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Abstract

This work presents a novel learning architecture for the recognition and prediction of walking activity and gait period, respectively,

using wearable sensors. This approach is composed of a Convolutional Neural Network (CNN), a Predicted Information Gain (PIG)

module and an adaptive combination of information sources. The CNN provides the recognition of walking and gait periods. This

information is used by the proposed PIG method to estimate the next most probable gait period along the gait cycle. The outputs

from the CNN and PIG modules are combined by a proposed adaptive process, which relies on data from the source that shows to

be more reliable. This adaptive combination ensures that the learning architecture provides accurate recognition and prediction of

walking activity and gait periods over time. The learning architecture uses data from an array of three inertial measurement units

attached to the lower limbs of individuals. The validation of this work is performed by the recognition of level-ground walking,

ramp ascent and ramp descent, and the prediction of gait periods. The recognition of walking activity and gait period is 100%

and 98.63%, respectively, when the CNN model is employed alone. The recognition of gait periods achieves a 99.9% accuracy,

when the PIG method and adaptive combination are also used. These results demonstrate the benefit of having a system capable of

predicting or anticipating the next information or event over time. Overall, the learning architecture offers an alternative approach

for accurate activity recognition, which is essential for the development of wearable robots capable of reliably and safely assisting

humans in activities of daily living.

Keywords: Activity recognition, deep learning, learning architectures, wearable sensors

1. Introduction

Walking is fundamental for humans to undertake activities

of daily living (ADLs) independently such as translate from one

place to another, socialise, do physical exercise, do shopping

and interact with others and the surrounding environment [1].

The ability to walk can be degraded by different factors such as

an injury or by the old age reached by the person, which affect

the mobility, well-being and quality of life of the person [2].

Lower limb wearable robots have the potential to assist humans

to perform walking activities and overcome mobility impair-

ments [3]. This robot technology needs to be capable of recog-

nising walking activities, gait periods and phases accurately,

which is crucial to ensure a reliable, efficient and safe assis-

tance [4]. Otherwise, the user might face the risk of stumbling,

falling and suffering an injury. Advances in computational in-

telligence [5, 6] and wearable sensor technology [7, 8, 9] have

shown to be a promising platform for the recognition of human

activities. However, the development of robust methods capa-

ble of both recognising walking activities and predicting gait

periods and phases still remains a challenge.

The recognition of walking activity and prediction of gait

period are investigated in this work, which proposes a novel
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learning architecture built with a Convolutional Neural Net-

work (CNN), a Predicted Information Gain (PIG) and an adap-

tive weighted combination method. First, three walking activi-

ties (level-ground walking (LGW), ramp ascent (RA) and ramp

descent (RD)) and eight gait periods (initial contact, loading re-

sponse, mid stance, terminal stance, pre-swing, initial swing,

mid swing and terminal swing) are recognised using a CNN,

which has shown its potential for recognition and control using

different stimuli [10, 11]. Second, the output from the recog-

nition process is used by the PIG approach [12], to predict the

next gait period along the gait cycle. This prediction process

is important to allow assistive robots to respond fast and accu-

rately to anticipated events. Third, the proposed learning archi-

tecture combines the output from both processes, the recogni-

tion and prediction, using a novel adaptive weighted method.

This proposed combination approach, ensures that the learn-

ing architecture uses more information from the source that is

more reliable, and thus, making an accurate decision about the

gait period been performed by the subject along the gait cy-

cle [13, 14].

The recognition and prediction accuracy of the learning ar-

chitecture is evaluated with participants performing multiple

walking activities (LGW, RA and RD) and wearing three in-

ertial measurement units (IMU) on the lower limbs. Systematic

sensor data collection from walking activities is performed for
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each participant. These datasets are used to train and test the ca-

pability for recognition and prediction of the proposed learning

architecture. First, the accuracy for recognition of the walking

activity and current gait period, being performed by the subject,

is evaluated. Second, the prediction method is employed to ob-

serve the effects on the accuracy for the identification of gait

periods. A third experiment analyses the recognition accuracy

when noise is added to the original data. The experiments show

that the recognition process is improved by adaptively combin-

ing it with information from the prediction process. Further-

more, the results show that the learning architecture is robust

to noisy data. Overall, this work demonstrates the benefits in

accuracy using systems capable of adapting based on observed

and predicted sensory data.

This work is organised in six sections as follows: Section 2

presents the related works on walking recognition methods us-

ing different sensors. The modules that compose the proposed

learning architecture are presented in Section 3. The experi-

ments and results are described in detail in Section 4. The dis-

cussion and comparison of results are shown in Sections 5. The

conclusions of this work are presented in Section 6.

