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Deep neural network models have become powerful tools of machine learning and artificial intelligence. They can approximate
functions and dynamics by learning from examples. This paper reviews the state-of-art of deep learning-based object detection
frameworks that are used for fruit detection in general and for olive fruit in particular. A dataset of olive fruit on the tree is built to
train and evaluate deep models. The ultimate goal of this work is the capability of on-edge real-time olive fruit detection on the
tree from digital videos. Recent work in deep neural networks has led to the development of a state-of-the-art object detector
termed You Only Look Once version five (YOLOVS5). This paper builds a dataset of 1.2 K source images of olive fruit on the tree and
evaluates the latest object detection algorithms focusing on variants of YOLOv5 and YOLOR. The results of the YOLOv5 models
show that the YOLOV5 new network models are able to extract rich olive features from images and detect the olive fruit with a high
precision of higher than 0.75 mAP_0.5. YOLOV5s performs better for real-time olive fruit detection on the tree over other YOLOV5

variants and YOLOR.

Keywords: object detection; olive harvesting; YOLO; deep learning; computer vision

Automation has contributed to different agriculture
applications such as planting, harvesting, disease
recognition, production estimation, quality control, water
management, crop monitoring, control of insecticides,
and soil quality and pesticides. Among these applications,
harvesting is the process that has received the least amount
of technological development for satisfactory automation,
until now most fruit and vegetable harvesting is based on
manual techniques (Jimenez et al., 2000).

In some European Mediterranean countries such as
Spain, ltaly, Greece, and Turkey, olive fruit has strong
agricultural importance, being a big part of the economy.
Currently, Spain is the leading producer of olives and
produces 5,276,899 metric tons of olives on more than
2.4 million hectares of dedicated land. However, despite
worldwide production tripling in the last 60 years, the
worldwide olive oil consumption rate has kept pace with the
production rate, as stated in the last blog of the International
Olive Council (International Olive Council, 2021). This is
unsurprising, as olive oil represents an important dietary
source that has currently entered the production of other
foods. Additionally, olive planting is a traditional part of
the social, economic, and environmental importance to
agriculture in many regions.

Accordingly, one of the important factors that could
affect olive oil productivity is the harvesting method.

Normally, olive harvesting is done by hand, which is a time-
consuming, tedious, and costly process. It involves a large
number of employees and, therefore, high labour costs.
Mechanical olive harvesters can be used to minimize the
time and cost of production. However, during processing,
mechanical harvesters can cause damage such as local tissue
degradation, combined with intracellular water output and
the oxidation of phenolic compounds after impact. A vision
system could be applied to help configure mechanical
harvesters to support and sustain quality, time, and cost. To
the best of authors’ knowledge, an Al-based or smart and
automated olive fruit harvester has not been investigated,
although this technique has had success in harvesting other
kinds of fruits.

Recently, agricultural autonomous robots, namely
Agrobots, have emerged with several agricultural
applications to increase productivity and operation safety
(Mavridou et al., 2019). They mainly deploy computer vision
and machine learning techniques in fruit detection, weed
detection, plant disease detection, fruit quality prediction,
and fruit maturity prediction (Koirala et al., 2019; Zhang et
al., 2020; Bah et al., 2018). Robotic vision, based on feature
algorithms or deep learning algorithms, is required in fruit
detection to guide the robot arm to detach the fruit (Kang
and Chen, 2020b).
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Several studies have been conducted on image features’
categorization for fruit/vegetable detection. The proposed
scheme in Bolle et al. (1996) represents the first attempt
to develop a system which can analyse the fruit's colour,
texture, and density for supermarket applications. In Nguyen
et al. (2016), colour and geometric features have been
deployed in a clustering algorithm for red apple detection.
In Wang and Xu (2018), multiple image features and the
Latent Dirichlet Allocation (LDA) model were deployed for
unsupervised instance segmentation of the fruit.

