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Abstract
Ordinary differential equation models used in math-
ematical epidemiology assume explicitly or implicitly
large populations. For the study of infections in a hos-
pital, this is an extremely restrictive assumption as
typically a hospital ward has a few dozen, or even
fewer, patients. This work reframes a well-knownmodel
used in the study of the spread of antibiotic-resistant
bacteria in hospitals, to consider the pathogen transmis-
sion dynamics in small populations. In this vein, this
paper proposes a Markov chain model to describe the
spread of a single bacterial species in a hospital ward
where patients may be free of bacteria or may carry
bacterial strains that are either sensitive or resistant
to antimicrobial agents. We determine the probabil-
ity law of the exact reproduction number 𝑒𝑥𝑎𝑐𝑡,0,

Abbreviation: LD-QBD, level-dependent quasi-birth-death; SI, susceptible-infective; SIS,
susceptible-infective-susceptible; SIR, susceptible-infective-removed.
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2 CHALUB et al.

which is here defined as the random number of sec-
ondary infections generated by those patients who are
accommodated in a predetermined bed before a patient
who is free of bacteria is accommodated in this bed
for the first time. Specifically, we decompose the exact
reproduction number 𝑒𝑥𝑎𝑐𝑡,0 into two contributions
allowing us to distinguish between infections due to the
sensitive and the resistant bacterial strains. Ourmethod-
ology is mainly based on structured Markov chains and
the use of related matrix-analytic methods. This guar-
antees the compatibility of the new, finite-population
model, with large population models present in the lit-
erature and takes full advantage, in its mathematical
analysis, of the intrinsic stochasticity.

KEYWORDS
epidemic model, Markov chain, quasi-birth-death process, repro-
duction number

1 INTRODUCTION

Nosocomial infections caused by antibiotic (or antimicrobial) resistant bacteria—such as
methicillin-resistant Staphylococcus aureus (Haaber et al.1), multidrug-resistant Mycobacterium
tuberculosis (Gygli et al.2), vancomycin-resistant Enterococci (Miller et al.3), and multidrug-
resistant Gram-negative bacilli (Breijyeh et al.4), among others—are usually most prevalent in
intensive care units and hospital settings where patients are susceptible to the acquisition of
carriage, mainly due to high selective antibiotic pressure or frequent opportunities for cross-
transmission. Compared to infections caused by antibiotic sensitive bacteria, infections caused
by resistant bacteria drastically reduce the probability of successfully treating bacterial infections,
prolong hospitalizations, and increase health-care costs, morbidity, and mortality, among other
implications; see, for example, D’Agata et al.5 and references therein. The collaborative paper6 is a
first comprehensive assessment of the global burden of antimicrobial resistance and an evaluation
of the availability of data in 2019.
To examine the implications of the emergence and spread of antibiotic resistance, mathemat-

ical modeling (Niewiadomska et al.7) provides a platform for in silico experiments that improve
our ability to determine the quantitative effects of the transmission process and potential con-
trol measures. Most of the existing models follow a deterministic approach, mostly based on the
use of ordinary differential equations, on either within-host (Techitnutsarut and Chamchod8)
or between-host (Bagkur et al.,9 D’Agata et al.,10 Lipsitch et al.11) frameworks; for a novel work
formulating a two-level population model, we refer the reader to the paper by Webb et al.12 An
excellent summary on antibiotic-resistance modeling is the review of Spicknall et al.,13 where the
peer-reviewed literature on between-host resistance modeling—in particular, papers published
from 1993 to 2011—is categorized by classifying each paper’s model structure into up to six cate-
gories based on the underlying inherent assumptions. In the probabilistic setting, Seigal et al.14
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CHALUB et al. 3

introduce a transmission model—which uses the negative binomial distribution—, present a
statistical hypothesis test that calculates the significance of resistance trends occurring in a hos-
pital, and apply the method to each of 16 antibiotics in a case study of spectrum 𝛽-lactamases
samples collected from patients at a community hospital over a 2.5-year period.
In this paper,we complement thework ofGómez-Corral andLópez-García,15 Section 3.3, which

is related to a stochastic version of the deterministic between-host model of Lipsitch et al.11 for
antimicrobial resistance in nosocomial pathogens; in a more general context, see the book of
Allen16 for a comprehensive discussion of results on deterministic epidemic models and their
stochastic counterparts. In order to further clarify differences between the sensitive and the
resistant bacterial strains, our objective here is to characterize the probability law of the exact
reproduction number 𝑒𝑥𝑎𝑐𝑡,0 (Artalejo and López-Herrero,17 Gómez-Corral et al.18) by decom-
posing this number into two random contributions 𝑆

𝑒𝑥𝑎𝑐𝑡,0
and 𝑅

𝑒𝑥𝑎𝑐𝑡,0
that count secondary

infections due to the sensitive and the resistant bacteria, respectively. The main features of the
exact reproduction number 𝑒𝑥𝑎𝑐𝑡,0, compared to the basic reproduction number 0 in Ref. 11
(i.e., its deterministic counterpart), are inherently linked to the fact that it relates here to amarked
bed—initially accommodating an inpatient colonized with bacteria—instead of a single infective
inpatient, it eliminates the effect of repeated infectious contacts, and it is not necessarily defined at
the time of invasion, but at any later time. Therefore, the expected value of𝑒𝑥𝑎𝑐𝑡,0 can be thought
of as a more accurate index than the value 0, especially in the setting of a hospital ward11 and
an early stage of the epidemic, and the marginal mass functions of 𝑆

𝑒𝑥𝑎𝑐𝑡,0
and of 𝑅

𝑒𝑥𝑎𝑐𝑡,0
can

be used to predict the prevalence of nosocomial infections in terms of the fitness cost of resis-
tance to antimicrobial agents, and explore how specific interventions based on admitting more
patients already colonized with sensitive bacteria will prevent the transmission of the resistant
strain within the ward, but increase the transmission of the sensitive one.
The analysis in Gómez-Corral and López-García,15 Section 3.3, illustrates how to apply a per-

turbation approach of finite level-dependent quasi-birth-death (LD-QBD) processes to two-strain
susceptible-infective (SI) and susceptible-infective-susceptible (SIS) epidemic models. Specifi-
cally, the random length of an outbreak, the final size of the epidemic, the peak of infection,
and the state of the population at an arbitrary time in these epidemic models are analyzed in
Ref. 15 as first-passage times, hitting probabilities, extreme values, and stationary regime, respec-
tively, in the underlying LD-QBD process. See, for example, the papers by De Nitto Personè and
Grassi,19 Gaver et al.,20 and Gómez-Corral et al.21 for a detailed discussion on LD-QBD processes
and their applications in the context of varicella-zoster virus infections. The work to be presented
here is part of our ongoing study on the use of Markov chains, including LD-QBD processes, and
related matrix-analytic methods in a variety of stochastic epidemic models, such as SIS and SIR
models with two strains and cross-immunity (Almaraz and Gómez-Corral,22 Amador et al.23),
discrete and continuous versions of SIS models (Chalub and Sousa,24 Gómez-Corral et al.25),
quarantine of hosts (Amador and Gómez-Corral26), limited resources in epidemics (Amador and
López-Herrero27), and vaccination strategies (Fernández-Peralta and Gómez-Corral,28 Gamboa
and López-Herrero29).
This article is organized as follows. Section 3.2 provides the mathematical description of a

