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ABSTRACT Autonomous Vehicles (AVs) are equipped with several sensors which produce various forms
of data, such as geo-location, distance, and camera data. The volume and utility of these data, especially
camera data, have contributed to the advancement of high-performance self-driving applications. However,
these vehicles and their collected data are prone to security and privacy attacks. One of the main attacks
against AV-generated camera data is location inference, in which camera data is used to extract knowledge
for tracking the users. A few research studies have proposed privacy-preserving approaches for analysing
AV-generated camera data using powerful generative models, such as Variational Auto Encoder (VAE) and
Generative Adversarial Network (GAN). However, the related work considers a weak geo-localisation attack
model, which leads to weak privacy protection against stronger attack models. This paper proposes Deep-
Clean, a robust deep-learningmodel that combines VAE and a private clustering technique. DeepClean learns
distinct labelled object structures of the image data as clusters and generates a more visual representation of
the non-private object clusters, e.g., roads. It then distorts the private object areas using a private Gaussian
Mixture Model (GMM) to learn distinct cluster structures of the labelled object areas. The synthetic images
generated from our model guarantee privacy and resist a robust location inference attack by less than 4%
localisation accuracy. This result implies that using DeepClean for synthetic data generation makes it less
likely for a subject to be localised by an attacker, evenwhen using a robust geo-localisation attack. The overall
image utility level of the generated synthetic images by DeepClean is comparable to the benchmark studies.

INDEX TERMS Autonomous vehicle, data privacy, data utility, deep clustering, generative model.

I. INTRODUCTION
Autonomous vehicles (AV) onboard sensors generate diverse
datasets [1]. These datasets include camera data (for example,
images and videos of street views showing road objects in
a city), distance data from Lidar and Radar sensors, and
Global Positioning Systems (GPS) trajectory data. The cap-
tured datasets are required for several functional and non-
functional processes [2]. For instance, the captured visual
images and videos can be used for accident claims and
training auto-driving deep learning models (e.g., for object
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detection and recognition [3], [4], [5]). Also, real-time data
analysis on in-vehicle data is used for performance evaluation
purposes [6], [7]. This rich dataset could be held inside the
vehicle or sent to external storage, such as Cloud [8].

One of the main concerns regarding AV-generated data
is users’ privacy [9]. Camera data contain several visual
and context-rich features that can be extracted and geo-
localised. Several studies have shown how over-needed loca-
tion information in images, such as background buildings,
landmarks, road signs and markings, and surrounding veg-
etation, improve image matching and geo-localisation [10].
Suppose we assume an attacker can get unauthorised access
to the stored camera data in the internal or external storage.
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FIGURE 1. Example to show a geo-localisation attack. (a) Camera data of
target’s vehicle near Queen’s Tower, (b) Camera data of target’s vehicle
near Boston Market, (c) Leaked trajectory information. All the images are
extracted from Berkeley AV Open-source data [8].

In that case, she can perform a location inference attack using
geo-localisation techniques. This attackermay be able to infer
sensitive information, such as the user’s home/work address
and past/future travel patterns, which leads to a location
privacy breach.

Figure 1 (c) shows an example of a location inference
attack. If an attacker has access to both Figure 1 (a) and (b),
she can learn that the target’s vehicle has passed through
Queen’s Tower in Figure 1 (a). By getting access to more
images and videos from the target’s vehicle with timestamp
correlations in Figure 1 (b), she can perform geo-localisation
and predict the trajectories (Figure 1 (c) is an example).

Researchers have proposed several ways of distorting pri-
vate objects in a dataset to mitigate location inference attacks
on AV-generated camera data. Recently, Xiong et al. pro-
posed ADGAN, in which they use Variational Autoencoder
(VAE) and Generative Adversarial Network (GAN) to gen-
erate privacy-preserving camera datasets [11]. They have
considered a weak attack model under Multi-KNN (i.e., mul-
tiple k nearest neighbour) feature matching geo-localisation
approach. Multi-KNN [12] was also used in other research
studies for geo-localisation, such as [13] and [14].
Schindler et al. organised image features as a bag of words

and arranged them in a vocabulary tree for image match-
ing [13]. Their approach is inefficient for processing large
image features and computationally too slow. Zamir et al.
improved the computational efficiency of feature matching

using a generalised minimum clique problem [12]. However,
their formulation of a fixed nearest neighbour selection algo-
rithm limits the number of matching features and hence does
not allow for image matching improvement.
Zemene et al. [15] designed a more robust geo-localisation

system to localise street view images with higher perfor-
mance compared to the previous studies, and other image
geo-localisation approaches [16], [17].

The improved feature matching approach in [15] is based
on returning a dynamic nearest neighbour of the reference
images using dominant set clustering, which outperforms
the approaches based on multi-KNN with a fixed value
for k . However, improved geo-location estimate increases
the image matching performance with the cost of increased
potential privacy threats. This motivated us to consider the
robust geo-localisation method proposed in [15] as a strong
attack model against AV-generated camera data and draw the
following research questions: 1) To improve privacy, what
features in an image could be manipulated to decrease the
similarity between an original image and its distorted ver-
sion? 2) canwe find a privacy-preserving technique for gener-
ating synthetic AV-camera data that sufficiently balances the
privacy-utility trade-off to suit several data use cases?