Deep learning algorithms have been used extensively
in fruit detection because of their higher performance
accuracy. In Kang and Chen (2020a), researchers developed
a framework of a deep learning-based fruit detection
algorithm and clustering-based classifier to assist fast
labelling of training data. In Bresilla et al. (2019), an approach
for fruit detection, based on state-of-the-art deep neural
networks techniques using single-shot YOLO detectors
to detect apples and pears in the tree canopy, has been
presented. The results have shown that modifications to
the input grid on the standard model of YOLO vyield better
detection.

A considerable number of studies have focused on
evaluating the trees’ health, disease, trees detection, trees
counting and olive trees quality testing. In Beyaz and Ozturk
(2016), the olive cultivars were identified using image
processing techniques based on the genetic identification
method. In Di Nisio et al. (2020), a hybrid approach
(combination of multispectral information and spatial data)
was presented to monitor the spread of olive quick decline
syndrome (OQDS) in olive trees. In Martinelli et al. (2019),
an image processing-based technique using iTRAQ method
was introduced to detect and classify the spot disease based
on using the analysis of olive tree leaf textures. A multi-step
algorithm to automatically detect and count the olive trees
in satellite images has been presented in Khan et al. (2018).

There is no existing research concerning olives detection
for harvesting applications based on Deep Learning (DL)
techniques. The main reason for the lack of research in this
area is the existing challenges. This includes the olives’ small
fruit size that means the acquired images may contain fruit
with any number, different sizes, colours, random position,
and shape. In this study, working in a real-life environment
created additional challenges that should be considered,
such as olive fruits occlusion with themselves or with other
parts of the tree (leaves or/and branches), shadows, and
lighting conditions. These challenges show the importance
of selecting a suitable machine learning model that has
high detection accuracy and achieves real-time detection
for on-edge applications.

The smart system of olive harvesting should have the
ability to detect and localize olive fruit from digital images.
The proposed design aims to guarantee the efficiency and
consistency of the method of olive harvesting. This paper
builds a dataset of 1200 source images of olive fruit on the
tree and evaluates the latest object detection algorithms
focusing on variants of YOLOv5 and YOLOR. The results of
the YOLOvV5 models show that the YOLOv5 new network
models are able to extract rich olive features from images
and detect the olive fruit with a high precision of higher
than 0.7 mAP_0.5.
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The rest of the paper is organized as follows: Section 2
gives a brief background on YOLO approaches and the olive
detection model implementation. Section 3 demonstrates
and discusses the results while section 4 concludes the
paper along with future work.

Material and methods

YOLO

You Only Look Once (YOLO) is a new approach for object
detection (Redmon and Farhadi, 2017). In YOLO, objects
can be detected and located at one glance (Du, 2018).
YOLO divides the input image into N grids, each with
equal dimensions of SxS. Each grid is responsible for the
detection and localization of the object it contains. YOLO
predicts the coordinates of bounding boxes directly using
fully connected layers on the top of the convolutional
feature extractor. Several versions of YOLO have been
developed to enhance its performance, YOLO, YOLOv2 and
YOLO9000, YOLOv3, YOLOv4, and YOLOV5. YOLO models
have a high performance and are appropriate for on-device
deployment.

In 2020, Glenn Jocher introduced YOLOV5 (Jocher, 2020),
whilst the model architecture remains close to YOLOV4, it
derives most of its performance improvement from PyTorch
training procedures. The major YOLOv5 improvements
include mosaic data augmentation and auto-learning
bounding box anchors. The release of YOLOvV5 includes
different models’ sizes: YOLOv5s, YOLOv5m, YOLOV5I, and
YOLOvV5x. YOLOVS5 is superior to YOLOv4 in terms of speed,
accuracy, and size (Nelson and Solawetzet, 2020).

YOLOR was published in May 2021 (Wang et al., 2021)
and stands for “You Only Learn One Representation”. It is
proposed as a unified network to encode implicit knowledge
and explicit knowledge together. YOLOR aims to implement
a technique that can serve many tasks for a given one input.
YOLOR is designed to be specifically for object detection,
rather than other machine learning use cases such as object
identification or analysis.

