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Abstract
In magnetic confinement fusion devices, the ratio of the plasma pressure to the magnetic field
energy, β, can become sufficiently large that electromagnetic microinstabilities become
unstable, driving turbulence that distorts or reconnects the equilibrium magnetic field. In this
paper, a theory is proposed for electromagnetic, electron-driven linear instabilities that have
current layers localised to mode-rational surfaces and binormal wavelengths comparable to the
ion gyroradius. The model retains axisymmetric toroidal geometry with arbitrary shaping, and
consists of orbit-averaged equations for the mode-rational surface layer, with a ballooning space
kinetic matching condition for passing electrons. The matching condition connects the current
layer to the large scale electromagnetic fluctuations, and is derived in the limit that β is
comparable to the square root of the electron-to-ion-mass ratio. Electromagnetic fluctuations
only enter through the matching condition, allowing for the identification of an effective β that
includes the effects of equilibrium flux surface shaping. The scaling predictions made by the
asymptotic theory are tested with comparisons to results from linear simulations of
micro-tearing and electrostatic microinstabilities in MAST discharge #6252, showing excellent
agreement. In particular, it is demonstrated that the effective β can explain the dependence of
the local micro-tearing mode (MTM) growth rate on the ballooning parameter θ0–possibly
providing a route to optimise local flux surfaces for reduced MTM-driven transport.
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1. Introduction

Turbulent transport often limits the performance of modern
magnetic confinement fusion devices. Turbulence is driven
by microinstabilities that are unstable to gradients in the
mean plasma temperature and density profiles. It is difficult
to suppress turbulent transport entirely: good confinement
is achieved in regimes where microinstability growth rates
and turbulent diffusivities are sufficiently small to allow for
large density and temperature gradients. One such favourable
regime is suggested by ideal magnetohydrodynamic (MHD)
stability analysis of axisymmetric toroidal equilibria [1, 2]: for
a given magnetic equilibrium, there is both a minimum, and a
maximum pressure gradient for instability. The existence of
MHD-stable equilibria with large pressure gradients (equilib-
ria with ‘second stability’) suggests a high-β route to a reactor,
where β = 8πp/B2 is the ratio of the total plasma pressure p
to the magnetic field energy B2/8π, with B the magnetic field
strength.

High-β equilibria suffer from unstable microinstabilities
with an electromagnetic character, such as the kinetic bal-
looning mode [3–5] or the microtearing mode (MTM) [6–13].
MTMs are driven by the electron temperature gradient (ETG)
through both collisional [7, 10, 13, 14] and collisionless
[13, 15–17] mechanisms, despite a stable equilibrium cur-
rent profile. In constrast, the macroscopic tearing mode [18]
and drift-tearing modes [8, 19–22] rely on finite resistivity
and unstable current sheets in the magnetic equilibrium for
instability. Electrostatic microinstabilities, which persist in
the β→ 0 limit, may also appear [23, 24], or be completely
suppressed [13]. In particular, the suppression of the ion tem-
perature gradient (ITG) instability and associated transport
is desirable; many studies have investigated the effects of
finite β on the ITG mode, see, e.g. [25–28]. Although there
are many different instability mechanisms, microinstabilities
share broad characteristics, and are well described by linear-
ised, local gyrokinetics [29, 30], provided that ρ∗s = ρs/a≪
1. Here a is a typical equilibrium length scale, ρs = vs/Ωs is the
thermal gyroradius of particle species s, with vs =

√
2Ts/ms

the thermal speed, Ωs = ZseB/cms the cyclotron frequency,
Ts the species temperature, ms the species mass, e the pro-
ton charge, Zs the signed species charge number, and c the
speed of light. The wave number of the microinstability paral-
lel to the magnetic field line k∥ is typically set by the connec-
tion length qR∼ a between the inboard and outboard of the
tokamak, i.e. k∥qR∼ 1. Here, q is the safety factor, and R is
the major radius. The perpendicular wave number k⊥ satisfies
k⊥ρs ∼ 1. The frequency of the mode satisfies ω ∼ vs/a. The
most dangerous microinstabilities are those with the longest
wavelengths perpendicular to the magnetic field line—larger
turbulent eddies convect heat and particles faster.

In this paper we concern ourselves with the type of long-
wavelength electromagnetic microinstability that is driven by

passing electrons and localised around mode-rational sur-
faces. We consider linear modes with binormal wavelengths
that are long compared to the thermal electron gyroradius;
i.e. the binormal wavenumber ky satisfies kyρe ≪ 1. Recon-
necting instabilities of this type are also referred to as MTMs.
It is worth noting that there are electrostatic instabilities with
many of the same characteristics [31, 32]. Electromagnetic
models of this type of linear instability have been developed
in simple sheared-slab magnetic geometries [6–8, 11], and in
toroidal geometries with small inverse aspect ratio and cir-
cular flux surfaces [9, 12]. However, a model using realistic
axisymmetric toroidal geometry is required to make quantit-
ative and qualitative comparisons to results from numerical
simulations of experimental discharges. This is particularly
relevant in spherical tokamaks, where significant flux surface
shaping is employed. Here, we derive a model valid in full
axisymmetric toroidal geometry with arbitrary cross-section.
The form of the model reveals the existence of an effective β
parameter that takes into account the shaping of the local flux
surface–potentially opening a route to optimise local geomet-
rical parameters for improved MTM stability.

Thanks to the presence of non-zero magnetic shear ŝ,
long-wavelength, electron-driven instabilities have two dis-
tinct regions. First, there is a radial layer localised around
the mode-rational surface with a width δ. In this paper, we
primarily consider the ‘collisionless’ ordering where δ ∼ ρe.
Second, there is an outer region: a region with large scales
far from the rational surface. The scale of the outer region is
tied to the choice of ordering for the binormal wavenumber ky,
which sets a minimum to the value of k⊥. Because we are con-
sidering electron-driven microinstabilities at kyρe ≪ 1 (rather
than, e.g. MHD tearing instabilities), we may take kyρi ∼ 1
without loss of generality. Hence, the radial scale of the outer
region∆∼ ρi ≫ δ. In ballooning space [33], modes with fine
radial structure near the mode-rational surface appear with
extended tails in the ballooning angle θ. To see this, note the
estimate for the radial wavenumber kr ∼ kyŝ(θ0 − θ), valid for
|θ0 − θ| ≫ 1, with θ0 the ballooning parameter that is closely
related to the poloidal position on the flux surface where the
ballooning mode has kr = 0. Taking−π < θ0 ⩽ π, we see that
scales of krρe ∼ 1 correspond to θ ∼ (kyŝρe)−1 ≫ 1, whereas
scales of krρi ∼ 1 correspond to θ ∼ 1. We can also view the
separation in θ between the width of the ballooning mode and
the 2π scale of the toroidal geometry as a separation between
two k∥: k

g
∥ ∼ 1/qR associated with the connection length; and

kw∥ ∼ kyŝρe/qR associated with the width of the envelope of the
mode in ballooning space.

We choose an ordering for the various frequencies in the
problem that maximises the physics retained in the model
when we take kyρe ≪ 1. We choose

kg∥ve ≫ kw∥ ve ∼ ω∗ ∼ νee ∼ νei ∼ ω, (1)

2
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where ω∗ is the typical frequency associated with the drives
of instability, and νee and νei are the electron-electron and the
electron-ion collision frequencies, respectively.We refer to the
ordering (1) as ‘collisionless’ because electrons make many
transits of the device before undergoing a collision. Because
collisions occur at the same rate at which energy is extrac-
ted from the equilibrium through ω∗, the ordering nonetheless
admits collisional resonances. The semicollisional limit of the
MTM instability may be obtained by taking νee/ω∗ ≫ 1 as a
subsidiary ordering [32].

