
This is a repository copy of A Species-based Particle Swarm Optimization with Adaptive
Population Size and Deactivation of Species for Dynamic Optimization Problems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202589/

Version: Accepted Version

Article:

Yazdani, D., Yazdani, D., Yazdani, D. et al. (3 more authors) (2023) A Species-based
Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for
Dynamic Optimization Problems. ACM Transactions on Evolutionary Learning and
Optimization. ISSN 2688-299X

https://doi.org/10.1145/3604812

© 2023 Copyright held by the owner/author(s). This is the author's version of the work. It is
posted here for your personal use. Not for redistribution. The definitive Version of Record
was published in ACM Transactions on Evolutionary Learning and Optimization,
https://doi.org/10.1145/3604812.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Species-based Particle Swarm Optimization with Adaptive Population Size

and Deactivation of Species for Dynamic Optimization Problems

DELARAM YAZDANI∗, Department of Computer Engineering, Mashhad Branch, Azad University, Iran

DANIAL YAZDANI∗, Faculty of Engineering & Information Technology, University of Technology Sydney, Australia

DONYA YAZDANI, AI Lab, British Antarctic Survey, United Kingdom

MOHAMMAD NABI OMIDVAR, School of Computing and Leeds University Business School, University of

Leeds, United Kingdom

AMIR H. GANDOMI, Faculty of Engineering & Information Technology, University of Technology Sydney, Australia

and University Research and Innovation Center (EKIK), Obuda University, Hungary

XIN YAO2, Research Institute of Trustworthy Autonomous Systems (RITAS), and Guangdong Provincial Key Labora-

tory of Brain inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University

of Science and Technology, China and The Center of Excellence for Research in Computational Intelligence and

Applications (CERCIA), School of Computer Science, University of Birmingham, United Kingdom

Population clustering methods, which consider the position and fitness of the individuals to form sub-populations in multi-population

algorithms, have shown high efficiency in tracking the moving global optimum in dynamic optimization problems. However, most of

these methods use a fixed population size, making them inflexible and inefficient when the number of promising regions is unknown.

The lack of a functional relationship between the population size and the number of promising regions significantly degrades

performance and limits an algorithm’s agility to respond to dynamic changes. To address this issue, we propose a new species-based

particle swarm optimization with adaptive population size and number of sub-populations for solving dynamic optimization problems.

The proposed algorithm also benefits from a novel systematic adaptive deactivation component that, unlike the previous deactivation

components, adapts the computational resource allocation to the sub-populations by considering various characteristics of both

∗The first two authors contributed equally to this work.
2Corresponding author (email: xiny@sustech.edu.cn).

This work was supported by the Research Institute of Trustworthy Autonomous Systems, the Guangdong Provincial Key Laboratory (Grant No.

2020B121201001), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386), and Shenzhen Science and

Technology Program (Grant No. KQTD2016112514355531).

Authors’ addresses: Delaram Yazdani, delaram.yazdani@yahoo.com, Department of Computer Engineering, Mashhad Branch, Azad University, Mashhad,

Iran, 9187147578; Danial Yazdani, danial.yazdani@gmail.com, Faculty of Engineering & Information Technology, University of Technology Sydney,

Ultimo, Australia, 2007; Donya Yazdani, dny.yazdani@gmail.com, AI Lab, British Antarctic Survey, Cambridge, United Kingdom, CB3 0ET; Moham-

mad Nabi Omidvar, m.n.omidvar@leeds.ac.uk, School of Computing and Leeds University Business School, University of Leeds, Leeds, United Kingdom,

LS2 9JT; Amir H. Gandomi, Gandomi@uts.edu.au, Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo, Australia,

2007 and University Research and Innovation Center (EKIK), Obuda University, Budapest, Hungary, 1034; Xin Yao, xiny@sustech.edu.cn, Research

Institute of Trustworthy Autonomous Systems (RITAS), and Guangdong Provincial Key Laboratory of Brain inspired Intelligent Computation, Department

of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China, 518055 and The Center of Excellence for

Research in Computational Intelligence and Applications (CERCIA), School of Computer Science, University of Birmingham, Birmingham, United

Kingdom, B15 2TT.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

the problem and the sub-populations. We evaluate the performance of our proposed algorithm for the Generalized Moving Peaks

Benchmark and compare the results with several peer approaches. The results indicate the superiority of the proposed method.

CCS Concepts: • Computing methodologies→ Continuous space search; • Theory of computation→ Bio-inspired opti-

mization.

Additional Key Words and Phrases: Single-objective dynamic optimization problems, Evolutionary dynamic optimization, Tracking

moving global optimum, Particle swarm optimization, Computational resource allocation.

ACM Reference Format:

Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao. 2023. A Species-based

Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic Optimization Problems. 1, 1

(June 2023), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Many real-world optimization problems have dynamic search spaces that change over time. A single-objective continu-

ous dynamic optimization problem (DOP)1 can be defined as:

Maximize : 𝑓 (𝑡) (x) = 𝑓
(

x, 𝛼 (𝑡)
)

, x = {𝑥1, 𝑥2, · · · , 𝑥𝑑 } (1)

Subject to : x ∈ X : X = {x | 𝐿𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑏𝑖 }, 𝑖 ∈ {1, 2, · · · , 𝑑},

𝑔
(𝑡)
𝑗 (x) ≤ 0, 𝑗 ∈ {1, 2, · · · , 𝑔},

ℎ
(𝑡)
𝑘
(x) = 0, 𝑘 ∈ {1, 2, · · · , ℎ̂},

where 𝑓 is the objective function, 𝑡 ∈ [0,𝑇] is the time index, x is a solution, X is the 𝑑-dimensional search space,

𝐿𝑏𝑖 and 𝑈𝑏𝑖 are lower bound and upper bound of search range in the 𝑖th dimension, respectively, 𝛼 is a vector of

time-dependent control parameters of the objective function, 𝑔 𝑗 is the 𝑗th inequality constraint, ℎ𝑘 is the 𝑘th equality

constraint, and 𝑔 and ℎ̂ are the numbers of inequality and equality constraints, respectively. In this paper, we focus on

box-constrained DOPs, i.e., no additional equality and inequality constraints are considered. The literature of DOP

is mostly focused on problems whose environmental changes occur only in discrete time steps, i.e., 𝑡 ∈ {1, . . . ,𝑇 }.
For a DOP with 𝑇 environmental states, there is a sequence of 𝑇 stationary environments. Therefore, 𝑓 (𝑡) (x) with 𝑇
environments can be reformulated as:

Maximize :𝑓 (𝑡) (x) =
{

𝑓 (x, 𝛼 (𝑘))
}𝑇

𝑘=1
=

{

𝑓 (x, 𝛼 (1)), 𝑓 (x, 𝛼 (2)), . . . , 𝑓 (x, 𝛼 (𝑇))
}

, (2)

where it is usually assumed in the literature that there is a degree of similarity between successive environmental

states, which is the case in many real-world DOPs [Branke 2012; Nguyen 2011].

Using evolutionary algorithms and swarm intelligence methods is an effective and popular way to tackle DOPs

[Mavrovouniotis et al. 2017; Nguyen et al. 2012]. However, these methods are originally designed for optimization in

static environments and they cannot directly be used to tackle DOPs due to the challenges caused by the environmental

changes. Some of these challenges are global and local diversity loss, outdated stored fitness values2, and limited

available computational resources in each environment [Yazdani et al. 2022a]. To cope with DOPs and address their

challenges, evolutionary algorithms and swarm intelligence methods are usually combined with some other components

1In this paper, we focus on maximization problems.
2Also called outdated memory in the literature.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 3

to form dynamic optimization algorithms (DOAs3). DOAs are usually complex methods since they not only need to

find the global optimum, but also track it after environmental changes [Yazdani et al. 2021b].

One of the most efficient and commonly used DOAs are multi-population DOAs [Nguyen et al. 2012], where more

than one (sub)population is usually used in parallel. Some more advanced and the state-of-the-art multi-population

DOAs are the ones whose sub-populations are capable of locating and tracking multiple moving promising regions

simultaneously [Blackwell et al. 2008; Nguyen et al. 2016; Yazdani et al. 2022a, 2013]. In such multi-population

DOAs, a population division and management component is responsible to form sub-populations by clustering the

individuals [Yazdani et al. 2021b]. Several clustering methods have been used to form sub-populations in multi-

population DOAs; Some of these methods cluster individuals based on their indices [Blackwell and Branke 2004] and

some based on individuals’ position and fitness [Luo et al. 2019; Parrott and Li 2006; Yang and Li 2010].

Clustering methods that take the position and fitness of individuals into account have shown high efficiency in

tackling DOPs [Yazdani et al. 2021b]. However, their performance is highly sensitive to population size, which is

typically fixed [Luo et al. 2018; Parrott and Li 2006; Wang et al. 2012; Yang and Li 2010; Zhang et al. 2019]. In other

words, their performance is optimal when the population size is relatively matched to the number of promising regions

in the DOPs’ landscapes. As such, the performance of these methods is heavily reliant on the choice of population size,

and a larger number of promising regions necessitates a larger population size and number of sub-populations.

Despite the considerable number of index-based clustering multi-population DOAs [Blackwell et al. 2008; Yazdani

et al. 2022a] with sub-population number adaptive to the number of the discovered promising regions, little attention has

been given to the design of position and fitness-based clustering multi-population methods with adaptive population

size and sub-population number.

Effective management of computational resources between different sub-populations in multi-population DOAs is

crucial, given the limited available resources and the different importance/priority of sub-populations [Yazdani et al.

2021b]. However, despite the extensive research in the field of DOPs, little attention has been paid to designing systematic

computational resource allocation components that consider various problem characteristics such as temporal and

spatial change severity, and sub-population features like their role, task accomplishments, and rank. Currently, most

DOAs employ a simple Round-Robin approach to run sub-populations [Yazdani et al. 2021b] in each iteration [Blackwell

and Branke 2004; Kordestani et al. 2019; Novoa et al. 2009], or deactivate converged sub-populations [Kamosi et al.

2010].

In the DOP literature, particle swarm optimization (PSO) [Kennedy and Eberhart 1995] is the most commonly used

optimization method [Yazdani et al. 2021c] and most dynamic frameworks show their best performance when they

use PSO as their core optimization component [Li and Yang 2012; Nguyen et al. 2016; Yazdani et al. 2022a, 2021c, 2018,

2020].

To address the issues stated above, we propose a species-based PSO method, denoted as SPSO with adaptive popu-

lation (AP) and adaptive deactivation (AD) components (SPSO+AP+AD). The proposed method forms sub-populations

(species) using a clustering approach that takes into account the fitness and positions of individuals in each iteration.

Unlike most existing species-based DOAs [Li et al. 2006; Luo et al. 2016; Parrott and Li 2006] that employ a fixed

population size, our approach utilizes adaptive numbers of overall population size and the number of sub-populations,

which the proposed AP component adjusts based on the number of discovered promising regions in the search space.

3In this paper, we use the term DOA to refer to both evolutionary and swarm intelligence dynamic optimization.

Manuscript submitted to ACM

4 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

In addition, we propose the AD component that systematically and adaptively allocates the computational resources

to the sub-populations. This resource allocation component activates and deactivates species adaptively. This is done

by controlling and altering the values of the relevant parameters of the deactivation process based on the role and

convergence status of each species, and also DOPs’ characteristics including the number of discovered promising

regions and shift severity. By using the proposed resource allocation component, the exploitation and exploration

capabilities are significantly improved by systematic allocation of the limited available computational resources to the

species in each environment.

The rest of this paper is organized as follows. Section 2 covers the related work. The proposed method is described in

Section 3. Section 4 explains the experiment set-up and reports the experimental results and analyses. Finally, Section 5

concludes this paper.

