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Automation has contributed to different agriculture 

applications such as planting, harvesting, disease 

recognition, production estimation, quality control, water 

management, crop monitoring, control of insecticides, 

and soil quality and pesticides. Among these applications, 

harvesting is the process that has received the least amount 

of technological development for satisfactory automation, 

until now most fruit and vegetable harvesting is based on 

manual techniques (Jimenez et al., 2000).

In some European Mediterranean countries such as 

Spain, Italy, Greece, and Turkey, olive fruit has strong 

agricultural importance, being a big part of the economy. 

Currently, Spain is the leading producer of olives and 

produces 5,276,899 metric tons of olives on more than 

2.4 million hectares of dedicated land. However, despite 

worldwide production tripling in the last 60 years, the 

worldwide olive oil consumption rate has kept pace with the 

production rate, as stated in the last blog of the International 

Olive Council (International Olive Council, 2021). This is 

unsurprising, as olive oil represents an important dietary 

source that has currently entered the production of other 

foods. Additionally, olive planting is a traditional part of 

the social, economic, and environmental importance to 

agriculture in many regions. 

Accordingly, one of the important factors that could 

affect olive oil productivity is the harvesting method. 

Normally, olive harvesting is done by hand, which is a time-

consuming, tedious, and costly process. It involves a large 

number of employees and, therefore, high labour costs. 

Mechanical olive harvesters can be used to minimize the 

time and cost of production. However, during processing, 

mechanical harvesters can cause damage such as local tissue 

degradation, combined with intracellular water output and 

the oxidation of phenolic compounds after impact. A vision 

system could be applied to help configure mechanical 

harvesters to support and sustain quality, time, and cost. To 

the best of authors’ knowledge, an AI-based or smart and 

automated olive fruit harvester has not been investigated, 

although this technique has had success in harvesting other 

kinds of fruits.

Recently, agricultural autonomous robots, namely 

Agrobots, have emerged with several agricultural 

applications to increase productivity and operation safety 

(Mavridou et al., 2019). They mainly deploy computer vision 

and machine learning techniques in fruit detection, weed 

detection, plant disease detection, fruit quality prediction, 

and fruit maturity prediction (Koirala et al., 2019; Zhang et 

al., 2020; Bah et al., 2018). Robotic vision, based on feature 

algorithms or deep learning algorithms, is required in fruit 

detection to guide the robot arm to detach the fruit (Kang 

and Chen, 2020b).
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show that the YOLOv5 new network models are able to extract rich olive features from images and detect the olive fruit with a high 
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Several studies have been conducted on image features’ 

categorization for fruit/vegetable detection. The proposed 

scheme in Bolle et al. (1996) represents the first attempt 

to develop a system which can analyse the fruit‘s colour, 

texture, and density for supermarket applications. In Nguyen 

et al. (2016), colour and geometric features have been 

deployed in a clustering algorithm for red apple detection. 

In Wang and Xu (2018), multiple image features and the 

Latent Dirichlet Allocation (LDA) model were deployed for 

unsupervised instance segmentation of the fruit.

Deep learning algorithms have been used extensively 

in fruit detection because of their higher performance 

accuracy. In Kang and Chen (2020a), researchers developed 

a framework of a deep learning-based fruit detection 

algorithm and clustering-based classifier to assist fast 

labelling of training data. In Bresilla et al. (2019), an approach 

for fruit detection, based on state-of-the-art deep neural 

networks techniques using single-shot YOLO detectors 

to detect apples and pears in the tree canopy, has been 

presented. The results have shown that modifications to 

the input grid on the standard model of YOLO yield better 

detection. 

A considerable number of studies have focused on 

evaluating the trees’ health, disease, trees detection, trees 

counting and olive trees quality testing. In Beyaz and Ozturk 

(2016), the olive cultivars were identified using image 

processing techniques based on the genetic identification 

method. In Di Nisio et al. (2020), a hybrid approach 

(combination of multispectral information and spatial data) 

was presented to monitor the spread of olive quick decline 

syndrome (OQDS) in olive trees. In Martinelli et al. (2019), 

an image processing-based technique using iTRAQ method 

was introduced to detect and classify the spot disease based 

on using the analysis of olive tree leaf textures. A multi-step 

algorithm to automatically detect and count the olive trees 

in satellite images has been presented in Khan et al. (2018). 

