusion algo-
rithm, would allow for more accurate and reliable system
that is resilient to error propagation. In the next section,
we will introduce an algorithm that combines multiple
sensor inputs and utilises a cyber-physical architecture to
combine the measurement and process domains.

3. SENSING TEMPLATE DESIGN

3.1 Sensor Network

Designing a sensor network for resilient cooperative fu-
sion requires choosing different sensing technologies for
certain distances. As noted in section 2.1, aerospace man-
ufacturing is governed by tight tolerances, therefore the
sensors used in the network would need to be capable
of providing accurate measurements over a short distance
to allow for accurate component placement. Sisinni et al.
(2018) explains how the use of IIoT within Industrie 4.0
becomes a necessity when developing smart manufacturing
tools, a statement echoed by Baumann et al. (2020) when
discussing how smart sensors can be integrated for wireless
control of smart devices in industry. In this application,
the sensing network would require a sensor on each axis

that is isn’t physically constrained during the assembly
process, so would require two sets of sensors on the x−
and y−directions. For the sensor network put forward in
this paper, two circumstances need to be considered. The
first is that the component is at a distance away from
the final assembly position and the distance can only be
measured with a ranged sensor. This paper will consider
two different sensing types as possible technologies to use
in the template: IR/photonic and laser sensors. IR sensors
use an infrared beam and measure the distance to the
surface through the intensity of the reflection from the
surface, whereas laser sensors emit a pulse of light then
measure the time taken for the laser to return after being
reflected off the surface. To distinguish between the two
sensors, we can compare the measurement resolution when
subjected to ideal operating conditions. The resolution of
laser Light Detection And Ranging (LiDAR) sensors can
be determined from the minimum duration of the pulse
emitted from the sensor. The relationship for the range
can be determined from McManamon (2015):

∆R =
ct

2
(2)

In equation 2, c is the speed of light in a vacuum, 3 ×
106m/s, and t is the duration of the pulse in seconds. From
the data sheet for the sensor available at RSOnline (2020),
we are told the shortest pulse duration is 1 × 10−12s,
yielding a resolution of 0.15mm. For the IR sensor, the
resolution of the sensor is determined by two factors: the
resolution of the analog-to-digital converted (ADC) and
the distance range available for the sensor Fraden (2016):

δ =
xR

2M − 1
(3)

Where M is the bit resolution of the ADC and xR is the
distance range of the sensor. Using the data sheet from
Farnell (2020), we can calculate the theoretical resolution
δ of the IR sensor to be 0.068mm. From these two values,
we can see that what the IR sensor loses in range to
the laser sensor, it achieves far better resolution when
measuring distances. Therefore, for close-range accurate
measurements, an IR sensor would a more appropriate
choice for our sensing network.

The second type of measurement needed in the sensor net-
work is a close range measurement for precise component
alignment. This level of precision cannot be afforded to
range sensors due to the presence of noise and uncertainty
in measurements (Fraden (2016)). Instead, the use of a
limit switch can provide the template a high precision
and repeatable measurement method when paired with the
ranged distance sensor.

The final part of the sensing network is the photogramme-
try system. As mentioned in section 2.2, photogrammetry
as the sole sensing mechanism does not have the accuracy
necessary for high tolerance manufacturing. However, as
noted by Aldao et al. (2021), classical sensors can be used
in parallel with photogrammetry. For this, using a camera
as a secondary tool alongside the distance sensors and limit
switch would allow for greater component manipulation in
the cooperative fusion discussed by Elmenreich (2002).
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Fig. 2. Cooperative sensor fusion being used to generate a complete view of a component’s pose. Adapted from
Elmenreich (2002)

3.2 Sensing Filter

To maintain accurate tracking of distance measurements
from the ranged sensor, the use of a filter is required for
smooth operation. As mentioned in section 2.3, sensors
suffer from uncertainty in their measurements due to the
presence of Gaussian noise. To avoid this, a linear Kalman
Filter (KF) algorithm is applied to the sensor readings
for improved tracking as shown by Hussein (2008). The
first step in the filter is prediction of the measurement for
the current step. From Saho (2013), this is carried out as
follows:

x̃k = Φx̂k−1 (4)

Where x̂k−1 is the estimate of the previous time step, x̃k is
the prediction of the current time step and Φ is the state
transition matrix between k−1 and k. For a linear system,
Φ = 1. The next step in the algorithm is the conversion
from a prediction to an estimation:

x̂k = x̂k−1 +Kk(zk − x̃k) (5)

In equation 5, Kk is the KF gain and zk is the raw sensor
measurement. This provides the estimate at the current
time step x̂k based on the change in measurement value
and the prediction based on the KF gain. The justification
for using a Kalman filter over more modern tracking solu-
tions proposed by Bar-Shalom et al. (2001) is to prove that
the sensing template design and algorithm can be adapted
to a variety of filtering techniques such as Bayesian and
particle filters (Thrun (2005)) with relatively ease whilst
still providing accurate results with an algorithm as simple
as a Kalman filter. can now use this algorithm and the
sensor network to build the sensing template and observe
it’s performance in an assembly process.