Markov chain model for the potential spread of a single bacterial species in a hospital ward where
patients are accommodated in beds andmay either be free of bacteria or carry antibiotic-sensitive
or resistant bacteria. In particular, the model is first formulated as an LD-QBD process and then
related to the deterministic model of Lipsitch et al.11 In Section 3, the propagation potential of the
bacterial strains in early stages of the outbreak is studied in terms of suitably defined versions
𝑆

𝑒𝑥𝑎𝑐𝑡,0
and 𝑅

𝑒𝑥𝑎𝑐𝑡,0
of the exact reproductive number for the sensitive and the antibiotic-

resistant bacterial strains, when the focus is on infections generated from a predetermined bed
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4 CHALUB et al.

and an invasion time. In Sections 4 and 5, a discussion of numerical experiments and concluding
remarks is presented.

2 MATHEMATICALMODEL DESCRIPTION: AMARKOV CHAIN
MODEL

We consider a stochastic version of the SIS model in Ref. 11 for the transmission dynamics of two
bacterial strains with partial cross-immunity in a hospital ward. Patients in this ward are accom-
modated in𝑁 beds, and may carry bacterial strains that are antibiotic-resistant (and possibly also
antibiotic-sensitive bacteria) or only antibiotic-sensitive to a first antimicrobial agent, referred to
as drug 1, or they may be free of bacteria. After a certain time, within-host dynamics will lead to
the elimination of one strain. The result will depend on the selection pressures in the host, whence
we assume that there is no coinfection, cf. Lipsitch et al.11,30 Resistance to a second antimicrobial
agent, referred as drug 2, is not present in the bacteria. Despite the tendency to reduce the use of
antibiotics, there are medically relevant situations, in particular, in prophylaxis against surgical
site infections, after a bite or wound that could get infected, or if the patient has a higher risk of
infection, in which antibiotics are administrated irrespectively of external signs of infection, cf.
Calderwood et al.,31 Pak et al.,32 and the NHS-UK standards.* The model in Ref. 11 assumes that
both antimicrobial agents are administrated in a prophylactic manner, whichmeans that patients
routinely receive drugs 1 and 2 at a rate that does not depend on whether or not they are colonized
with bacteria; more concretely, treatment with drug 1 clears carriage of sensitive bacteria at rate
𝜏1 per day, and treatment with drug 2 clears carriage of both bacterial strains at rate 𝜏2 per day.
Mutation from the sensitive to the resistant bacterial strain is not possible during the timescales
of the outbreak, nor vice versa.
Bacteria may be transmitted between patients via direct contacts, which turns a patient who is

free of bacteria into colonized with either sensitive bacteria at rate 𝛽 per day, or resistant bacte-
ria at rate (1 − 𝑐)𝛽 per day, where 𝛽 is the per capita infection rate and 𝑐 ∈ (0, 1) is the fitness
cost of resistance to drug 1. Patients are assumed to be admitted by and discharged from the
hospital ward† at rate 𝜇 per day, in such a way that they are replaced instantly by new patients
who either are colonized with sensitive bacteria or are free of bacteria with proportion 𝑚 and
1 − 𝑚, respectively, where 𝑚 amounts to the proportion of people colonized with sensitive bac-
teria in the population at large. Spontaneous clearance of bacteria is seen to occur at rate 𝛾

per day.
Under the assumption of exponentially distributed sojourn times, the state of the hospital ward

may be captured by means of a time-homogeneous continuous-time Markov chain  = {(𝑆(𝑡) +

𝑅(𝑡), 𝑅(𝑡)) ∶ 𝑡 ≥ 0}, where 𝑆(𝑡) and 𝑅(𝑡) record the number of patients colonized with sensitive
and resistant bacteria, respectively, at time 𝑡. This results in the number 𝑋(𝑡) = 𝑁 − 𝑆(𝑡) − 𝑅(𝑡)

of patients who are free of bacteria. The bivariate process  can be seen as an LD-QBD pro-
cess taking values in the finite set  = ∪𝑁

𝑖=0
𝑙(𝑖)with levels 𝑙(𝑖) = {(𝑖, 𝑗) ∶ 𝑗 ∈ {0, … , 𝑖}}, for integers

𝑖 ∈ {0, … ,𝑁}. To be concrete, the infinitesimal dynamics of  are governed by the following

* https://www.nhs.uk/conditions/antibiotics/uses/, consulted at 07/12/2023.
†Hereinafter we will use the term discharge from the hospital unit to refer to the abandonment of the hospital ward due to
any cause, such as the transfer of the patient to his home or another hospital ward, and his possible death.
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CHALUB et al. 5

F IGURE 1 Diagram of transitions among compartments. The factors in each arrow indicate the transition
rate per unit of time from one compartment to the next one. 𝑆(𝑡), 𝑅(𝑡), and 𝑋(𝑡) are the number of individuals in
classes S, R, and X at time 𝑡, that is, the number of individuals infected only with the antibiotic-sensitive strain,
the antibiotic-resistant strain, and noninfected individuals, respectively. Model parameters are described in
Table 1.

TABLE 1 Parameters of the model.

𝛽 per capita transmission rate
𝑚 fraction of new admissions carrying the sensitive bacterial strain
𝜇 discharge rate, equal to admission rate
𝑐 fitness cost of resistance to drug 1
𝛾 rate of spontaneous clearance
𝜏1 rate of clearance due to drug 1
𝜏2 rate of clearance due to drug 2

nonvanishing transition rates from state (𝑖, 𝑗) to state (𝑖′, 𝑗′):

𝑞(𝑖,𝑗),(𝑖′,𝑗′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑁 − 𝑖)((𝑖 − 𝑗)𝛽 + 𝑚𝜇), if (𝑖′, 𝑗′) = (𝑖 + 1, 𝑗),
(𝑁 − 𝑖)𝑗(1 − 𝑐)𝛽, if (𝑖′, 𝑗′) = (𝑖 + 1, 𝑗 + 1),
𝑗𝑚𝜇, if (𝑖′, 𝑗′) = (𝑖, 𝑗 − 1),
𝑗(𝛾 + 𝜏2 + (1 − 𝑚)𝜇), if (𝑖′, 𝑗′) = (𝑖 − 1, 𝑗 − 1),
(𝑖 − 𝑗)(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇), if (𝑖′, 𝑗′) = (𝑖 − 1, 𝑗),

for states (𝑖, 𝑗), (𝑖′, 𝑗′) ∈  with (𝑖′, 𝑗′) ≠ (𝑖, 𝑗). Clearly, 𝑞(𝑖,𝑗)(𝑖,𝑗+1) = 0. The transitions above rep-
resent, respectively, 𝑋 → 𝑆, 𝑋 → 𝑅, 𝑅 → 𝑆, 𝑅 → 𝑋, 𝑆 → 𝑋, and 𝑆 → 𝑅; see Figure 1 for further
details. Furthermore, 𝑞(𝑖,𝑗),(𝑖,𝑗) = −𝑞(𝑖,𝑗), where

𝑞(𝑖,𝑗) = (𝑁 − 𝑖)((𝑖 − 𝑗𝑐)𝛽 + 𝑚𝜇) + (𝑖 − 𝑗)(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇) + 𝑗(𝛾 + 𝜏2 + 𝜇).