There is no existing research concerning olives detection 

for harvesting applications based on Deep Learning (DL) 

techniques. The main reason for the lack of research in this 

area is the existing challenges. This includes the olives’ small 

fruit size that means the acquired images may contain fruit 

with any number, different sizes, colours, random position, 

and shape. In this study, working in a real-life environment 

created additional challenges that should be considered, 

such as olive fruits occlusion with themselves or with other 

parts of the tree (leaves or/and branches), shadows, and 

lighting conditions. These challenges show the importance 

of selecting a suitable machine learning model that has 

high detection accuracy and achieves real-time detection 

for on-edge applications.

The smart system of olive harvesting should have the 

ability to detect and localize olive fruit from digital images. 

The proposed design aims to guarantee the efficiency and 

consistency of the method of olive harvesting. This paper 

builds a dataset of 1200 source images of olive fruit on the 

tree and evaluates the latest object detection algorithms 

focusing on variants of YOLOv5 and YOLOR. The results of 

the YOLOv5 models show that the YOLOv5 new network 

models are able to extract rich olive features from images 

and detect the olive fruit with a high precision of higher 

than 0.7 mAP_0.5.

The rest of the paper is organized as follows: Section 2 

gives a brief background on YOLO approaches and the olive 

detection model implementation. Section 3 demonstrates 

and discusses the results while section 4 concludes the 

paper along with future work.

YOLO 

You Only Look Once (YOLO) is a new approach for object 

detection (Redmon and Farhadi, 2017). In YOLO, objects 

can be detected and located at one glance (Du, 2018). 

YOLO divides the input image into N grids, each with 

equal dimensions of S×S. Each grid is responsible for the 

detection and localization of the object it contains. YOLO 

predicts the coordinates of bounding boxes directly using 

fully connected layers on the top of the convolutional 

feature extractor. Several versions of YOLO have been 

developed to enhance its performance, YOLO, YOLOv2 and 

YOLO9000, YOLOv3, YOLOv4, and YOLOv5. YOLO models 

have a high performance and are appropriate for on-device 

deployment.

In 2020, Glenn Jocher introduced YOLOv5 (Jocher, 2020), 

whilst the model architecture remains close to YOLOv4, it 

derives most of its performance improvement from PyTorch 

training procedures. The major YOLOv5 improvements 

include mosaic data augmentation and auto-learning 

bounding box anchors. The  release of YOLOv5  includes 

different models’ sizes: YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x. YOLOv5 is superior to YOLOv4 in terms of speed, 

accuracy, and size (Nelson and Solawetzet, 2020). 

YOLOR was published in May 2021 (Wang et al., 2021) 

and stands for “You Only Learn One Representation”. It is 

proposed as a unified network to encode implicit knowledge 

and explicit knowledge together. YOLOR aims to implement 

a technique that can serve many tasks for a given one input. 

YOLOR is designed to be specifically for object detection, 

rather than other machine learning use cases such as object 

identification or analysis. 

Olive detection model implementation

To simplify the implementation of the olive detection 

model, Fig. 1 shows the main and detailed steps of the 

implementation process. The process includes three main 

steps: 

1. Data preparation: in which olive trees’ images 

are collected, pre-processed, annotated, and 

augmented to build the dataset for training, 

evaluating, and testing the YOLO model. 

2. Model implementation: in which a deep learning 

model is selected and trained on both the training 

and validation datasets and then, evaluated on the 

test dataset. 

3. Model inference: in which the detection model is 

deployed on real-life olive images. 

Data preparation

The proposed detection model aimed to detect the olive 

fruit on twigs and branches. This model was implemented 

Material and methods
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and trained on real olive fruit images that are acquired 

under different circumstances. Thus, it can be deployed 

on-edge to detect olive fruits on the tree using a digital 

camera. This sub-section demonstrated the image 

acquisition process of olive trees and branches, in addition 

to steps followed to annotate olive fruit and implementing 

a state-of-art dataset.