2. Related work

The recognition of human movements and activities is an

important process for human assistance. A large number of

methods, from predefined rules to complex methods, have been

developed for the recognition of activities of daily living.

Finite state machines (FSM), together with myoelectric and

electromyography (EMG) signals, have been employed for the

recognition of LGW, RA and RD activities [15, 16]. Data from

floor reaction force, hip and knee joint angles were used to-

gether with an FSM for the identification of sitting, standing

and LGW [17]. Commonly, these methods employed fixed

and predefined set of parameters, which makes the recognition

prone to fail even for slight changes in the sensor data.

Machine learning (ML) algorithms offer a robust alterna-

tive for intelligent, reliable and adaptive recognition systems.

Techniques such as entropy distance, computer vision and im-

age processing, together with wearable sensors, have been em-

ployed for detection of human activity [18, 19]. Adaptive de-

cision trees with multiple wearable sensors were implemented

for identification of LGW, standing and sitting with a mean

recognition of 99% [20]. Linear discriminant analysis (LDA)

and artificial neural networks (ANNs) and twelve EMG sensors

were employed for the identification of locomotion modes [21].

Time-domain and frequency-domain features have been em-

ployed by LDA and ANN, together with nine EMG sensors,

for intent recognition [22, 23]. Alternative approaches such as

ANN with heuristic methods have been implemented for the

identification of locomotion modes. Commonly, these works

employ large arrays of multimodal sensors, such as accelerom-

eters and foot ground contact data from LGW, running, stair

ascent and descent [24, 25, 26]. All the works mentioned previ-

ously are capable of recognising human activities, while achiev-

ing accuracies ranging from 90% to 99%. However, these works

require a large number of sensors, making complex the pro-

cesses for sensor synchronisation and data collection. Addi-

tionally, the use of large number of sensors, impacts on the en-

ergy consumption, computational cost and the complexity for

the implementation of the algorithms.

The recognition of ADLs in real-time has been investigated

using Fuzzy Logic (FL) methods, and data from joint angles

and pressure sensors [27]. Ensemble of methods tends to pro-

vide enhanced recognition results, and thus, the ensemble of

FL and ANN methods with EMG signals, was used for recog-

nition of human intent with 95% accuracy [28, 29]. Although

not portable, vision sensors and EMS signals have been used for

training and testing support vector machines (SVMs) for human

activity recognition. This method was capable of achieving ac-

curacies from 77.3% to 99%. Unfortunately, a large number

of sensors is required by this method, which limits its usage

to indoor and well-controlled environments [30, 31]. SVMs

and k-nearest neighbour (KNN) methods, together with angu-

lar velocity signals from sensors on the whole body, have been

employed for activity recognition with accuracies ranging from

94% to 99.0% [32, 33]. Multi-class SVMs using data from an

array of plantar pressure sensors were capable of recognising

walking on flat surfaces and stairs with mean accuracies from

91.9% to 95.2% [34].

Probabilistic methods offer an alternative approach that in-

cludes the uncertainty of the sensor observations for the decision-

making process. This method that has been successfully used

for the development of robotic systems capable of perceiving,

learning and decision-making processes [35]. Bayesian approaches

have been employed, together with a variety of sensors, for the

study of perception and decision-making for robot control [36,

37]. Gaussian mixture models (GMM) showed to be capable

of characterising the probabilities for the accurate recognition

of activities of daily living [38]. Similarly, dynamic Bayesian

networks (DBN) showed to be capable of identifying walk-

ing activities on different terrains, using IMU and EMG sen-

sors [39, 40]. Deep Learning (DL) techniques, based on Con-

volution Neural Networks (CNN), have gained popularity for

the identification and classification of human activities. CNNs,

trained with 3D data sequence from vision and IMU sensors,

were able to detect a large number of activities with mean ac-

curacy between 98% and 99.78% [41]. Ensemble of CNNs,

with vision data, showed an improved activity recognition task

achieving a mean accuracy of 99.68% [42]. Inertial measure-

ment units, over the full body, were employed for recognition of

ADLs using CNNs alone, and combined with Recurrent Neural

Networks [5, 43].

CNNs are becoming popular for activity recognition, how-

ever, their use has been focused on recognition processes only.

In this work, CNNs together with forward models and adap-

tive methods are investigated to perform recognition and pre-

diction processes. These methods compose the proposed learn-

ing architecture for the recognition and prediction of walking

activities and gait periods, respectively, during the gait cycle.