The remainder of the paper is structured as follows. In
section 2, we give a very brief review of electromagnetic δf
gyrokinetics. Those familiar with gyrokinetic theory should
skip directly to section 3, where we examine the physics of
electron-driven instabilities in the limit of

β ∼
(
me

mi

)1/2

∼ kyρe ≪ 1. (2)

This calculation allows us to obtain inner region equations
and a kinetic matching condition for the inner region that is
formulated in the ballooning space representation. We show
that, in this limit, β only enters the model via the match-
ing condition. This allows for the definition of an effective
β parameter that depends on the local magnetic geometry,
the binormal wavenumber ky, and the ballooning parameter
θ0. In section 4, we demonstrate that the scalings predicted
by the orbit-averaged model are satisfied by MTMs simu-
lated using the δf gyrokinetic code GS2 [34] in a well-studied
Mega-Amp Spherical Tokamak (MAST) discharge [10]. This
suggests that the model equations are likely to describe the
modes that arise in the experimental tokamak plasma regimes
that are of interest to the community. These results motivate a
future numerical implementation of the orbit-averaged model,
which would require the development of a new orbit-averaged
gyrokinetic code with realistic geometry and collision oper-
ator. In section 5, we demonstrate that the geometrical depend-
ence of the effective β parameter accurately predicts the
growth rate of the MAST MTM as a function θ0. Finally, in
section 6, we discuss the possible impacts of our results.

Included with the paper are appendices containing res-
ults that are referred to in the main text. In appendix A, we
demonstrate how to obtain the orbit-averaged equations. In
appendix B, we give the electron collision operator appear-
ing in the model. In appendix C, we show that the electron-
inertial scale δe = ρe/

√
β can be neglected in the leading-

order matching between the inner and outer regions. Finally,
in appendix D, we provide a description of the numerical res-
olutions used in the simulations presented in this paper.

2. Linearised electromagnetic gyrokinetics

The δf gyrokinetic equations [29, 30] are derived in the
magnetised plasma limit ρ∗s ≪ 1, and are valid for fluctu-
ations satisfying ω ∼ ρ∗sΩs ≪ Ωs, k∥a∼ k⊥ρs ∼ 1. The dis-
tribution function of particle species s is decomposed into an

equilibrium (Maxwellian) piece F0s and a ρ∗s small perturba-
tion δfs. In the ballooning space representation of linear modes,
δfs can be written in the form

δfs(θ,ε,λ,σ,γ) = exp [−ik⊥ ·ρs]hs(θ,ε,λ,σ)−
Zseϕ(θ)
Ts

F0s,

(3)

where the nonadiabatic response hs is independent of the gyro-
phase γ that measures the phase of the cyclotron orbit of the
particle, and−Zseϕ(θ)F0s/Ts is referred to as the adiabatic, or
Boltzmann, response. Here, k⊥ is the perpendicular wave vec-
tor, ρs = b× v/Ωs is the vector gyroradius, and b= B/B is the
equilibriummagnetic field direction vector, withB the equilib-
rium magnetic field. The vector v is the particle velocity, ε=
msv2/2 is the particle kinetic energy, with v= |v|, λ= v2⊥/v

2B
is the pitch angle, with v⊥ = |v− v∥b| the perpendicular speed
and v∥ = v · b the parallel velocity, and σ = v∥/|v∥| is the sign
of v∥.

The linear gyrokinetic equation for modes of complex fre-
quency ω is

v∥b · ∇θ
∂hs
∂θ

+(ik⊥ · vM,s− iω)hs−CGK
s [hs]

=
ZseF0s

Ts
(iω∗,s− iω)

[
J0s

(
ϕ− v∥

c
A∥

)
+
J1s
bs

v2⊥
cΩs

B∥

]
,

(4)

where we have written the equation in terms of the non-
adiabatic response hs in the coordinates (θ,ε,λ,σ), and

where vM,s = (b/Ωs)×
(
v2∥b · ∇b+ v2⊥∇B/2B

)
is the mag-

netic drift, and CGK
s [·] is the linearised gyrokinetic collision

operator of the species s. The finite Larmor radius effects
enter through bs = k⊥v⊥/Ωs, and the Bessel functions of
the 0th and 1st kinds J0s = J0(bs), and J1s = J1(bs), respect-
ively. The fluctuating electrostatic potential ϕ is determined by
quasineutrality

δni
ni

− δne
ne

=

(
ZiTe
Ti

+ 1

)
eϕ
Te
, (5)

here written in terms of the nonadiabatic, fluctuating density
δns =

´

J0shs d3v for a two-species plasma satisfying equilib-
rium quasineutrality Zini = ne. The magnetic fluctuation B∥ is
determined by perpendicular pressure balance, i.e.,

B∥ =−4π
B

∑

s

δp⊥,s, (6)

where δp⊥,s = nsTs
´

2J1sv2⊥hs/bsv
2
sns d

3v is the nonadiabatic
fluctuating perpendicular pressure. The parallel magnetic vec-
tor potential A∥ is determined by parallel Ampère’s law

k2⊥A∥ =
4π
c
J∥, (7)

3
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where the parallel current J∥ =
∑

sZsensδu∥,s, with the
fluctuating parallel-flow velocity δu∥,s =

´

J0sv∥hs/ns d3v.
Gradients of equilibrium profiles appear through the drive
frequency ω∗,s = ωn∗,s (1+ ηs (ε/Ts− 3/2)), where the
diamagnetic frequency ωn∗,s =−(ckαTs/Zsens)∂ns/∂ψ, with
ηs = d lnTs/d lnns, ψ the poloidal flux, α= ζ − q(ψ)θ−
ν(ψ,θ) the dimensionless binormal coordinate, ζ the toroidal
angle, ν(ψ,θ) a periodic function of θ determined by flux-
surface shaping, and kα the dimensionless binormal wave
number. The magnetic field can be written in terms of ψ and
α using the Clebsch representation, i.e. B=∇α×∇ψ. In this
paper, we focus on axisymmetric magnetic fields that have
the form B= I∇ζ +∇ζ ×∇ψ, where I= I(ψ) is the toroidal
current function. The safety factor is the average magnetic
field line pitch, i.e. q(ψ) =

´ 2π
0 (B · ∇ζ/B · ∇θ) dθ/2π. An

explicit expression for ν may be obtained by equating the
Clebsch and axisymmetric representations of B. In terms
of ψ and α, we can write the perpendicular wave vector as
k⊥ = kα∇α+ kψ∇ψ. Note that the contravariant radial wave
number has a component that is periodic with θ, and a com-
ponent that grows secularly with θ:

kr = k⊥ · ∇r= (θ0 − θ)kα
dq
dr

|∇r|2 − kα(q∇θ+∇ν) · ∇r,
(8)

where θ0 = kψ/q ′kα, with q ′ = dq/dψ, and r= r(ψ) is a
flux label that has dimensions of length. We explicitly
define local radial and binormal coordinates with units of
length, x= (ψ−ψ0)(dψ/dx)−1 and y= (α−α0)(dα/dy)−1,
respectively, where (ψ0,α0) are the coordinates of the field
line of interest, and dψ/dx= Brefr/q and dα/dy= Brefdr/dψ,
with Bref a reference B. Then, the local binormal wave number
ky = kα(dα/dy), and the local field-aligned radial wavenum-
ber kx = kψ(dψ/dx).

3. An orbit-averaged gyrokinetic model valid in the
limit of kyρe ≪ 1

To obtain the reduced model equations whilst retaining gen-
eral axisymmetric toroidal geometry, we carry out themicroin-
stability calculation in ballooning space: the ballooning space
representation allows for simple representations of the oper-
ators in the gyrokinetic equations. A simple ballooning-space
picture emerges for long-wavelength, reconnectingmodes loc-
alised near mode-rational surfaces in the limits (1) and (2), in
terms of the electrostatic potential ϕ, the current J∥ and the
parallel vector potential A∥. A schematic of a reconnecting
mode is given in figure 1: in the more familiar position rep-
resentation there is an electron current layer near the rational
surface and an outer region with a long-wavelength (macro-
tearing stable)A∥. In the ballooning representation the electron
current layer appears as an extended ‘tail’ at large ballooning
angles θ ∼ (kyŝρe)−1 ≫ 1. Reconnection takes place through
an A∥ that is localised near θ ∼ 1 in ballooning angle–A∥ is
generated by a current that is developed through the electron
physics at large θ.

3.1. The inner region—the electron current layer

We first consider the equations for the electron current layer.
The derivation proceeds along the same lines as in the
electrostatic calculation presented in [32]. We present the res-
ults of the calculation in particularly convenient notation for
understanding the structure of the model. For completeness,
technical details are contained in appendix A.