In the above description, two hidden events for process  can occur due to the replacement of
a patient who is discharged from the hospital ward by a newly admitted patient who belongs to
the same compartment; that is, the process  does not allow us to record a transition from state
(𝑖, 𝑗) to (𝑖, 𝑗), which occurs with rate (𝑁 − 𝑖)(1 − 𝑚)𝜇 + (𝑖 − 𝑗)𝑚𝜇. This corresponds to a change
in the time scale, without further effects in the final states and associated probability.
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6 CHALUB et al.

2.1 The Markov chain model versus its deterministic counterpart

The proposed Markov chain model is a stochastic realization of the deterministic model
introduced in Ref. 11. In that case, it is considered the set of ordinary differential equations

𝑠′ = 𝑚𝜇 +
𝛽𝑠𝑥

𝑠 + 𝑟 + 𝑥
− (𝛾 + 𝜏1 + 𝜏2 + 𝜇)𝑠,

𝑟′ =
(1 − 𝑐)𝛽𝑟𝑥

𝑠 + 𝑟 + 𝑥
− (𝛾 + 𝜏2 + 𝜇)𝑟,

𝑥′ = (1 − 𝑚)𝜇 + (𝛾 + 𝜏1 + 𝜏2)𝑠 + (𝛾 + 𝜏2)𝑟 −
𝛽𝑠𝑥

𝑠 + 𝑟 + 𝑥
−

(1 − 𝑐)𝛽𝑟𝑥

𝑠 + 𝑟 + 𝑥
− 𝜇𝑥,

where 𝑠(𝑡), 𝑟(𝑡), and 𝑥(𝑡) represent the proportion of patients colonized with sensitive and resis-
tant bacteria, and the fraction of patients free of bacteria, respectively, at time 𝑡, and 𝛽 is the
transmission rate. We did not assume a priori the normalization, for reasons that will be clari-
fied in the sequel. The normalization, however, follows from the simple fact that (𝑠 + 𝑟 + 𝑥)′ =

𝜇(1 − 𝑠 − 𝑟 − 𝑥), and therefore, we may assume 𝑠(𝑡) + 𝑟(𝑡) + 𝑥(𝑡) = 1, for all 𝑡 ≥ 0, and omit one
of the equations.
Defining 𝑧 = 𝑠 + 𝑟, the above system is equivalent to

𝑧′ = 𝑚𝜇 + 𝛽(𝑧 − 𝑐𝑟)(1 − 𝑧) − (𝛾 + 𝜏1 + 𝜏2 + 𝜇)𝑧 + 𝜏1𝑟, (1)

𝑟′ = 𝑟((1 − 𝑐)𝛽(1 − 𝑧) − (𝛾 + 𝜏2 + 𝜇)). (2)

It is possible to prove, in a very precise way, that the Markov chain introduced in the present
manuscript converges in the large population limit to the model (1)–(2). More precisely, we show
that the large population limit of the Markov chain is a first-order partial differential equation,
see equation below, such that its characteristics are the trajectories of the solutions of the system
(1)–(2). The proof follows ideas from Ref. 33; see also Refs. 24 and 34.
Namely, for the Markov chain, we consider themaster equation

𝑝

(
𝑖′

𝑁
,
𝑗′

𝑁
, 𝑡 + Δ𝑡

)
= 𝑝

(
𝑖′

𝑁
,
𝑗′

𝑁
, 𝑡

)
+

∑
(𝑖,𝑗)≠(𝑖′,𝑗′)

𝑞(𝑖,𝑗)(𝑖′,𝑗′)𝑝

(
𝑖

𝑁
,
𝑗

𝑁
, 𝑡

)
Δ𝑡,

where 𝑝(𝑧, 𝑟, 𝑡) is the probability to find the Markov chain at state (⌊𝑁𝑧⌋, ⌊𝑁𝑟⌋) at time 𝑡. In the
weak formulation, the last equation reads

∑
(𝑖′,𝑗′)

𝑝

(
𝑖′

𝑁
,
𝑗′

𝑁
, 𝑡 + Δ𝑡

)
𝜑

(
𝑖′

𝑁
,
𝑗′

𝑁

)
=

∑
(𝑖,𝑗)

𝑝

(
𝑖

𝑁
,
𝑗

𝑁
, 𝑡

) ∑
(𝑖′,𝑗′)≠(𝑖,𝑗)

𝑞(𝑖,𝑗),(𝑖′𝑗′)𝜑

(
𝑖′

𝑁
,
𝑗′

𝑁

)
,

where 𝜑 is an adequate test function, that is, 𝜑(𝑧 + Δ𝑧, 𝑟 ± Δ𝑟) = 𝜑(𝑧, 𝑟) + Δ𝑧𝜕𝑧𝜑(𝑧, 𝑟) +

Δ𝑟𝜕𝑟𝜑(𝑧, 𝑟) + 𝑜(Δ𝑧, Δ𝑟). Therefore, it is seen that

∑
(𝑖′,𝑗′)

𝑞(𝑖,𝑗)(𝑖′,𝑗′)𝜑

(
𝑖′

𝑁
,
𝑗′

𝑁

)

= 𝜑

(
𝑖

𝑁
,
𝑗

𝑁

)
+

(
(𝑁 − 𝑖)

(
(𝑖 − 𝑗)

𝛽

𝑁
+𝑚𝜇 + 𝑗(1 − 𝑐)𝛽

)
− 𝑗(𝛾 + 𝜏2 + 𝛾 + (1 − 𝑚)𝜇)
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CHALUB et al. 7

− (𝑖 − 𝑗)(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇)

)
Δ𝑡

𝑁
𝜕𝑧𝜑

(
𝑖

𝑁
,
𝑗

𝑁

)

+

(
(𝑁 − 𝑖)

𝛽

𝑁
(1 − 𝑐) − 𝜇𝑚 − (𝜏2 + 𝛾 + 𝜇(1 − 𝑚))

)
𝑗Δ𝑡

𝑁
𝜕𝑟𝜑

(
𝑖

𝑁
,
𝑗

𝑁

)
+ 𝑜

(
Δ𝑡

𝑁

)

= 𝜑(𝑧, 𝑟) + Δ𝑡

(
((1 − 𝑧)𝛽(𝑧 − 𝑐𝑟) + 𝜇𝑚 − 𝑧(𝛾 + 𝜏1 + 𝜏2 + 𝜇) + 𝑟𝜏1)𝜕𝑧𝜑(𝑧, 𝑟)

+ ((1 − 𝑧)𝛽(1 − 𝑐) − 𝜏2 + 𝛾 + 𝜇))𝑟𝜕𝑟𝜑(𝑧, 𝑟) + 𝑜

(
1

𝑁

))
.