Multiple IMUs, attached to the lower limbs of subjects, are

employed to train and test the proposed learning architecture.

Having a system capable of observing and anticipating infor-
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(A) Sensor attachment for data collection

x y

z

(B) Level-ground walking (C) Ramp ascent/descent

Figure 1: Walking activities for collection of data. (A) Diagram with three

IMUs attached to the lower limbs of subjects. The data is sent to a computer for

the subsequent analysis with the proposed methods. (B) Level-ground walking

activity (LGW) on a flat surface. (C) Ramp ascent (RA) and ramp descent (RD)

activities. Participants repeated ten times each walking activity.

mation or events, is also capable of improving its performance

over time. Next sections describe in detail all the modules that

composed the proposed learning architecture.

3. Methods

3.1. Experimental protocol and data preparation

Twelve male subjects, without gait abnormalities, were re-

cruited from the Institute of Design, Robotics and Optimisation

(iDRO), the University of Leeds. The subjects’ ages, heights

and weights were from 24 to 34 years old, 1.74 m to 1.79 m,

and 77.6 kg to 85 kg, respectively.

Data from three IMU sensors, attached to the thigh, shank

and foot of participants, were collected for this research. These

IMU sensors, from Shimmer Inc., have 9 DoF each and provide

data from accelerometer, gyroscope and magnetometer. Data

from all sensors were systematically collected and sent to a

computer for their posterior processing and analysis by the pro-

posed learning architecture. The detection of the start of the gait

cycle, during the data collection process, was performed using

a foot pressure insole [44]. The attachment of sensors and data

collection process are depicted in Figure 1A.

All subjects were asked to perform ten repetitions of LGW,

RA and RD activities. For this purpose, a flat cement surface

was used for LGW, and a ramp with an inclination of 8.5 deg

was used for RA and RD, as shown in Figures 1B,C. Angular

velocity, accelerometer and magnetometer signals, in x- y- and

-z axes, were collected from each sensor at a sampling rate of

100 Hz. The signals collected were grouped into 12 datasets,

where each dataset was composed of 27 sensor signals (3 sig-

nals × 3 axes × 3 sensors) and 200 sensor samples, from each

gait cycle and walking activity. This number of sensor samples

was obtained from the walking speed that was similar and con-

sistent between all participants. The datasets were divided into

training (8 datasets) and testing (4 datasets) for validation of

the proposed recognition and prediction strategy. An example

of these signals from a walking activity is shown in Figure 2A.

In this work, the data collected was first segmented into stance

(60% of gait cycle) and swing (40% of gait cycle) phases. Then,

the stance phase was segmented into five gait periods of same

length (initial contact, loading response, mid stance, terminal

stance). Similarly, the swing phase was segmented into three

gait periods of same length (initial swing, mid swing, terminal

swing). This segmentation of gait phases and periods is shown

in Figure 2B. This segmentation strategy is used to analyse the

potential for recognition of walking activity and prediction of

gait periods with the proposed learning architecture composed

of CNN and PIG methods.

3.2. CNN for the recognition of walking mode and gait period

The proposed recognition and prediction system is com-

posed of a CNN module, a Predicted Information Gain (PIG)

module and an adaptive weighted combination process.

3.2.1. Recognition of activity and gait period

A CNN is employed for the recognition of the walking and

gait periods. The CNN recognises whether the human is per-

forming LGW, RA or RD activities using data from wearable

sensors. The architecture of the CNN, which is composed of

two feature learning layers and one classification layer, is shown

in Figure 3. The first feature learning layer is composed of

32 5×5 kernels for convolution and 32 2×2 kernels for max-

pooling. The second feature learning layer uses 16 3×3 kernels

for convolution and 16 2×2 kernels for max-pooling. The clas-

sification layer flattens the learning features, which are fully

connected to a softmax layer, which is responsible for the es-

timation of the probability of the current walking activity. The

data used by the CNN is received as a matrix of 27 signals × 25

samples, based on the segmentation of eight gait periods of the

complete activity matrix (27 × 200). This data segmentation

and arrangement allows the CNN to estimate the gait period

during the walking activity performed by the human.