Olive detection model implementation

To simplify the implementation of the olive detection
model, Fig. 1 shows the main and detailed steps of the
implementation process. The process includes three main
steps:

1. Data preparation: in which olive trees’ images
are collected, pre-processed, annotated, and
augmented to build the dataset for training,
evaluating, and testing the YOLO model.

2. Model implementation: in which a deep learning
model is selected and trained on both the training
and validation datasets and then, evaluated on the
test dataset.

3. Model inference: in which the detection model is
deployed on real-life olive images.

Data preparation

The proposed detection model aimed to detect the olive
fruit on twigs and branches. This model was implemented
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Fig.1 Flowchart of the olive detection model implementation

and trained on real olive fruit images that are acquired
under different circumstances. Thus, it can be deployed
on-edge to detect olive fruits on the tree using a digital
camera. This sub-section demonstrated the image
acquisition process of olive trees and branches, in addition
to steps followed to annotate olive fruit and implementing
a state-of-art dataset.

Image acquisition

The images of olive twigs and branches were captured using
an RGB camera with a resolution of 2736 x 3648 pixels from
10 olive farms in Jordan. A set of 1200 source images was
collected of different olive trees (Nabali, Rasie Nassohi and
Souri) in Irbid, Tafila, Madaba, and Karak cities. All images
were captured under natural daylight from 10:00 am
to 6:00 pm to obtain varying illumination conditions.
The digital camera was mounted at a height between
0.5 and 1.5 m with a distance range to tree of between
0.5 and 1.5 m. These distances were selected to simulate the
camera mounted on a robotic arm in the final phase of the
system. This should assist a future automated harvesting
robot in locating and harvesting the designated areas.
Images were categorized based on capturing illumination
and shadowing as 820 images under high illumination
(collection time from 10:00 am to 3:00 pm) and 380 under
low illumination (collection time from 3:00 pm to 6:00 pm).
Additional categorization was also based on olive fruit
colours, using 750 and 450 images of green and black olives,
respectively. These variations of source images increased
the detection efficiency and made the detection model
invariant to scale, colour, and illumination. All images were
resized to a resolution of 1094 x 1459 pixels. Figure 2 shows
the samples of olive images.

Fig.2 Sample examples of olive images




Annotation, preprocessing, augmentation, and dataset
preparation

Olive fruit in the original images was labelled using LabelMe,
anopenaccessannotationtool (Russell etal., 2008). Anumber
of 40,834 different olive fruits were annotated with class
“olive” across the 1200 images. These annotations include
partially occluded and clearly visible olive fruits. Figure
3 shows some annotations of olive fruits on the original
images. Images were uploaded to Roboflow, a computer
vision platform to construct the dataset, and divided into
training, validation, and test datasets. Allimages were resized
to 800x600 pixels, augmented to increase the size of image
dataset to 4800 images. Three augmentation parameters
were applied to the source images: Rotation: between
-18° and +18° Brightness: between -19% and +19%, and
Blurring: up to 1.25 px.

Model implementation

The performance of object detection improved considerably
after the advent of the YOLO and R-CNN families.
Convolutional layers are employed in most image-related
neural networks. Convolutional Neural Networks (CNNs)
learn image representations by performing a sliding window
approach. The selection of a detection model, training and
evaluation are described in this section.

Model selection

YOLOvV5s was selected as the olive object detection model
after trialling and comparing it with YOLOv5x and YOLOR
for accuracy and speed. For the real-time application
discussed in the paper, speed is more critical than accuracy.
Different YOLO variants models such as Yolo 5 X, S and YoloR
were tested on the olive dataset which has 1200 source
images. The source images were augmented to generate

4800 images using the Roboflow platform. The dataset was
divided into three subsets: a set of 4000 training images,
a set of 400 validation images, and a set of 400 testing
images.

The network architecture of YOLOvV5s, as shown in Fig.
4, consists of three parts: (1) Backbone: CSPDarknet, (2)
Neck: PANet, and (3) Detect: YOLO Layer. The image was
first inputted to CSPDarknet for feature extraction, and then
fed to PANet for feature fusion. Finally, YOLO Layer outputs
detection results (class, score, location, size).