After taking the limit Δ𝑡 → 0 and 𝑁 → ∞, we conclude that probabilities 𝑝(𝑧, 𝑟, 𝑡) satisfy the
equation

𝜕𝑡𝑝 = −𝜕𝑧((1 − 𝑧)𝛽(𝑧 − 𝑐𝑟) + 𝜇𝑚 − 𝑧(𝛾 + 𝜏1 + 𝜏2 + 𝜇) + 𝑟𝜏1) − 𝜕𝑟((1 − 𝑧)𝛽(1 − 𝑐) − (𝜏2 + 𝛾 + 𝜇)).

The characteristics of this equation are the solutions of the system (𝑧, 𝑟) defined above. Note the
relevance of not assuming a priori the normalization 𝑠 + 𝑟 + 𝑥 = 1, as the 1∕𝑁 normalization in
the transmission rate is explicitly used in order to have a well-defined limit.

Remark 1. There is no specific reason to stop the Taylor expansion of the Markov chain model at
the first order in 1∕𝑁; in fact, the second-order term will model random effects. The idea is clear
in population geneticmodels (cf. Refs. 33 and 35); in epidemiological models, the interpretation of
the diffusion coefficient is not clear.24 The resulting equation is a partial differential equationwith
degenerated coefficient and its rigorous mathematical analysis presents serious challenges.36,37

3 THE EXACT REPRODUCTION NUMBER𝑬𝑿𝑨𝑪𝑻,𝟎

Let us consider an invasion time, that is, 𝑆(0) + 𝑅(0) = 1, and assume that the initially infected
patient is accommodated in a marked bed. It is likely that the initially infected patient may be
discharged from the hospital ward before recovering, in which case the newly admitted patient
who settles into the marked bed instead may either be free of bacteria or colonized with sensitive
bacteria. In the latter case, this means that the bacteria remains present in the hospital ward,
with the marked bed being a source of bacterial transmission. Thus, the dynamics of bacterial
dissemination during an early stage of the epidemic are not linked only to the initially infected
individual, but to those patients who settle one after another in the marked bed.
We define here the exact reproduction number𝑒𝑥𝑎𝑐𝑡,0 as the number of infections generated

by the patients who are accommodated—one after another—in the marked bed before one of
them is free of bacteria. The most remarkable feature of process  is the transmission of sensitive
and resistant bacteria, whence we express the exact reproduction number𝑒𝑥𝑎𝑐𝑡,0 in terms of two
random contributions 𝑆

𝑒𝑥𝑎𝑐𝑡,0
and 𝑅

𝑒𝑥𝑎𝑐𝑡,0
according to the fact that infections are due to the

sensitive bacterial strain and the resistant bacterial strain, respectively.

Remark 2. In Ref. 11, the basic reproduction number‡

‡ In the terminology of Ref. 11, the parameter 𝛽 is the transmission rate, which is equivalent to 𝑁𝛽 if 𝛽 denotes the per
capita infection rate.
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8 CHALUB et al.

𝑅0 =
𝛽

𝛾 + 𝜏2 + 𝜇

is linked to a single patient colonized with resistant bacteria, who is hospitalized in a hypo-
thetical hospital ward where all other inpatients entered uncolonized; that is, secondary cases
contributing to𝑅0 are resistant infections generated by this initially colonized patient before either
becoming free of bacteria or leaving the hospital ward. An interesting question, which will be
addressed in Section 4, concerns the relationship between the expectednumber𝐸[𝑅

𝑒𝑥𝑎𝑐𝑡,0
|(𝑆(0) +

𝑅(0), 𝑅(0)) = (1, 1)] and its deterministic counterpart 𝑅0.
In this section, our objective is to determine the joint probability law of (𝑆

𝑒𝑥𝑎𝑐𝑡,0
,𝑅

𝑒𝑥𝑎𝑐𝑡,0
) by

evaluating the conditional probabilities

𝑃
(
(𝑆

𝑒𝑥𝑎𝑐𝑡,0
,𝑅

𝑒𝑥𝑎𝑐𝑡,0
) = (𝑠, 0)

|||(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 0)
)
,

𝑃
(
(𝑆

𝑒𝑥𝑎𝑐𝑡,0
,𝑅

𝑒𝑥𝑎𝑐𝑡,0
) = (𝑠, 𝑟)

|||(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)
)
,

for integers 𝑠, 𝑟 ∈ ℕ0. In evaluating these probabilities, we first denote the status of the patientwho
is accommodated in the marked bed at time 𝑡 by 𝐵(𝑡)—in such a way that 𝐵(𝑡) = 0 if the patient
is free of bacteria, and 𝐵(𝑡) = 1𝑆 and 1𝑅 if the patient is colonized with sensitive and resistant
bacteria, respectively—and we define the following more general conditional probabilities:

(i) For states (𝑖, 𝑗) ∈  with 𝑖 ∈ {1, … ,𝑁} and 𝑗 ∈ {0, … , 𝑖 − 1}, we consider

𝑃(𝑖,𝑗),1𝑆 (𝑠, 𝑟) = 𝑃
(
(𝑆

𝑒𝑥𝑎𝑐𝑡,0
,𝑅

𝑒𝑥𝑎𝑐𝑡,0
) = (𝑠, 𝑟)

|||(𝑆(0) + 𝑅(0), 𝑅(0)) = (𝑖, 𝑗), 𝐵(0) = 1𝑆

)
,

for 𝑠, 𝑟 ∈ ℕ0. Clearly, 𝑃(𝑖,𝑗),1𝑆 (𝑠, 𝑟) = 0 if 𝑟 ∈ ℕ, for 𝑖 ∈ {1, … ,𝑁} and 𝑗 ∈ {0, … , 𝑖 − 1}.
(ii) For states (𝑖, 𝑗) ∈  with 𝑖 ∈ {1, … ,𝑁} and 𝑗 ∈ {1, … , 𝑖}, we consider

𝑃(𝑖,𝑗),1𝑅 (𝑠, 𝑟) = 𝑃
(
(𝑆

𝑒𝑥𝑎𝑐𝑡,0
,𝑅

𝑒𝑥𝑎𝑐𝑡,0
) = (𝑠, 𝑟)

|||(𝑆(0) + 𝑅(0), 𝑅(0)) = (𝑖, 𝑗), 𝐵(0) = 1𝑅

)
,

for 𝑠, 𝑟 ∈ ℕ0.