This computational intelligence approach allows the iden-

tification of the current walking activity and gait period per-

formed by participants, e.g., LGW and pre-swing (gait period

5). With this information we can also determine whether the

human is on the stance (gait period 1 to 5) or swing phase (gait

period 6 to 8). The convolution and max-pooling layers used in

the feature learning process are implemented as follows:

xl
i j = b j +

m−1
∑

a=0

m−1
∑

b=0

kab ∗ yl−1
(i+a)( j+b), (1)
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Figure 2: Sensor signals used for the recognition and prediction processes. (A) Example of concatenated signals from the gyroscope (x,y,z), accelerometer (x,y,z)

and magnetometer (x,y,z) from the walking activity. These signals were collected from the sensors mounted on the thigh, shank and foot of participants. (B) Dataset

segmented into periods, for the recognition and prediction of gait periods and phases.

where xl
i j

is the output from the l-th layer of the j-th feature

map on the i-th unit, b j is the bias, and the convolution process

is denoted by the operator ∗. The convolution is performed be-

tween the m × m kab kernel and the nonlinear output yl−1
(i+a)( j+b)

from layer l − 1. The output from Equation (1) is used as input

for the nonlinear function σ as follows:

yl
i j = σ(xl

i j), (2)

where the nonlinear output from the l convolutional layer is rep-

resented by yl
i j

. The nonlinear function σ defines the hyperbolic

tangent function tanh. The implementation of each convolution

is proceeded by a max-pooling layer, which performs a down-

sampling process that takes as input a u × u region and returns

its maximum value. The proposed CNN model uses 2 × 2 input

region. This downsampling process is performed as follows:

yl
i j = max

u×u
(yl−1

i j ), (3)

where maximum values from yl−1
i j

are assigned to yl
i j

. The out-

put from the feature learning layer, composed of convolution

and max-pooling processes, are fully connected to a softmax

layer. The latter process provides the probability for recogni-

tion of walking and gait periods, as follows:

P(c|y) =
eyT wc

∑N
n=1 eyT wn

, (4)

ĉ = arg max
c

P(c|y), (5)
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Figure 3: Convolutional neural network architecture for recognition of walking activities and gait periods. The input data for the CNN, received from the three

wearable sensors, are grouped into matrices of 27 signals × 25 samples. The feature learning process from the CNN is composed of two feature layers. The first

layer is composed of 32 5×5 kernels for convolution and 32 2×2 kernels for max-pooling. The second layer uses 16 3×3 kernels for convolution and 16 2×2 kernels

for max-pooling. The features extracted are used by a fully connected layer and softmax function for classification processes. The output from the softmax layer

shows the probability for recognition, at current time t, of each gait period for each walking activity.
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combination of information sources. The CNN performs the recognition of walking activity and gait periods. The PIG method predicts the current gait period based

on the observation of events over time. The recognition of gait periods from the CNN and the prediction performed by the PIG method, are combined using a

weighting parameter, which adapts its value based on the accuracy of predictions made by the PIG method. Thus, the adaptive weighted combination method will

rely or assign more weight to the information source, CNN module or PIG method, that shows to be more accurate over time.

where the class c indicates the (cactivity, cperiod) pair, and P(c|y)

is the recognition probability given the current sensor data de-

noted by y. The weight vector and total number of classes are

represented by the parameters w and N, with N = 24 (3 walking

activities × 8 gait periods). The most probable walking activity

(ĉactivity) and gait period (ĉperiod), defined by ĉ, are obtained with

the maximum a posteriori (MAP) estimate as shown in Equa-

tion (5). The output from the CNN model is depicted in Fig-

ure 3, with LGW, RA and RD indicated by the first, second and

third group of eight classes, respectively. Each group of eight

classes also corresponds to the eight gait periods of each walk-

ing activity. Thus, the CNN approach outputs the simultaneous

estimation of walking and gait period.

Identification by the CNN of both, the current walking ac-

tivity and gait period, is important for assistive robotics. The

development of intelligent robots, capable of reliably and safely

assisting humans in ADLs, also need modules for the prediction

of human movements. Section 3.2.2 describes a method, based

on a forward model and an adaptive combination of information

sources, for the prediction of gait periods.

3.2.2. Prediction of gait periods

A forward model based on a novel Predicted Information

Gain (PIG) method is used for the prediction of gait periods

during walking. This approach observes what decision, made

by the CNN at time t − 1, would have provided the largest

information gain at time t. For the case of gait periods, the

proposed PIG approach observes the information gained from

transitions between gait periods performed at previous times

along the walking activity. This process outputs the parameter

∆, which is used for estimation of the next probable gait period.