2 RELATEDWORK

DOAs have been widely used for optimizing DOPs [Cruz et al. 2011; Mavrovouniotis et al. 2017; Nguyen and Yao

2012]. Several classes of DOPs have been investigated in the literature, such as multi-objective DOPs [Raquel and

Yao 2013], single-objective DOPs [Yazdani et al. 2021b,c], and robust optimization over time [Fu et al. 2015; Yu

et al. 2010]. Designing evolutionary algorithms for solving multi-objective DOPs is a popular sub-field of DOPs that

has a rich literature. In multi-objective DOP works, different techniques have been used for tracking the moving

Pareto-optimal-set (PS) over time, including:

Diversity control [Chen et al. 2017; Ma et al. 2021]. Some multi-objective DOAs use diversity control mechanisms after

environmental changes [Deb et al. 2007]. In [Ma et al. 2021], a number of solutions are systematically randomized in

different regions of the objective space after environmental changes to increase the diversity. A bi-population algorithm

is introduced in [Chen et al. 2017] where one sub-population is responsible for maintaining diversity and the other one

focuses on convergence.

Memory [Goh and Tan 2008; Peng et al. 2015]. The main purpose of these techniques is to enhance the optimization

process in the current environment using historical information. In [Goh and Tan 2008], randomly chosen individuals

are added to the memory before each environmental change. The archived solutions are then used to update the

non-dominated set in the future environments. In [Peng et al. 2015], non-dominated solutions in each environment are

archived into memory, which are used to replace the worst individuals after each environmental change.

Prediction [Jiang et al. 2017; Muruganantham et al. 2015; Xu et al. 2017]. In these algorithms, some prediction

methods are used to estimate the PS/Pareto front after environmental changes when they exhibit some predictability

characteristics. For example, a linear Kalman filter is used in [Muruganantham et al. 2015] to predict the PS in the

new environment. In [Jiang et al. 2017], a domain adaptation approach is used to build a predictor that learns from

populations in past environments. Differential prediction and Cauchy mutation are employed in [Xu et al. 2017] for

initializing the population after environmental changes.

Note that the mechanisms and components used for developing dynamic multi-objective optimization algorithms

are different from those used in designing DOAs for tracking the moving global optimum in single-objective DOPs.

Since this work focuses on single-objective DOPs, providing a comprehensive review of dynamic multi-objective

algorithms is outside the scope of this paper. Surveys on this topic that can be referred to include [Azzouz et al. 2017;

Jiang et al. 2022; Raquel and Yao 2013].

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 5

Most algorithms developed for single-objective DOPs focuses on tracking the moving optimum (TMO) [Yazdani et al.

2021b]. The majority of the state-of-the-art algorithms in this field use multiple sub-populations. In these algorithms,

the main concerns are to address global and local diversity loss and effectively control the sub-populations over

time [Yazdani et al. 2021b]. However, TMO is not practical for some real-world DOPs in which frequent change of the

deployed solution is undesirable/impossible. Such DOPs are denoted as robust optimization over time whose main

goal is to find solutions for deployment whose quality remains acceptable after several environmental changes [Jin

et al. 2013]. In the rest of this section, we focus on reviewing related works in TMO for single-objective continuous

DOP literature, which matches the focus of this paper. For brevity, from now on, we use the terms DOAs and DOPs to

refer to dynamic single-objective continuous algorithms and problems, respectively.

The state-of-the-art DOAs are usually complex algorithms constructed by assembling several components to address

the challenges of DOPs including diversity loss and limited available computational resources in each environment [Yaz-

dani et al. 2021b]. Two important components of DOAs are population division and management, and computational

resource allocation. The former usually divides the population into sub-populations and manages them in order to

provide a foundation for addressing diversity loss issue and accelerating optimization process after environmental

changes. The latter, on the other hand, controls the consumption of computational resources (i.e., the number of fitness

evaluations) by sub-populations. In this section, we review these two components.

2.1 Population division and management

Multi-population DOAs are both the most effective and flexible methods to tackle DOPs [Li et al. 2015; Yazdani et al.

2021b]. The population is divided into several sub-populations in such DOAs where the number of sub-populations is a

parameter that can be set either adaptively or by the user [Yazdani et al. 2022a]. In multi-population DOAs, different

clustering approaches have been applied to form sub-populations [Yazdani et al. 2021b]. It is worth mentioning that

dividing the population into sub-populations is also vastly used in speciation and niching methods in the field of

multimodal optimization [Darwen and Yao 1996, 1997; Lu and Yao 2005]. In fact, many population clustering methods

used in DOAs originally belong to the field of multimodal optimization [Li et al. 2016; Luo et al. 2021; Parrott and Li

2006].

Generally, clustering approaches used in DOAs include index-based clustering, which clusters individuals based

on their indices [Blackwell and Branke 2004]; position-based clustering, which clusters individuals based on their

positions [Halder et al. 2011]; and position- and fitness-based clustering, which clusters individuals according to both

their fitness and position [Liu et al. 2019; Luo et al. 2021, 2019; Parrott and Li 2006].

There is also a difference in the frequency of population clustering in different DOAs. Clustering can be performed

frequently or only at specific points in time. In DOAs based on index clustering, the population is divided at the

beginning of optimization or after a sub-population has been generated, and individual memberships in sub-populations

are permanent throughout the optimization process [Blackwell and Branke 2006; Blackwell et al. 2008]. In contrast,

DOAs that use clustering methods based on positions/fitness values may re-cluster individuals every iteration [Parrott

and Li 2006], or at specific points in time, such as after environmental changes [Yang and Li 2010].

A multi-population DOA may use fixed or variable population sizes and sub-population numbers, depending on the

clustering approach and other mechanisms employed. For example, in [Blackwell and Branke 2006], a fixed number of

sub-populations with fixed individual memberships is used, resulting in a fixed overall population size throughout the

optimization process. Similarly, in most DOAs that use fitness/position-based clustering methods, the population size

is fixed [Luo et al. 2018; Zhang et al. 2019]. The most flexible multi-population DOAs use both varying population sizes

Manuscript submitted to ACM

6 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

and varying numbers of sub-populations, which are adapted to the number of promising regions discovered during

optimization [Blackwell et al. 2008; Yazdani et al. 2022a].

It should be noted that the concept of varying population size has been utilized in various sub-fields of evolutionary

computation, including global optimization [Arabas et al. 1994; Coelho and de Oliveira 2008] and multi-objective

optimization [Zhang and Mahfouf 2009] in static environments. In these works, the primary objectives of varying the

population size are typically to tune the population size and regulate exploration and exploitation capabilities and

diversity. In contrast, in the field of tracking the global optimum in single-objective DOPs, the purpose of adaptively

changing the population size is to adjust the number of sub-populations to track multiple promising regions over

time, whose number is unknown and variable. This approach was first introduced in [Blackwell et al. 2008]. Nearly all

current DOAs that adaptively change both the population size and the number of sub-populations employ index-based

clustering methods [Yazdani et al. 2021b].

2.2 Computational resource allocation

Multi-populationDOAs use different computational resource allocation policies for distributing computational resources

between multiple sub-populations. The main commonly used computational resource allocation approaches are Round

Robin (which allocates the computational resources equally to different sub-populations) [Blackwell and Branke 2006],

methods based on deactivating converged sub-populations [Kamosi et al. 2010], and methods performing performance

based sub-population selection which allocate most of the computational resources to the sub-populations with higher

performance [du Plessis and Engelbrecht 2013; Yang et al. 2017; Yazdani et al. 2022a].

In DOAs with a deactivation based component, to avoid wastage of the computational resources caused by perform-

ing unnecessary exploitation (i.e., over-exploitation), the sub-populations that are converged to a local optimum get

deactivated. For almost all available methods used to identify the sub-populations to be deactivated, constant parame-

ters are used (e.g., a predefined value for deactivation radius [Yazdani et al. 2013]) and the deactivated sub-populations

will not become activated until the next environmental change.

Kamosi et al. have proposed the idea of deactivation in [Kamosi et al. 2010], which was originally inspired by the

removal of converged sub-populations in [Li and Yang 2009] to avoid over-exploitation. This idea has also been used

in several DOAs [Amo et al. 2010; Novoa-Hernández et al. 2010]. In [Yazdani et al. 2013], the best sub-population is

not involved in the deactivation method since its output directly affects the performance of the DOA. Therefore, this

sub-population continues to perform exploitation to improve the quality of the best found solution in each environment.

It is worth mentioning that the concept of computational resource allocation is also used in cooperative coevo-

lutionary approaches in large-scale optimization [Omidvar et al. 2021a,b]. However, the approaches used in this

field differ from those used in DOAs. In cooperative coevolutionary approaches, the systematic resource allocation

methods usually take the contributions of subfunctions on the overall fitness value into account [Kazimipour et al.

2019; Yang et al. 2017]. However, in the systematic resource allocation components used in DOAs, in addition to

considering dynamic environments, several other factors including the role of sub-populations, their performance, and

their convergence status are also taken into account [Yazdani et al. 2021b].

2.3 Motivation

As mentioned above, almost all DOAs whose population size and number of sub-populations adaptively vary over time

are those that use index-based clustering. This is because controlling sub-populations and adjusting the population size

are relatively straightforward and do not negatively impact other tasks of the algorithms such as tracking and coverage.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 7

Conversely, most species-based DOAs that divide the population into species/sub-populations using position- and

fitness-based clustering approaches have a fixed population size. This is because using population control components

to vary the population size can interfere with other parts of the algorithm, resulting in the deterioration of other tasks

such as tracking multiple moving promising regions.

However, using a fixed population size and dividing individuals into species can be inflexible and deficient when the

number of promising regions is unknown or changes over time, which is often the case in real-world DOPs. Therefore,

population size must be tuned for different DOPs; otherwise, the algorithm may be deficient, as the number of species

may be significantly fewer or greater than the number of promising regions in the landscape. Hence, species-based

DOAs must adapt the number of species to the number of discovered promising regions and adjust the overall

population size accordingly. To achieve this, a proper set of population control components must be used to avoid

any undesirable interference with other parts of the algorithm and minimize negative impacts on other tasks, such as

coverage and tracking of promising regions.

As described in [Kamosi et al. 2010; Yazdani et al. 2013], in order to manage the computational resource consumption

by species, the non-best tracker species doing unnecessary exploitation (i.e., over-exploitation) should be stopped. In

DOPs, tracker species are responsible for covering and tracking promising regions. To fulfill the tracking task, each

tracker species needs to only get close enough to the summit of the covered promising region. However, further

exploitation by tracker species will be useless and only wastes the computational resources. All existing processes of

identifying the species to be deactivated are fixed/non-adaptive, and a deactivated species will not be activated until

the next environmental change. Therefore, the relevant parameters to the deactivation process must be tuned for each

DOP based on some characteristics, such as the number of promising regions (which is related to the number of species)

and change frequency. Optimal tuning of these parameters can be impossible for DOPs whose characteristics change

over time, e.g., the number of promising region and the change frequency [Yazdani et al. 2022b]. In addition, in the

existing deactivation methods, only the convergence status of each species is considered, and the problem properties

(e.g., the change frequency) and the status of other species are not taken into account. Therefore, the deactivation

mechanism should be adaptive to the learned characteristics of the problems (e.g., the number of discovered promising

regions) and all species’ status.

The next section describes the proposed method that addresses the above-mentioned considerations.

3 ADAPTIVE SPECIES-BASED PSO

The proposed adaptive species-based PSO has the following novel components:

• A new species-based population division and management component that uses fitness and position based

clustering to form species with adaptive population size and number of species.

• A new adaptive deactivation based computational resource allocation component.

In the rest of this section, we explain the proposed method in more detail. We first propose an adaptive population

division and management approach that adapts the number of species to the number of discovered promising

regions. We then propose a systematic computational resource allocation component that adaptively controls the

deactivation/activation process based on all species’ current status and their task achievements. Finally, we describe

the change reaction procedure.