Model hyperparameters optimization

The use of network architecture, such as YOLOv5s, and
optimizing hyperparameters are both effective and
robust in detecting and localizing olives as an object.
Hyperparameters are variables that determine the network
topology for example, how the network is trained (e.g.,
Learning Rate). Initially, hyper parameters were selected
before training and optimizing the network parameters
(weights and bias).

Tuning hyperparameters of the YOLO model to improve
model performance and precision is a challenging job,
because of the time required to train models based on
different hyperparameters such as Anchor, Learning Rate,
and Weight Decay with wide range of values. Table 1
illustrates four different hyperparameter combinations (A, B,
C, and D) for olive detection model performance evaluation.

Anchor: is a predefined boundary defined boxes with
a set of height and size. They are used to improve the
accuracy and speed of the model.

Learning Rate: is a tuned parameter determining the
step size of each iteration to minimize loss function.

Weight Decay: is a regularization technique used to
avoid the overfitting of the model.

Fig.3 Examples of annotated images including occluded and non-occluded olive fruits




Backbone

Fig.4 YOLOvS5s architecture

CSP - cross stage partial tetwork; CBL — convolution-batch normalization - leak RelLU; SPP - spatial pyramid pooling; Concat —

concatenation function; Conv - convolutional layer

Table 1 Optimized hyperparameters
Anchor Learning rate Weight decay
A 4 0.01 0.0005
B 6 0.01 0.0005
C 3 0.001 0.0005
D 4 0.01 0.05

Experimental results of object detection models are
shown in Table 2. These results are based on augmented
dataset which was trained using hyperparameter
optimization and transfer learning. The mean average
precision (mAP_0.5) was compared for the different models
to evaluate accuracy. In addition, the precision parameter
is an additional parameter calculating the accuracy of the
models. The hyperparameter group A has the best precision

compared to the other hyperparameter groups. Comparing
the models in the group A, the YOLOv5x model seems to
provide higher precision compared to the YOLOv5s model.

Different hyperparameter combinations were evaluated
using the YOLOv5s model for the olive images dataset.
This evaluation process took approximately 96 hours using
a high-performance computer with 2X Nvidia A100 GPUs,
2 TB memory, and approximately 4800 images. The patch
was set to 64 and epoch to 300 for evaluation.

The output results illustrated in Fig. 5 show the best
hyperparameter found from the evaluation training on olive
images using YOLOV5s.

The training box loss was compared for different models
with different combination of hyperparameters (A, B, C,
and D), as shown in Fig. 6. The YOLOv5 model S with the
hyperparameter optimized categories D and C shows low
loss compared to the categories A and B (Fig. 6a), which

Table 2 The difference in precision between the A, B, C, and D categories once models have been trained
Name Hyperparameter mAP_0.5 Precision Box_loss Obj_loss
YOLOv5x 0.7708 0.4279 0.0605 0.2696
YOLOvV5s P 0.7265 0.3871 0.0639 0.2818
YOLOv5x 0.7116 0.3991 0.0463 0.2104
YOLOV5s ¢ 0.6827 0.3794 0.0517 0.2269
YOLOv5x 0.7330 0.4873 0.0619 0.2574
YOLOvV5s ® 0.7384 0.4045 0.0703 0.3066
YOLOv5x 0.7559 0.4675 0.0507 0.2255
YOLOV5s A 0.7413 0.4366 0.0565 0.2538
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implies the categories D and C demonstrated a better
performance in classifying input data and output targets.
However, Fig. 6b represents the model X, which shows
slightly lower loss for the hyperparameter categories A and
C compared to the model S categories A and C.

Experimental platform and model training

The model was trained using the YOLOVS5 variants (YOLOv5s,
YOLOvV5x) and YOLOR. These models are evaluated in this
work for olive fruit detection for only one class named“olive”.