In this paper, we propose DeepClean, which answers the
above research questions. DeepClean is a deep clustering
approach which combines VAE with GMM clustering meth-
ods to improve the privacy-utility trade-off. It proposes a
solution for learning and controlling the visual representa-
tion of objects in an image. We consider two labels for the
objects in each image, i.e., private and non-private. Private
objects are those that could significantly help in the geo-
localisation process, such as buildings, pedestrians, vehicles,
and road signs. We use deep clustering to separate (and
then distort) those clusters that include private objects while
retaining the underlying structure of the non-private areas
(e.g., roads). The GMM clustering method is used for learn-
ing clusters of objects in high-dimensional image data that are
well-separated to enforce the privacy/utility requirements.

DeepClean uses the VAE data generation technique to pro-
duce high-dimensional image samples without directly oper-
ating on original data. The VAE approach is flexible for 3D
street viewmodels and traffic analysis applications. A similar
work, ADGAN II [11], also adopts the VAE approach to
improve the data generation performance from distributional
assumptions, while UNIT in ADGAN I [18] uses image-
dependent processing. DeepClean utilises an encoder and
decoder model. Its encoder model encodes data by partition-
ing it into object clusters using our private GMM algorithm.
A function of the algorithm learns a supervised clustering
task and accurately partitions the clusters into private and
non-private object parts by using mask binary code as a key.
The learned private object clusters are distorted by inject-
ing Gaussian noise into their cluster centres. This approach
ensures that we can efficiently preserve privacy in the private
cluster areas without affecting too much visual quality of
the non-private object areas. DeepClean’s decoder model
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decodes the resulting high-dimensional feature representa-
tion from the encoder network into observable samples using
a deep neural network. The model optimisation is achieved
by maximising the expected lower bound of the VAE system.

The main contributions of this paper are as follows:

• We propose DeepClean, a privacy-preserving generative
technique for AV camera data that combines our private
Gaussian Mixture Model (GMM) with a Variational
Autoencoder (VAE) to learn high-dimensional feature
representations of images as a supervised private/non-
private cluster task. Then trains the cluster outputs on a
VAE to generate more privacy-protected samples from
our model.

• We evaluate the privacy performance of DeepClean on
a robust geo-localisation attack (that improves image
matching of distorted images with their trained reference
images) for location inference resistance.

• Our thorough experiments on real-world publicly avail-
able datasets show that DeepClean learns more features
in an image, variably controls privacy/utility require-
ments and generates more privacy-preserved image data
compared to the state-of-the-art.

The remainder of the paper is organised as follows.
Section II discusses the related work and provides the
required background. Section III explains the methodology
and the components of DeepClean. Section IV presents the
evaluation results of the experiments on image quality, utility
and user privacy. Section V concludes the paper and high-
lights future work directions.

II. RELATED WORK AND BACKGROUND
In recent years, machine learning techniques have been
widely utilised and applied along with traditional privacy
techniques (such as K-anonymity and differential privacy)
to address privacy challenges in data mining, publishing,
and storage [19]. A fundamental part of machine learning is
clustering, which involves grouping a set of similar objects
in clusters [20]. Its application in computer vision tasks, e.g.,
object detection, face recognition, and image analysis, has
been widely studied and has achieved efficient performance.
Usually, efficient clustering algorithms are justified by how
well they can represent data, typically performed by solving
an optimisation problem. However, the more complex the
features in an image or video data, the more difficult it
becomes to generate a well-structured representation of the
data using many existing clustering algorithms [21].

Recent works focused on deep learning-based image clus-
tering approaches for feature representations in an unsuper-
vised setting, which are shown to be more efficient than in
supervised settings. For example, in [21], [22], and [23], the
data generation process is performed using an unsupervised
approach, aiming at learning a joint distribution of images
in different domains by using images from the marginal
distribution in individual domains. Yang et al. represented
images using agglomerative clustering and activations of

convolutional neural networks [23]. Hsu et al. proposed a
clustering convolutional neural network to better capture the
salient part of an image without providing any bounding
boxes in the training stage for a better representation [24].
Wang et al. combined Sparse coding base pipeline into deep
learning for clustering, achieving an extremely efficient infer-
ence process and high scalability of large-scale data [22].
Thus, these methods are only efficient on images with fewer
features like the MNIST dataset [25] (the handwritten digits)
and do not consider privacy in the image generation process.