Manuscript submitted to ACM

8 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

Algorithm 1: Pseudo code of the population clustering component [Qu et al. 2012] used in the proposed
algorithm
Input: List of individuals L (including positions, indices, and fitness values) and species size 𝑛

Output: Species information (it includes all S𝑗 ∈{1,· · · ,𝑁 })
1 𝑗=0;

2 while L ≠ ∅ do
3 𝑗=𝑗+1;

4 S𝑗 = ∅;
5 𝑠𝑒𝑒𝑑 𝑗 ← the best individual ∈ L;
6 Calculate the Euclidean distances between 𝑠𝑒𝑒𝑑 𝑗 and other individuals ∈ L;
7 S𝑗 ← {𝑠𝑒𝑒𝑑 𝑗 ∪ the closest 𝑛 − 1 individuals to 𝑠𝑒𝑒𝑑 𝑗 }; // S𝑗 is the 𝑗th species.

8 L = L \ S𝑗 ;

3.1 Adaptive species-based population division and management component

To divide the population into species, we adopt the clustering technique from [Qu et al. 2012], which works based on

the fitness and position of individuals. The species size is an input parameter of this clustering method, and the number

of individuals in each species is fixed and equal among all species. This method does not need any additional problem

dependent parameters, such as the species radius in [Parrott and Li 2006]. This clustering method works as follows.

First, all individuals form a list called L. Then, the following steps are repeated until L becomes empty:

(1) The best individual in L is chosen as a species seed.

(2) The Euclidean distance between the best individual and all other individuals in L is calculated.

(3) The best individual and its 𝑛 − 1 closest individuals form a species.

(4) The species members are removed from L.

Where 𝑛 is the species size (i.e., the number of individuals in each species). The clustering process is performed at every

iteration and updates the species according to the individuals’ positions and fitness values. Algorithm 1 shows the

pseudo code of the population clustering component. It is worth mentioning that the Euclidean distances calculated in

the clustering process of each iteration will be (re-)used for determining the spatial size of species (for convergence

detection purpose) in that iteration. Each species seed is used as the local attractor position (i.e., Gbest in PSO) by its

species members.

In the proposed algorithm, species are classified into tracker and non-tracker species based on their spatial size. A

Tracker is a species that has converged to a promising region and is tracking its optimum (i.e., the summit). Since the

trackers are those which have converged, their diversity is relatively small. Herein, we use the spatial size 𝔰 of a species

to evaluate its convergence status, which is calculated by:

𝔰𝑖 = max
I𝑗 ∈S𝑖

∥g∗𝑖 − p𝑗 ∥, (3)

where S𝑖 is the 𝑖th species, 𝔰𝑖 is the spatial size of the 𝑖th species, g∗𝑖 is the personal best position of the seed in the 𝑖th

species, I𝑗 is the 𝑗th individual of the 𝑖th species, and p𝑗 is the personal best position of I𝑗 .
In the beginning, species usually have high diversities and are referred to as non-tracker species. Non-tracker species

are responsible for exploration and discovering promising regions. Once a non-tracker species has converged to a

promising region, it becomes a tracker species. To determine whether a species is a tracker or non-tracker, we compare

its spatial size with a predefined threshold 𝑟track. The 𝑖th species is a tracker if 𝔰𝑖 ≤ 𝑟track; otherwise, it is a non-tracker.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 9

A tracker species is responsible for tracking the optimum of its covered promising region. Each tracker species must

address the local diversity loss issue to maintain its exploitation capability at an appropriate level. An effective way to

address this issue is to increase the local diversity of a species after each environmental change based on the optimum’s

estimated shift severity [Yazdani et al. 2018]. Therefore, 𝑟track must always be greater than the increased spatial size of

a species to address the local diversity loss. Consequently, a tracker species will not become a non-tracker by increasing

its local diversity after each environmental change. This is important in the proposed algorithm since tracker species

provide some important information to estimate the number of discovered promising regions and shift severity. In the

proposed method, the value of 𝑟track is defined adaptively based on the estimated shift severity over time.

As described in Section 2.3, the population size and the number of species should be adapted to the number of

discovered promising regions. On the one hand, when the number of individuals/species is more than enough to track

the discovered promising regions and search for possible undiscovered ones, redundant individuals/species must be

removed. On the other hand, new individuals/species need to be born when all species have converged, or when the

possibility of existing uncovered promising regions is high.

To increase the population size, we inject 𝔪 randomly initialized individuals into the population when all existing

species have converged. A species is considered converged to a promising region if its spatial size is smaller than a

threshold 𝑟generate. When all species have converged, the algorithm loses its exploration capability and cannot discover

any possible uncovered promising region. In addition, due to the converged species, the fitness and position of all

members in each species are relatively close to each other; therefore, the species membership is unlikely to change by

the clustering component. Injecting new random individuals will result in increasing global diversity and exploration

capability of the algorithm. After generating 𝔪 new individuals, the clustering process is performed on all individuals

(old and new) to update species. Updating the membership of species may result in migration of some individuals from

a promising region to another, which further increases the global diversity.

In addition, similar to the majority of multi-population DOAs, we need to use an anti-overcrowding component.

Overcrowding usually happens where more than one species converge to a promising region. In such a circumstance,

depending on the population clustering component used, the promising region would be covered either by more than

one species or by a too large species (when the converged species merge). Such additional species or individuals are

redundant which waste the computational resources and deteriorate global diversity. Considering the population

clustering approach used in the proposed algorithm in this paper, overcrowding would happen when more than one

species converge to a promising region. To address this issue, we use the standard exclusion mechanism [Blackwell and

Branke 2006] for removing redundant species. The exclusion component considers two species to have converged to a

promising region if the Euclidean distance between their seeds is less than 𝑟excl. In such a circumstance, individuals of

the species with inferior seed are removed.

Using the above-mentioned components formanaging the population and controlling species, the proposed algorithm

is capable of trackingmultiplemoving promising regions and adapting the number of species to the number of discovered

promising regions. When additional species are needed to cover possible undiscovered promising regions, the proposed

method increases the population size by injecting 𝔪 new individuals into the population, which in turn increases the

number of species. Furthermore, the number of species is reduced when there are redundant species. In fact, it is

expected that the redundant species will eventually converge to a covered promising region and be removed by the

exclusion component. Thus, the increase and decrease of the population size are done by injecting 𝔪 new individuals

and exclusion component, respectively. The applied adaptive population increasing/decreasing mechanisms enable the

proposed algorithm to adapt its number of species to the number of discovered promising regions, which is beneficial

Manuscript submitted to ACM

10 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

in solving DOPs with unknown number of promising regions and those whose number of promising regions change

over time.

A shortcoming of the proposed adaptive population generation method is that in solving DOPs with very large

numbers of promising regions, this component may generate too many individuals/species. Such a circumstance results

in shortage of computational resources for species. To address this issue, similar to [Yazdani et al. 2022a], the largest

number of species 𝑁 is bounded to a threshold 𝑁max. Using this approach, when 𝑁 = 𝑁max, an anti-convergence

mechanism [Blackwell and Branke 2006] will be activated. Therefore, when the number of species 𝑁 is equal to 𝑁max

and all of them have converged, instead of generating𝔪 new individuals, individuals of the species with the worst best

found position are randomly re-initialized (i.e., their positions are randomized and their personal best positions are

reset to their new positions). In fact, in a circumstance where the number of species has reached 𝑁max, by sacrificing

the coverage of the promising region with the lowest fitness, the algorithm increases global diversity, which in turn

results in maintaining the exploration capability.

3.2 Computational resource allocation component

In this subsection, we propose a systematic computational resource allocation component that controls the activa-

tion/deactivation process of species. At the beginning of each environment, all species are active, and they run during

each iteration. Each tracker species continues exploitation until it gets close enough to the summit of its covered

promising region. A tracker species is considered close to the summit if its spatial size is less than a deactivation radius

𝑟a. The tracker species 𝑖 will be deactivated if 𝔰𝑖 ≤ 𝑟a. It is important to note that deactivated species hibernate and do

not run during iterations, i.e., they do not consume computational resources. Deactivating such tracker species allows

the algorithm to save some computational resources that can be used for(1) the non-tracker species to converge to a

promising region, (2) tracker species that are still trying to get close to the summit of their covered promising region to

fulfill the tracking task, and (3) the best tracker species that is performing exploitation around the best found position

in the current environment.

The value of 𝑟a plays a major role in all deactivation-based computational resource allocation components, including

the proposed one, as the activity statuses of species are determined by comparing their spatial sizes to 𝑟a [Yazdani

et al. 2021b]. To the best of our knowledge, in all existing deactivation components, 𝑟a has a fixed value over time.

The optimal value of this parameter depends on different characteristics of DOPs, such as change frequency, and

also the number of species. Consequently, using a fixed value for 𝑟a results in the necessity of re-tuning the value

of this parameter for various problems and circumstances in order to achieve the best performance. In DOPs where

computational resources are limited in each environment, such as those with high change frequency, setting 𝑟a to

small values may render the deactivation component ineffective. In such a circumstance, due to limited available

computational resources in each environment, species cannot converge enough until their spatial sizes become smaller

than 𝑟a. Consequently, most species may not be deactivated in each environment. On the other hand, if there are

adequate available computational resources in each environment, when 𝑟a is set to large values, the resource allocation

mechanism may hinder the tracking capability by early deactivation of species. Another consideration is that 𝑟a cannot

be tuned for most DOPs whose number of promising regions and/or change frequency change over time.

To address the above considerations regarding the 𝑟a setting, we propose an adaptive method to adjust the values of

𝑟a to the current status of the tracker species. At the beginning of each environment, 𝑟a is set to a relatively large value

𝑟max
a . Once the spatial size of all existing tracker species becomes less than 𝑟a (i.e., they have been deactivated), 𝑟a will

be decreased. Then, all tracker species whose spatial size is larger than the new value of 𝑟a will be activated again until

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 11

their spatial size is constricted to smaller values than the updated 𝑟a value. This procedure ensures that all tracker

species can progress in their tracking tasks at each step. In cases where the available computational resources are

very limited, the algorithm first tries to allocate only some computational resources to the tracker species, enough

to perform a relatively acceptable exploitation/tracking. If the environment does not change, the algorithm tries to

allocate additional computational resources to the tracker species by decreasing the value of 𝑟a, which improves their

exploitation/tracking capability.

In the proposed resource allocation approach, if a non-tracker species becomes a tracker (i.e., an uncovered promising

region may have been discovered), the value of 𝑟a will be reset to its initial value, i.e., 𝑟
max
a . By doing so, all currently

deactivated tracker species will remain inactive since their spatial size is less than the initial value of 𝑟a, and the new

tracker species will benefit from more computational resources to perform exploitation. Note that active tracker species

may become deactivated if their spatial size was larger than the previous 𝑟a value but smaller than 𝑟max
a . Once the new

tracker’s spatial size becomes smaller than the current 𝑟a value, the proposed approach constricts 𝑟a value. Therefore,

the algorithm prioritizes the new tracker species to ensure proper coverage of the newly discovered promising region.

The value of 𝑟a decreases gradually from 𝑟max
a until it reaches a lower bound value 𝑟min

a . The value of 𝑟min
a represents an

appropriate level of exploitation for tracking a local moving optimum where further exploitation would be unnecessary.

Therefore, to avoid over-exploitation, after 𝑟a has reached its minimum value 𝑟min
a in an environment, once the spatial

size of a tracker species becomes less than 𝑟a, it will not be activated until the next environment (i.e., until its spatial

size is increased again to address the local diversity loss). Note that the tracker species with the best seed will always

remain active since exploiting around the best found position has a significant impact on the algorithm’s performance.

Therefore, after all species trackers’ spatial sizes become less than 𝑟min
a , the remainder of computational resources will

be used for: (1) improving the exploitation around the best found position, and (2) improving exploration by allocating

computational resources to non-tracker species, which improves the capability of discovering uncovered promising

regions.