The predicted information gain approach is defined as follows:

PIG = γ
∑

s∗

Θ̂a,s,s∗DKL

(

Θ̂a,s,s∗

a,s ||Θ̂a,s

)

. (6)

The parameter Θ̂ denotes the estimated recognition output

made by the CNN. The gait periods that compose the gait cy-

cle are s = {s1, s2, . . . , sN} with N = 8 and transitions between

these gait periods are represented by a = {a1, a2, . . . , aN} with

N = 8. The estimated recognition for the current gait period s

given a transition a is denoted by Θ̂a,s. The parameter Θ̂a,s shifts

the output from the CNN by the transition value defined by a,

which estimates what would have been the current gait period

if a different transition a would have been performed at the pre-

vious gait period. The hypothetical next gait periods s∗ for each

transition a performed at previous gait period s are represented

by Θ̂a,s,s∗

a,s . The hypothetical outcomes s∗ by a transition a in the

current gait period s are denoted by Θ̂a,s,s∗ . Equation (6) is nor-

malised by the parameter γ. The Kullback-Leibler Divergence

(DKL) provides the information that would have been lost for

each simulated transition and hypothetical next gait period, at

the previous decision times, as follows:

DKL

(

Θ̂a,s,s∗

a,s ||Θ̂a,s

)

=

N
∑

s∗

Θ̂a,s,s∗

a,s log

(

Θ̂
a,s,s∗

a,s

Θ̂a,s

)

. (7)

The PIG value from Equation (6) is employed to update the

transition matrix Γt, which keeps track of the transitions along

the gait cycle, to obtain the parameter ∆ that indicates the posi-

tion of the next most probable transition when the use is at spe-

cific gait period. This parameter shifts the probability of current

gait periods, P(cperiod|y) with y being the sensor data collected

at time t, for prediction of the next most probable gait periods,

as follows:

Γt =

(

t − 1

t

)

Γt−1 +

(

1

t

)

PIG, (8)

∆ = arg max(Γt), (9)

where the transition matrix at decision times t and t − 1 are Γt

and Γt−1, respectively. The PIG value is employed as a reward

that adapts based on the decisions and actions made over time

by the recognition system. Then, the position of the largest

5



probability from the transition matrix, in Equation (9), is as-

signed to ∆ to shift P(cperiod|y) for prediction of the gait periods

for next time t + 1, as follows:

Pperiodt+1
= P(cperiod + ∆|y), (10)

where Pperiodt+1
represents the predicted gait periods. This pre-

diction is autonomously combined with the estimation of cur-

rent gait periods, Pperiodt
, using the adaptive weighting parame-

ter described in the following section.

3.2.3. Adaptive combination of information sources

Humans make use of multiple sources of information, com-

bining them to improve the accuracy of decision-making pro-

cesses. A novel strategy is proposed to perform the weighted

combination of current and predicted information, where the

weight, α, parameterise the reliability of each information source.

This proposed strategy for the combination of sources of infor-

mation is as follows:

P̂periodt
= αtPperiodt

+ (1 − αt)Pperiodt+1
, (11)

where P̂periodt
is the updated gait period probability, obtained

from the adaptive and weighted combination of current and pre-

dicted gait periods. This weighting parameter, α, autonomously

adapts over time based on the reliability of each source of infor-

mation. The adaptive procedure evaluates the error between the

prediction from Pperiodt+1
, and the actual gait period Pperiodt

=

P(cperiod) as follows:

ξt = |Pperiodt
− Pperiodt+1

|, (12)

αt =

(

t − 1

t

)

αt−1 +

(

1

t

)

ξt. (13)

The error between the probability of the predicted gait pe-

riod and the actual recognised gait period is represented by ξt.

This error value is used as reward to update the weighting pa-

rameter α. Thus, Equation (12) establishes that if the distance

between the prediction and actual recognition is small, then the

error ξ will be small. Then, the weighted parameter α will be

also small, relying more on the predictions from the forward

model. In contrasts, if the distance is large, then the error ξ

and weighted parameter α will be large, making the recognition

system to rely more on current recognised gait periods. The

proposed learning architecture and the interconnection of mod-

ules is presented by the flowchart in Figure 4.

4. Results

4.1. Recognition of walking activity and gait period

The recognition accuracy of walking activity and gait pe-

riods was validated with three walking activities (LGW, RA

and RD). Three wearable sensors, attached on the lower limbs

of subjects, were used for collection of angular velocity, ac-

celerometer and magnetometer signals for the validation pro-

cess. Figure 2A shows an example of these signals from a com-

plete walking cycle. The signals from the walking cycle are
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Figure 5: CNN model training for the recognition of the walking activity (blue

curve) and gait period (green curve). (A) Accuracy and (B) error against the

number of epochs for recognition processes perform by the CNN model.

segmented into eight gait periods (Figure 2B) for recognition

of initial contact, loading response, mid-stance, terminal stance,

pre-swing, initial swing, mid-swing and terminal swing. Sensor

signals from 12 participants were split into two groups of eight

and four datasets to train and test the learning architecture, re-

spectively.