3.1 The special case 𝑩(𝟎) = 𝟏𝑺

In this subsection, we derive an iterative procedure that, starting from the family of conditional
probabilities {𝑃(𝑖,𝑗),1𝑆 (0, 0) ∶ 𝑖 ∈ {1, … ,𝑁}, 𝑗 ∈ {0, … , 𝑖 − 1}}, evaluates the family of probabilities
{𝑃(𝑖,𝑗),1𝑆 (𝑠, 0) ∶ 𝑖 ∈ {1, … ,𝑁}, 𝑗 ∈ {0, … , 𝑖 − 1}} in terms of the probabilities in {𝑃(𝑖,𝑗),1𝑆 (𝑠 − 1, 0) ∶

𝑖 ∈ {1, … ,𝑁}, 𝑗 ∈ {0, … , 𝑖 − 1}}, for 𝑠 ∈ ℕ.
We use first-step analysis to obtain the system of linear equations

𝑃(𝑖,0),1𝑆
(0, 0) =

𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇

𝑞(𝑖,0)
+

(𝑖 − 1)(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑖,0)
𝑃(𝑖−1,0),1𝑆

(0, 0)

+

(
(𝑖 − 1)𝑚𝜇

𝑞(𝑖,0)
+

(𝑁 − 𝑖)(1 − 𝑚)𝜇

𝑞(𝑖,0)

)
𝑃(𝑖,0),1𝑆

(0, 0) +
(𝑁 − 𝑖)((𝑖 − 1)𝛽 + 𝑚𝜇)

𝑞(𝑖,0)
𝑃(𝑖+1,0),1𝑆

(0, 0),

(3)
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CHALUB et al. 9

𝑃(𝑖,0),1𝑆 (𝑠, 0) =
𝑚𝜇

𝑞(𝑖,0)
𝑃(𝑖,0),1𝑆 (𝑠 − 1, 0) +

(𝑁 − 𝑖)𝛽

𝑞(𝑖,0)
𝑃(𝑖+1,0),1𝑆 (𝑠 − 1, 0)

+
(𝑖 − 1)(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑖,0)
𝑃(𝑖−1,0),1𝑆 (𝑠, 0)

+

(
(𝑖 − 1)𝑚𝜇

𝑞(𝑖,0)
+

(𝑁 − 𝑖)(1 − 𝑚)𝜇

𝑞(𝑖,0)

)
𝑃(𝑖,0),1𝑆 (𝑠, 0)

+
(𝑁 − 𝑖)((𝑖 − 1)𝛽 + 𝑚𝜇)

𝑞(𝑖,0)
𝑃(𝑖+1,0),1𝑆 (𝑠, 0), (4)

for integers 𝑖 ∈ {1, … ,𝑁} and 𝑠 ∈ ℕ. Equations (3) and (4) can be readily written as a single
equation in matrix form by using column vectors 𝐏0,1𝑆

(𝑠), for 𝑠 ∈ ℕ0, and 𝐩0,1𝑆 with 𝑖th entries
𝑃(𝑖,0),1𝑆 (𝑠, 0) and 𝑞

−1
(𝑖,0)

(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇), respectively, for 𝑖 ∈ {1, … ,𝑁}. Specifically, it is seen
that

𝐏0,1𝑆
(𝑠) = (𝐈𝑁 − 𝐂0(0))

−1(
𝛿𝑠,0𝐩0,1𝑆 + (1 − 𝛿𝑠,0)𝐁0𝐏0,1𝑆

(𝑠 − 1)
)
, (5)

where 𝐈𝑎 denotes the identity matrix of order 𝑎, 𝛿𝑎,𝑏 represents the Kronecker delta, and 𝐁0 and
𝐂0(0) are suitably defined matrices of coefficients; see Appendix A.
For initial states (𝑖, 𝑗) ∈  with 𝑖 ∈ {𝑗 + 1,… ,𝑁} and 𝑗 ∈ {1, … ,𝑁 − 1}, a similar approach leads

us to the following equalities for the column vectors𝐏𝑗,1𝑆
(𝑠), for 𝑗 ∈ {1, … ,𝑁 − 1} and 𝑠 ∈ ℕ0, with

𝑖th entry 𝑃(𝑗+𝑖,𝑗),1𝑆 (𝑠, 0), for 𝑖 ∈ {1, … ,𝑁 − 𝑗}:

𝐏𝑗,1𝑆
(𝑠) = 𝛿𝑠,0𝐩𝑗,1𝑆 + (1 − 𝛿𝑠,0)𝐁𝑗𝐏𝑗,1𝑆

(𝑠 − 1) + 𝐂𝑗−1(1)𝐏𝑗−1,1𝑆
(𝑠) + (1 − 𝛿𝑗,𝑁−1)

(
𝐂𝑗(0)𝐏𝑗,1𝑆

(𝑠)

+ 𝐂𝑗+1(2)𝐏𝑗+1,1𝑆
(𝑠)

)
, (6)

where the column vector 𝐩𝑗,1𝑆 has 𝑖-entry 𝑞−1
(𝑗+𝑖,𝑗)

(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇), for 𝑖 ∈ {1, … ,𝑁 − 𝑗},
and 𝐁𝑗 , 𝐂𝑗(0), 𝐂𝑗−1(1) and 𝐂𝑗+1(2) are matrices of coefficients; see Appendix B.
For a fixed value 𝑠 ∈ ℕ0, Equation (6) can be seen as a tridiagonal-by-blocks system of linear

equations for the unknown vectors𝐏𝑗,1𝑆
(𝑠), for 𝑗 ∈ {1, … ,𝑁 − 1}, which can be solved using block-

Gaussian elimination in terms of previously evaluated vectors 𝐏𝑗,1𝑆
(𝑠 − 1).

Theorem 1. For 𝑠 ∈ ℕ0, the column vectors in {𝐏𝑗,1𝑆
(𝑠) ∶ 𝑗 ∈ {1, … ,𝑁 − 1}} satisfy the recurrence

equations

𝐏𝑗,1𝑆
(𝑠) = 𝐡𝑗,1𝑆

(𝑠) + (1 − 𝛿𝑗,𝑁−1)𝐇
−1
𝑗,1𝑆

𝐂𝑗+1(2)𝐏𝑗+1,1𝑆
(𝑠), (7)

with

𝐡𝑗,1𝑆
(𝑠) = 𝐇−1

𝑗,1𝑆

(
𝛿𝑠,0𝐩𝑗,1𝑆 + (1 − 𝛿𝑠,0)𝐁𝑗𝐏𝑗,1𝑆

(𝑠 − 1) + 𝐂𝑗−1(1)
(
𝛿𝑗,1𝐏0,1𝑆

(𝑠) + (1 − 𝛿𝑗,1)𝐡𝑗−1,1𝑆
(𝑠)

))
,

𝐇𝑗,1𝑆
= 𝐈𝑁−𝑗 − (1 − 𝛿𝑗,𝑁−1)𝐂𝑗(0) − (1 − 𝛿𝑗,1)𝐂𝑗−1(1)𝐇

−1
𝑗−1,1𝑆

𝐂𝑗(2),

where 𝐏0,1𝑆
(𝑠) is given by (5).