The initial/maximum value of 𝑟a, i.e., 𝑟
max
a , should be determined according to the estimated shift severity. The

reason is that to address local diversity loss, the spatial size of species need to be increased after each environmental

change based on the estimated shift severity [Yazdani et al. 2021b]. Therefore, to control the activation status of the

recently re-diversified tracker species at the beginning of each environment, the initial value of 𝑟a, i.e., 𝑟
max
a , should be

smaller than the estimated shift severity. We define 𝑟max
a = 𝜌 · 𝑠 , where 𝜌 ∈ (0, 1) and 𝑠 is the estimated shift severity.

Furthermore, the value of 𝑟min
a is set to 𝜇 ·

√
𝑑 , where 𝜇 is a positive constant and 𝑑 is the problem dimensionality. If

the spatial size of all tracker species are smaller than 𝑟a, then 𝑟a is updated by:

𝑟a = 𝑟min
a + (𝑟max

a − 𝑟min
a) · 𝛽, (4)

where 𝛽 is a non-negative value parameter which is responsible for constricting 𝑟a. At the beginning of each environment

and when the value of 𝑟a is reset to 𝑟max
a , 𝛽 is set to one. To constrict the value of 𝑟a, we reduce the value of 𝛽 by

multiplying it by a constant 𝛾 ∈ (0, 1), i.e., 𝛽 = 𝛽 · 𝛾 . The value of 𝛽 is reduced when 𝑟a needs to be constricted, i.e.,

when the spatial sizes of all tracker species are smaller than the current 𝑟a value. Using this procedure, the value of 𝑟a

will be ∈ (𝑟min
a , 𝑟max

a).

3.3 Change reaction component

Our proposed algorithm is a reaction-based method [Nguyen et al. 2012] which needs to know the occurrence of

the environmental changes in order to trigger some response components. Like many real-world DOPs with visible

Manuscript submitted to ACM

12 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

environmental changes [Branke and Schmeck 2003] where the algorithms are informed about the environmental

changes by other parts of the system (e.g., sensors and agents), we assume that all tested algorithms in this paper,

including the proposed method, are informed about changes. It should be mentioned that the proposed algorithm can

also use a simple reevaluation-based change detection component to detect environmental changes [Richter 2009;

Yazdani et al. 2022a]4.

Once an environmental change happens, our proposed algorithm performs the following steps to cope with the new

environment:

• First, the algorithm tries to estimate the shift severity. To this end, we use the Euclidean distances between the

successive best found positions in all promising regions in the previous environment. Estimated shift severity in

the 𝑡th environment 𝑠 (𝑡) is obtained by averaging the Euclidean distances between the best found positions

(seeds) by tracker species at the end of the (𝑡 − 1)th and (𝑡 − 2)th environments:

𝑠 (𝑡) =
1

|T | ·
∑︁

𝑖∈T

g
★(𝑡−1)
𝑖 − g★(𝑡−2)𝑖

 , (5)

where T is the set of tracker species that were trackers at the end of both the (𝑡−1)th and (𝑡−2)th environments,

and g
★(𝑡−1)
𝑖 and g

★(𝑡−2)
𝑖 are the best found positions by the 𝑖th tracker species at the end of the (𝑡 − 1)th and

(𝑡 − 2)th environments, respectively.

• Second, to address the local diversity loss in tracker species 𝑖 , we randomize all𝑚 − 1 non-seed members, x𝑗 ,

around the seed position g
★(𝑡−1)
𝑖 by:

x𝑗 = g
★(𝑡−1)
𝑖 +

(

𝔫

∥𝔫∥ · 𝑠
(𝑡) · 𝑟

)

, (6)

where 𝔫 is a 𝑑-dimensional vector of random numbers drawn from Gaussian distribution N(0, 1), ∥𝔫∥ is the
𝐿2−norm of 𝔫, 𝔫

∥𝔫 ∥ generates a random direction, and 𝑟 is a random number generated with uniform distribution

in (0, 1). Using (6), members are uniformly distributed inside a hyper-ball whose radius and center are 𝑠 (𝑡) and
g
★(𝑡−1)
𝑖 , respectively. Therefore, the local diversity of species is increased based on the estimated shift severity.

Note that there is a possibility that an individual is relocated to a position out of boundaries by (6) (this may

happen if a promising region’s summit is extremely close to the boundaries). To address this issue, the absorbing

bound handing technique [Helwig et al. 2012] is used to push back the individual inside the search range.

• Finally, to address the outdated memory issue, all stored solutions are reevaluated.

3.4 Procedure of the proposed method

Algorithm 2 shows the work-flow of the species based PSO with the proposed adaptive population division and

management and adaptive deactivation based computational resource allocation components (SPSO+AP+AD). This
algorithm starts with a set of randomized individuals (line 1). At the beginning of each iteration, if all species had

converged in the previous iteration (i.e., 𝑓generate = 1 whose value is determined in lines 21-22), the global diversity

is increased by randomizing/initializing 𝔪 individuals. If 𝑁 < 𝑁max, 𝔪 new individuals are initialized (line 6) which

also increase the number of species 𝑁 in order to cover higher numbers of promising regions. Otherwise, to avoid

generating too many species while maintaining the global diversity (which increases the exploration capability), the

individuals of the species with the worst g★ are randomized (line 8). Then, in lines 10-11, the species are formed

4The performance of the proposed method equipped with a change detection component for solving DOPs in which the changes need to be detected is
investigated in Section S-III of the supplementary document.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 13

Algorithm 2: Pseudo code of SPSO+AD+AP
Input: Fitness function, parameter settings of PSO and SPSO+AP+AD
Output: The best found solution when a new solution needs to be deployed

1 Initialize the initial individuals;

2 𝑓generate = 0;

3 repeat
4 if 𝑓generate = 1 then // If all species have converged

5 if 𝑁 < 𝑁max then // The number of species 𝑁 is smaller than 𝑁max

6 Randomly initialize𝔪 individuals; // Increasing the population size.

7 else // when 𝑁 = 𝑁max and the population size has reached the maximum threshold.

8 Randomly re-initialize individuals of the species with the worst g★; // Increasing global diversity by

anti-convergence

9 𝑓generate = 0;

10 L ← individuals; // All individuals including the possible newly generated ones in Line 6.

11 S𝑖∈{1,· · · ,𝑁 } ← Algorithm 1(L, n) ; // Form species by executing Algorithm 1 on L.
12 if number of species has changed in comparison to the last iteration then

13 Update 𝑑boa =
Ub−Lb
𝑑√𝑛

(see Table 3), and then update 𝑟generate and 𝑟excl ;

14 foreach Species S𝑖 do
15 Determine 𝔰𝑖 using (3);

16 T = ∅;
17 if 𝔰𝑖 ≤ 𝑟track then
18 Tag S𝑖 as a tracker and T = T ∪ 𝑖 ;
19 else
20 Tag S𝑖 as a non-tracker;

21 if for all species S𝑖 , 𝔰𝑖 ≤ 𝑟generate then
22 𝑓generate = 1;

23 foreach pair of species S𝑖 and S𝑗 (𝑖 ≠ 𝑗) do // Exclusion component for removing redundant species.

24 if ∥g∗𝑖 − g∗𝑗 ∥ ≤ 𝑟excl then

25 Remove the inferior species; // Individuals of the species with inferior g∗ are removed.

// Determining activation status of species by adaptive deactivation (Lines 26 to 35).

26 if there is a new tracker then
27 𝑟a = 𝑟max

a ; // Reset 𝑟a to the upper bound value if at least a non-tracker species has become tracker in the

last iteration.

28 if {�S𝑖∈T : 𝔰𝑖 > 𝑟a } then // If spatial sizes of all tracker species are smaller than 𝑟a.
29 𝛽 = 𝛽 · 𝛾 ;
30 Constrict 𝑟a using (4);

31 Activate all species;

32 foreach Species S𝑖 do
33 if 𝔰𝑖 ≤ 𝑟a then
34 Deactivate S𝑖 ;

35 Keep the best species activated;

36 if a new solution needs to be deployed then
37 Return the best found solution in the current environment; // Output in solving online dynamic optimization problems.

38 foreach active species S𝑖 do
39 S𝑖 = PSO(S𝑖) ; // Run an internal iteration of PSO for the species S𝑖
40 if environment has changed then

41 Estimate shift severity 𝑠 (𝑡) using (5); // From the second environmental change.

42 foreach tracker species S𝑖 do
43 Keep 𝑔∗𝑖 as an individual;

44 Increase local diversity using (6);

45 Perform absorbing bound handing technique [Helwig et al. 2012] for individuals located out of boundaries;

46 Re-evaluate all individuals; // This addresses the outdated memory.

47 𝑟max
a = 𝜌 · 𝑠 (𝑡) ;

48 𝑟a = 𝑟max
a ;

49 𝛽 = 1;

50 𝑟track = 𝑠 (𝑡) ;

51 until stopping criterion is met ;

Manuscript submitted to ACM

14 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

by clustering (by invoking Algorithm 1) the individuals. Note that the Euclidean distances calculated in the species

formation process are used in the following procedures, such as determining spatial sizes and exclusion. Thereafter, the

species will be classified into tracker and non-tracker ones (lines 14-20). The exclusion component is executed for all

species in lines 23-25. Afterward, the computational resource allocation determines the species to be run in the current

iteration. It first sets the deactivation radius parameter 𝑟a in lines 26-30. Then, the resource allocation determines the

activation/deactivation status of all species in lines 31-35. The PSO optimization process is performed for the active

species in line 39. At the end of each iteration, the change reaction is done if an environmental change has happened

(lines 40-50). The MATLAB (R2021a) source code of SPSO+AP+AD can be found in [Yazdani 2023].

4 EXPERIMENTS AND ANALYSIS

In this section, we first explain the experimental design.We then investigate the effectiveness of the proposed population

division and management, and computational resource allocation components. Finally, we compare the performance

of SPSO+AP+AD and several peer algorithms.

4.1 Experimental design

4.1.1 Benchmark function. Inmost work in the field of single-objective DOPs, themoving peaks benchmark (MPB) [Branke

1999] is used for examining the performance of the DOAs in experiments. The MPB generates landscapes consisting

multiple promising regions (peaks) whose widths, heights, and locations change over time. Peaks generated by this

benchmark generator5 are unimodal, smooth, regular, and symmetric, which make them easy to optimize. To address

this shortcoming, many researchers used the generalized dynamic benchmark generator (GDBG) [Li et al. 2013] instead

of MPB. GDBG is a dynamic version of the commonly used composition-based functions [Liang et al. 2005] used

in the field of global optimization in static environments. Using some functions such as Ackley and Rastrigin, the

promising regions in GDBG are not as easy to optimize as those used in MPB. However, GDBG is not as flexible and

controllable as MPB in generating problem instances with various characteristics, which is why MPB remained the

most popular benchmark in the field. Generalized Moving Peaks Benchmark (GMPB) [Yazdani et al. 2021a, 2022b] is a

state-of-the-art DOP benchmark generator in which the shortcomings of MPB and GDBG have been addressed. Unlike

MPB, the promising regions of GMPB are complex and challenging to optimize. In addition, unlike GDBG, GMPB is

highly configurable and controllable. Additionally, problem instances generated by GMPB pose some characteristics

that were not present in previous benchmarks in the field, such as varying symmetry, condition number, and variable

interaction.

GMPB is capable of generating landscapes with a controllable number of promising regions with a variety of

changing and configurable characteristics, including symmetry, roughness, modality, irregularity, condition number,

and variable interaction. The user can adjust several parameters in GMPB to generate problem instances with a vast

variety of morphological and dynamical characteristics and levels of difficulty. In this paper, we use two scenarios of

GMPB: (1) ‘Scenario 1’ in which the variable structure is fully non-separable, and (2) ‘Scenario 2’ where the variable

structure is partially separable, which is made by composing several sub-functions. Scenario 2 poses some additional

characteristics including modularity, heterogeneity, and imbalance [Omidvar et al. 2015]. A detailed description of

GMPB is provided in Section S-I of the supplementary document.

5The majority of work in the field used MPB with conical peaks [Branke and Schmeck 2003].

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 15

Table 1. Comparison algorithms.