At large ballooning angles θ ∼ (kyŝρe)−1 ≫ 1 the gyrokin-
etic system of equations undergoes several simplifications.
First, the nonadiabatic response of ions becomes small, and
can be neglected to leading-order. This is due to the large ion
gyro orbit compared to the scales of interest, i.e. krρi ≫ 1.
Second, two separated scales emerge in the structure of the
eigenmodes: the width of the mode in the ballooning space
θ ∼ (kyŝρe)−1 becomes much larger than the scale of the peri-
odic geometric variation due to the toroidal geometry θ ∼
2π ∼ 1. This fact permits a multiscale analysis where we intro-
duce a normalised extended ballooning angle z= kyŝ|ρrefe |θ ∼
1 to describe the envelope of the mode, whilst retaining θ
to describe poloidal geometric variation. Here, ρrefe = ve/Ωref

e
and Ωref

e =−eBref/mec. Third, the leading order balance in
the electron gyrokinetic equation becomes one between par-
allel streaming and radial magnetic drifts. This allows us to
determine that the electron nonadiabatic response he takes the
leading-order form

he(z,θ) = He(z)exp [−igNz], (9)

where He is a smooth function of z,

gN(θ) =
qIw∥

rB
, (10)

and w∥ = v∥/ve. The phase exp [−igNz] contains all the θ vari-
ation in he, and is due to the finite width of electron banana
orbits in the torus. By going to first order in the asymptotic
expansion in (me/mi)

1/2 ∼ ky|ρrefe |, we can find orbit-averaged
equations that describe the envelope of the eigenmodeHe, and
thus determine he and the fields to leading-order.

The inner region equations for He in the low-β ordering (2)
are as follows. For passing electrons, we have that

〈
w∥g∥

〉t
ŝ
∂He

∂z
+ i

(
⟨ω̂M⟩t − ω̂

)
He − ν̂

〈
Ĉe [He]

〉t

=−i(ω̂∗,e − ω̂)F0e

〈
exp [igNz]J0(be)

eϕ
Te

〉t

, (11)

wherewe havewritten the equation in a dimensionless fashion.
Note that the potential ϕ= ϕ(θ,z). Here, g∥ = qR0b · ∇θ with
R0 a reference major radius,

⟨·⟩t =
´ π

−π
dθ (·)/w∥g∥

´ π

−π
dθ/w∥g∥

, (12)

is the transit average, and

ω̂M =−w∥g∥gNŝ

− qR0
dψ
dr

b
B
×
(
w2
∥b · ∇b+w2

⊥

∇B
2B

)
· (∇α+ θ∇q) ,

(13)
4
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Figure 1. An illustration of a β ≪ 1 micro-tearing instability. We sketch the eigenmodes in two different representations of the radial
coordinate. In the position representation, the large-scale macro-tearing stable A∥ is driven by an electron current layer at small radial scales
close to the rational surface (x∼ ρe ≪ ρi). In the ballooning representation, A∥ is well localised to ballooning angles of θ ∼ 1, whereas the
current J∥ that drives A∥ is developed at large ballooning angles θ ∼ (kyŝρe)−1 ≫ 1. The amplitude of the electrostatic potental φ is largest
in the current layer, with fine radial structures in x and extended tails in θ.

is a normalised modified magnetic drift frequency, with
w⊥ = v⊥/ve. The term ∝ gN in ω̂M arises from the phase
in the definition (9) of He. The normalised frequency is
ω̂ = qR0ω/ky|ρrefe |ve, and ω̂∗,e =−(qR0/2Ln)(1+ ηe(ε/Te −
3/2)) is the drive of instability, with Ln =−dr/d lnne. The
parameter ν̂ = qR0νee/ky|ρrefe |ve is a normalised collision fre-
quency, and

Ĉe[He] =
1
νee

〈
exp [i(gN + gC)z]C

[
exp [−i(gN + gC)z]He

]〉γ

,

(14)

is the collision operator, with C [·] the drift-kinetic electron
collision operator defined in appendix B by equation (B.1),
⟨·⟩γ the gyrophase average at fixed ε and λ, gC = q(∇ψ · b×
w)z/rB, and w= v/ve. The function be in equation (11) takes
the leading-order value

be =−q|z∇ψ|w⊥/rB. (15)

For trapped electrons, we obtain the bounce-averaged
equation

i
(
⟨ω̂M⟩b − ω̂

)
He − ν̂

〈
Ĉe [He]

〉b

=−i(ω̂∗,e − ω̂)F0e

〈
exp [igNz]J0(be)

eϕ
Te

〉b

, (16)

where the bounce average is defined by

⟨·⟩b =
∑
σ

´ θ+b
θ−b

dθ (·)/|w∥|g∥

2
´ θ+b
θ−b

dθ/|w∥|g∥
, (17)

and θ±b are the upper and lower bounce points in θ, respect-
ively, satisfying w∥(θ

±
b ) = 0. Note the absence of the parallel

streaming term in equation (16): trapped particles are unable

to pass between magnetic wells, forcing them to remain local
in z.

Finally, to determine the electrostatic potential ϕ that is
necessary to solve equations (11) and (16), we have the
quasineutrality relation at krρe ∼ 1:

(
ZiTe
Ti

+ 1

)
eϕ
Te

=− 1
ne

ˆ

exp [−igNz]J0(be)He d
3v, (18)

where we have used that the contribution from the ion non-
adiabatic response to quasineutrality is small [32]. Note that
even though He = He(z), ϕ= ϕ(θ,z) due to the prescence of
trapped particles, and due to the θ dependence of the func-
tions exp [−igNz] and J0(be), and the Jacobian of the velo-
city integral d3v= (2πBε/m2

e |v∥|)dεdλ. The orbit averages
in equations (11) and (16) can be calculated explicitly if the
potential is expanded in poloidal harmonics, i.e. if we write
ϕ(θ,z) =

∑
m ϕ̂m(z)exp [imθ].

The parallel vector potential A∥ and the perturbation to the
magnetic field strength B∥ do not appear to leading-order in
equations (11) and (16) due to the smallness of β assumed by
the ordering (2). That the contribution from B∥ is small may
be verified directly by inspecting equation (6). To see that the
contribution from A∥ may also be neglected in the krρe ∼ 1
region, we consider a normalised form of Ampère’s law,

(
k⊥ρrefe

)2

2βe

ve
c

eA∥

Te
=

J∥
eneve

, (19)

with βe = 8πneTe/B2
ref ∼ β. The current J∥ is determined

through the definition

J∥ =−e
ˆ

v∥J0(be)exp [−igNz]He d
3v, (20)

where we have used that the nonadiabatic ion response is
small. Since the even and odd in v∥ parts of He are mixed by

5
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equation (11), the current in the krρe ∼ 1 region must satisfy
the ordering

J∥
eneve

∼ eϕ
Te
, (21)

and hence, with the ordering (2), A∥ satisfies

ve
c

eA∥

Te
∼ β

eϕ
Te

∼
(
me

mi

)1/2 eϕ
Te

≪ eϕ
Te
. (22)

For β≪ 1, the krρe ∼ 1 inner region is electrostatic to leading
order.

3.2. The outer region: determining the matching condition

To solve the gyrokinetic layer equations (11), (16), and (18),
we must impose a matching condition at z= 0± on the incom-
ing distribution of passing particles. This is clear from the car-
toon given in figure 1–in ballooning space we must connect
z< 0 to z> 0 with an appropriate condition. We now determ-
ine the appropriate matching condition in the presence of elec-
tromagnetic fluctuations, for the limit β ∼ (me/mi)

1/2 ≪ 1, by
considering the physics of the outer region. As the discussion
here and in section 3.3 will demonstrate, the β ordering (2)
is special: β ∼ (me/mi)

1/2 is the largest β for which the elec-
trons are able to carry a ve-sized large-scale current; it is also
the smallestβ whereA∥ is large enough to perturb the electrons
from the equilibrium magnetic field line, and hence, introduce
electromagnetic physics into the mode.

We begin the calculation by assuming that the passing part
of he, h

passing
e , satisfies

hpassinge ∼ eϕ
Te
F0e (23)

in the outer region of the mode, ruling out the appear-
ance of ITG modes and TEMs [32], for which hpassinge =

O
(
(me/mi)

1/2 eϕF0e/Te
)
. The natural radial wavenumber

scale of the outer region is krρi ∼ 1. This is a consequence of
the ordering kyρi ∼ 1. Using the orderings (1), (2), and (21),
we find that the leading-order electron gyrokinetic equation in
this region takes the form

v∥b · ∇θ
∂he
∂θ

= i(ω∗,e −ω)
eF0e

Te

v∥
c
A∥, (24)

where we have ordered

ve
c

eA∥

Te
∼
(
mi

me

)1/2 eϕ
Te
. (25)

We justify the ordering (25) by noting that in the outer
region the leading-order current satisfies

B · ∇θ ∂
∂θ

(
J∥
B

)
= 0. (26)

Equation (26) is obtained by first integrating equation (24)
over all velocities, and second, by noting that the ion con-
tribution to J∥ is dominated by the electron contribution

by a factor of ve/vi ∼ (mi/me)
1/2. Equation (26) states that

J∥/B is constant across the outer region: hence, J∥ satisfies
equation (20) and ordering (21) everywhere. Using this result
in equation (19) gives the ordering (25). It is worth noting that
an outer solution with constant J∥/B has A∥ ∝ B/k2⊥.