A point worth mentioning is that the structured form of (6) also allows us to derive an iterative
scheme for computing themoments of the randomnumber𝑆

𝑒𝑥𝑎𝑐𝑡,0
on the sample paths of process
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10 CHALUB et al.

 satisfying {𝑅
𝑒𝑥𝑎𝑐𝑡,0

= 0}. More particularly, in terms of the generating functions

𝜑𝑗,1𝑆
(𝑥) =

∞∑
𝑠=0

𝑥𝑠𝐏𝑗,1𝑆
(𝑠), |𝑥| ≤ 1,

for integers 𝑗 ∈ {0, … ,𝑁 − 1}, Equations (5)–(6) are solved to yield the expressions

𝜑0,1𝑆
(𝑥) = (𝐈𝑁 − 𝐂0(0) − 𝑥𝐁0)

−1
𝐩0,1𝑆 ,

𝜑𝑗,1𝑆
(𝑥) = 𝐠𝑗,1𝑆 (𝑥) + (1 − 𝛿𝑗,𝑁−1)𝐆

−1
𝑗,1𝑆

(𝑥)𝐂𝑗+1(2)𝜑𝑗+1,1𝑆
(𝑥),

for 𝑗 ∈ {1, … ,𝑁 − 1} and |𝑥| ≤ 1, where

𝐠𝑗,1𝑆 (𝑥) = 𝐆−1
𝑗,1𝑆

(𝑥)
(
𝐩𝑗,1𝑆 + 𝐂𝑗−1(1)

(
𝛿𝑗,1𝜑0,1𝑆

(𝑥) + (1 − 𝛿𝑗,1)𝐠𝑗−1,1𝑆 (𝑥)
))
,

𝐆𝑗,1𝑆
(𝑥) = 𝐈𝑁−𝑗 − 𝑥𝐁𝑗 − (1 − 𝛿𝑗,𝑁−1)𝐂𝑗(0) − (1 − 𝛿𝑗,1)𝐂𝑗−1(1)𝐆

−1
𝑗−1,1𝑆

(𝑥)𝐂𝑗(2).

In terms of the column vectors

𝜑
(𝑛)
𝑗,1𝑆

=
𝑑𝑛𝜑𝑗,1𝑆

(𝑥)

𝑑𝑥𝑛

|||||𝑥=1,
for 𝑗 ∈ {0, … ,𝑁 − 1}, the computation of factorial moments of 𝑆

𝑒𝑥𝑎𝑐𝑡,0
on the sample paths of

process  satisfying {𝑅
𝑒𝑥𝑎𝑐𝑡,0

= 0} is possible, as shown in the result below.

Corollary 1. For 𝑛 ∈ ℕ, the column vectors {𝜑(𝑛)
𝑗,1𝑆

∶ 𝑗 ∈ {0, … ,𝑁 − 1}} can be iteratively computed,

starting with 𝜑
(0)
𝑗,1𝑆

= 𝟏𝑁 , from the equalities

𝜑
(𝑛)
0,1𝑆

= 𝑛(𝐈𝑁 − 𝐂0(0) − 𝐁0)
−1
𝐁0𝜑

(𝑛−1)
0,1𝑆

,

𝜑
(𝑛)
𝑗,1𝑆

= 𝐠
(𝑛)
𝑗,1𝑆

+ (1 − 𝛿𝑗,𝑁−1)𝐆
−1
𝑗,1𝑆

(1)𝐂𝑗+1(2)𝜑
(𝑛)
𝑗+1,1𝑆

,

for 𝑗 ∈ {1, … ,𝑁 − 1}, where

𝐠
(𝑛)
𝑗,1𝑆

= 𝐆−1
𝑗,1𝑆

(1)
(
𝑛𝐁𝑗𝜑

(𝑛−1)
𝑗,1𝑆

+ 𝐂𝑗−1(1)
(
𝛿𝑗,1𝜑

(𝑛)
0,1𝑆

+ (1 − 𝛿𝑗,1)𝐠
(𝑛)
𝑗−1,1𝑆

))
,

and 𝟏𝑎 is a column vector of order 𝑎 of 1’s.

In particular, the first entry of the column vector

(𝐈𝑁 − 𝐂0(0) − 𝐁0)
−1
𝐁0𝟏𝑁

is found to be the mean value of 𝑆
𝑒𝑥𝑎𝑐𝑡,0

at an invasion time when the initially infected patient
is colonized with sensitive bacteria; that is, it corresponds to 𝐸[𝑆

𝑒𝑥𝑎𝑐𝑡,0
|(𝑆(0) + 𝑅(0), 𝑅(0)) =

(1, 0)]. This is derived by noting that, since 𝑃(1,0),1𝑆 (𝑠, 𝑟) = 0 if 𝑟 ∈ ℕ, this mean value amounts
to the expectation 𝐸[𝑆

𝑒𝑥𝑎𝑐𝑡,0
1{𝑅

𝑒𝑥𝑎𝑐𝑡,0
= 0}|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 0), 𝐵(0) = 1𝑆], and 𝜑

(0)
0,1𝑆

=

𝜑0,1𝑆
(1).
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CHALUB et al. 11

3.2 The special case 𝑩(𝟎) = 𝟏𝑹

To evaluate the conditional probabilities {𝑃(𝑖,𝑗),1𝑅 (𝑠, 𝑟) ∶ 𝑖 ∈ {1, … ,𝑁}, 𝑗 ∈ {1, … , 𝑖}}, for integers
𝑠, 𝑟 ∈ ℕ0, and related moments of (𝑆

𝑒𝑥𝑎𝑐𝑡,0
,𝑅

𝑒𝑥𝑎𝑐𝑡,0
), we first introduce the column vectors

𝐏𝑗,1𝑅
(𝑠, 𝑟) and 𝐩𝑗,1𝑅 , for 𝑗 ∈ {1, … ,𝑁}, with 𝑖th entries 𝑃(𝑗−1+𝑖,𝑗),1𝑅 (𝑠, 𝑟) and 𝑞

−1
(𝑗−1+𝑖,𝑗)

(𝛾 + 𝜏2 + (1 −

𝑚)𝜇), respectively, if 𝑖 ∈ {1, … ,𝑁 − 𝑗 + 1}. We also consider

𝜑
(𝑛)
𝑗,1𝑅

=
𝑑𝑛𝜑𝑗,1𝑅

(𝑥)

𝑑𝑥𝑛

|||||𝑥=1,
𝜙
(𝑛,⋅)
𝑗,1𝑅

=
𝜕𝑛𝜙𝑗,1𝑅 (𝑥, 1)

𝜕𝑥𝑛

|||||𝑥=1,
𝜙
(⋅,𝑚)
𝑗,1𝑅

=
𝜕𝑚𝜙𝑗,1𝑅 (1, 𝑦)

𝜕𝑦𝑚

|||||𝑦=1,
for 𝑗 ∈ {1, … ,𝑁} and 𝑛,𝑚 ∈ ℕ0, where 𝜑𝑗,1𝑅

(𝑥) =
∑∞

𝑠=0
𝑥𝑠𝐏𝑗,1𝑅

(𝑠, 0) and 𝜙𝑗,1𝑅 (𝑥, 𝑦) =∑∞

𝑠=0

∑∞

𝑟=1
𝑥𝑠𝑦𝑟𝐏𝑗,1𝑅

(𝑠, 𝑟), for |𝑥|, |𝑦| ≤ 1. We then use first-step analysis to yield the theorems
below. The proofs mostly follow the argument yielding Theorem 1 and thus are omitted.