The image translation performance of VAE and the GAN
models has been remarkable recently. Liu et al. proposed an
unsupervised image-to-image translation framework based
on GAN and VAE, which is called UNIT [26]. These
adversarial training objectives interact with a weight-sharing
constraint, enforcing a shared latent space to generate cor-
responding images in two domains. At the same time,
VAE relates translated images with images in the respec-
tive domain. These methods achieve high-quality image
translation results for street-view images and videos. Sim-
ilarly, in DeepClean, we are also taking advantage of the
data generation power of VAE. However, to outperform
GAN-based models, we consider a stricter attack model (the
geo-localisation approach in [15]) and deliver higher privacy
protection.

Recently, Xiong et al. [11], [18] were the first to address
privacy concerns of auto-driving images and videos. The
auto-driving generation neural network (ADGAN I) uses
UNIT to generate data and applies noise directly to the
original image to produce the synthetic samples [18]. This
direct approach gives no flexibility to learn the variations of
samples. Moreover, the added noise affects the whole image
quality. ADGAN II [11] combines GAN with VAE to better
represent street view images. With VAE in ADGAN II, the
synthetic samples can now be produced by a latent vector
without any original data, making ADGAN II more flexible
for real applications, such as the street view image. Generally
speaking, GAN-based models may lose perpetual accuracy
due to the model collapse property of GAN. For this reason,
several methods such as Mean Square Error, Peak Signal-to-
noise Ratio, and Structure Similarity Index Measurement are
used to achieve high perceptual accuracy [27].

Regarding privacy challenges, robust geo-localisation
techniques can variably compute the similarity between the
images generated by the methods using discriminative prox-
imity [28]. A few other techniques proposed a more robust
data generation utilising the data generative power and useful
basic generative structures of VAEwith deep neural networks
for clustering tasks. Acs et al. divided data into clusters
using a differentially private clustering approach [25]. Then
they gave each cluster a separate Generative Neural Network
to train on differentially private gradient descent. The data
partitioning into general clusters led to more accurate syn-
thetic samples than training the whole dataset as a single
model. A more powerful clustering framework was proposed
by [29], which combines VAE and aGMMandmaximises the
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FIGURE 2. Different components of the DeepClean model (including the combination of our differentially private GMM with VAE).

Evidence Lower Bound using Stochastic Gradient Variational
Bayes estimator and the reparameterisation trick. DeepClean
adopts the data generation technique in [29] and optimises
GMM for our specific clustering tasks. The private version of
GMM is employed to inject noises in specific cluster centres.

Some approaches to privacy preservation ensure that
data features must be selectively distorted to balance pri-
vacy/utility trade-offs. In response, Chong [30] proposed a
generative adversarial network that aims at reducing privacy
risks by removing location-relevant information, e.g., back-
ground buildings, from the camera data, before being used
for analysis. The location-relevant information in the camera
data was analysed and reported as a threat to privacy when
providing the data for analysis. Location-relevant information
in the camera data was highlighted as a privacy threat to the
data. Trajectories of a vehicle could be formed or traced by
extracting the location hints from image data and matching
themwith reference data to geolocate them. However, camera
data may also contain other quasi-identifiers (QIDs such as
the human face and vehicle plate number) besides location-
related ones, putting users’ privacy at risk.

To the best of our knowledge, only two research studies
(previously explained in this section [11], [14]) addressed
location inference threats for AV-generated camera data.
Their solution to the problem involves using VAE and
GAN-based models to generate privacy-preserving datasets.
We argue that using GAN in their approach has two prac-
tical limitations. One is that the privacy achieved by the
discriminative distance measurement cannot guarantee the
location privacy of the image objects. Secondly, a robust
geo-localisation tool can exploit the discriminative distance
value of the original and distorted images to estimate the
geo-location of the target image.

In comparison, DeepClean clusters different parts of an
image into private and non-private objects. It then adds noise

to specific private objects without affecting the underly-
ing structure of the non-private objects. It achieves a better
privacy-utility trade-off compared to the state-of-the-art.

III. PROPOSED APPROACH
In this section, we present DeepClean, a privacy-preserving
generative model for AV-generated camera data to address a
balanced privacy-utility trade-off in the presence of a poten-
tial location privacy threat. This section first explains the
considered system and attack model, while Section III-B
presents the details of the proposed approach.

A. SYSTEM MODEL
We assume that we have a set of raw camera data, which
is generated by an AV. We want to generate a synthetic
dataset resilient against location inference attacks. The orig-
inal camera data is passed to the DeepClean model as an
input, and synthetic data is generated as the output. Dif-
ferent components of the DeepClean model are presented
in Figure 2. The first component is the labelled DP-GMM
algorithm to partition the image into k clusters, learn and
predict the labelled clusters, and add Gaussian noise to the
learned private object clusters. The output of this component
is a noisy partitioned cluster. These clusters are then trained
in the encoder g(x, φ) to produce a latent representation z.
A decoder network f (z; θ) interprets z, such that a synthetic
sample can be drawn from the model θ .