The matching condition for the passing particle distribution
function is obtained by integrating equation (24) in θ. We find
that the total jump in he across the outer region is given by

∆he = i
(ω∗,e −ω)

c
eF0e

Te
∆Ψ, (27)

where

∆Ψ=

ˆ ∞

−∞

A∥(θ
′)

b · ∇θ ′ dθ
′. (28)

The constant ∆Ψ measures the net deviation of the per-
turbed field line from the equilibrium flux surface. If |∆Ψ|>
0, then the mode reconnects field lines. We can see this by
considering the flux surface integral

´ π

−π
(·) dθ/B · ∇θ of the

perturbed magnetic field δB=−b×∇A∥ in the position rep-
resentation.We find that the surface-integrated radial magnetic
field of a mode at the rational surface is

ˆ π

−π

δB · ∇r
B · ∇θ dθ

∣∣∣∣
x=0

=−ky∆Ψ

Bref
, (29)

where x is the radial position and x= 0 is the location of the
rational surface, and where we have converted the poloidal
integral of a Fourier sum evaluated at x= 0 into an integral
over the ballooning coordinate.

We can write the matching condition in a convenient
form by combining equations (9), and (26)–(28): we use

equation (9) to show that ∆he = [He(z)]
z=0+

z=0− , and we use that
J∥/B is a constant across θ ∼ 1 to evaluate ∆Ψ explicitly. In
terms of dimensionless variables, we find that the jump that
should be imposed on the passing part of the electron distribu-
tion function He at z= 0 is

[
He(z)
F0e

]z=0+

z=0−
= iβeff (ω̂∗,e − ω̂) j∥(0), (30)

here, we have defined a dimensionless current-like quantity

j∥(z) = j+∥ (z)− j−∥ (z), (31)

with

j±∥ (z) =−
ˆ ∞

0

ˆ 1/Bmax

0
He(z, ε,λ,σ =±1)

2πεBref

nem2
eve

dλdε,

(32)

and we have defined an effective plasma β:

βeff = βe
2πG(θ0)
ŝky|ρrefe | . (33)

The parameter βeff depends on (ky,θ0) and magnetic geo-
metry, through the factors ky|ρrefe | and

G(θ0) =
ŝ
π

ˆ ∞

−∞

B
Bref

k2y
k2⊥

dθ
g∥
. (34)

6
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The normalisation of G(θ0) is chosen so that in a mag-
netic geometry with circular flux surfaces and ϵ= r/R→ 0,
G(θ0) = 1+O(ϵ). In sections 4.2 and 4.3, we use j+∥ to visu-
alise He for forward-going particles. The matching condi-
tion (30) leads us to expect a discontinuity in j+∥ (z) at z= 0.
Nonetheless, j∥, which is ∝ J∥/B for z≪ 1, is continuous
across z= 0 due to the fact that the jump in He is even in v∥.

In the calculation presented above, it might seem that we
have neglected to consider the impact of the electron inertial
scale δe that is intermediate to ρe and ρi: ρe ≪ δe ≪ ρi. The
scale of krδe ∼ 1 is often singled out as interesting because of
the characterising property that (by equations (21) and (19))
veA∥/c∼ ϕ and so both fields enter simultaneously into the
source of the electron gyrokinetic equation. In appendix C,
we prove that, in the orderings (1) and (2) considered here,
the leading order distribution function envelope He is constant
across the krδe ∼ 1 region. This means that fluctuations at the
scale of krδe ∼ 1 do not modify the matching condition (30).

Note that the current appearing in equation (30) is eval-
uated purely from He. If the microinstability is unstable to
leading-order, then the microinstability is independent of the
ion nonadiabatic response to leading-order. If the microin-
stability happens to be stable at leading order, then the non-
adiabatic ion response must be included in the calculation to
find a (me/mi)

1/2 small growth (or damping) rate.
Finally, we comment that the β≪ 1 ballooning-space cal-

culation presented above is related to the usual position-space
β≪ 1 matching for tearing modes at large toroidal mode
number. In position space, described by the radial coordin-
ate x measuring position from the rational surface, taking
β≪ 1 gives A∥ ∝ exp [−ky|x|] in the outer region (x∼ ρi)
with A∥(x) a constant in the inner region where x∼ ρe. The
matching is carried out by ensuring ∆ ′ = d lnA∥(x)/dx is
the same at the boundary of the inner and outer regions.
In ballooning space, we have shown above that taking β≪
1 gives J∥/B a constant in the outer region (θ ∼ 1), with
A∥(θ)∝ B/k2⊥. As a result, the inner region (z= kyŝ|ρrefe |θ ∼
1) observes a constant ∆Ψ in the jump in electron distribu-
tion function he across the outer region, cf equation (27). In
the ballooning space representation, the constant ∆Ψ forces
fluctuations in the inner region just as a constant A∥(x=
0) forces the inner region fluctuations in the position space
representation. Note that in a sheared slab the ballooning-
space outer solution 1/k2⊥ = k−2

y (1+ ŝ2(θ− θ0)
2)−1 is pro-

portional to the fourier transform of the position-space outer
solution exp [−ky|x|]–demonstrating that the ‘constant-A∥’ and
‘constant-∆Ψ’ approximations are equivalent, see [12].

3.3. Subsidiary limits

The electrostatic limit of thematching condition (30) is simple.
If we take βeff to be small (βe ≪ ky|ρrefe |) then (30) takes the
leading-order form

[
He(z)
F0e

]z=0+

z=0−
= 0, (35)

which is the matching condition for electrostatic, electron-
driven instabilities localised to the mode-rational surface [32].
Note that the matching condition (35) is independent of θ0,
and hence, in the electrostatic limit the leading-order mode
frequency and growth rate are independent of θ0 [32].

It is also interesting to consider the subsidiary limit βeff ≫
1 (βe ≫ ky|ρrefe |). For this limit, it is instructive to write the
matching condition in the form

[
He(z)
F0e

]z=0+

z=0−
= i(ω̂∗,e − ω̂)∆Ψ̂, (36)

where

∆Ψ̂ =
veky|ρrefe |
qR0c

e∆Ψ

Te
= βeffj∥(0). (37)

It is clear from equation (36) that taking βeff ≫ 1 cannot
change the relationship between the sizes of He and∆Ψ̂. This
is also apparent in equation (24): electron parallel streaming
must always balance themagnetic field line perturbations from
A∥, once A∥ is sufficiently large, and so the ordering (25) must

remain satisfied. Instead of making∆Ψ̂ large, taking βeff ≫ 1
results in a constraint on the current produced by the layer. To
preserve the orderingHe/F0e ∼∆Ψ̂∼ eϕ/Te as βeff →∞, we
must have that

j∥(0) = O

(
1
βeff

eϕ
Te

)
. (38)

Solving the model equations in this limit requires us to
regard ∆Ψ̂ as a free parameter in (36). We fix ∆Ψ̂ rel-
ative to eϕ/Te by finding the value of ∆Ψ̂ that makes
equation (38) satisfied, whilst simultaneously finding ω̂ such
that equations (11), (16), (18), and (36) are satisfied. Note that
the parameter βeff disappears from the leading-order eigen-
value problem when βeff ≫ 1. This means that the frequency
ω̂ and eigenmodes become independent of βeff once βeff is suf-
ficiently large.

The constraint (38) appears in sheared-slab models as
the requirement that large-scale electron currents cannot
leak out of the rational-surface layer. In the extreme case
that βe becomes of order unity, then βeff ∼ (mi/me)

1/2 and
equation (38) suggests that the large-scale current produced by
the electron layer J∥ ∼ enevi(eϕ/Te). This current is compar-
able to the current carried by the ions in the outer region, break-
ing the assumption that the ion current can be neglected in
the calculation of J∥. Separate papers will consider this βe ∼ 1
limit, and resolve this issue.