4. EXPERIMENTATION

4.1 Experimental Setup

The sensing template will be used for the alignment of
a representative component within an assembly process
required to be within 10mm ± 0.5 of the boundary face
in the x- and y-directions. Two sensors are situated in
each dimension: one micro-photonic IR sensor from Farnell
(2020) and one limit switch from OMRON (2020). Addi-
tionally, the y-direction has a Raspberry Pi camera module
that is used for alignment verification to test the efficacy

Fig. 3. Experimental setup using a Raspberry Pi 4 with
the integrated sensing template

of photogrammetry techniques for metrology processes.
The sensors are connected to a Raspberry Pi 4 that is
used for processing and deploying the algorithm to the
sensors which output to the operator the position of the
component within the assembly. The goal of the operator is
to align the component within the assembly as accurately
as possible using the sensing template as a guide. There
are three scenarios being used for comparison and each
scenario will be tested multiple times, followed by the
plotting of the final position error distribution.

Scenario 1: The operator has no access to any sensor
information and is using the current industry method of
inserting the component, checking the alignment then re-
inserting the component if the alignment is incorrect.

Scenario 2: The second scenario sees the inclusion of
the IR ranged distance sensors that provide the filtered
distance measurement to the operator for alignment assis-
tance.

Scenario 3: The final scenario has the complete sensor
network of ranged sensors and limit switches that provide
the operator with precise position feedback.

4.2 Sensor Filtering Results

The first part of the algorithm to examine is the perfor-
mance of the Kalman filter when estimating the distance
measurement. To analyse it’s performance, the filter will
be compared against the raw sensor reading zt at discrete
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Fig. 5. Comparison of KF estimated value against sensor
reading with the variance of each value shown in the
shaded area

distance values from the sensor. The variation in the mea-
surement value, σv, will also be plotted to evaluate the
filter’s ability to reduce the uncertainty in the measure-
ment.

Figure 5 shows that the Kalman filter provides more ac-
curate tracking of the actual value of the measurement
compared to the raw measurement from the sensor. This
tracking is controlled by the KF gain Kk, allowing for
adequate tracking of signals with minimal tuning. With in-
creased gain tuning, further improvements to the tracking
capabilities could be achieved. Another benefit of the filter
is the reduced uncertainty in the measurement, which has
high appeal in manufacturing by providing operators with
a higher degree of confidence in the system measurements.

To analyse the camera metrology performance, the camera
will evaluate the alignment along an axle hole. This algo-
rithm uses the Hough circle transform detector by Yuen
et al. (1989) to calculate the offset in the y-direction from
this image. Figure 6 shows the offset δ is determined from
the two axle holes, one in the outer assembly and one in
the component. Techniques such as this can be applied to
manufacturing for precise component orientation, and the
increase in computational power available manufacturers
means these methods can be applied live during processes
for immediate feedback.

Fig. 6. Hough circle transform showing the difference δ
between the axle holes

Table 1. Table of Mean µ and Standard Devi-
ation σ. Values in mm

Scenario µx µy σx σy

1 1.225 0.50 3.144 2.185

2 0.325 2.10 1.381 1.991

3 0.025 0.85 0.680 0.709

4.3 Sensor Network Results

The final set of experimentation results concerns the
performance of the sensing network in the three scenarios
provided. Figure 4 shows the PDFs for the three scenarios
and how the addition of the ranged distance sensor then
the complete sensing network tends the mean error value
towards zero in both the x- and y-directions.

Table 1 shows scenario 3 improves the average final offset
value by 98%, with both mean values tending towards zero.
The standard deviation in the error values reduces towards
zero, indicating the sensing network produces more reli-
able tracking and repeatable measurements compared to
aligning the components by eye. However, this standard
deviation is still relatively high for manufacturing applica-
tions, namely due to the uncertainty in human movements
(Smith and Reynolds (2016)). This could be remedied by
using an autonomous platform that is capable of high
precision and repeatable movements.

Fig. 4. Probability distribution for each scenario in the x- and y-direction
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5. CONCLUSION

In this paper, we have shown how the use of a novel
sensing template containing an embedded sensor network
can reduce the offset and spread of data when mating
large volume components within an assembly. We reviewed
current metrology and autonomous assembly methods,
and provided results which support our hypothesis of
using multi-sensor data fusion for on-line manufacturing
metrology. Further work would use the sensing template to
aid autonomous assembly processes as described by Muijs
and Snijders (2017) and to develop graph-based networks
that provide more information regarding component pose
as used by Mascaro et al. (2018).
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Rüscher, O. and Mayländer, H. (2001). Automated align-
ment and marry-up of aircraft fuselage sections with a
final assembly line. SAE Technical Papers, 1(724).

Saho, K. (2013). Kalman Filter for Moving Object Track-
ing Performance Analysis and Filter Design. Intech,
32(July), 137–144.

Sisinni, E., Saifullah, A., Han, S., Jennehag, U., and Gid-
lund, M. (2018). Industrial internet of things: Chal-
lenges, opportunities, and directions. IEEE Transac-
tions on Industrial Informatics, 14(11), 4724–4734.

Smith, C.P. and Reynolds, R.F. (2016). Vestibular feed-
back maintains reaching accuracy during body move-
ment. The Journal of Physiology, 595(4), 1339–1349.
doi:10.1113/jp273125.

Thrun, S. (2005). Probabilistic Robotics. The MIT Press.
Yuen, H.K., Princen, J., Dlingworth, J., and Kittler, J.
(1989). A Comparative Study of Hough Transform
Methods for Circle Finding. 29.1–29.6.