Theorem 2. For 𝑠 ∈ ℕ0, the column vectors {𝐏𝑗,1𝑅
(𝑠, 0) ∶ 𝑗 ∈ {1, … ,𝑁}} can be written in the form

𝐏1,1𝑅
(𝑠, 0) = (𝐈𝑁 − 𝐃1(0))

−1(
𝛿𝑠,0𝐩1,1𝑅 + (1 − 𝛿𝑠,0)𝐄1𝐏0,1𝑆

(𝑠 − 1)
)
,

𝐏𝑗,1𝑅
(𝑠, 0) = 𝐡𝑗,1𝑅

(𝑠, 0) + (1 − 𝛿𝑗,𝑁)𝐇
−1
𝑗,1𝑅

𝐃𝑗+1(2)𝐏𝑗+1,1𝑅
(𝑠, 0),

for 𝑗 ∈ {2, … ,𝑁}, where 𝐏0,1𝑆
(𝑠 − 1) is evaluated from (5),

𝐡𝑗,1𝑅
(𝑠, 0) = 𝐇−1

𝑗,1𝑅

(
𝛿𝑠,0𝐩𝑗,1𝑅 + (1 − 𝛿𝑠,0)𝐄𝑗𝐏𝑗−1,1𝑆

(𝑠 − 1)

+ 𝐃𝑗−1(1)
(
𝛿𝑗,2𝐏1,1𝑅

(𝑠, 0) + (1 − 𝛿𝑗,2)𝐡𝑗−1,1𝑅
(𝑠, 0)

))
,

𝐇𝑗,1𝑅
= 𝐈𝑁−𝑗+1 − (1 − 𝛿𝑗,𝑁)𝐃𝑗(0) − (1 − 𝛿𝑗,2)𝐃𝑗−1(1)𝐇

−1
𝑗−1,1𝑅

𝐃𝑗(2),

and𝐃𝑗(0),𝐃𝑗−1(1),𝐃𝑗+1(2) and 𝐄𝑗 are suitably defined matrices of coefficients; see Appendix C.

Theorem 3. For 𝑠 ∈ ℕ0 and 𝑟 ∈ ℕ, the column vectors in {𝐏𝑗,1𝑅
(𝑠, 𝑟) ∶ 𝑗 ∈ {1, … ,𝑁}} have the form

𝐏1,1𝑅
(𝑠, 𝑟) = (𝐈𝑁 − 𝐃1(0))

−1
𝐅1𝐏2,1𝑅

(𝑠, 𝑟 − 1),

𝐏𝑗,1𝑅
(𝑠, 𝑟) = 𝐡𝑗,1𝑅

(𝑠, 𝑟) + (1 − 𝛿𝑗,𝑁)𝐇
−1
𝑗,1𝑅

𝐃𝑗+1(2)𝐏𝑗+1,1𝑅
(𝑠, 𝑟),

for 𝑗 ∈ {2, … ,𝑁}, where

𝐡𝑗,1𝑅
(𝑠, 𝑟)

= 𝐇−1
𝑗,1𝑅

(
(1 − 𝛿𝑗,𝑁)𝐅𝑗𝐏𝑗+1,1𝑅

(𝑠, 𝑟 − 1) + 𝐃𝑗−1(1)
(
𝛿𝑗,2(1 − 𝛿𝑗,𝑁)𝐏1,1𝑅

(𝑠, 𝑟) + (1 − 𝛿𝑗,2)𝐡𝑗−1,1𝑅
(𝑠, 𝑟)

))
,

and matrices 𝐅𝑗 are specified in Appendix C.
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12 CHALUB et al.

The factorial conditional moments of 𝑆
𝑒𝑥𝑎𝑐𝑡,0

on the sets {𝑅
𝑒𝑥𝑎𝑐𝑡,0

= 0} and {𝑅
𝑒𝑥𝑎𝑐𝑡,0

>

0}, provided that (𝑆(0) + 𝑅(0), 𝑅(0)) = (𝑖, 𝑗) and 𝐵(0) = 1𝑅, for integers 𝑖 ∈ {𝑗, … ,𝑁} and 𝑗 ∈

{1, … ,𝑁}, are given by the entries of 𝜑(𝑛)
𝑗,1𝑅

and 𝜙
(𝑛,⋅)
𝑗,1𝑅

, respectively. As a result, the mean value

𝐸[𝑆
𝑒𝑥𝑎𝑐𝑡,0

|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] is given by the first entry of 𝜑(1)
1,1𝑅

+ 𝜙
(1,⋅)
1,1𝑅

.

Corollary 2. For 𝑛 ∈ ℕ, it is seen that

(i) the column vectors {𝜑(𝑛)
𝑗,1𝑅

∶ 𝑗 ∈ {1, … ,𝑁}} are found to satisfy

𝜑
(𝑛)
1,1𝑅

= (𝐈𝑁 − 𝐃1(0))
−1
𝐄1

(
𝜑
(𝑛)
0,1𝑆

+ 𝑛𝜑
(𝑛−1)
0,1𝑆

)
,

𝜑
(𝑛)
𝑗,1𝑅

= 𝐠
(𝑛)
𝑗,1𝑅

+ (1 − 𝛿𝑗,𝑁)𝐇
−1
𝑗,1𝑅

𝐃𝑗+1(2)𝜑
(𝑛)
𝑗+1,1𝑅

,

for 𝑗 ∈ {2, … ,𝑁}, where vectors 𝜑(𝑛)
0,1𝑆

, for 𝑛 ∈ ℕ0, are evaluated from Corollary 1 and

𝐠
(𝑛)
𝑗,1𝑅

= 𝐇−1
𝑗,1𝑅

(
𝐄𝑗

(
𝑛𝜑

(𝑛−1)
𝑗−1,1𝑆

+ 𝜑
(𝑛)
𝑗−1,1𝑆

)
+𝐃𝑗−1(1)

(
𝛿𝑗,2𝜑

(𝑛)
1,1𝑅

+ (1 − 𝛿𝑗,2)𝐠
(𝑛)
𝑗−1,1𝑅

))
,

(ii) the column vectors {𝜙(𝑛,⋅)
𝑗,1𝑅

∶ 𝑗 ∈ {1, … ,𝑁}} have the form

𝜙
(𝑛,⋅)
𝑗,1𝑅

= 𝐥
(𝑛,⋅)
𝑗,1𝑅

+ (1 − 𝛿𝑗,𝑁)𝐋
−1
𝑗,1𝑅

(
𝐅𝑗 + (1 − 𝛿𝑗,1)𝐃𝑗+1(2)

)
𝜙
(𝑛,⋅)
𝑗+1,1𝑅

,

where

𝐥
(𝑛,⋅)
𝑗,1𝑅

= 𝐋−1
𝑗,1𝑅

(
(1 − 𝛿𝑗,1)𝐃𝑗−1(1)𝐥

(𝑛,⋅)
𝑗−1,1𝑅

+ (1 − 𝛿𝑗,𝑁)𝐅𝑗𝜑
(𝑛)
𝑗+1,1𝑅

)
,

and matrices 𝐋𝑗,1𝑅
, for 𝑗 ∈ {1, … ,𝑁}, are defined by

𝐋𝑗,1𝑅
= 𝐈𝑁−𝑗+1 − (1 − 𝛿𝑗,𝑁)𝐃𝑗(0) − (1 − 𝛿𝑗,1)𝐋

−1
𝑗−1,1𝑅

𝐃𝑗−1(1)
(
𝐅𝑗−1 + (1 − 𝛿𝑗,2)𝐃𝑗(2)

)
.