3.4. Scaling predictions

A significant prediction made by the theory is that the leading-
order dispersion relation should depend on physics paramet-
ers in a precise manner. By inspecting the form of the model
equations (11), (16), (18), and (30), we observe that

ω =
ve
qR0

ky|ρrefe | ω̂
(
βeff, ν̂,a/Ln,a/LTe , τ,Zi,g

)
, (39)

7



Plasma Phys. Control. Fusion 65 (2023) 045011 M R Hardman et al

where we have indicated that ω̂ is a function of physics para-
meters, with τ = Ti/ZiTe and g a vector of geometrical para-
meters that are needed to describe the local flux surface. Note
that a dispersion relation of the form (39) implies that ω
depends on ky only through the overall linear pre-factor, βeff,
and ν̂. The definition of βeff, equation (33), also provides an
interesting explanation for why electron-driven electromag-
netic modes tend to be observed at the longest wavelengths:
βeff is larger for smaller ky|ρrefe |. We might expect that below a
certain critical βeff the electromagnetic microinstabilities are
stable, and hence, there is likely to be a maximum ky for
instability. In the limit βeff ≫ 1, the model predicts that ω̂
tends to a constant, and hence we expect that ω goes linearly
with ky|ρrefe | for the very smallest ky. Whether or not there is a
stronger cut-off at small ky|ρrefe | (βeff ≫ 1) can only be determ-
ined by a theory that handles a β ∼ 1 ordering.

The collisionality dependence of ω̂ through the parameter
ν̂ = qR0νee/ky|ρrefe |ve states that for a fixed collision frequency
νee, modes of smaller ky|ρrefe | are more collisional. Taking ν̂→
∞ in the model equations (11), (16) and (18) yields the semi-
collisional limit [32], whereas taking ν̂→ 0 yields the colli-
sionless limit. Hence, depending on the value of qRνee/ve, the
ky spectrum of a ky|ρrefe | ≪ 1 MTM potentially spans modes in
the semicollisional limit ν̂≫ 1 at very low ky|ρrefe |, to modes
in the collisionless limit (ν̂≪ 1) at more moderate ky|ρrefe |.

4. Numerical evidence for the βe ∼ (me/mi)
1/2

theory

Finding a general analytical solution of the model
equations (11), (16), (18), and (30) is challenging. A numer-
ical implementation is likely to be necessary to solve the
model in magnetic geometries of interest. To test the analyt-
ical theory, we compare the intrinsic scalings predicted by
the theory to numerical results using the δf gyrokinetic code
GS2 [34].We choose to examinemicroinstabilities in an exper-
imentally relevant local equilibrium taken from close to mid-
radius in a MAST H-mode plasma (MAST discharge #6252).
This discharge was examined previously using gyrokinetic
simulations [10], demonstrating the qualitative behaviour of
MTMs in MAST by performing scans in νee, a/LTe , β and ky.
We note that the scans in νee (at a fixed ky) showed that for νee
too large or small, the MTM is stabilised. Similar behaviour
has been observed in other discharges [14, 35].

We examine fastest-growing eigenmodes using GS2 as
an initial value solver, including kinetic ions, kinetic elec-
trons and all three fields ϕ, A∥, and B∥. For simplicity,
we consider a two-species plasma consisting of ions and
electrons, with Zi = 1 and Ti = Te. We specify the mag-
netic geometry using the local Miller parameterisation [36],
through the following GS2 input parameters: the reference
major radius R0 = (Rmax +Rmin)/2 with Rmax and Rmin the
maximum and minimum major radial positions on the flux
surface, respectively; the minor radius r of the flux sur-
face of interest; the safety factor q; the magnetic shear ŝ=
(q/r)dq/dr; βe = 8πneTe/B2

ref, with Bref = I/Rgeo; the norm-
alised pressure gradient β ′ = (8π/B2

ref)dp/dρ, with p the total

Table 1. Local equilibrium and Miller geometry parameters used to
study micro-stability in MAST discharge #6252. Previous
micro-stability studies of this discharge utilised a numerical
equilibrium, see [10]. The parameters are defined in the main text.

R0/a 1.57 Rgeo/a 1.46
r/a 0.552 β ′ −0.248
q 1.34 βe 0.0494
ŝ 0.538 a/LTe 2.70
dR0/dr −0.146 a/Ln −0.230
κ 1.47 a/LTi 2.70
κ ′ 0.0512 aνee/vi 0.303
δ 0.162 aνii/vi 0.00884
δ ′ 0.333 Zeff 1.0

equilibrium pressure, ρ= r/a, and the normalising length a
the half-diameter of the last closed flux surface; the Shafranov
shift derivative dR0/dr; the elongation κ; the elongation deriv-
ative κ ′ = dκ/dρ; the triangularity δ; and the triangular-
ity derivative δ ′ = dδ/dρ. The equilibrium profiles are set
by the normalised gradients a/LTs =−d lnTs/dρ and a/Ln =
−d lnns/dρ.We treat the collision frequencies νee = νei/Zi and
νii as independent input parameters, defined according to the
GS2 convention [37]

νss ′ =

√
2πns ′Z2sZ

2
s ′e

4 lnΛ

m1/2
s T3/2s

. (40)

The Coloumb logarithm lnΛ in equation (40) has the phys-
ical value lnΛ≈ 17 [38]. The local equilibrium parameters for
MAST discharge #6252 are provided in table 1. The choice of
Rgeo corresponds to choosing Bref = 0.458T, the toroidal mag-
netic field on the magnetic axis in the MAST discharge [10].
The numerical resolutions are described in appendix D.

4.1. The wavenumber spectrum

We first calculate the fastest-growing microinstabilities as a
function of (kyρi,θ0), for the equilibrium parameters provided
in table 1, and the physical Deuterium-ion-to-electron mass
ratio

√
mD/me = 61. The real frequency ωr and growth rate

γ are plotted in figure 2. The discontinuity in ωr indicates a
transition between different mode branches: to the left of the
discontinuity, we find theMTMs that were previously reported
byApplegate et al [10]; and to the right of the discontinuity, we
find electrostatic, electron-driven modes with extended tails in
ballooning angle. The presence of the electrostatic modes was
not reported in [10], where only tearing-parity modes at θ0 = 0
were considered. We show typical eigenmodes in figure 3:
we consider a MTM at (kyρi,θ0) = (0.8,0.0) and an electro-
static mode at (kyρi,θ0) = (2.2,0.0). Note that both instabilit-
ies have potentials ϕwith an extended structure in θ. The elec-
trostatic mode has small contributions from A∥ and B∥, and
carries little current. The MTM has features that match the
expectations given by the theory for electromagnetic modes
(cf. figure 1). The potential ϕ and J∥ are extended, A∥ is
significant only for θ ∼ 1, and B∥ can be neglected because
it is small everywhere. The normalisations suggest that the
orderings in section 3 are valid. We now provide a more pre-
cise test of the theory.

8
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Figure 2. The real frequency ωr (left) and growth rate γ (right) as a function of (kyρi,θ0) in the MAST discharge #6252, for the physical
mass ratio (mi/me)

1/2 = 61. The modes to the left of the discontinuity in ωr are the MTMs identified in [10], whereas the modes to the right
of the discontinuity are electrostatic, electron-driven modes with extended tails; see, e.g. [31, 32].

Figure 3. Eigenmodes from the wavenumber spectrum shown in figure 2. We consider the MTM at (kyρi,θ0) = (0.8,0.0) (left) and the
electrostatic mode at (kyρi,θ0) = (2.2,0.0) (right). For the MTM, we normalise the fields with the value of eviA∥/cTe at the θ location
where |A∥| is maximum. For the electrostatic mode, we normalise the fields with the value of eφ/Te at the θ location where |φ| is maximum.
We plot only the real parts of the eigenmodes, noting that the imaginary parts have similar sizes. Note that B∥ is small for both modes, and
that J∥ and A∥ are only significant in the MTM.