Algorithm Ref. Optimizer

ACFPSO [Yazdani et al. 2022a] PSO [Eberhart and Shi 2001]
psfNBC [Luo et al. 2018] PSO [Eberhart and Shi 2001]

mDE [Yazdani et al. 2020] †DE/best/2/bin [Mendes and Mohais 2005]
ImQSO [Kordestani et al. 2019] PSO [Eberhart and Shi 2001]
CPSO [Yang and Li 2010] PSO [Eberhart and Shi 2001]
FTMPSO [Yazdani et al. 2013] PSO [Eberhart and Shi 2001]
CDE [Du Plessis and Engelbrecht 2012] DE/best/2/bin [Mendes and Mohais 2005]
mCMAES [Yazdani et al. 2020] CMAES [Hansen and Ostermeier 2001]

† Differential evolution (DE) [Das and Suganthan 2010]

4.1.2 Performance evaluation. In order to measure the performance of the DOAs, we use offline-error [Branke and

Schmeck 2003] (𝐸𝑂) which is the most commonly used performance indicator in the literature [Yazdani et al. 2021c].

𝐸𝑂 calculates the average error of the best found position over all fitness evaluations using the following equation:

𝐸𝑂 =
1

𝑇𝜗

𝑇
∑︁

𝑡=1

𝜗
∑︁

𝑐=1

(

𝑓 (𝑡)
(

x★(𝑡)
)

− 𝑓 (𝑡)
(

x∗((𝑡−1)𝜗+𝑐)
))

, (7)

where x★(𝑡) is the global optimum position at the 𝑡th environment, 𝑇 is the number of environments, 𝜗 is the change

frequency, 𝑐 is the fitness evaluation counter for each environment, and x∗((𝑡−1)𝜗+𝑐) is the best found position at the

𝑐th fitness evaluation in the 𝑡th environment.

4.1.3 Comparison algorithms. A set of eight DOAs are selected for comparison, which are listed in Table 1. These

DOAs represent various types of methods from different perspectives, including different optimizers such as PSO, DE,

and CMA-ES, and different population division and management components. For example, ImQSO and CDE are

multi-population DOAs that use a fixed number of sub-populations and population size. ACFPSO, FTMPSO, mDE, and

mCMAES use index-based clustering, varying population size, and adaptive numbers of sub-populations. CPSO and

psfNBC use clustering approaches that form species/sub-populations based on the fitness values and positions of their

individuals. Although these two methods have varying numbers of species/sub-populations, their population sizes are

fixed. Moreover, FTMPSO, mDE, and mCMAES use conventional deactivation components with a fixed deactivation

condition. Finally, ACFPSO benefits from an advanced computational resource allocation method.

In order to have a fair comparison, some modifications have been made to the algorithms. First, the procedure for

detecting changes has been removed from all methods. Like many real-world cases where environmental changes are

visible [Yazdani et al. 2021b], we assume that the algorithms are informed about the environmental changes [Nguyen

2011]. Thus, they do not need to detect changes. Second, for all PSO-based algorithms, we use PSO with constriction

factor [Eberhart and Shi 2001]. Finally, all methods that require knowledge about the shift severity adopt the shift

severity estimation method from [Yazdani et al. 2018]. Note that the estimated shift severity for the first two envi-

ronments is temporarily set to one in all the experiments, as shift severity cannot be estimated before the second

environmental change [Yazdani et al. 2018].

4.1.4 Parameter settings. Table 2 shows the parameter settings for Scenario 1 and 2 of GMPB. The experiments are

done on the problem instances with various number of promising regions, shift severity values, change frequencies,

dimensions, and variable interaction structures.

Manuscript submitted to ACM

16 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

Table 2. Parameter settings for Scenario 1 and 2 of GMPB.

Parameter Symbol Value(s) in Scenario 1 Value(s) in Scenario 2

Number of sub-functions 𝑞 1 5
Sub-function dimensionality 𝑑𝑖 {5} {4,2,2,1,1}

Shift severity 𝑠 1,2,5 U[1, 3]†,U[1, 5]†
Numbers of promising regions 𝑚 10,25,50,100,200 ⋄U[5, 15]†,U[15, 35]†
Evaluations between changes 𝜗 500,1000,2500,5000 2500,5000
Dimension 𝑑 5 10

Height severity ℎ̃ 7 U[5, 9]†
Width severity �̃� 1 U[0.5, 1.5]†
Weight of sub-function 𝑖 𝜔𝑖 1 U[0.5, 3]†
Angle severity 𝜃 𝜋/9 U[𝜋/12, 𝜋/6]†
Irregularity parameter 𝜏 severity 𝜏 0.2 U[0.025, 0.075]†
Irregularity parameter 𝜂 severity �̃� 2 U[1, 3]†
Search range [𝐿𝑏,𝑈𝑏]𝑑 [−100, 100]𝑑 [−50, 50]𝑑
Height range [ℎmin, ℎmax] [30, 70]
Width range [𝑤min, 𝑤max]𝑑 [1, 12]𝑑
Angle range [𝜃min, 𝜃max] [−𝜋, 𝜋]
Irregularity parameter 𝜏 range [𝜏min, 𝜏max] [−1, 1]
Irregularity parameter 𝜂 range [𝜂min, 𝜂max] [−20, 20]
Number of Environments 𝑇 100

† For each sub-function in Scenario 2, the values defined by U[𝑎,𝑏] are generated randomly in [𝑎,𝑏] with uniform
distribution.
⋄ This defines the number of promising regions in each sub-function independently. The total number of promising regions

in Scenario 2 is equal to the product of the number of promising regions in all sub-functions.

In SPSO+AP+AD, we use constriction factor PSO [Eberhart and Shi 2001] as the optimization component. We use the

values suggested in [Eberhart and Shi 2001] for the parameter settings of the PSO in SPSO+AP+AD. For SPSO+AP+AD,
𝑟track is set to the estimated shift severity 𝑠 based on the provided descriptions in Section 3.1. The remaining parameters

of SPSO+AP+AD, namely 𝑟generate, 𝔪, 𝜌 , 𝛾 , 𝜇, 𝑟excl, and 𝑁max, are set based on a sensitivity analysis we conducted. The

detailed results and analysis of this study can be found in Section S-II of the supplementary document. Our sensitivity

analysis shows that there are multiple combinations of parameter settings that result in the best performance of

SPSO+AP+AD, indicating that the proposed algorithm is not highly sensitive to the values of these parameters. A

summary of the parameter settings for SPSO+AP+AD is shown in Table 3.

We use the parameter settings suggested in the original references for the comparison algorithms, as our investiga-

tions have shown that these settings yield their best performance.

4.2 Experimental results

All experiments in this section are done 31 times with different random seed values and the average 𝐸𝑂 (and standard

error in parenthesis) reported in tables. In each row of the tables, the symbols ‘+’, ‘-’, and ‘≈’ indicate that the compared

algorithm is statistically significantly better than SPSO+AP+AD, statistically significantly worse than SPSO+AP+AD, and
statistically equivalent to SPSO+AP+AD, respectively, based on the Wilcoxon rank-sum test with HolmśBonferroni

𝑝-value correction and 𝛼 = 0.05. We highlight the best result in each problem instance and those that are statistically

equivalent to it.

4.2.1 Effect of the proposed components on the performance. In this section, we investigate the effectiveness of the

proposed population division and management (AP), and computational resource allocation (AD) components. To this

end, we compare the performance of SPSO+AP+AD with three methods:

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 17

Table 3. SPSO+AP+AD parameter settings.

Method Parameter Value Reference

PSO

𝜒 0.729843788 [Eberhart and Shi 2001]
𝐶1,𝐶2 2.05 [Eberhart and Shi 2001]
Neighborhood topology global star [Eberhart and Shi 2001]
Population size∗ 5 [Blackwell et al. 2008; Yazdani et al. 2020]

SPSO+AP+AD

𝑟track 𝑠∗∗ Descriptions in Section 3.1
𝜌 0.7 Sensitivity analysis in Fig. S-2
𝛾 0.1 Sensitivity analysis in Fig. S-2

𝜇 0.2† Sensitivity analysis in Fig. S-2

𝑟generate 0.3 × 𝑑boa‡ Sensitivity analysis in Table S-I
𝔪 5 Sensitivity analysis in Table S-I

𝑟excl 0.5 × 𝑑boa‡ Sensitivity analysis in Table S-II
𝑁max 30 Sensitivity analysis in Table S-III

∗ This parameter represents the size of each species. Note that the overall population size is adaptive, with an initial
value of 50 in our experiments.
∗∗ 𝑠 is temporarily set to one for the first two environments in all the experiments. 𝑠 value is updated by (5) right after
the second environmental change.
† 𝜇 value is used for determining 𝑟min

a where 𝑟min
a = 𝜇 ·

√
𝑑 .

‡ 𝑑boa =
Ub−Lb
𝑑√
𝑁

[Blackwell and Branke 2006; Blackwell et al. 2008] where Ub and Lb are the upper and lower bounds

of the search space, respectively, and 𝑁 is the number of sub-populations/species.

• SPSO: which is a species based PSO with a fixed population size. To form species, this method uses the same

clustering approach as the one used in the proposed method. Simple Round Robin is used for SPSO as the

computational resource allocation component. We also use the anti-convergence and exclusion for maintaining

global diversity and exploration capability of this method [Blackwell and Branke 2006; Blackwell et al. 2008].

Following [Blackwell et al. 2008], we set the population size to 50 for this method.

• SPSO+AP: this is similar to SPSO+AP+AD but without the proposed AD (instead, the traditional Round Robin

method is used for allocating computational resources to species).

• SPSO+AP+TD: this is similar to SPSO+AP+AD but it uses the traditional deactivation (TD) component [Kamosi

et al. 2010] instead of AD.

The experiments in this section are done on GMPB Scenario 1 with 𝑚 = {25, 50, 100}, 𝜗 = 5000, and 𝑠 = 1 and

the average 𝐸𝑂 (and standard error in parenthesis) obtained by SPSO, SPSO+AP, SPSO+AP+TD, and SPSO+AP+AD are

reported in Table 4.

Comparing the results obtained by SPSO and SPSO+AP demonstrates the effectiveness of the proposed adaptive

population division and management component. Unlike SPSO whose number of species is fixed over time for all

problem instances, SPSO+AP systematically adapts its number of species to the number of discovered promising regions.

As SPSO has a fixed number of species, it suffers from: (1) wastage of computational resources by redundant species

when the number of promising regions is smaller than the number of species (i.e., 𝑁 > 𝑚), and (2) inadequate coverage

of promising regions when their number is larger than the number of species (i.e., 𝑁 < 𝑚). These shortcomings have

been addressed in SPSO+AP by the proposed species generation/removal method.

The next observation is obtained by comparing the results of SPSO+AP which uses Round Robin without deactivating

any species and SPSO+AP+TD which uses traditional deactivation component. As can be seen in Table 4, thanks to the

traditional deactivation component, the results obtained by SPSO+AP+TD are slightly superior to those obtained by

SPSO+AP, in particular in problem instances with fewer number of promising regions (i.e., smaller𝑚). However, the

performance gap between SPSO+AP+TD and SPSO+AP diminishes when solving problem instances with a larger number

of promising regions (i.e., larger𝑚), where more species are involved. This is because in the traditional deactivation

Manuscript submitted to ACM

18 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

Table 4. Investigating the effect of the proposed adaptive population division and management and adaptive deactivation computa-

tional resource allocation components by comparing the obtained average 𝐸𝑂 (and standard error in parenthesis) by SPSO+AP+AD
with SPSO, SPSO+AP and SPSO+AP+TD in problem instances generated by GMPB Scenario 1 with𝑚 = {25, 50, 100}, 𝜗 = 5000, and

𝑠 = 1. The highlighted entries are significantly better using Wilcoxon rank-sum test with HolmśBonferroni 𝑝-value adjustment

(𝛼 = 0.05).