Image acquisition 

The images of olive twigs and branches were captured using 

an RGB camera with a resolution of 2736 × 3648 pixels from 

10 olive farms in Jordan. A set of 1200 source images was 

collected of different olive trees (Nabali, Rasie Nassohi and 

Souri) in Irbid, Tafila, Madaba, and Karak cities. All  images 

were captured under natural daylight from 10:00 am 

to 6:00  pm to obtain varying illumination conditions. 

The digital camera was mounted at a height between 

0.5  and 1.5 m with a distance range to tree of between 

0.5 and 1.5 m. These distances were selected to simulate the 

camera mounted on a robotic arm in the final phase of the 

system. This should assist a future automated harvesting 

robot in locating and harvesting the designated areas. 

Images were categorized based on capturing illumination 

and shadowing as 820 images under high illumination 

(collection time from 10:00 am to 3:00 pm) and 380 under 

low illumination (collection time from 3:00 pm to 6:00 pm). 

Additional categorization was also based on olive fruit 

colours, using 750 and 450 images of green and black olives, 

respectively. These variations of source images increased 

the detection efficiency and made the detection model 

invariant to scale, colour, and illumination. All images were 

resized to a resolution of 1094 × 1459 pixels. Figure 2 shows 

the samples of olive images.

Fig. 2 Sample examples of olive images

Fig. 1 Flowchart of the olive detection model implementation
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Annotation, preprocessing, augmentation, and dataset 

preparation

Olive fruit in the original images was labelled using LabelMe, 

an open access annotation tool (Russell et al., 2008). A number 

of 40,834 different olive fruits were annotated with class 

“olive” across the 1200 images. These annotations include 

partially occluded and clearly visible olive fruits. Figure 

3 shows some annotations of olive fruits on the original 

images. Images were uploaded to Roboflow, a computer 

vision platform to construct the dataset, and divided into 

training, validation, and test datasets. All images were resized 

to 800×600 pixels, augmented to increase the size of image 

dataset to 4800 images. Three augmentation parameters 

were applied to the source images: Rotation:  between 

-18° and +18°; Brightness:  between -19% and +19%, and 

Blurring: up to 1.25 px. 

Model implementation 

The performance of object detection improved considerably 

after the advent of the YOLO and R-CNN families. 

Convolutional layers are employed in most image-related 

neural networks. Convolutional Neural Networks (CNNs) 

learn image representations by performing a sliding window 

approach. The selection of a detection model, training and 

evaluation are described in this section.

Model selection

YOLOv5s was selected as the olive object detection model 

after trialling and comparing it with YOLOv5x and YOLOR 

for accuracy and speed. For the real-time application 

discussed in the paper, speed is more critical than accuracy. 

Different YOLO variants models such as Yolo 5 X, S and YoloR 

were tested on the olive dataset which has 1200 source 

images. The source images were augmented to generate 

4800 images using the Roboflow platform. The dataset was 

divided into three subsets: a set of 4000 training images, 

a  set of 400 validation images, and a set of 400 testing 

images. 

The network architecture of YOLOv5s, as shown in Fig. 

4, consists of three parts: (1) Backbone: CSPDarknet, (2) 

Neck: PANet, and (3) Detect: YOLO Layer. The image was 

first inputted to CSPDarknet for feature extraction, and then 

fed to PANet for feature fusion. Finally, YOLO Layer outputs 

detection results (class, score, location, size).

Model hyperparameters optimization 

The use of network architecture, such as YOLOv5s, and 

optimizing hyperparameters are both effective and 

robust in detecting and localizing olives as an object. 

Hyperparameters are variables that determine the network 

topology for example, how the network is trained (e.g., 

Learning Rate). Initially, hyper parameters were selected 

before training and optimizing the network parameters 

(weights and bias).

Tuning hyperparameters of the YOLO model to improve 

model performance and precision is a challenging job, 

because of the time required to train models based on 

different hyperparameters such as Anchor, Learning Rate, 

and Weight Decay with wide range of values. Table 1 

illustrates four different hyperparameter combinations (A, B, 

C, and D) for olive detection model performance evaluation. 