4.2. Testing the (me/mi)
1/2 scalings: the MTM

We can demonstrate that both the MTMs and the electro-
static, electron-driven modes shown in figure 3 satisfy the cor-
rect scalings to be described by the analytical theory. To test
the scalings, we perform linear simulations at fixed kyρi for

varying (mi/me)
1/2. Crucially, when we double (mi/me)

1/2

we halve βe so that the ordering (2) remains satisfied. This
means that we scale βe ∝ (me/mi)

1/2 so that βe/kyρe ∼ βeff

is held fixed at a given kyρi. We hold aνee/vi fixed in the
scan, consistent with the ordering (1), and we hold fixed the
other geometrical parameters in table 1, including β ′. We
plot the eigenmodes as a function of the expansion parameter
(mi/me)

1/2, and demonstrate that the width of the eigenmode
scales like kyŝρrefe θ ∼ 1, and that the orderings for the fields are
satisfied.

We first consider the MTM at (kyρi,θ0) = (0.8,0.0). In
figure 4, we visualise the forward-going part of the electron
distribution function He using the real and imaginary parts of
the current-like quantity j+∥ (defined by equation (32), where
He is calculated from the GS2 he eigenmode via equation (9)).
We note that j+∥ is a smooth function of z for |z| ∼ 1, verifying
a key element of the theory, equation (9). We also note that
there is a discontinuity near z= 0 –this is consistent with the

matching condition (30). We must choose an appropriate nor-
malisation for the eigenmodes of ϕ and A∥: we select j

+
∥ (zmax),

the value of j+∥ (z) at the maximum value of | j+∥ (z)|. In figure 5,
we plot the real and imaginary parts of ϕ. The eigenmodes
show oscillatory behaviour due to the 2π periodic variation of
the magnetic geometry. The envelope of the eigenmodes over-
lay well, confirming that the electron nonadiabatic response
sources the leading component of ϕ, consistent with order-
ing (23) and equation (18). Finally, in figure 6, we plot A∥ in
the region θ ∼ 1, and the auxiliary field

Ψ(θ) =

ˆ θ

−∞

A∥(θ
′)

b · ∇θ ′ dθ
′ − 1

2

ˆ ∞

−∞

A∥(θ
′)

b · ∇θ ′ dθ
′. (41)

Note that∆Ψ=Ψ(∞)−Ψ(−∞). We see that A∥ is well loc-
alised to θ ∼ 1, the ordering (25) is satisfied, and that the vari-
ation inΨ is increasingly localised to z≈ 0 as (me/mi)

1/2 → 0,
consistent with a constant∆Ψ observed by the inner region in
the matching.

In addition to considering the eigenmodes, it is important
to observe the impact of varying (me/mi)

1/2 on the complex
frequency ω = ωr + iγ. We should anticipate a leading order
component of ω that is independent of (me/mi)

1/2, described

9
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Figure 4. The current-like quantity j+∥ , defined by equation (32), for the MTM at (kyρi,θ0) = (0.8,0.0). The quantity j+∥ is a measure of the

forward-going electron distribution function He that is defined by equation (9). Note the smoothness of j+∥ for |z| ∼ 1, and the discontinuity
at z≈ 0.

Figure 5. The real and imaginary parts of the electrostatic potential φ for the MTM at (kyρi,θ0) = (0.8,0.0). The potential is normalised by
j+∥ where | j+∥ (z)| is maximum. That the curves overlay for different (mi/me)

1/2 indicates that the ordering (23) is satisfied, and that the

width of the mode obeys z= kyŝρrefe θ ∼ 1.

Figure 6. Plots of the parallel vector potential A∥ and the auxiliary field Ψ (defined by equation (41)), for the MTM at (kyρi,θ0) =
(0.8,0.0). We normalise the eigenmodes by j+∥ where | j+∥ (z)| is maximum, cf figure 4. Note that A∥ is well localised to θ ∼ 1 as

(me/mi)
1/2 → 0, and that the ordering (25) is satisfied. The field Ψ resembles a Heavyside function as (me/mi)

1/2 → 0, consistent with the
asymptotic theory, where the jump ∆Ψ is entirely due to the A∥ at θ ∼ 1, cf equation (28). The curves of Ψ overlay for z∼ 1, consistent
with the ordering (25) and the matching condition (27).

by the leading-order asymptotic theory, and a correction that is
small in (me/mi)

1/2. In figure 7, we plot the real frequency ωr

and the growth rate γ as a function of (me/mi)
1/2. We provide

linear fits to indicate size of the variation with (me/mi)
1/2.

Although the leading-order growth rate γ0 is numerically small
compared to ω0, the fit coefficients are of order unity, consist-
ent with the theory. We note that γ increases as (me/mi)

1/2 →

0, which would indicate that the (me/mi)
1/2 small corrections

to γ0 are stabilising. Although we have not computed these
higher-order corrections here, we note that this result is con-
sistent with the calculation for the higher-order impact of ions
on tearing modes in sheared-slab geometry, see [20]. Finally,
in figure 8, we plot ωr and γ as a function of θ0 at fixed
kyρi = 0.8. We observe that γ has variation with θ0 even as
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Figure 7. The real frequency ωr and growth rate γ of the MTM at (kyρi,θ0) = (0.8,0.0) as a function of the expansion parameter
(me/mi)

1/2. Linear fits are provided to show that the variation in ωr and γ are consistent with the (me/mi)
1/2 expansion: the fit coefficients

are of order unity. The growth rate increases for reducing (me/mi)
1/2, possibly consistent with calculations of the impact of higher-order

corrections from ions on tearing modes [20].

Figure 8. The real frequency ωr and growth rate γ of the MTMs at kyρi = 0.8 as a function of θ0 and the expansion parameter (mi/me)
1/2.

The points in the curve labelled by (mi/me)
1/2 =∞ are computed from linear fits, see figure 7. In section 5, we show that the variation of γ

with θ0 is explained by the θ0 dependence of βeff.

(me/mi)
1/2 → 0. In section 5, we prove that this variation in

θ0 is explained by the θ0 dependence of βeff through the geo-
metrical factor G(θ0).

4.3. Testing the (me/mi)
1/2 scalings: the electrostatic mode

Weperform the same (me/mi)
1/2 → 0 analysis for the predom-

inantly electrostatic mode at (kyρi,θ0) = (2.2,0.0). In figure 9,
we plot the real parts of the current-like field j+∥ , and the poten-
tial ϕ. The imaginary parts have a similar order of magnitude
and structure. Figure 9 reveals that the mode is an electron-
driven, electrostatic mode with large tails, like those observed
in [32]. Because the envelopes of the eigenmodes overlay
well for different (mi/me)

1/2, we conclude that the width of
the mode satisfies z= kyŝρrefe θ ∼ 1, and the ordering (23) is
satisfied.

In figure 10, we plot the real frequency and growth rate
of the mode as a function of (me/mi)

1/2. This reveals that
ωr is well converged for the physical (me/mi)

1/2
= 1/61: ωr

changes only in the third decimal place. However, γ has a
surprisingly large linear variation with (me/mi)

1/2, meaning
that γ0 differs noticeably from γ for (me/mi)

1/2
= 1/61. This

result may be caused by the fact that the mode is sufficiently

close to marginal stability for first-order corrections to matter.
We note that the fact that the mode is more unstable for smal-
ler (me/mi)

1/2 (as in the MTM case, cf. figure 7) suggests that
the leading-order model of section 3 might provide a conser-
vative upper bound on any linear growth rate. We examine the
θ0 dependence ofω in figure 11. The real frequencyωr is a con-
stant in θ0, consistent with the electrostatic limit described in
section 3.3 [32]. The growth rate varies with θ0 for the physical
mass ratio (mi/me)

1/2
= 61, but increasing (mi/me)

1/2 causes
γ to tend to a constant that is independent of θ0, consistent with
the leading-order theory.

5. Testing the effective βe

The asymptotic theory predicts that βe enters the dispersion
relation only through βeff, an effective βe that is defined by
equation (33). This is a strong insight that we now proceed to
test.

First, we examine the transition between the extended
electrostatic modes and the MTM observed in figure 2. In
figure 12, we plot the result of simulations around the trans-
ition in kyρi, for different (mi/me)

1/2 and fixed θ0 = 0. As

with the other (mi/me)
1/2 scans presented in this paper, we

11
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Figure 9. The real parts of the current-like function j+∥ and the electrostatic potential φ for the electrostatic mode at (kyρi,θ0) = (2.2,0.0).

We normalise the eigenmode by j+∥ where | j+∥ (z)| is maximum. The field j+∥ is a measure of the forward-going electron distribution

function. The fact that the curves overlay indicates that the ordering (23) is satisfied, and that the width of the mode satisfies kyŝρrefe θ ∼ 1.