𝑚
Algorithms

SPSO+AP+AD SPSO SPSO+AP SPSO+AP+TD

25 3.86(0.11) 5.26(0.14)− 4.35(0.08)− 4.09(0.08)−
50 4.07(0.07) 5.41(0.11)− 4.47(0.08)− 4.40(0.05)−
100 4.12(0.08) 5.43(0.14)− 4.61(0.10)− 4.55(0.08)−

component, the deactivation radius, which is usually set to a very small value, is fixed. In such cases, species typically

do not receive enough computational resources to converge in each environment, and as a result, their spatial size does

not shrink enough to be deactivated. This leads to the ineffectiveness of the deactivation process in such circumstances.

According to the reported results in Table 4, SPSO+AP+AD outperforms other methods thanks to both proposed

components. Comparing the results of SPSO+AP and SPSO+AP+AD demonstrates the effectiveness of using the proposed

computational resource allocation component. In addition, as a result of the systematic control of the deactivation

radius used in the proposed adaptive deactivation component, the performance of SPSO+AP+AD is superior to that

of SPSO+AP+TD which uses fixed deactivation radius. Moreover, unlike the traditional deactivation component, the

proposed adaptive deactivation component maintains its effectiveness in problem instances with larger numbers of

the promising regions. The reasons behind the improvements resulted by using the proposed adaptive deactivation

component in SPSO+AP+AD are:

• Improving the exploitation around the best found position.

• Improving the tracking performance by allowing all tracker species to perform tracking task according to the

limitation degree of the computational resources.

• Improving the tracking performance by allowing new tracker species to converge to the summit.

• Improving the coverage performance by maintaining activation of newly generated and non-tracker species.

4.2.2 Comparison with peer methods. In this section, the performance of SPSO+AP+AD is compared with that of the

peer algorithms from Table 1 on a number of problem instances generated by GMPB Scenario 1 and Scenario 2.

Obtained average 𝐸𝑂 results and standard errors are reported in Tables 5, 6, 7, and 8.

Table 5 shows the results obtained by the algorithms on problem instances generated by GMPB Scenario 1 with

different numbers of the promising regions. As shown in this table, SPSO+AP+AD ranks first among all algorithms.

According to this table, problem instances with larger numbers of the promising regions are often more challenging for

the algorithms. This is more noticeable in the results obtained by the adaptive multi-population DOAs that increase the

number of sub-populations with the rise in the number of promising regions. Therefore, due to large population size

values, each sub-population receives a smaller amount of the computational resources in each environment. According

to the reported results, SPSO+AP+AD can maintain its high efficiency for the problem instances with larger numbers of

the promising regions.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 19

Table 5. Results Obtained (average 𝐸𝑂 and standard error in parenthesis) by the algorithms on the problem instances generated by

GMPB Scenario 1 with different number of promising regions𝑚 = {10, 25, 50, 100, 200}, 𝜗 = 5000, and 𝑠 = 1. The highlighted entries

are significantly better using Wilcoxon rank-sum test with HolmśBonferroni 𝑝-value adjustment (𝛼 = 0.05).

𝑚
Algorithms

SPSO+AP+AD ACFPSO FTMPSO mDE ImQSO CPSO CDE psfNBC mCMAES

10 3.47(0.09) 4.67(0.17)− 5.82(0.13)− 5.83(0.13)− 5.41(0.17)− 9.27(0.20)− 10.30(0.54)− 4.59(0.12)− 3.96(0.16)−
25 3.86(0.11) 4.78(0.15)− 5.69(0.81)− 5.85(0.10)− 6.37(0.18)− 8.80(0.15)− 11.92(0.01)− 5.93(0.13)− 4.53(0.16)−
50 4.07(0.07) 4.80(0.10)− 5.77(0.09)− 6.08(0.09)− 6.58(0.16)− 8.27(0.13)− 9.91(0.45)− 6.30(0.14)− 4.61(0.13)−
100 4.12(0.08) 4.70(0.11)− 5.68(0.08)− 6.37(0.11)− 6.68(0.15)− 7.87(0.13)− 9.52(0.38)− 6.40(0.15)− 4.80(0.13)−
200 4.26(0.06) 4.61(0.11)− 5.67(0.08)− 6.26(0.11)− 6.57(0.12)− 7.69(0.15)− 10.22(0.65)− 6.37(0.14)− 4.70(0.12)−

Table 6. Results Obtained (average 𝐸𝑂 and standard error in parenthesis) by the algorithms on the problem instances generated by

GMPB Scenario 1 with different shift severity values 𝑠 = {1, 2, 5},𝑚 = 10, and 𝜗 = 5000. The highlighted entries are significantly

better using Wilcoxon rank-sum test with HolmśBonferroni 𝑝-value adjustment (𝛼 = 0.05). Multiple highlighted entries in each row

are statistically similar.

𝑠
Algorithms

SPSO+AP+AD ACFPSO FTMPSO mDE ImQSO CPSO CDE psfNBC mCMAES

1 3.47(0.09) 4.67(0.17)− 5.82(0.13)− 5.83(0.13)− 5.41(0.17)− 9.27(0.20)− 10.30(0.54)− 4.59(0.12)− 3.96(0.16)−
2 5.23(0.15) 5.72(0.17)− 7.28(0.17)− 8.24(0.17)− 7.24(0.16)− 12.43(0.24)− 15.72(0.84)− 6.32(0.13)− 5.29(0.21)≈
5 9.11(0.19) 9.08(0.21)≈ 10.45(0.20)− 13.36(0.18)− 11.42(0.20)− 18.92(0.31)− 29.98(1.39)− 13.64(0.20)− 13.54(0.36)−

Table 7. Results Obtained (average 𝐸𝑂 and standard error in parenthesis) by the algorithms on the problem instances generated

by GMPB Scenario 1 with different change frequencies 𝜗 = {500, 1000, 2500, 5000},𝑚 = 10, and 𝑠 = 1. The highlighted entries are

significantly better using Wilcoxon rank-sum test with HolmśBonferroni 𝑝-value adjustment (𝛼 = 0.05).

𝜗
Algorithms

SPSO+AP+AD ACFPSO FTMPSO mDE ImQSO CPSO CDE psfNBC mCMAES

500 13.49(0.38) 18.46(0.78)− 20.26(0.51)− 18.99(0.47)− 21.07(0.38)− 48.16(1.48)− 66.28(6.27)− 104.2(15.12)− 17.04(0.93)−
1000 8.11(0.27) 11.62(0.43)− 13.55(0.32)− 12.43(0.22)− 12.30(0.37)− 28.23(0.79)− 40.47(4.28)− 19.39(0.71)− 9.56(0.53)−
2500 4.77(0.17) 6.79(0.25)− 8.37(0.18)− 7.49(0.17)− 7.70(0.22)− 14.52(0.31)− 17.27(1.02)− 7.21(0.14)− 5.65(0.28)−
5000 3.47(0.09) 4.67(0.17)− 5.82(0.13)− 5.83(0.13)− 5.41(0.17)− 9.27(0.20)− 10.30(0.54)− 4.59(0.12)− 3.96(0.16)−

Table 6 compares the results obtained by the algorithms on problem instances generated by GMPB Scenario 1 with

different degrees of shift severity. Based on the reported results in this table, problem instances with larger values of

shift severity pose a greater challenge for the algorithms since the tracking needs more computational resources. The

reason is that the summits of the promising regions relocate to farther positions after each environmental change

when the shift severity value is large. Moreover, the fitness drop values after each environmental change are large due

to the large summit relocation lengths, which result in 𝐸𝑂 deterioration. As shown in this table, SPSO+AP+AD ranks

first among all algorithms in the problem instances with different shift severity values.

Table 7 shows the results obtained by the algorithms on problem instances generated by GMPB Scenario 1 with

different change frequency values. According to this table, the higher the change frequency, the more challenging the

problem becomes due to the very limited computational resources available in each environment. Note that lower 𝜗

values indicate higher change frequencies. As can be seen in this table, SPSO+AP+AD also outperforms other methods in

the problem instances with higher change frequencies. This superiority demonstrates the high impact of the proposed

resource allocation component in efficiently managing the consumption of the very limited computational resources

by each species in the problem instances with high change frequency values.

Manuscript submitted to ACM

20 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

0 1 2 3 4 5 6 7 8 9 10

Fitness Evaluation 10
4

10
0

10
1

10
2

10
3

C
u
rr

e
n
t

E
rr

o
r

SPSO
+AP+AD

ACF
PSO

FTMPSO mDE mCMAES

(a) GMPB Scenario 1 with𝑚 = 10, 𝜗 = 5000, and 𝑠 = 1.

0 1 2 3 4 5 6 7 8 9 10

Fitness Evaluation 10
4

10
0

10
1

10
2

10
3

C
u
rr

e
n
t

E
rr

o
r

SPSO
+AP+AD

AFC
PSO

FTMPSO mDE mCMAES

(b) GMPB Scenario 1 with𝑚 = 100, 𝜗 = 5000, and 𝑠 = 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fitness Evaluation

10
1

10
2

10
3

C
u
rr

e
n
t

E
rr

o
r

SPSO
+AP+AD

ACF
PSO

FTMPSO mDE mCMAES

(c) GMPB Scenario 1 with𝑚 = 10, 𝜗 = 500, and 𝑠 = 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fitness Evaluation 10
4

10
0

10
1

10
2

10
3

C
u

rr
e
n

t
E

rr
o

r

SPSO
+AP+AD

ACF
PSO

FTMPSO mDE mCMAES

(d) GMPB Scenario 1 with𝑚 = 10, 𝜗 = 2500, and 𝑠 = 1

Fig. 1. Current error plots of SPSO+AP+AD, ACFPSO, FTMPSO, mDE, and mCMAES on four problem instances generated by GMPB

Scenario 1 with different configurations and for 20 environments. All sub-figures are illustrated according to the average of the current

errors for 31 independent runs.

Figure 1 illustrates the superiority of the change reaction capability and convergence speed of the proposed algorithm

in comparison to peer DOAs6 on problem instances generated by GMPB Scenario 1 with various numbers of promising

regions and change frequencies.

Table 8 reports the results obtained by the DOAs on GMPB Scenario 2 with four different configurations. As

shown in Table 2, GMPB Scenario 2 is modular and constructed by the composition of five heterogeneous sub-

functions. The modular property of GMPB Scenario 2 results in an exponential increase in the number of promising

regions [Yazdani et al. 2022b], resulting in significant intensification of the multimodality and roughness of the search

space. Consequently, GMPB Scenario 2 is more challenging than Scenario 1.

Results in Table 8 show that increasing the shift severity values makes it more difficult to solve GMPB Scenario 2 due

to longer displacement distances of promising regions. In addition, Table 8 compares the results obtained on the GMPB

Scenario 2 with𝑚 set toU[5, 15] andU[15, 35]. As stated before, the number of promising regions in GMPB Scenario

2 is equal to the product of the number of promising regions in all sub-functions. Therefore, the number of promising

regions is very high in both cases where𝑚 is set to eitherU[5, 15] orU[15, 35]. The results obtained by the DOAs on

GMPB Scenario 2 withU[15, 35] promising regions for each sub-function are better than those obtained on problem

instances with𝑚 = U[5, 15]. This is because there are significantly more promising regions when𝑚 = U[15, 35] for
each sub-function, which in turn increases the likelihood of covering high-quality promising regions by DOAs [Yazdani

et al. 2022b]. Finally, the worst results are obtained on GMPB Scenario 2 with a higher change frequency (𝜗 = 2500), as

6For the sake of plot clarity, we have selected the top five DOAs from Tables 5, 6, and 7 to be displayed in Figure 1.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 21

Table 8. Results Obtained (average 𝐸𝑂 and standard error in parenthesis) by the algorithms on the GMPB Scenario 2 with various

parameter settings from Table 2. The highlighted entries are significantly better using Wilcoxon rank-sum test with HolmśBonferroni

𝑝-value adjustment (𝛼 = 0.05). Multiple highlighted entries in each row are statistically similar.