The performance in accuracy and error of the CNN model,

was evaluated by drawing random samples from the training

datasets (Figures 5A,B). The validation of the CNN shows that

the recognition of both, walking (blue curve) and gait period

(green curve) achieved the mean accuracy of 100% within 100

epochs. The results also show that the CNN also achieved 0%

error for the recognition process. The CNN was also evalu-

ated using sensor samples from the test datasets. Figure 6A

shows the results from the recognition of individual walking

modes, with a mean accuracy of 100%. The recognition of gait

periods, with mean accuracy of 98.63%, is presented in Fig-

ure 6B. These results demonstrate that stance and swing phases

are recognised with accuracies of 97.88% and 99.90%, respec-

tively. This analysis is performed by averaging the accuracies

from gait periods 1 to 5, for stance phase, and gait periods 6

to 8 for swing phase. This information, from walking and gait

periods, is important to know the state of the human body dur-

ing walking, e.g., heel contact and toe-off. The accuracy for

recognition of gait periods for each walking activity is shown in

Figure 7, with mean accuracies of 99.82%, 97.93% and 98.10%

for LGW, RA and RD, respectively.

4.2. Prediction of gait periods

Prediction of gait periods allows the identification of the

next most probable gait period during the gait cycle of a walk-

ing activity. This predictive capability is important to achieve

better control of assistive robots, given that robots can antici-

pate and adapt their actions to expected events. The results for

recognition of gait periods, for each walking activity, using the

proposed prediction approach are shown in the confusion ma-

trices of Figure 8. The recognition accuracy of gait periods

was improved for all walking activities, which demonstrates

the benefits of performing the prediction of gait periods. For

level-ground walking, ramp ascent and descent, mean recog-

nition accuracies of 100%, 99.97% and 100% were achieved,
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Figure 6: Accuracy achieved by the CNN model for the recognition of walking

activities and gait periods using new data. (A) Recognition of LGW, RA and

RD activities. (B) Mean recognition accuracy of gait periods; 1) initial contact,

2) loading response, 3) mid stance, 4) terminal stance, 5) pre-swing, 6) initial

swing, 7) mid swing and 8) terminal swing, over all walking activities.

respectively. It is clearly observed that there is improvement

over the results achieved when no predictive information was

used for the decision-making process.

This experiment was performed using the prediction from

the PIG model and the adaptive weighted combination approach.

The combination of current and predicted gait periods is adap-

tively weighted, relying more on the information source that

shows to be more accurate. The behaviour of the adaptive weight-

ing parameter, for the three walking activities, is shown in the

plots of Figure 9. Original and noisy data were employed to

evaluate the accuracy and robustness of the adaptive weighted

combination of information. In the case of original data (solid

lines), random samples were selected from the 4 testing datasets

to calculate α. A gradual increment in the adaptive parameter,

from α = 0 to α = 1, is observed for the three walking activ-

ities. This shows that initially, with α = 0, the recognition of

gait periods relies on the CNN model only, and does not use the

information from the PIG model. Then, the adaptive parameter

modifies its value according to the predictions made by the PIG

model. For LGW (Figure 9A) and RD (Figure 9C), predictions

were accurate, and then, the value of the adaptive parameter

showed a smooth increasing behaviour. For RA (Figure 9B),

the adaptive parameter showed a small increasing and decreas-

ing behaviour at the beginning of the experiment. This means

that predictions were not accurate initially, and therefore, the

weighting parameter had to rely more on the CNN model than

on the predictions. However, after a few more samples, the

adaptive parameter showed an increasing behaviour, given that

predictions from the PIG model started to be accurate after the

observation of more sensor samples.

For the evaluation of the proposed methods with noisy data,

white noise with a signal-to-noise ratio of 70% was added to the

original data. The behaviour of the adaptive weighting parame-

ter for the three walking activities is represented by the dashed-

lines in Figure 9. For level-ground walking (Figure 9A), the

weighting parameter showed a similar behaviour to the original

data (without added noise). For ramp ascent and ramp descent

(Figures 9B,C), the adaptive parameter showed an increasing

and decreasing behaviour during the first samples drawn from

the noisy dataset. Once more samples were observed, predic-

tions from the PIG model achieved a larger accuracy, making

the adaptive parameter to increase its value and rely more on the

prediction process. These results show that the proposed PIG

model and adaptive weighting parameter are robust and capa-

ble of autonomously adapting the data fusion process in order

to improve the accuracy for recognition of gait periods while

walking.