Figure 10. The growth rate γ and real frequency ωr of the electrostatic mode at (kyρi,θ0) = (2.2,0.0), plotted for different values of the
expansion parameter (me/mi)

1/2. We would expect that for small (me/mi)
1/2, γ and ωr should be well represented by a constant plus a

linear function of (me/mi)
1/2: linear fits are provided to indicate the order of the variation with (me/mi)

1/2. The values of ω0, ω1, γ0, and γ1
can be considered to be of order unity, although γ0 is surprisingly small, and γ1 is surprisingly large. Even though a nonasymptotic trend is
observed in ωr for the larger values of (me/mi)

1/2, the overall variation in ωr is small.

Figure 11. The real frequency ωr and growth rate γ of the electrostatic modes at kyρi = 2.2, as a function of θ0, plotted for different values of
the expansion parameter (mi/me)

1/2. The points in the curve labelled by (mi/me)
1/2 =∞ are computed from linear fits, see figure 10. Note

that as (me/mi)
1/2 → 0, γ and ωr tend to constants that are independent of θ0, consistent with the leading-order electrostatic theory [32].

12
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Figure 12. The real frequency ωr and growth rate γ spectra as a function of kyρi and the expansion parameter (mi/me)
1/2 ∝ β−1

e , near the
transition between the MTM mode branch (left of the discontinuity in ωr) and the electrostatic mode branch (right of the discontinuity).
Compare to figure 2. The boundary between the two types of modes remains almost constant in kyρi as the expansion parameter (mi/me)

1/2

is varied by a factor of 4. Since each value of kyρi corresponds to a unique value of βeff, a critical βeff marks the boundary between the
electromagnetic and the electrostatic modes.

Figure 13. The dimensionless real frequency ω̂r and the dimensionless growth rate γ̂, defined through ω̂ = ω̂r + iγ̂ and equation (39),
plotted as a function of βeff, at fixed geometry, profiles, and ν̂ = 0.797 (aνee/vi = 0.303). The data is generated through a scan in
βe = [0.0289,0.124] at fixed (kyρi,θ0) = (0.8,0.0) and (me/mi)

1/2 = 1/61. Whilst the frquency ω̂r is almost independent of βeff, the
dependence of γ̂ on βeff matches the predictions of the asymptotic theory: the critical βeff is of order unity, and γ̂ appears to approach a
constant for a small range of βeff as βeff becomes large.

scale βe ∝ (me/mi)
1/2 in the scan so that βeff is held con-

stant at each kyρi. We note that the transition in kyρi remains

close to kyρi ≈ 1.4 even as (mi/me)
1/2 is varied by a factor

of 4. Since there is a unique correspondance between βeff

and kyρi for βe ∝ (me/mi)
1/2, this proves that the transition

in kyρi occurs at a fixed critical βeff ∼ 1. In other words,
the critical βe for the onset of MTM instability scales with
(me/mi)

1/2.
Second, we test the detailed geometrical dependence of βeff

on the functionG(θ0), defined by equation (34). Since the only
leading-order dependence of the modes on θ0 enters through
βeff, we would expect that varying θ0 would have the same
effect as varying βe by an appropriate amount. We test this
hypothesis by performing a scan in βe at fixed (kyρi,θ0) =

(0.8,0.0) for the physical mass ratio (me/mi)
1/2

= 1/61. In
figure 13, we show the result of calculating the dimension-
less frequency ω̂ = ω̂r + iγ̂ as a function of βeff, with all other
parameters in equation (39) held fixed. The range of the βeff

scan is limited by the appearance of competing instabilities.
Below βeff ≲ 3 the fastest growing instability is the electro-
static electron-driven mode, whereas for βeff ≳ 15 a highly
localised mode in θ appears with a ωr in the ion diamag-
netic direction. We use the data in figure 13 to obtain γ(βeff)
and ωr(β

eff) for the mode at θ0 = 0. These fits can then be
used to estimate the growth rate and frequency dependence
on θ0 simply by computing βeff(θ0) for all θ0, using the defin-
ition (33). In figure 14 we compare these model predictions
against gyrokinetic simulation results from GS2: we see excel-
lent agreement for all θ0. This procedure starts to break down
for kyρi too small, but works well for any kyρi that is suffi-
ciently close to the electromagnetic-electrostatic mode trans-
ition highlighted in figures 2 and 12. This is likely a res-
ult of the fact that the asymptotic theory is valid only when

βe ∼ (me/mi)
1/2–when βe approaches values of order unity

(βeff ∼ (mi/me)
1/2 ≫ 1) then a different high-β asymptotic

theory is required.
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Figure 14. The real frequency ωr and growth rate γ of the MTM at kyρi = 0.8, as a function of θ0. We compare two methods of computing
the growth rate. First, the result of calculating ωr(θ0) and γ(θ0) directly with GS2 using the nominal values of βe in the MAST equilibrium.
Second, noting that θ0 only enters the dispersion relation (39) through βeff, the result of using predictions for ωr and γ based on the values of
ωr(θ0 = 0,βeff) and γ(θ0 = 0,βeff) and the value of βeff(θ0). The excellent agreement of the two curves suggests that the matching
condition (30) is the correct one to describe the microinstabilities in MAST discharge #6252.

6. Discussion

In this paper, we have proposed a model for electron-driven
electromagnetic linear instabilities that are localised to mode-
rational surfaces, in the limit of βe ∼ kyρe ∼ (me/mi)

1/2 ≪ 1.
The model consists of the orbit-averaged equations (11), (16),
and (18) for the electron current layer, and a matching condi-
tion, equation (30), that connects the current layer to the large
scale electromagnetic perturbation. Physically, the matching
condition represents the streaming of electrons along per-
turbed magnetic field lines at large spatial scales: the magnetic
field perturbations reconnect the equilibrium field lines and
are driven by current carried by the electrons near the mode
rational surface. The binormal scale of the mode kyρi ∼ 1
means that the radial width of the mode is of order ρi, whilst
the current layer is taken to be of order ρe. As such, nonlocal
physics due to the radial variation of equilibrium quantities of
the scale of a≫ ρi ≫ ρe is neglected.

Besides the orderings (1) and (2), no further assump-
tions are made in deriving the model. Hence, the model is
valid in arbitrary axisymmetric toroidal geometry and can
treat the strong shaping observed in spherical tokamaks, and
include a trapped particle response. Passing electrons are
critical to the mode, since only passing electrons carry the
current that can drive reconnection. Trapped electrons can
contribute to the drive of the instability by dragging on
passing particles through interparticle collisions [39]. How-
ever, numerical investigations into the role of trapped particles
in MTMs show that trapped particles may be stabilising or
destabilising [10].

The model makes the prediction that the dispersion rela-
tion has the form given by equation (39). As a consequence,
we observe that βe only appears through the parameter
βeff, defined by equation (33). Physically, the parameter βeff

determines how the binormal wavenumber and the shaping in
the magnetic geometry affects the amount by which electrons
are forced to cross equilibrium magnetic field lines, and hence
drive reconnection. The amount of field-line-crossing and the
form of βeff is determined by the size of the surface-averaged

radial magnetic field induced by a given electron current from
the rational-surface layer, see equations (27) and (29). We
revisit MAST discharge #6252 [10], and we find that the
MTMs there well satisfy the predictions made by the asymp-
totic theory. In particular, we are able to verify that βeff

accounts for the variation of the growth rate of the fastest-
growing MTM mode in θ0. We also observe an electrostatic
electron-driven mode with extended ballooning tails, similar
to those observed in other magnetic geometries [31, 32].

The fact that we are able to identify a βeff that takes into
account the shaping of the local flux surface means that the
model has the potential to make an immediate impact on
transport modelling. In principle, nonlinear simulations of
MTM-driven turbulence are required to evaluate heat fluxes in
discharges that have MTMs appearing in the linear ky spec-
tra. However, there have been persistent problems saturat-
ing this kind of turbulence—very few saturated MTM-driven
turbulence simulations have been reported in the literature
[35, 40–42]. One possible route to turbulence saturation is via
equilibrium flow shear [43–45], which is effective provided
that unstable microinstabilities are localised to θ0 ≈ 0 (the out-
board midplane). Unfortunately, MTMs often have a healthy
growth rate for all −π < θ0 ⩽ π: the βeff that we propose in
this paper could act as a simple diagnostic to determine by how
much the MTM growth rate γ varies in θ0. The stronger the
variation in βeff between θ0 = 0 and ±π, the more likely it is
that the MTMs will be stable at the inboard side of the device,
provided that βeff ∼ 1≪ (mi/me)

1/2. This insight could be
used to target flux surfaces in design studies which are partic-
ularly amenable to MTM turbulence saturation through equi-
librium flow shear.