Let x be a real camera image such that x ∈ I , where I is a
set of raw images from real AV camera data. An image x is
fed into the model M consisting of inference and generative
processes, and an observable image sample x̂ = M (x) is
generated. Our private Gaussian mixture model is applied
to the sensitive clusters during inference, and the generative
model produces a privacy-preserved image x̂.
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In the inference process, the private GMM component par-
titions the labelled image objects into k clusters,X1,X2,. . . ,Xk
where each cluster is a group of similar objects in X . The
GMM is trained in a supervised setting to classify the objects
in the clusters. Then the GMM trains separately on each
cluster; if the cluster is classified as sensitive, Gaussian noise
is applied to the cluster centre, else it retains its accurate
visual representation (without noise). TheVAE encoder trains
separately on the cluster outputs and maximises the expected
lower bound (ELBO) for optimisation. In the generative pro-
cess, the decoder, a deep neural network f (z; θ) decodes the
embeddings to an observable, where θ is the parameter of the
resulting model.

1) ATTACK MODEL
We consider an attacker or a curious analyst who can access
a target’s camera data. A vehicle user or vehicle is regarded
as a target. A location inference attack can be mounted on
the data with or without external multi-source information
such as trajectory and distance data. The core task of the
attack relies on extracting visual and contextual features, e.g.,
landmarks, background buildings, surrounding vegetation,
and surrounding objects, from query image data. Then the
features extracted from the query data are compared with the
features of an already trained reference image data of a city
or a group of cities (e.g., Google Street View images). If there
is a match of features, the geo-localisation system returns
the nearest neighbour (NN) image reference with matching
features. Then a scheme is used to estimate the location of the
most matching NN or even evaluate the location proximity of
themulti-NN. A robust geo-localisation systemmust improve
image feature matching and geo-location estimates.

As explained in the introduction section, our attack model
is based on the scheme that is proposed by Zemene et al. [15].
It uses discriminative values from the image features in
the NN selection phase, dominant set clustering for feature
matching and constrained dominant set for localising the
best matching reference images. This geo-localisation sys-
tem improves image localisation accuracy by 21% compared
to [13] and [12], which are used as the attack model in the
related work. We assume that if the attacker can access some
AV camera data and, using this sophisticated geo-localisation
system [15], she can infer vehicle location information. More
so, the attacker can still learn estimated location information
from the less privacy-preserved datasets that the state-of-
the-art has generated (e.g., ADGAN [11], [14]). Figure 3
shows the matching reference images of a given distorted
query image data (ADGAN-generated image). The exact
matching image is the nearest neighbour with the most fre-
quent occurrence (the NN with the yellow-coloured ID and
frequency of 6). In contrast, the geo-localisation technique
in [13] and [12] cannot locate the exact match because of its
fixed NN selection constraint.

The attacker is motivated to learn users’ sensitive infor-
mation, such as trajectories that link the target’s past travel
patterns, places of interest, home/work address, and even

FIGURE 3. Image matching of a distorted query image by the Dominant
Set framework [15]. The reference data with the yellow colour ID occurs
most frequently.

predict future journey patterns. The attack resulting from
tracking the victim’s vehicle could be as severe as physical
damage and theft. To control the impact of this attack, privacy
analysts would reduce the precision of extracting sensitive
features and side-channel location information from the data.
A typical privacy-preserving approach would remove or blur
sensitive objects, which is not trivial to achieve. However,
the data utility for analytics purposes, such as auto-driving
navigation analysis, will be affected, and the generated data
may become entirely useless.

This creates a challenge in balancing the privacy-utility
trade-off. Thus, the transformed data must retain statistical
structure in various non-private areas yet preserve the privacy
of the private object areas in the data, which is achieved
through DeepClean.

B. DeepClean DESCRIPTION
As shown in Algorithm 1, a private GMM partitions X
as a mixture of Gaussians with labelled clusters Gρ =
((G1, ρ1), . . . , (Gz, ρz)), where we can choose Gi from the
mixture component G(ρi), such that ρi is a labelled image
object in the independent and identically distributed (i.i.d)
clusters. An output of the private Gaussian mixture partition-
ing algorithm on X is a cluster Gi. Then computes an esti-
mation of the Gaussian mixture parameters z ∼ N (µj, 6j).
Finally, a DNN model f (z; θ) takes z as an input with the
model parameter θ . Model θ is a privacy-preserving model
that can produce synthetic samples.

With the labelled image as input, we run a private version
of Principal Component Analysis (PCA) [31] to project onto
the top k principal components, containing the means of the
components. Our implementation differs because we pass a
label sample image as an input. Then privately run the sub-
function to individually locate components that find a small
ball containing many points. This ensures that all the points
generated from a single Gaussian lie in the same cluster.
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Algorithm 1 DeepClean: Deep Clustering Generative Model
Require: Image Data : x, # of clusters : k, Bounds on the

GMM parameters wmin, σmin, σmax , learning parameter
α, β, Privacy parameters ε, δ > 0

Ensure: A Privacy-Preserving Model θ
1: [G1,G2, . . . ,Gk ]← PGMM

(x, k,R,wmin, σmin, σmax , ε, δ)
2: for j from 1 to k do
3: (µj, 6j) ← PGE((Gj); R,wmin, σmin, σmax , ε, δ);

Comment: Proof of PGE [31]; πj ← |Gj| +
2
√
2 ln (1.25/δ)/ε;

4: end for
5: set weight such that for all; j,wj← πj/(6πj)
6: z← (µj, 6j,wj)kj=1
7: x̂ ← f (z, θ)

We then estimate the mean and variance of the corresponding
Gaussian component privately. Next, we dive into the formal
analysis and justification of the version of the algorithm used
to design DeepClean.