5. Discussion

Wearable assisitve robots and technology have shown great

advances in recent decades. Especially, sensor and material

technology have promoted the development of multisensory,

lightweight and compliant robots that fit better to the human

body. A variety of computational methods have been used for

recognition of human movements. However, methods that in-

clude the capability of learning and adaptation, based on human

movements, still remain a challenge. Therefore, this work pre-

sented a novel approach capable of learning and adapting using

machine intelligence and inertial measurement units attached

on the lower limbs of participants.

The proposed learning architecture uses a convolutional neu-

ral network (CNN), a novel predicted information gain (PIG)

and adaptive combination of information approach. The CNN

model is responsible for recognition of both, walking activities

and gait periods. This CNN model receives input data from

three IMU sensor attached to the lower limbs of participants.

LGW, RA and RD activities were recognised with accuracy of

100% each. The proposed approach also provided the recogni-

tion of the eight gait periods in which the gait cycle was divided.

These gait periods which are initial contact, loading response,

mid stance, terminal stance, pre-swing, initial swing, mid swing

and terminal swing, were recognised with mean accuracies of

99.5%, 96.2%, 95.9%, 97.9%, 99.9%, 99.7%, 100% and 100%,

respectively. Normally, computational intelligence methods are

capable of recognising walking activities with high accuracy,

because of the large amount of data being available along the

walking cycle. It is not the same case for recognition of gait

periods due to small data contained in each gait period. For

this reason, normally, the recognition process focuses on walk-

ing activity only, and heuristic methods, together with poten-

tiometers or goniometers, are employed for recognition of gait

periods. Our CNN model was able to recognise all the gait pe-

riods successfully, however, this process needs to be improved

in order to achieve safe assistance to humans in real-time.

To improve the recognition of gait periods, the learning ar-

chitecture needs to be capable of predicting the next event along

the walking cycling. For this purpose, a forward model, imple-

mented with a PIG approach, was used for prediction of gait

periods. This forward model observes the transition between

gait periods. Then, it analyses the amount of information that

would have been gained for each possible gait period transition

made at previous decision time. The transition that provides the

largest information gain is used to estimate what would be the
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Figure 7: Recognition of gait periods for each walking activity using the CNN model and wearable sensor data. (A) Gait period recognition for level-ground walking

(LGW) with mean accuracy of 99.82%. (B) Gait period recognition for ramp ascent (RA) with mean accuracy of 97.93%. (C) Gait period recognition for ramp

descent (RD) with mean accuracy of 98.10%. On the one hand, level-ground walking provides the highest accuracy with low confusion between gait periods. On

the other hand, ramp ascent creates more confusion between gait periods, making the CNN model to achieve the lowest accuracy.
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Figure 8: Recognition of gait periods using the PIG method and the adaptive weighted combination approach. (A) Gait period recognition for level-ground walking

(LGW), with mean accuracy of 100%. (B) Gait period recognition for ramp ascent (RA), with mean accuracy of 99.97%. (C) Gait period recognition for ramp

descent (RD), with mean accuracy of 100%. The results of this experiment show that the recognition accuracy of gait periods for all walking activities, has been

improved by the use of the weighted information obtained from the predictive approach.

next most probable gait period for the current walking activity.

This process predicts the most probable gait period, that will be

observed the next time step by the learning architecture during

the walking activity. Then, the predicted information is used to-

gether with the output from the CNN to improve the recognition

process. This task requires the combination of two information

sources, the prediction and the recognition outputs. Previous

works have used a fixed and predefined weighted parameter for

this combination process. In this work, the weighted parame-

ter was adaptive based on the accuracy observed by both, the

prediction and recognition outputs. This approach overcomes

the need to pre-programmed methods, and instead, it allows the

development of systems that intelligently adapt over time, ac-

cording to the observation of their own performance and the

changing environment.

The adaptive combination allowed the learning architecture

to rely or give more importance to the information source that

showed to be more accurate. This means that the weighting

parameter, responsible for the combination process, changed

its value autonomously to ensure accurate recognition process.