Further impact from the model could be derived from a
numerical implementation of the equations, or an analytical
solution in tractable asymptotic limits. A numerical imple-
mentation or analytical solution would be desirable because
of the resolution requirements and computational costs asso-
ciated with simulating long-wavelength MTMs with con-
ventional gyrokinetic codes such as GS2. The large θ ∼
(kyŝρe)−1 ≫ 1 extent in ballooning angle must be resolved at
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the same time as the fine geometrical structure in each 2π
segment in ballooning angle. Short timescales due to elec-
tron parallel streaming must be resolved at the same time as
the slower timescales associated with the drives of instabil-
ity at wavelengths long compared to the electron gyrora-
dius. The model that we propose could potentially achieve
computational savings through two routes: first, by elimin-
ating the fast timescales due to electron parallel streaming;
and second, by allowing us to represent the fine 2π structure
of the eigenmodes with an expansion of just a few poloidal
harmonics.
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authors.
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Appendix A. The krρe ∼ 1 scale

The expansion in the inner region is carried out in powers of
(me/mi)

1/2 ∼ kyŝρe ≪ 1. At the leading order in the expansion
of equation (4), we find a balance between parallel streaming
and the radial magnetic drift:

v∥b · ∇θ
∂he(0)

∂θ
− ikαχq

′vM,e · ∇ψ he(0) = 0. (A.1)

In equation (A.1), we have introduced χ= θ where the bal-
looning angle appears secularly in the gyrokinetic equation.
We treat θ and χ as independent variables in a multi-scale
expansion, and we preserve θ as the argument of periodic
functions.

Using the identity for the radial magnetic drift [47, 48],

vM,e · ∇ψ = v∥b · ∇θ
∂

∂θ

(
Iv∥
Ωe

)
, (A.2)

allows us to integrate equation (A.1) using an integrating factor
exp

[
−ikαq ′χIv∥/Ωe

]
, and obtain the relationship (9), in terms

of the coordinate z= kyŝ|ρrefe |χ. At first order in the expan-
sion the leading-order source due to the fields Se =−i(ω∗,e −
ω)J0eeϕF0e/Te enters into the right hand side of the electron
gyrokinetic equation. We have that

v∥b · ∇θ
(
∂he(0)

∂χ
+
∂he(1)

∂θ

)
− ikαχq

′vM,e · ∇ψ he(1)

+ i(kαvM,e · (∇α+ θ∇q)−ω)he
(0) −CGK

e

[
he

(0)
]
= Se.

(A.3)

To close equation (A.3), in the passing part of phase space,
we must impose 2π-periodicity in θ on he(1), i.e. he(1)(χ,θ) =
he(1)(χ,θ+ 2π). In the trapped part of phase space we must
impose that he(1) satisfies the bounce condition for trapped
particles that he(θ

±
b ,σ = 1) = he(θ

±
b ,σ =−1) at the upper

and lower bounce points θ±b . This is achieved by multiply-
ing equation (A.3) by the factor exp

[
−ikαq ′χIv∥/Ωe

]
, apply-

ing the transit and bounce averages, defined by equations (12)
and (17), respectively, to find the solvability conditions on
he(0). After normalising the results, using the coordinate z=
kyŝ|ρrefe |χ, we have the equations (11) and (16).

Appendix B. The electron drift-kinetic collision
operator

In this appendix, we explicitly define the drift-kinetic collision
operator appearing in equation (14). The drift-kinetic operator

C [ f ] = Cee [ f ] +Cei [ f ] , (B.1)

where f= f(v), Cee[·] is the linearised electron landau self-
collision operator, and Cei [·] is the collision operator resulting
from electron-ion collisions.

The landau self-collision operator Cee [ f ] is defined by

Cee [ f ] =
νeev3e
2

∂

∂v
·
ˆ

F0eF ′
0e

ne
U(v− v ′)

·
(
∂

∂v

(
f
F0e

)
− ∂

∂v ′

(
f ′

F ′
0e

))
d3v ′, (B.2)

where the electron self-collision frequency νee is defined
through equation (40), with the shorthand notation f= f(v),
f ′ = f(v ′), F0e = F0e(v), F ′

0e = F0e(v ′),

U(v− v ′) =
I|v− v ′|2 − (v− v ′)(v− v ′)

|v− v ′|3 , (B.3)

and I the identity matrix. Similarly, the electron-ion collision
operator is defined by

Cei [ f ] =
νeiv3e
2

∂

∂v
·
(
v2I− vv
v3

· ∂f
∂v

)
, (B.4)
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with the electron-ion collision frequency νei defined by
equation (40). Note that the ion mean velocity does not appear
in equation (B.4) because the nonadiabatic response of ions is
small for krρi ≫ 1.

Appendix C. The krδe ∼ 1 scale for βe ≪ 1

In the βe ordering (2), the electron inertial scale δe = ρe/
√
β

is intermediate to the ion and electron gyroradius scales, i.e.
ρe ≪ δe ≪ ρi. Sincewe assume that kyρi ∼ 1 and ŝ∼ 1, to treat
the scale of krδe ∼ 1 we must consider large ballooning angles
in the range

θ ∼ (kyŝδe)
−1 ∼

(
mi

me

)1/4

≫ 1. (C.1)

We use a similar multi-scale expansion as used in
appendix A to derive the drift-orbit-averaged equations in the
krδe ∼ 1 region. Here, we expand in powers of (me/mi)

1/4, and
we take θ ∼ (mi/me)

1/4. We introduce the independent vari-
able χ= θ where ballooning angle appears secularly in the
gyrokinetic equation, and we reserve θ for argument of peri-
odic functions. We estimate the sizes of terms in the electron
gyrokinetic equation using the non-dimensionalised Ampère’s
law, equation (19), and the basic ordering (23).

At leading-order in the expansion we find that

v∥b · ∇θ
∂he(0)

∂θ
= 0, (C.2)

i.e. he(0) = he(0)(χ,ε,λ,σ) is independent of 2π-geometric
variation through θ. At first-order in the expansion, we find
that he(0) is also independent of χ:

v∥b · ∇θ
(
∂he(0)

∂χ
+
∂he(1/2)

∂θ

)
− ikαχq

′vM,e · ∇ψ he(0) = 0.

(C.3)

Applying the transit average ⟨·⟩t, defined by equation (12),
and using the identity (A.2), we find that

∂he(0)

∂χ
= 0, (C.4)

i.e. in fact, he(0) = he(0)(ε,λ,σ).
This discussion shows that the leading-order passing elec-

tron distribution function is constant across the intermediate
region where krδe ∼ 1. The leading-order passing electron dis-
tribution function at krδe ∼ 1 is determined by the incom-
ing boundary conditions that are imposed on the krδe ∼ 1
region from matching to the krρi ∼ 1 and krρe ∼ 1 regions.
This comes about because in the ordering (1), electron par-
allel streaming dominates over the sources in the gyrokinetic
equation at this scale.

Appendix D. Numerical resolutions

The simulations presented in sections 4 and 5 of this paper
use the following common set of numerical resolutions: the
timestep size is taken to be ∆t= 0.05/kyρi; we take nθ = 33
points per 2π element in the ballooning angle grid; nλ = 27
points in the pitch angle grid, which is formed with a Radau-
Gauss grid for passing particles and an unevenly spaced grid
for trapped particles; and nε = 24 points in the spectral energy
grid [49]. The number of 2π elements in the ballooning grid
n2π is chosen to be large enough to resolve the eigenmode
and frequency. The ballooning-space extent of electron-driven
modes varies with kyρe, leading to different requirements on

n2π for modes of different (me/mi)
1/2 and kyρi. For the mode

at kyρi = 0.1 and (me/mi)
1/2

= 1/61 in figure 3, n2π = 399 is
required, whereas for the modes at kyρi = 0.8 (2.2) n2π = 79

(39) is found to be adequate. When (me/mi)
1/2 is varied at

fixed kyρi, we increase n2π ∝ (mi/me)
1/2.
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