1) GAUSSIAN MIXTURE MODEL
Assuming the underlying distribution G is a mixture of k
Gaussian in high-dimension d , {Gi ∈ Rd }ki=1 is a k distinct
Gaussian distribution with dimension d . The cluster com-
ponent Gi is chosen with probability wi ∈ [0, 1], and the
mean µi ∈ Rd and variance 6 ∈ Rd∗d are the parameters
of the distributed Gaussian. The mixture can be written as the
tuple {(wi, µi, 6i)}i∈[k]. We can accurately recover the tuple
{(ŵi, µ̂i, 6̂i)}i ∈ [k] for a mixture Ĝ. Where ‖ŵ−w‖1, ‖µ̂i −
µi‖Zi, and ‖6̂ −6‖Zi are small for every i ∈ [k]. The vector
‖.‖Z approximately ensures thatN (µi, 6i) andN (µ̂i, 6̂i) are
close in total variation distance and likewise ‖.‖1 ensures the
same for comparing the weights.

To learn from the GMM with n samples, independent
identically distributed (i.i.d.) samples can be obtained from
the mixture D and roughly approximate the parameters of a
mixture D̂ by a probability π : [k] −→ [k] and satisfying
two conditions. One is a separate condition that measures
the learning guarantees of the clustering and shows how
the clusters are well-separated. In our case, it will ensure
that privacy is adequately controlled within the clusters and
limit privacy loss due to distributional assumptions. Secondly,
certain boundedness of themixture components is assumed to
control the output. Let the separation condition satisfy

∀1 ≤ i < j ≤ k, ‖µi − µj‖2 ≥ s.maxσi, σj

For s > 0 the Gaussian mixtureD ∈ G(d, k) is s-separated.
Depending on the number of mixtures and independent of
the dimension d . Assuming some large known quantities
R, σmax , σmin such that

∀i ∈ [k]‖µi‖2 ≤ Randσ 2
min ≤ ‖6i‖2 ≤ σ

2
max

Definition 1((α, β)-Learning): Let the parameters of a
Gaussian mixtures D ∈ G(d, k) be {(µ1, 61,w1),. . . ,
(µk , 6k ,wk )}, an algorithm (α, β)-learns a distribution D
and outputs a distribution D̂ ∈ G(d, k) parameterized by
{(µ̂1, 6̂1, ŵk ),. . . ,(µ̂k , 6̂k , ŵk )}, with a probability of at least
1 − β and a permutation π : [k] −→ [k]. The following
conditions will hold

1. 1 ≤ i ≤ kdTv(N (µi, 6i),N (µ̂π (i), (6̂π(i)) ≤ O(α)

2. ∀1 ≤ i ≤ k, |wi − ŵπ (i)| ≤ O(α/k)
Both conditions imply that dT v(D, D̂) ≤ α
Definition 2 (Learning Labelled Clusters): We learn the

mixture of Gaussian, where we can chooseGi from a mixture
component Gρ i. Such that ρi is a label to predict the mixture
component in the i.i.d. clusters. A labeled cluster is a set
of tuples Gρ = ((G1, ρ1), . . . , (Gm, ρm)) sampled from a
distribution D, where

D ∈ G(d, k, σmin, σmax ,R,wmin, s)

The label ρ is composed of a matrix ρ = ρ(i, j) which
is the same size as D. Each element ρ(i, j) is a label of
corresponding pixels in the original data X . Let pt denote
the label of sensitive clusters in G. The classification result
maps of the non-sensitive clusters in the original distribution
D̂ should be similar.
We aim to locate the clusters distinctly so sensitive clusters

are perturbed, and non-sensitive clusters are unperturbed. So,
we divide the image into sensitive and non-sensitive parts
using masking, where Mt and Mo denote the parts, respec-
tively.Mt is 0− 1 binary matrix which equalsMt (i, j), where
Mt (i, j) = 1 iff ρ(i, j) = ρt and Mo = 1 − Mt where 1 is an
all 1 matrix with the same size as Mt . Our GMM algorithm
locates the object clusters by their binary number label.