Model evaluation indicators

The model detection performance was evaluated using
mean average precision (mAP), recall, precision, train and
validation bounding box loss, and object classification loss
metrics. The evaluation metrics that were used to evaluate
the model are explained as follows:

Precision is a measure of a network’s ability to accurately
identify targets at a single threshold, calculated by:

true positive Tp

recision = or
P actual results Tp+Fp

(1

Recall is a measure of the network’s ability to detect its
target, calculated by:

olive positive Tp

recall = r
Tp+Fn

B predicted results

)

Intersection over Union (loU) is a method used to
compare two arbitrary shapes, i.e., object widths, heights,
and location of two boxes into the original region. This will
evaluate the precision of the object detector on particular
data set (Rezatofighi et al., 2019), as in Eq. (3). Figure 7 shows
how loU is calculated diagrammatically.

oy 2 9red of ovel.'lap 3)
area of union

Average precision is a method combining recall and
precision for the entire ranking. It is the average of precision
in a single ranking (Everingham et al., 2010):

TP(c)

1
AP= 4
|class| Z‘E""” TP(c)+ FP(c) @

Mean average precision (mAP) is the average of precision
values at the rank where there is a relevant document. It is
calculated from precision, recall, and interception over
union /OU.

_ AP
total number of class

5)

where: Tp - are the Bounding Boxes (BB) that have the
intersection over union (loU) with the ground truth
(GT) above 0.5; Fp - two cases - (a) BB that have
loU with GT below 0.5, (b) BB that have loU with GT
that has already been detected; Th - there are no

true negatives, the image is expected to contain at
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Intersection

Detected Box

Detected Box

Fig.7 Diagrammatic example intersection over union

calculation

least one object; Fn — images containing an object
where the method failed to produce a BB

Training loss is the error cost of bad prediction based
on the difference between the predicted value and the true
value.

SZ
loss = Z(coord Err +iouErr +cls Err) (6)

i=0

Validation loss is the same metric as training loss, but it
is not used to update the weights. However, it is used to find
the best combination of hyperparameters in order to ensure
better model generalization and avoid overfitting.

Validation loss is calculated by comparing the output Y of
the validation set with ground truth Y, using a loss function:

N

1
J==—> L(Y,Y. 7
NZ( ) (7)

i=1

L - the individual loss function based on the
difference between predicted value and target

where:

Results and discussion

This paper builds a dataset of 1.2 K source images of olive
fruit on the tree and evaluates the latest object detection
algorithms focusing on the variants of YOLOv5 and YOLOR.
The results of the YOLOvV5 models show that the YOLOv5
new network models can extract rich olive features from
images and detect the olive fruit with a high precision above
0.75 mAP_0.5. YOLOv5s performs the best for real-time
olive fruit detection on the tree over other YOLOV5 variants
and YOLOR. Furthermore, the latency will be compared
for different object detection models that have adequate
precision.

Models’ precision comparison

To evaluate the final detections, mAP_0.5 was measured
with averaging over loU thresholds at [0.5: 0.05: 0.95] for
the hyperparameter category A. The mAP_0.5 results in
this system were compared for YOLOv5s with the original
YOLOVS5s results. The mAP_0.5 results were also compared
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for YOLOvS5s, YOLOv5x, and YOLOR when trained on the
olive dataset.

In this section, the mAP_0.5 value was compared for
the two variants of YOLOv5, named YOLOv5s and YOLOv5x.
These two variants were specifically chosen because
YOLOvV5x is the largest and YOLOV5s is the smallest. Hence,
there was no need to compare mAP_0.5 with other YOLOV5
variants. Figure 8 shows mAP_0.5 for the model YOLOv5x
and YOLOv5s. As shown in Fig. 8, the steady-state mAP_0.5
value is approximately 0.75 for both models. The mAP_0.5
value is considered high compared with the mAP_0.5 value

of the original YOLOv5s, as shown in Table 3. This mAP_0.5
value indicates high detection precision for the olive
harvesting application.

The original YOLOV5 is a family of object detection
architectures and models pre-trained on the COCO dataset.
YOLOv5s was trained using a V100 GPU.