Anchor: is a predefined boundary defined boxes with 

a  set of height and size. They are used to improve the 

accuracy and speed of the model.  

Learning Rate: is a tuned parameter determining the 

step size of each iteration to minimize loss function. 

Weight Decay: is a regularization technique used to 

avoid the overfitting of the model.

Fig. 3 Examples of annotated images including occluded and non-occluded olive fruits
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Table 1 Optimized hyperparameters

Anchor Learning rate Weight decay

A 4 0.01 0.0005

B 6 0.01 0.0005

C 3 0.001 0.0005

D 4 0.01 0.05

Experimental results of object detection models are 

shown in Table 2. These results are based on augmented 

dataset which was trained using hyperparameter 

optimization and transfer learning. The mean average 

precision (mAP_0.5) was compared for the different models 

to evaluate accuracy. In addition, the precision parameter 

is an additional parameter calculating the accuracy of the 

models. The hyperparameter group A has the best precision 

compared to the other hyperparameter groups. Comparing 

the models in the group A, the YOLOv5x model seems to 

provide higher precision compared to the YOLOv5s model. 

Different hyperparameter combinations were evaluated 

using the YOLOv5s model for the olive images dataset. 

This evaluation process took approximately 96 hours using 

a  high-performance computer with 2X Nvidia A100 GPUs, 

2 TB memory, and approximately 4800 images. The patch 

was set to 64 and epoch to 300 for evaluation. 

The output results illustrated in Fig. 5 show the best 

hyperparameter found from the evaluation training on olive 

images using YOLOv5s. 

The training box loss was compared for different models 

with different combination of hyperparameters (A, B, C, 

and D), as shown in Fig. 6. The YOLOv5 model S with the 

hyperparameter optimized categories D and C shows low 

loss compared to the categories A and B (Fig. 6a), which 

Fig. 4 YOLOv5s architecture
CSP – cross stage partial tetwork; CBL – convolution-batch normalization – leak ReLU; SPP – spatial pyramid pooling; Concat – 

concatenation function; Conv – convolutional layer

 

Table 2 The difference in precision between the A, B, C, and D categories once models have been trained

Name Hyperparameter mAP_0.5 Precision Box_loss Obj_loss

YOLOv5x
D

0.7708 0.4279 0.0605 0.2696

YOLOv5s 0.7265 0.3871 0.0639 0.2818

YOLOv5x
C

0.7116 0.3991 0.0463 0.2104

YOLOv5s 0.6827 0.3794 0.0517 0.2269

YOLOv5x
B

0.7330 0.4873 0.0619 0.2574

YOLOv5s 0.7384 0.4045 0.0703 0.3066

YOLOv5x
A

0.7559 0.4675 0.0507 0.2255

YOLOv5s 0.7413 0.4366 0.0565 0.2538
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Fig. 5 Best olive training hyperparameters evaluated by the YOLOv5s model. The hyperparameters evolution has one subplot 

per hyperparameter. The X-axis shows the hyperparameter value vs Y-axis shows the fitness value. The higher concentration 

value is shown in yellow; the vertical distribution illustrates the deactivated hyperparameters and does not mutate
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Fig. 6 YOLOv5 Box\Loss curves of the two models YOLOv5s and YOLOv5x and the combinations of hyperparameters settings A, 

B, C, and D vs epochs. Figure (a) is for YOLOv5s, and figure (b) is for YOLOv5x

 

(a)

(b)
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least one object; Fn – images containing an object 

where the method failed to produce a BB

Training loss is the error cost of bad prediction based 

on the difference between the predicted value and the true 

value.

  (6)

Validation loss is the same metric as training loss, but it 

is not used to update the weights. However, it is used to find 

the best combination of hyperparameters in order to ensure 

better model generalization and avoid overfitting.

Validation loss is calculated by comparing the output Y of 

the validation set with ground truth Yt using a loss function:  

  (7)

where: L – the individual loss function based on the 

difference between predicted value and target

This paper builds a dataset of 1.2 K source images of olive 

fruit on the tree and evaluates the latest object detection 

algorithms focusing on the variants of YOLOv5 and YOLOR. 