2) VARIATIONAL AUTO-ENCODER
In the inference process of the VAE, the encoded latent vari-
able z is obtained from sampling the output of the Gaussian
mixture z ∼ N (µj, σ 2

j ). The reparameterisation trick is used
to adapt the recognition model q(z|Gi) to approximate the
time posterior distribution pθ (z|Gi). So, make z be a deter-
ministic function of φ and some noise ε, where z = f (φ, ε).
A sample can be drawn from a normal distribution like z =
µ+ σε, where ε ∼ N (0, I ).
In the generative process, the obtained latent variable z

is decoded to obtain another distribution pθ (z), where the
synthetic image x̂ can be sampled. The DNN parameters φ
and θ are jointly learned by optimising the ELBO using the
Stochastic gradient descent of the DNN. The ELBO is com-
puted as the difference between the latent variable distribution
and the observed variable distribution as follows;

log p(x) ≥ L(x) = Eqφ(z|x)[log pθ (x|z)]

−KL(qφ(z|x)‖pθ (z))

where the first term of the difference is the expected log-
likelihood, and the second term is the KL divergence.
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To improve the visual quality of the non-private areas,
we inject information about the non-private clusters into the
generative process of the decoder. The conditional informa-
tion ρ’ has the same size as ρ and only holds information
about the non-private objects. Hence, the conditional VAE
reconstruct most labelled non-private areas to preserve util-
ity. The loss function for the conditional VAE based on the
generative model is stated as

Lc(x) = Eqφ(z|x)[logpθ (x|z, ρ′)]− KL(qφ(z|x)‖pθ (z))

3) DIFFERENTIAL PRIVACY
A randomised mechanism M will satisfy (ε, δ)-differential
privacy ((ε, δ) − DP) for learning mixtures of Gaussian if
it takes two pair of image data (X , X̂ ) that differ in one
single item (pixel), the distributions M (X ) and M (X̂ ) are
precisely (ε, δ)-close. If the image data is partitioned into
cluster distributionsX1, . . . ,Xk ∼D for a mixtureD satisfying
separation and boundedness,M (X ) produces an approximate
output to the parameter ofG. The imagesX , X̂ ∈ M and every
set of output O, if M satisfies

Pr[M (X ) ∈ O] ≤ eε .Pr[M (X̂ ) ∈ O]+ δ

where Pr[.] denotes the probability of an event, and δ bounds
the probability of the privacy guarantee not holding, which
is often better set to be less than 1/|D|. Specifically, the
distribution of A(D) and A(D̂) are (ε, δ)-close.
Let’s define the global Lp-sensitivity of the feature vector

f (x), as we inject noise into the cluster centres of specific
locations in the image. If the images consist of n pixels, such
that X = (x1, . . . , xn) and X̂ = (x̂1, . . . , x̂n), the function f
maps the image to feature space, and the sensitivity 1f is
defined as

1pf = max
X ,X̂
||f (X )− f (X̂ )||p

where X , X̂ are neighbouring datasets, 1f is the maximum
differences in f (x) generated by two different images, and
‖.‖p denotes the Lp− norm.

Our privateGMMachieves differential privacy by injecting
Gaussian noise, defined in the following.
Gaussian Mechanism (GM): The GM with parameter

σ adds noise scaled to N (0, σ 2) to each of the private
components of the output. For any G(X ) = f (X ) +
[N1(0,12f .α)],. . . , Nd(0,12f .σ ] where Ni(0,12f .σ ) are
i.i.d. normal random variables with zero mean and variance
(12f .σ )2. Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25/δ),
the Gaussian mechanism with parameter σ ≥ c12f /ε is
(ε, δ)− DP.

To learn our differentially private GMM with well-
separated and bounded image object clusters, we describe the
private GMM conditions in the following theorem (the proof
is available in [31]).
Theorem 1: A (ε, δ)-differentially private algorithm takes

n samples from an unknown mixture of k Gaussians

D ∈ Rd satisfying the above conditions of separation and
boundedness.

n =
( d2

α2wmin
+

d2

αwminε
+
poly(k)d3/2

wminε

)
·poly log

(dkR(σmax/σmin
αβεδ

)
where Wmin = miniwi, with probability at least 1 − β,
learning the parameters of D up to error α. The parameters
α, β, ε, δ are the estimator accuracy of variation distance,
failure probability, and privacy parameters, respectively. R is
the radius of a ball at the centre containing all means, and k
is the ratio of the variances’ upper and lower bound.

Under Theorem 1, we transform data to a lower dimen-
sion space and recursively cluster the data with a Principal
Component Analysis (PCA) [32]. This approach ensures the
maximum effect of the injected noise. The PCA projection
privately learns under the following assumptions: (i) All com-
ponents being spherically Gaussian such that each compo-
nent’s variances lie in a small known range (with bounder
ratio by a constant factor), (ii) The means of the Gaussian
lie in a small ball around the origin. Making the PCA private
by injecting noise into the covariance matrix makes the algo-
rithm private. The projection shifts each component mean
by the complexity of O(

√
kσmin) under the already stated

assumptions and preserves the separation of data because all
variances are within a constant factor of one another. Finally,
cluster data using the 1-cluster method of [33] and learn each
component’s parameters using a simplified version of [34].