The results from the recognition of gait periods using the CNN

only are shown in Figure 7. These results show that recognition

of gait periods for the ramp activities is not as accurate as for the

walking activity. In contrast, the confusion matrices in Figure 8,

clearly show the improvement of the recognition process using

the PIG and adaptive combination methods. The adaptation of

the weighting parameter, for each of the walking activities, over

time is shown in Figure 9. These experiments were also under-

taken by adding noise for the analysis and evaluation of the

adaptation process. The results show that the learning architec-

ture was able to adapt and achieve accurate recognition using

the original data (solid lines) and noisy data (dashed-lines). A

comparison of the proposed architecture with state-of-the-art

methods for recognition and prediction of walking activity and
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Figure 9: Adaptation of the weighting parameter for the combination of information from the CNN model and PIG method. The capability of adapting of the

weighting parameter was evaluated using original (solid lines) and noisy (dashed lines) data. The increasing value of the weighting parameter is related to the

confidence on the predictions made by the PIG module. For ramp ascent and descent, there is a perturbation, based on the low accuracy observed by predictions,

which makes the weighting parameter to adapt and reducing the weight assigned to the information provided by the predictive module. Then, after more data is

observed over time, predictions become more accurate, and thus, the value of the weighting parameter starts increasing.

gait periods is presented in Table 1. The accuracy achieved for

recognition of activities depend on the method but also can be

related to the data employed by these works. Independently

of the data, only few methods have included the functionality

for recognition of gait periods, and only our method has pro-

posed an initial approach for prediction of gait periods. In this

work, for the purpose of evaluating the potential of the proposed

learning architecture, we used datasets that contain consistent

number of sensor samples per gait cycle across all participants.

We also made the assumption of gait periods of same length.

However, both walking at different speeds and using gait pe-

riods with different lengths will be analyse in future works to

be able to implement the propose methods in assistive devices.

Thus, having methods with capabilities for recognition and pre-

diction using wearable sensors still remains a challenge for the

development of safe and reliable assistive systems.

The recognition and prediction processes, performed by the

learning architecture, benefit the development of wearable as-

sistive robots. The proposed method have the potential to be

implemented in a portable computer (e.g., Raspberry Pi com-

puter) with wearable inertial measurement units for integration

and control of wearable assistive robots. The proposed work

has also some limitations; for instance, 1) this method does not

recognise activities such as sit-to-stand and climbing stairs, 2)

the experiments have been undertaken in a laboratory and they

need to be prepared for outdoor environments, 3) an external

computer is employed for processing the sensor data. These

Table 1: State-of-the-art methods for recognition of walking activity and pre-

diction of gait periods

Method Activity # Sensors
Activity

recognition

Gait period

recognition

Gait period

prediction

Log-sum

distance [45]

walking, ramps

sitting
9 99.9% – –

Ensemble

of classifiers [32]

walking, ramps

stairs
9 97.60% – –

GMM [38]
walking, standing

sitting
4 100% – –

SVM [31]
walking, ramps

stairs
9 99% 97% –

DBN [40]
walking, ramps

stairs
13 98% 95.25% –

Our approach walking, ramps 3 100% 98.63% 99.9%

limitations can be addressed in the future work on recognition

methods for assistive robots in outdoor environments.

Overall, the results from all experiments showed that the

proposed learning architecture, successfully recognised walk-

ing activities and predicted gait periods with high accuracy.

Thus, this research offers an approach that can be integrated

into wearable robots, in order to deliver safe and reliable assis-

tance to humans in their activities of daily living.

6. Conclusion

This research work describes the novel learning architecture

for walking activity recognition and prediction of gait periods.

This work uses data from three wearable sensors, attached to

9



the lower limbs of participants, while performing walking ac-

tivities. This novel learning architecture is composed of a con-

volutional neural network, a predicted information gain method

and a module for adaptive combination of information sources.

Multiple experiments were undertaken for validation of the recog-

nition and prediction methods. First, the convolutional neural

network showed to be able to recognise, with high accuracy, all

the walking activities performed by participants. Second, the

predicted information gain method was able to predict the most

probable event for the next time step during walking. Third, the

adaptive combination method allowed the proposed learning ar-

chitecture to autonomously adapt its performance, and thus, im-

prove the accuracy of the recognition and prediction processes.

The results from the experiments also showed that by allowing

the learning architecture to react to anticipated events, based on

the prediction process, its performance in terms of accuracy and

potentially in terms of the speed can be improved. All these as-

pects offered by the proposed learning architecture, make it a

potential approach for the development of intelligent wearable

robots capable of recognising human movements and providing

safe assistance in activities of daily living.
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