The results of the YOLOv5 models show that the YOLOv5 

new network models can extract rich olive features from 

images and detect the olive fruit with a high precision above 

0.75 mAP_0.5. YOLOv5s performs the best for real-time 

olive fruit detection on the tree over other YOLOv5 variants 

and YOLOR. Furthermore, the latency will be compared 

for different object detection models that have adequate 

precision.

Models’ precision comparison 

To evaluate the final detections, mAP_0.5 was measured 

with averaging over IoU thresholds at [0.5: 0.05: 0.95] for 

the hyperparameter category A. The mAP_0.5 results in 

this system were compared for YOLOv5s with the original 

YOLOv5s results. The mAP_0.5 results were also compared 

implies the categories D and C demonstrated a better 

performance in classifying input data and output targets. 

However, Fig. 6b represents the model X, which shows 

slightly lower loss for the hyperparameter categories A and 

C compared to the model S categories A and C. 

Experimental platform and model training

The model was trained using the YOLOv5 variants (YOLOv5s, 

YOLOv5x) and YOLOR. These models are evaluated in this 

work for olive fruit detection for only one class named “olive”.

Model evaluation indicators 

The model detection performance was evaluated using 

mean average precision (mAP), recall, precision, train and 

validation bounding box loss, and object classification loss 

metrics. The evaluation metrics that were used to evaluate 

the model are explained as follows:

Precision is a measure of a network’s ability to accurately 

identify targets at a single threshold, calculated by:

  (1)

Recall is a measure of the network’s ability to detect its 

target, calculated by:

  (2)

Intersection over Union (IoU) is a method used to 

compare two arbitrary shapes, i.e., object widths, heights, 

and location of two boxes into the original region. This will 

evaluate the precision of the object detector on particular 

data set (Rezatofighi et al., 2019), as in Eq. (3). Figure 7 shows 

how IoU is calculated diagrammatically.

  (3)

Average precision is a method combining recall and 

precision for the entire ranking. It is the average of precision 

in a single ranking (Everingham et al., 2010):

  (4)

Mean average precision (mAP) is the average of precision 

values at the rank where there is a relevant document. It is 

calculated from precision, recall, and interception over 

union IOU.  

  (5)

where: Tp – are the Bounding Boxes (BB) that have the 

intersection over union (IoU) with the ground truth 

(GT) above 0.5; Fp – two cases – (a) BB that have 

IoU with GT below 0.5, (b) BB that have IoU with GT 

that has already been detected; Tn – there are no 

true negatives, the image is expected to contain at 

Results and discussion

Fig. 7 Diagrammatic example intersection over union 

calculation
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for YOLOv5s, YOLOv5x, and YOLOR when trained on the 

olive dataset.

In this section, the mAP_0.5 value was compared for 

the two variants of YOLOv5, named YOLOv5s and YOLOv5x. 

These two variants were specifically chosen because 

YOLOv5x is the largest and YOLOv5s is the smallest. Hence, 

there was no need to compare mAP_0.5 with other YOLOv5 

variants. Figure 8 shows mAP_0.5 for the model YOLOv5x 

and YOLOv5s. As shown in Fig. 8, the steady-state mAP_0.5 

value is approximately 0.75 for both models. The mAP_0.5 

value is considered high compared with the mAP_0.5 value 

of the original YOLOv5s, as shown in Table 3. This mAP_0.5 

value indicates high detection precision for the olive 

harvesting application.

The original YOLOv5  is a family of object detection 

architectures and models pre-trained on the COCO dataset. 

YOLOv5s was trained using a V100 GPU. 

Recently developed YOLOR was also tested and 

compared with YOLOv5s using the olive dataset. Figure 9 

shows that the mAP_0.5 values of both YOLOv5s and YOLOR 

after sufficient training are 0.75 and 0.7, respectively. There 

is approximately 0.05 mAP_0.5 difference between YOLOR 

Fig. 8 Mean average precision (mAP_0.5) curve for the model YOLOv5x and YOLOv5s
 

Fig. 9 mAP_0.5 comparison between YOLOv5s and YOLOR

 

 YOLOv5x  YOLOv5s

 YOLOR

 YOLOv5s
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and YOLOv5s. Therefore, YOLOv5s outperforms YOLOR in 

terms of precision.