IV. EXPERIMENTAL ANALYSIS
To evaluate the performance of DeepClean, we use a
dataset which is a high-dimensional street view scene from
Cityscapes [35]. The image data consists of 2975 training
sets, 500 validation, and 1525 test sets showing street views
of different cities at different times. The images have a size of
256 ∗ 256 and are trained with no data augmentation because
the DNN learnt more patterns and trained faster without it.
We set up our deep-learning Python and Tensorflow on a
Colab playbook.
Training Method – In all the experiments, we follow the

same experimental setup of the VAE network in ADGAN-II
[11] by set epochs to 150 and batch-size of 1. For DeepClean,
the latent dim is 128, the label dim of 64, beta β = 0.65, and
the learning rate of 0.001.

For our comparative analysis, we evaluate the perfor-
mance of DeepClean in comparison with two benchmark
techniques for AV camera data, i.e., ADGAN [11] and
VAE+DP-Kmeans [25]. We chose these two techniques due
to their balanced privacy/utility claims and their use of VAE
models (similar to DeepClean). Regarding the chosen dataset,
ADGANandVAE+DP-kmeansmodels were evaluated using
the Cityscapes dataset.

The comparison results (provided in this section) show
that DeepClean outperforms the considered benchmark
techniques by preserving the better visual quality of the
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TABLE 1. FCN-score comparisons of various generative models on the cityscape dataset.

non-private object parts of an image while resisting location
inference attacks. A brief explanation of these three tech-
niques is provided in the following to improve readability.
• ADGAN [11] – combines VAE and GAN. The synthetic
image is generated by the generator transformation x̂ =
G(x) and applies a privacy loss function Lpri(G) to make
x̂ privacy-preserving.

• VAE + DP-kmeans [25] – combines VAE and private
Kmeans. The synthetic image is generated by adding
differentially private Kmeans on the data points D =
x1, . . . , xN , the results of the cluster data is produced by
a DPKmeans (Parameters) = D1, D2, . . . ,Dk . The out-
put of the parameters is used to learn the VAE generator.

• DeepClean (VAE + DP-GMM) – is our proposed
method to combine VAE and a private GMM. The GMM
is applied to the latent distribution to learn sensitive
and non-sensitive objects in clusters. Gaussian noise is
applied to the sensitive clusters, while the noise does
not impact non-sensitive objects. The clusters are then
trained in a conditional VAE system.

A. EVALUATING IMAGE QUALITY, PRIVACY
AND OVERALL UTILITY
To measure the efficiency of the techniques, we adopt the
FCN score to quantify the features in the generated synthetic
images. FCN score is efficiently adopted to evaluate gen-
erative models quantitatively [36]. Two indicators from the
FCN score are used for the evaluation: pixel accuracy (PA)
and interaction over union (IoU). The PA value estimates
how well the image pixels are represented in percentages.
In contrast, the IoU value estimates the overlap between the
predicted segmentation and the ground truth over the area of
the union between the predicted segmentation and the ground
truth. We run the semantic segmentation model to compute
the PA and IoU values of the generated images.

The evaluation of the indicators is defined as comparing
performances using three metrics, i.e., image quality (IQ),
image utility (IU), and image privacy (IP). IQ is estimated
by taking the average PA and IoU over the whole image,
IU is calculated by averaging PA and IoU over non-private
objects in the image, and IP is estimated by averaging PA
and IoU over the private objects in the image data. As for the
metrics IQ and IU, the higher their value, the better the image
representation performance of the technique.While for IP, the
lower the value, the more privacy is preserved and the more
difficult it is to recognise an object from the image.

We initially show DeepClean produces better IQ and IP
than the other techniques. Table 1 shows the FCN-scores

comparison of DeepClean with the other techniques using the
Cityscapes dataset. DeepClean achieves a global IQ accuracy
of 68.30% PA and 17.15% IoU, slightly as good as ADGAN,
70.69% PA and 17.39% IoU, and VAE+DP-kmeans with
64.60% PA and 15.86% IoU. The drop in performance of
DeepClean compared to ADGAN is due to achieving bet-
ter privacy preservation in the private areas of the images.
However, the overall IQ performance can be improved by
reducing the number of noisy scales on the IP. DeepClean
preserves more privacy by achieving a lower IP value, 6.36%
PA and 2.76% IoU, compared to the other models. By this,
DeepClean shows better resistance to privacy attacks. The
goal to preserve more utility around the non-private object
areas is achieved, with IU measurement of 77.75% PA and
21.20% IoU for DeepClean, which is better than the other
models. The good performance of DeepClean is due to the
good clustering proficiency of GMM on the distributions.
However, the two deep clustering models show the effective-
ness of good clustering in better controlling the image quality
of specific locations in the images.