GMPB Scenario 2 parameters Algorithms

𝑠† 𝑚† 𝜗 SPSO+AP+AD ACFPSO FTMPSO mDE ImQSO CPSO CDE psfNBC mCMAES

U[1, 3]∗ U[5, 15] 5000 16.85(0.91) 18.55(0.84)− 25.41(1.19)− 22.02(1.02)− 48.95(2.50)− 18.32(0.98)− 33.67(1.79)− 19.70(0.78)− 25.17(1.21)−
U[1, 5] U[5, 15] 5000 18.69(1.05) 20.31(0.91)− 28.04(1.32)− 24.69(1.24)− 52.08(2.76)− 21.06(1.12)− 39.71(2.24)− 23.92(1.24)− 30.59(1.70)−
U[1, 3] U[15, 35] 5000 16.08(0.86) 17.61(0.76)− 24.37(1.10)− 21.40(0.95)− 40.52(2.04)− 16.24(0.76)≈ 29.98(1.73)− 19.96(0.89)− 23.39(1.08)−
U[1, 3] U[5, 15] 2500 23.19(1.07) 23.38(1.09)≈ 30.23(1.39)− 28.08(1.21)− 48.97(2.41)− 23.52(1.20)≈ 39.18(2.12)− 25.48(1.26)− 30.25(1.56)−
† Values are defined randomly and independently for each sub-function of GMPB Scenario 2.
∗ U[𝑎,𝑏] generates a random number with uniform distribution in [𝑎,𝑏].

it reduces the available computational resources (i.e., function evaluations) in each environment, thereby decreasing

the exploration and exploitation capabilities of the DOAs. Overall, SPSO+AP+AD obtained the best results in solving

the four problem instances generated by GMPB Scenario 2.

5 CONCLUSION

In this paper, we proposed an adaptive species-based PSO called SPSO+AP+AD with two novel components: adaptive

population division and management, and adaptive deactivation based computational resource allocation. SPSO+AP+AD
forms sub-populations (species) using a clustering method that considers both fitness and positions of individuals

in each iteration. Unlike most existing species-based dynamic optimization algorithms that have a fixed population

size, SPSO+AP+AD adapts the overall population size and the number of sub-populations according to the discovered

promising regions. We also introduced a novel systematic adaptive deactivation component to adaptively allocated

computational resources to the sub-populations based on the role and convergence status of the sub-populations, as

well as the characteristics of dynamic optimization problems including the number of discovered promising regions

and shift severity. By applying the proposed resource allocation component, exploitation and exploration capabilities

are substantially enhanced. We then proved the efficiency of the proposed algorithm on the Generalized Moving Peaks

Benchmark with different numbers of promising regions, shift severity degrees, dimensions, and change frequencies

in comparison to those of several peer algorithms. The results demonstrated the effectiveness and accuracy of the

proposed algorithm.

Similar to the majority of the state-of-the-art multi-population DOAs [Yazdani et al. 2021b,c], the proposed method

in this paper also uses several parameters that need to be set by the user. A future research direction is to design

self adaptive [Novoa-Hernández et al. 2016] and auto-parameter tuning mechanisms [Huang et al. 2020] for some

parameters of the proposed method, in particular those that belong to the proposed adaptive deactivation and

adaptive population handling components. Using such techniques is also vital in solving many real-world DOPs that

possess heterogeneous dynamical behavior over time [Yazdani et al. 2021b]. In such problems, using fixed values for

many parameters would be inefficient since their optimal values change over time following changes in dynamical

characteristics such as change intensity and frequency.

Most work in the DOP literature, including this paper, focuses on problems whose search ranges are identical in all

dimensions, and problems with various search ranges in different dimensions have rarely been investigated. In fact,

most DOAs, in particular multi-population ones, use components which work based on Euclidean distances that may

not be effective for solving DOPs with various search ranges in different dimensions. Investigating the effectiveness of

Manuscript submitted to ACM

22 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

the existing algorithms/components in solving such DOPs and developing algorithms/components for tackling these

problems is an important future direction.

Like most work in the DOP literature, we examined the effectiveness of the proposed method in solving artificial

benchmark problems. An important area of future work will be adapting the proposed method for solving a real-world

DOP. An important group of real-world DOPs is the dynamic covering location problem [Ankrah et al. 2019; Plastria

2002]. In these problems, the aim is to relocate a finite set of facilities to serve demands/customers whose numbers

and locations change over time. To react to changes in demands/customers, the dynamic algorithms need to track the

optimal positions of the facilities.

REFERENCES

Ignacio G. Del Amo, David A. Pelta, and Juan R. González. 2010. Using heuristic rules to enhance a multiswarm PSO for dynamic environments. In IEEE

Congress on Evolutionary Computation. IEEE, 1ś8.

Reginald Ankrah, Benjamin Lacroix, JohnMcCall, Andrew Hardwick, and Anthony Conway. 2019. Introducing the Dynamic Customer Location-Allocation

Problem. In IEEE Congress on Evolutionary Computation. IEEE, 3157ś3164.

Jaroslaw Arabas, Zbigniew Michalewicz, and Jan Mulawka. 1994. GAVaPS-a genetic algorithm with varying population size. In Proceedings of the First

IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. IEEE, 73ś78.

Radhia Azzouz, Slim Bechikh, and Lamjed Ben Said. 2017. Dynamic multi-objective optimization using evolutionary algorithms: a survey. In Recent

advances in evolutionary multi-objective optimization. Springer, 31ś70.

Tim Blackwell and Juergen Branke. 2004. Multi-swarm Optimization in Dynamic Environments. In Applications of Evolutionary Computing, Günther R.

Raidl et al. (Ed.). Vol. 3005. Lecture Notes in Computer Science, 489ś500.

Tim Blackwell and Juergen Branke. 2006. Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary

Computation 10, 4 (2006), 459ś472.

Tim Blackwell, Juergen Branke, and Xiaodong Li. 2008. Particle swarms for dynamic optimization problems. In Swarm Intelligence: Introduction and

Applications, Christian Blum and Daniel Merkle (Eds.). Springer Lecture Notes in Computer Science, 193ś217.

Juergen Branke. 1999. Memory enhanced evolutionary algorithms for changing optimization problems. In IEEE Congress on Evolutionary Computation,

Vol. 3. IEEE, 1875ś1882.

Juergen Branke. 2012. Evolutionary optimization in dynamic environments. Vol. 3. Springer Science & Business Media.

Juergen Branke and Hartmut Schmeck. 2003. Designing Evolutionary Algorithms for Dynamic Optimization Problems. In Advances in Evolutionary

Computing, A. Ghosh and S. Tsutsui (Eds.). Springer Natural Computing Series, 239ś262.

Renzhi Chen, Ke Li, and Xin Yao. 2017. Dynamic multiobjectives optimization with a changing number of objectives. IEEE Transactions on Evolutionary

Computation 22, 1 (2017), 157ś171.

André LV Coelho and Daniel G de Oliveira. 2008. Dynamically tuning the population size in particle swarm optimization. In Proceedings of the 2008 ACM

symposium on Applied computing. 1782ś1787.

Carlos Cruz, Juan R González, and David A Pelta. 2011. Optimization in dynamic environments: a survey on problems, methods and measures. Soft

Computing 15, 7 (2011), 1427ś1448.

Paul Darwen and Xin Yao. 1996. Every niching method has its niche: Fitness sharing and implicit sharing compared. In International Conference on

Parallel Problem Solving from Nature. Springer, 398ś407.

Paul J. Darwen and Xin Yao. 1997. Speciation as automatic categorical modularization. IEEE Transactions on Evolutionary Computation 1, 2 (1997),

101ś108.

Swagatam Das and Ponnuthurai Nagaratnam Suganthan. 2010. Differential evolution: A survey of the state-of-the-art. IEEE transactions on Evolutionary

Computation 15, 1 (2010), 4ś31.

Kalyanmoy Deb, Udaya Bhaskara Rao N, and Sindhya Karthik. 2007. Dynamic multi-objective optimization and decision-making using modified

NSGA-II: a case study on hydro-thermal power scheduling. In International conference on evolutionary multi-criterion optimization. Springer, 803ś817.

Mathys C Du Plessis and Andries P Engelbrecht. 2012. Using competitive population evaluation in a differential evolution algorithm for dynamic

environments. European Journal of Operational Research 218, 1 (2012), 7ś20.

Mathys C. du Plessis and Andries P. Engelbrecht. 2013. Self-Adaptive Differential Evolution for Dynamic Environments with Fluctuating Numbers of

Optima. InMetaheuristics for Dynamic Optimization, Enrique Alba et al. (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 117ś145.

Russell Eberhart and Y. Shi. 2001. Comparing inertia weights and constriction factors in particle swarm optimization. In IEEE Congress on Evolutionary

Computation, Vol. 1. IEEE, 84ś88.

Haobo Fu, Bernhard Sendhoff, Ke Tang, and Xin Yao. 2015. Robust optimization over time: Problem difficulties and benchmark problems. IEEE Transactions

on Evolutionary Computation 19, 5 (2015), 731ś745.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 23

Chi-Keong Goh and Kay Chen Tan. 2008. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions

on Evolutionary Computation 13, 1 (2008), 103ś127.

Udit Halder, Dipankar Maity, Preetam Dasgupta, and Swagatam Das. 2011. Self-adaptive Cluster-Based Differential Evolution with an External Archive

for Dynamic Optimization Problems. In Swarm, Evolutionary, and Memetic Computing, Bijaya Ketan Panigrahi et al. (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 19ś26.

Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2

(2001), 159ś195.

Sabine Helwig, Juergen Branke, and Sanaz Mostaghim. 2012. Experimental analysis of bound handling techniques in particle swarm optimization. IEEE

Transactions on Evolutionary Computation 17, 2 (2012), 259ś271.

Changwu Huang, Yuanxiang Li, and Xin Yao. 2020. A survey of automatic parameter tuning methods for metaheuristics. IEEE Transactions on Evolutionary

Computation 24, 2 (2020), 201ś216.

Min Jiang, Zhongqiang Huang, Liming Qiu, Wenzhen Huang, and Gary G Yen. 2017. Transfer learning-based dynamic multiobjective optimization

algorithms. IEEE Transactions on Evolutionary Computation 22, 4 (2017), 501ś514.

Shouyong Jiang, Juan Zou, Shengxiang Yang, and Xin Yao. 2022. Evolutionary Dynamic Multi-Objective Optimisation: A survey. Comput. Surveys 55, 4

(2022), 1ś47.

Yaochu Jin, Ke Tang, Xin Yu, Bernhard Sendhoff, and Xin Yao. 2013. A framework for finding robust optimal solutions over time. Memetic Computing 5, 1

(2013), 3ś18.

Masoud Kamosi, Ali B. Hashemi, and Mohammad Reza Meybodi. 2010. A hibernating multi-swarm optimization algorithm for dynamic environments.

In Nature and Biologically Inspired Computing. IEEE, 363ś369.

Borhan Kazimipour, Mohammad Nabi Omidvar, A Kai Qin, Xiaodong Li, and Xin Yao. 2019. Bandit-based cooperative coevolution for tackling contribution

imbalance in large-scale optimization problems. Applied Soft Computing 76 (2019), 265ś281.

James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4.

IEEE, 1942ś1948.

Javidan Kazemi Kordestani, Mohammad Reza Meybodi, and Amir Masoud Rahmani. 2019. A note on the exclusion operator in multi-swarm PSO

algorithms for dynamic environments. Connection Science (2019), 1ś25.

Changhe Li, Michalis Mavrovouniotis, Shengxiang Yang, and Xin Yao. 2013. Benchmark Generator for the IEEE WCCI-2014 Competition on Evolutionary

Computation for Dynamic Optimization Problems. Technical Report. De Montfort University.

Changhe Li, Trung Thanh Nguyen, Ming Yang, Shengxiang Yang, and Sanyou Zeng. 2015. Multi-population methods in unconstrained continuous

dynamic environments: The challenges. Information Sciences 296 (2015), 95 ś 118.