Models’ latency comparison

The main purpose of this research is to process the real-

time streaming video for the olive harvesting process. 

The detection of olives on the tree should be real-time 

and on edge as well; therefore, low latency is crucial for 

olive harvesting application. In this subsection, latency is 

compared for the YOLOv5s, YOLOv5x, and YOLOR models 

that achieved an adequate precision as shown in the 

previous section.

Object detection models were tested on 50 images to 

compare the detection speed, which is the opposite of the 

model latency. Table 4 shows a comparison of detection 

latency among the YOLOv5s, YOLOv5x, and YOLOR models. 

Table 3 Comparison between the original YOLOv5s trained on COCO dataset (Jocher, 2020) and YOLOv5s model trained on 

olive dataset

Model Dataset Dataset size No. of 

classes

Size 

(pixels)

mAP_0.5 GPU Speed 

(ms)

Params 

(M)

Original 

YOLOv5s
COCO 5000 80 640 × 640 55.4 V100 2.0 7.3

YOLOv5s in 

this paper
Olive 4800 1 600 × 800 75.0 A100 16.0 7.3

Table 4 Detection speed comparison between YOLOR, YOLOv5x, and YOLOv5s

YOLOv5s YOLOv5x YOLOR

Latency 0.016s 0.031s 0.039s

Speed 62 FPS 32 FPS 25 FPS

Fig. 10 a) Hardware setup of the real-time olive detection model implementation; b) Artificial olive tree

(a) (b)
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As shown in Table 4, YOLOv5s outperforms the other two 

models in olive detection speed. An image took an average 

of 0.016 seconds. Therefore, YOLOv5s can achieve 62 frames 

per second (FPS).

Real-time implementation

The detection model was also deployed on edge to validate 

its real-time performance. The hardware (as shown in Fig. 

10a) has been setup using the following components:

1. Lenovo Thinkcentre M710Q PC is equipped with an 

Intel Core i3-6100T processor and 8 GB Memory on 

Ubuntu 20.0;

2. Microsoft LifeCam Studio Webcam;

3. Husky A200 UGV;

4. Velodyne LiDAR 3d;

 5. digital screen.

The experiment was performed at AMRC North West labs on 

an artificial olive tree (shown in Fig. 10b).

Object detection inference time depends on the 

hardware specifications where the model is implemented. 

Moreover, inference time also depends on images size. 

The Husky robot moves around the tree capturing a real-

time video using the mounted webcam, as shown in Fig. 10. 

The size of each captured image is 415 × 289 pixels. Real-

time olive fruit detection and recognition is performed on 

the captured images and recognition results are displayed 

on the digital screen.

Inference time is proportionally dependent on the 

number of detected olive fruits. The actual range of inference 

time per image ranges between 56 ms and 3.395 s. 

Conclusion 

The need for agricultural revolution is well recognized and 

the application of real-time systems in various aspects of 

the farming industry is a necessity. Artificial intelligence and 

data analysis play a key role in real-time systems and many 

opportunities for its application exist within the agriculture 

harvesting chain. Yet there are areas of the farming industry 

considered to be challenging for the current digitalization 

revolution such as olive harvesting. This project, novel olive 

harvesting is focused on researching the best practices to 

improve olive harvesting and farm productivity. 

The use of a real-time compatible system with high 

speed (YOLOv5) capabilities to localize olives on the tree as 

an object has been discussed in this paper. This application 

helps improve the quality and productivity of olive farms 

and could provide the required data for forecasting futuristic 

yielding.

Considering multiple versions of AI algorithms taking 

into account real-time speed, accuracy, and model size, the 

YOLOv5 model satisfied all olive project requirements. The 

YOLOv5 model is small in size (i.e., requires less processing) 

with high speed (i.e., best suited for real-time applications) 

compared to the other models such as the YOLOv5 model 

x. Notwithstanding that, the model is able to localize more 

than 95% of the olives on the tree. 
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