Recently developed YOLOR was also tested and
compared with YOLOV5s using the olive dataset. Figure 9
shows that the mAP_0.5 values of both YOLOv5s and YOLOR
after sufficient training are 0.75 and 0.7, respectively. There
is approximately 0.05 mAP_0.5 difference between YOLOR
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Table 3 Comparison between the original YOLOv5s trained on COCO dataset (Jocher, 2020) and YOLOv5s model trained on
olive dataset
Model Dataset Dataset size No. of Size mAP_0.5 GPU Speed Params
classes (pixels) (ms) (M)
Original
YOLOVS5s COCO 5000 80 640 X 640 55.4 V100 2.0 7.3
YOLOvSsin Olive 4800 1 600 X 800 75.0 A100 16.0 7.3
this paper
Table 4 Detection speed comparison between YOLOR, YOLOV5x, and YOLOvV5s
YOLOvVS5s YOLOv5x YOLOR
Latency 0.016s 0.031s 0.039s
Speed 62 FPS 32 FPS 25 FPS

and YOLOv5s. Therefore, YOLOv5s outperforms YOLOR in
terms of precision.

Models’ latency comparison

The main purpose of this research is to process the real-
time streaming video for the olive harvesting process.
The detection of olives on the tree should be real-time
and on edge as well; therefore, low latency is crucial for

olive harvesting application. In this subsection, latency is
compared for the YOLOv5s, YOLOvV5x, and YOLOR models
that achieved an adequate precision as shown in the
previous section.

Object detection models were tested on 50 images to
compare the detection speed, which is the opposite of the
model latency. Table 4 shows a comparison of detection
latency among the YOLOV5s, YOLOvV5x, and YOLOR models.

Robotic Vehicle
(Husky A200)

Fig. 10 a) Hardware setup of the real-time olive detection model implementation; b) Artificial olive tree
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As shown in Table 4, YOLOvS5s outperforms the other two
models in olive detection speed. An image took an average
of 0.016 seconds. Therefore, YOLOV5s can achieve 62 frames
per second (FPS).

Real-time implementation

The detection model was also deployed on edge to validate
its real-time performance. The hardware (as shown in Fig.
10a) has been setup using the following components:
1. Lenovo Thinkcentre M710Q PC is equipped with an
Intel Core i3-6100T processor and 8 GB Memory on
Ubuntu 20.0;
2. Microsoft LifeCam Studio Webcam;
3. Husky A200 UGV;
4. Velodyne LiDAR 3d;
5. digital screen.
The experiment was performed at AMRC North West labs on
an artificial olive tree (shown in Fig. 10b).

Object detection inference time depends on the
hardware specifications where the model is implemented.
Moreover, inference time also depends on images size.

The Husky robot moves around the tree capturing a real-
time video using the mounted webcam, as shown in Fig. 10.
The size of each captured image is 415 x 289 pixels. Real-
time olive fruit detection and recognition is performed on
the captured images and recognition results are displayed
on the digital screen.

Inference time is proportionally dependent on the
number of detected olive fruits. The actual range of inference
time per image ranges between 56 ms and 3.395 s.

Conclusion

The need for agricultural revolution is well recognized and
the application of real-time systems in various aspects of
the farming industry is a necessity. Artificial intelligence and
data analysis play a key role in real-time systems and many
opportunities for its application exist within the agriculture
harvesting chain. Yet there are areas of the farming industry
considered to be challenging for the current digitalization
revolution such as olive harvesting. This project, novel olive
harvesting is focused on researching the best practices to
improve olive harvesting and farm productivity.

The use of a real-time compatible system with high
speed (YOLOVS5) capabilities to localize olives on the tree as
an object has been discussed in this paper. This application
helps improve the quality and productivity of olive farms
and could provide the required data for forecasting futuristic
yielding.

Considering multiple versions of Al algorithms taking
into account real-time speed, accuracy, and model size, the
YOLOv5 model satisfied all olive project requirements. The
YOLOV5 model is small in size (i.e., requires less processing)
with high speed (i.e., best suited for real-time applications)
compared to the other models such as the YOLOv5 model
x. Notwithstanding that, the model is able to localize more
than 95% of the olives on the tree.
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