Figure 4 shows the accuracy of the clustering technique
over some epochs in training the Cityscapes dataset. The
number of clusters k was initially set to 10 to achieve high
clustering performance. Setting the privacy parameters for
the benchmark techniques, we use the default settings in the
K-means model [25], and for the clustering models, noise
scales for clustering σk is set as 1.0 and SGD noise scale
σG as 40. The privacy metric result shows that the Deep-
Clean model achieves reasonable privacy protection better
than ADGAN concerning the utility gained in the non-private
object areas.

FIGURE 4. Clustering accuracy over some epochs during training on the
Cityscapes dataset.
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B. PRIVACY PERFORMANCE
To validate the performance of privacy protection achieved
by our proposed technique, we run the geo-localisation attack
using dominant set clusters (DSC) to localise the query image
data. The reference dataset used for the experiment is 102k
google street view images covering different cities in Europe.
We select 500 sets from Section IV Cityscape test set for
the query image set. The DSC quantifies the percentages
of images that can be localised at 300m from their actual
locations. Localisation above the 300m range is regarded as
non-matching nearest neighbours. Using the DSC and the
constrained DSC post-processing step for feature matching
and geolocating the best matching reference image, respec-
tively, improves the performance of geo-localisation than
the Multi-KNN approach used in other studies for privacy
performance.

Figure 5 shows the privacy performance of DeepClean
on the images compared with the benchmark studies. The
X-axis is the error threshold in meters, and Y-axis is the
percentage of the test set localised within the error thresh-
old. DSC localises the original query images at 74%, about
300m better than Multi-KNN 60%. The higher percentage
result proves a higher risk of location inference threats on
the image data. On the other hand, using distorted images of
ADGAN models as the query image, localisation improves
from 5% to 20% within the error threshold of 60m – 300m.
This improvement indicates that DSC can still match some
features to the produced dynamic corresponding reference
data set. DeepClean reduces localisation accuracy to about
3% - 7%, which is relatively minimal compared to the other
techniques. With this result, there are possibilities that the
original reference images are not included among the match-
ing nearest neighbour images. Both local and global features
present around the classified private object areas are well
distorted to confuse the DSC from detecting stable features.
Only a few images with more stable features around fea-
tures such as road signs, vegetation and structures, apart
from buildings, likely make the matching step. However, the

FIGURE 5. Privacy performance of DeepClean compared with ADGAN.

image is unlikely to return as the best matching image. This
result makes Deepclean images immune to location inference
attacks.

As seen in Figure 6, we tested a fixed Multi-KNN to
examine the performance of the DSC on different numbers
of nearest neighbours. AlthoughMulti-KNN used in previous
works drops in performance when k is ≥ 4, DSC improves
the chances of selecting the original image data as the near-
est neighbour increases. The first 4 NNs retrieved by the
multi-KNN method assume the NNs are the stable features
detected from the image. These detected features show that
they contribute more to the localisation accuracy.

FIGURE 6. Performance comparisons of the techniques with fixed nearest
neighbour.

C. UTILITY PERFORMANCE
To evaluate the utility performance of the DeepClean model,
we measure the structural similarity index (SSIM) of the
generated images. SSIM measures image recognition utility
very close to human visibility [37]. It measures the similarity
between the original and distorted data by a number greater
or equal to 0 and less or equal to 1, where 0 means com-
pletely different, and 1 means the same. Table 2 shows that
DeepClean achieves 0.6012 on the Cityscape data, which is
closer to the value achieved by ADGAN. The slight drop
in utility performance of DeepClean compared to ADGAN
considers the stricter privacy requirements enforced in the
private object areas. This performance only highlights the
challenge of simultaneously achieving a balanced privacy-
utility trade-off in images. Thus, the privacy-utility perfor-
mance results show that a balanced trade-off may not be
achievable to suit all requirements. Therefore, it explains
our approach to achieving more utility in the non-private
object areas. The results produced by DeepClean, as shown

TABLE 2. SSIM measurement on Cityscapes dataset.
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FIGURE 7. Visual quality of non-sensitive object areas and
privacy-preserved sensitive areas using three techniques on the
Cityscapes data.

in Figure 7 (among other image data generated by the other
techniques), generate a more balanced privacy-utility trade-
off regardingmore privacy preservation in private object areas
and utility preserved in non-private object areas. DeepClean
generated data can be used to train AV driving navigation
models.

V. CONCLUSION
Location inference attacks threaten the privacy of
Autonomous vehicle camera data. For this reason, a rea-
sonable level of security and privacy is required to enhance
data storage and sensitive image protections, respectively.
Focusing on the privacy-preservation of AV camera data, this
study has addressed the privacy/utility trade-off for efficient
data analysis and storage. Our proposed generative model
approach integrates a differentially private technique to guar-
antee privacy instead of relying on masking or reconstruction
loss for privacy protection by prior works. The comparative
analysis of themodels showed that DeepClean achieves better
privacy preservation and comparable utility performance
to benchmark models. Future research on AV camera data
privacy preservation could formulate a GAN-based model
amenable to differential privacy. Aiming to utilise generative
and discriminative models for an improved image utility with
a provable privacy guarantee.
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