Changhe Li and Shengxiang Yang. 2009. A clustering particle swarm optimizer for dynamic optimization. In IEEE Congress on Evolutionary Computation.

IEEE, 439ś446.

Changhe Li and Shengxiang Yang. 2012. A General Framework of Multipopulation Methods With Clustering in Undetectable Dynamic Environments.

IEEE Transactions on Evolutionary Computation 16, 4 (2012), 556ś577.

Xiaodong Li, Jürgen Branke, and Tim Blackwell. 2006. Particle Swarm with Speciation and Adaptation in a Dynamic Environment. In Conference on

Genetic and Evolutionary Computation. ACM, 51ś58.

Xiaodong Li, Michael G Epitropakis, Kalyanmoy Deb, and Andries Engelbrecht. 2016. Seeking multiple solutions: An updated survey on niching methods

and their applications. IEEE Transactions on Evolutionary Computation 21, 4 (2016), 518ś538.

Jing Liang, Ponnuthurai N. Suganthan, and Kalayanmoy Deb. 2005. Novel composition test functions for numerical global optimization. In Swarm

Intelligence Symposium. IEEE, 68ś75.

Xiao-Fang Liu, Yu-Ren Zhou, Xue Yu, and Ying Lin. 2019. Dual-archive-based particle swarm optimization for dynamic optimization. Applied Soft

Computing (2019), 105876.

Qiang Lu and Xin Yao. 2005. Clustering and learning Gaussian distribution for continuous optimization. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews) 35, 2 (2005), 195ś204.

Wenjian Luo, Xin Lin, Jiajia Zahng, and Mike Preuss. 2021. A Survey of Nearest-Better Clustering in Swarm and Evolutionary Computation. IEEE

Congress on Evolutionary Computation (2021), 1961ś1967.

Wenjian Luo, Juan Sun, Chenyang Bu, and Houjun Liang. 2016. Species-based Particle Swarm Optimizer enhanced by memory for dynamic optimization.

Applied Soft Computing 47 (2016), 130 ś 140.

Wenjian Luo, Juan Sun, Chenyang Bu, and Ruikang Yi. 2018. Identifying Species for Particle Swarm Optimization under Dynamic Environments. In

Symposium Series on Computational Intelligence (SSCI). IEEE, 1921ś1928.

Wenjian Luo, Ruikang Yi, Bin Yang, and Peilan Xu. 2019. Surrogate-Assisted Evolutionary Framework for Data-Driven Dynamic Optimization. IEEE

Transactions on Emerging Topics in Computational Intelligence 3, 2 (2019), 137ś150.

Xuemin Ma, Jingming Yang, Hao Sun, Ziyu Hu, and Lixin Wei. 2021. Multiregional co-evolutionary algorithm for dynamic multiobjective optimization.

Information Sciences 545 (2021), 1ś24.

Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. 2017. A survey of swarm intelligence for dynamic optimization: Algorithms and applications.

Swarm and Evolutionary Computation 33 (2017), 1 ś 17.

Manuscript submitted to ACM

24 Delaram Yazdani, Danial Yazdani, Donya Yazdani, Mohammad Nabi Omidvar, Amir H. Gandomi, and Xin Yao

RuiMendes and Arvind S. Mohais. 2005. DynDE: a differential evolution for dynamic optimization problems. In IEEE Congress on Evolutionary Computation,

Vol. 3. IEEE, 2808ś2815.

Arrchana Muruganantham, Kay Chen Tan, and Prahlad Vadakkepat. 2015. Evolutionary dynamic multiobjective optimization via Kalman filter prediction.

IEEE transactions on cybernetics 46, 12 (2015), 2862ś2873.

Changhe Li Trung Thanh Nguyen, Ming Yang, Michalis Mavrovouniotis, and Shengxiang Yang. 2016. An Adaptive Multipopulation Framework for

Locating and Tracking Multiple Optima. IEEE Transactions on Evolutionary Computation 20, 4 (2016), 590ś605.

Trung Thanh Nguyen. 2011. Continuous dynamic optimisation using evolutionary algorithms. Ph. D. Dissertation. University of Birmingham.

Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke. 2012. Evolutionary dynamic optimization: A survey of the state of the art. Swarm and

Evolutionary Computation 6 (2012), 1 ś 24.

Trung Thanh Nguyen and Xin Yao. 2012. Continuous dynamic constrained optimizationÐThe challenges. IEEE Transactions on Evolutionary Computation

16, 6 (2012), 769ś786.

Pavel Novoa, David A. Pelta, Carlos Cruz, and Ignacio García del Amo. 2009. Controlling Particle Trajectories in a Multi-swarm Approach for Dynamic

Optimization Problems. In Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy, José Mira et al.

(Ed.). Springer Berlin Heidelberg, 285ś294.

Pavel Novoa-Hernández, Carlos Cruz Corona, and David A. Pelta. 2016. Self-adaptation in Dynamic Environmentsś a Survey and Open Issues.

International Journal of Bio-Inspired Computation 8, 1 (2016), 1ś13.

Pavel Novoa-Hernández, David A. Pelta, and Carlos Cruz Corona. 2010. Improvement Strategies for Multi-swarm PSO in Dynamic Environments. Springer

Berlin Heidelberg, 371ś383.

Mohammad Nabi Omidvar, Xiaodong Li, and Ke Tang. 2015. Designing benchmark problems for large-scale continuous optimization. Information

Sciences 316 (2015), 419ś436.

Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. 2021a. A review of population-based metaheuristics for large-scale black-box global optimiza-

tionÐPart I. IEEE Transactions on Evolutionary Computation 26, 5 (2021), 802ś822.

Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. 2021b. A review of population-based metaheuristics for large-scale black-box global optimiza-

tionÐPart II. IEEE Transactions on Evolutionary Computation 26, 5 (2021), 823ś843.

Daniel Parrott and Xiaodong Li. 2006. Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Transactions on

Evolutionary Computation 10, 4 (2006), 440ś458.

Zhou Peng, Jinhua Zheng, Juan Zou, and Min Liu. 2015. Novel prediction and memory strategies for dynamic multiobjective optimization. Soft Computing

19, 9 (2015), 2633ś2653.

Frank Plastria. 2002. Continuous covering location problems. Facility location: applications and theory 1 (2002), 37ś79.

Bo-YangQu, Ponnuthurai Nagaratnam Suganthan, and Jane-Jing Liang. 2012. Differential Evolution With Neighborhood Mutation for Multimodal

Optimization. IEEE Transactions on Evolutionary Computation 16, 5 (2012), 601ś614.

Carlo Raquel and Xin Yao. 2013. Dynamic multi-objective optimization: a survey of the state-of-the-art. In Evolutionary computation for dynamic

optimization problems. Springer, 85ś106.

Hendrik Richter. 2009. Detecting change in dynamic fitness landscapes. In IEEE Congress on Evolutionary Computation. IEEE, 1613ś1620.

Hongfeng Wang, Shengxiang Yang, W.H. Ip, and Dingwei Wang. 2012. A memetic particle swarm optimisation algorithm for dynamic multi-modal

optimisation problems. International Journal of Systems Science 43, 7 (2012), 1268ś1283.

Biao Xu, Yong Zhang, Dunwei Gong, Yinan Guo, and Miao Rong. 2017. Environment sensitivity-based cooperative co-evolutionary algorithms for

dynamic multi-objective optimization. IEEE/ACM transactions on computational biology and bioinformatics 15, 6 (2017), 1877ś1890.

Ming Yang, Mohammad Nabi Omidvar, Changhe Li, Xiaodong Li, Zhihua Cai, Borhan Kazimipour, and Xin Yao. 2017. Efficient Resource Allocation in

Cooperative Co-evolution for Large-scale Global Optimization. IEEE Transactions on Evolutionary Computation 21, 4 (2017), 493ś505.

Shengxiang Yang and Changhe Li. 2010. A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments.

IEEE Transactions on Evolutionary Computation 14, 6 (2010), 959ś974.

Delaram Yazdani. 2023. SPSO+AP+AD: A species-based PSO for dynamic optimization problems [Source Code]. https://codeocean.com/capsule/1977861/tree

(2023). https://doi.org/10.24433/CO.3072519.v1

Danial Yazdani, Juergen Branke, Mohammad Nabi Omidvar, Xiaodong Li, Changhe Li, Michalis Mavrovouniotis, Trung Thanh Nguyen, Shengxiang

Yang, and Xin Yao. 2021a. IEEE CEC 2022 competition on dynamic optimization problems generated by generalized moving peaks benchmark. arXiv:

2106.06174 (2021).

Danial Yazdani, Ran Cheng, Cheng He, and Juergen Branke. 2022a. Adaptive Control of Subpopulations in Evolutionary Dynamic Optimization. IEEE

Transactions on Cybernetics 52, 7 (2022), 6476ś6489.

Danial Yazdani, Ran Cheng, Donya Yazdani, Jürgen Branke, Yaochu Jin, and Xin Yao. 2021b. A Survey of Evolutionary Continuous Dynamic Optimization

Over Two Decades ś Part A. IEEE Transactions on Evolutionary Computation 25, 4 (2021), 609ś629.

Danial Yazdani, Ran Cheng, Donya Yazdani, Jürgen Branke, Yaochu Jin, and Xin Yao. 2021c. A Survey of Evolutionary Continuous Dynamic Optimization

Over Two Decades ś Part B. IEEE Transactions on Evolutionary Computation 25, 4 (2021), 630ś650.

Danial Yazdani, Babak Nasiri, Alireza Sepas-Moghaddam, and Mohammad Reza Meybodi. 2013. A novel multi-swarm algorithm for optimization in

dynamic environments based on particle swarm optimization. Applied Soft Computing 13, 4 (2013), 2144ś2158.

Manuscript submitted to ACM

A Species-based Particle Swarm Optimization with Adaptive Population Size and Deactivation of Species for Dynamic
Optimization Problems 25

Danial Yazdani, Trung Thanh Nguyen, and Jürgen Branke. 2018. Robust optimization over time by learning problem space characteristics. IEEE

Transactions on Evolutionary Computation 23, 1 (2018), 143ś155.

Danial Yazdani, Mohammad Nabi Omidvar, Juergen Branke, Trung Thanh Nguyen, and Xin Yao. 2020. Scaling Up Dynamic Optimization Problems: A

Divide-and-Conquer Approach. IEEE Transactions on Evolutionary Computation 24, 1 (2020), 1ś15.

Danial Yazdani, Mohammad Nabi Omidvar, Ran Cheng, Jürgen Branke, Trung Thanh Nguyen, and Xin Yao. 2022b. Benchmarking Continuous Dynamic

Optimization: Survey and Generalized Test Suite. IEEE Transactions on Cybernetics 52, 5 (2022), 3380ś3393.

Xin Yu, Yaochu Jin, Ke Tang, and Xin Yao. 2010. Robust optimization over timeÐa new perspective on dynamic optimization problems. In IEEE Congress

on Evolutionary Computation. IEEE, 1ś6.

Qian Zhang and Mahdi Mahfouf. 2009. A modified PSO with a dynamically varying population and its application to the multi-objective optimal design

of alloy steels. In IEEE Congress on Evolutionary Computation. IEEE, 3241ś3248.

Weiwei Zhang, Weizheng Zhang, Gary G. Yen, and HongLei Jing. 2019. A cluster-based clonal selection algorithm for optimization in dynamic

environment. Swarm and Evolutionary Computation 50 (2019), 100454.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Related work
	2.1 Population division and management
	2.2 Computational resource allocation
	2.3 Motivation

	3 Adaptive species-based PSO
	3.1 Adaptive species-based population division and management component
	3.2 Computational resource allocation component
	3.3 Change reaction component
	3.4 Procedure of the proposed method

	4 Experiments and analysis
	4.1 Experimental design
	4.2 Experimental results

	5 Conclusion
	References