Finally, the mean value 𝐸[𝑅
𝑒𝑥𝑎𝑐𝑡,0

|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] can be derived as the first entry
of 𝜙(⋅,1)

1,1𝑅
and, in a more general way, column vectors 𝜙(⋅,𝑚)

𝑗,1𝑅
, for 𝑗 ∈ {1, … ,𝑁}, record the𝑚th facto-

rial conditional moments of𝑅
𝑒𝑥𝑎𝑐𝑡,0

, provided that (𝑆(0) + 𝑅(0), 𝑅(0)) = (𝑖, 𝑗) and 𝐵(0) = 1𝑅, for
𝑖 ∈ {𝑗, … ,𝑁}.

Corollary 3. For𝑚 ∈ ℕ, the column vectors {𝜙(⋅,𝑚)
𝑗,1𝑅

∶ 𝑗 ∈ {1, … ,𝑁}} are specified by

𝜙
(⋅,𝑚)
𝑗,1𝑅

= 𝐥
(⋅,𝑚)
𝑗,1𝑅

+ (1 − 𝛿𝑗,𝑁)𝐋
−1
𝑗,1𝑅

(
𝐅𝑗 + (1 − 𝛿𝑗,1)𝐃𝑗+1(2)

)
𝜙
(⋅,𝑚)
𝑗+1,1𝑅

,

where

𝐥
(⋅,𝑚)
𝑗,1𝑅

= 𝐋−1
𝑗,1𝑅

(
(1 − 𝛿𝑗,1)𝐃𝑗−1(1)𝐥

(⋅,𝑚)
𝑗−1,1𝑅

+ (1 − 𝛿𝑗,𝑁)𝐅𝑗

(
𝛿𝑚,1𝜑𝑗+1,1𝑅

(1) + 𝑚𝜙
(⋅,𝑚−1)
𝑗+1,1𝑅

))
.
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CHALUB et al. 13

4 NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, we present some numerical experiments to illustrate the variability of the prob-
ability law of the random contributions 𝑅

𝑒𝑥𝑎𝑐𝑡,0
and 𝑆

𝑒𝑥𝑎𝑐𝑡,0
to the exact reproduction number

𝑒𝑥𝑎𝑐𝑡,0, mainly as a function of the proportion𝑚 of individuals who enter the hospital carrying
sensitive bacteria. We consider a hospital ward that consists of one marked bed, where a patient
colonized with resistant bacteria is accommodated at time 𝑡 = 0, and 19 beds accommodating ini-
tially uncolonized patients; that is,𝑅(0) = 1, 𝑆(0) = 0, and𝑋(0) = 19. It is assumed that inpatients
contact each other, on average, in 1 day, whence the per capita infection rate is given by 𝛽 = 𝑁−1

with 𝑁 = 20.
In our first numerical experiments, the fitness difference between sensitive and resistant bac-

terial strains is relatively small (𝑐 = 0.05), and scenarios in Figures 2–5 are specified from suitable
choices of the average duration of hospital stay𝜇−1 ∈ {7, 14, 21}days, the average time fromadmis-
sion or colonization until spontaneous clearance of bacterial carriage 𝛾−1 ∈ {30, 45, 60} days,
and the proportion 𝑚 ∈ [0.2, 1.0] of admitted already colonized with sensitive bacteria. Drugs
1 and 2 are assumed to be effective on colonized patients, on average, in 𝜏−1

1
∈ {2.5, 5, 10} and

𝜏−1
2

∈ {5, 10, 20}days, respectively. For details on these values of parameters and published sources
for them, we refer the reader to Ref. 11 and references therein.
Figure 2 (respectively, Figure 3) illustrates the dynamics of colonization with resistant and sen-

sitive bacteria in terms of the basic reproduction number𝑅0, and of the expectations of the random
numbers 𝑅

𝑒𝑥𝑎𝑐𝑡,0
and 𝑆

𝑒𝑥𝑎𝑐𝑡,0
, which are plotted as a function of the proportion 𝑚, for values

of 𝜇−1 ∈ {7, 14, 21} days, 𝛾−1 ∈ {30, 45, 60} days, 𝜏−1
1

= 5 days, and 𝜏−1
2

= 10 days (respectively,
𝜏−1
1

∈ {2.5, 5, 10} days, 𝜏−1
2

∈ {5, 10, 20} days, 𝜇−1 = 14 days and 𝛾−1 = 30 days). A first important
observation is that, in our experiments, values of𝑅0 are found to be greater than the corresponding
values for the expectation of 𝑅

𝑒𝑥𝑎𝑐𝑡,0
, regardless of the parameters. This observation is counter-

intuitive because the random length of the interval during which secondary cases contribute to
𝑅

𝑒𝑥𝑎𝑐𝑡,0
is likely to be longer than the length of that involved in 𝑅0. However, it can be understood

as a consequence of the fact that 𝑅0 is formally intended to be an index of the potential, but not
exact, contagiousness of the resistant bacteria at early stages of the epidemic, and therefore, its
values in Ref. 11 are only affected by the dynamics of the inpatient-to-inpatient contact process
until either the treatment with drug 2 or other nontherapeutic reasons clear carriage of resistant
bacteria on the initially colonized patient, or this patient’s hospital stay ends.
Figures 2–3 illustrate the impact of 𝑚, the proportion of patients admitted to the hospital

who are already colonized with sensitive bacteria, on the transmission dynamics. In particu-
lar, the expected value of the exact reproduction number corresponding to the resistant strain,
𝑅

𝑒𝑥𝑎𝑐𝑡,0
, decreases with increasing values of 𝑚, which is directly related to the assumption of

cross-immunity, and highlights the competition dynamics between both bacterial strains. That is,
the more patients colonized with sensitive bacteria that arrive into the hospital, the more diffi-
cult is for the resistant bacteria to propagate in the hospital ward. Interestingly, for a relatively
small efficacy of drug 1 (i.e., 𝜏1 = 1∕10 in Figure 3), this impact is less significant under increas-
ing efficacies of drug 2 (i.e., increasing 𝜏2 in Figure 3). We note that increasing values of 𝜏2 would
ultimately lead to 𝜏2 ≈ 𝜏1 + 𝜏2, making both strains equally competitive, and thus the impact of
𝑚 is less significant in these scenarios. Similar (but opposite) behaviors can be observed in these
figures for𝑆

𝑒𝑥𝑎𝑐𝑡,0
, for the same reasons. In a similar way, an intervention based on reducing the

hospital stay will reduce the carriage of resistant bacteria, whereas the prevalence of the sensitive
strain will become more significant. A more frequent spontaneous clearance of bacterial carriage
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14 CHALUB et al.

F IGURE 2 The basic reproduction number 𝑅0 (left column, dotted lines) and expected values
𝐸[𝑅

𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (left column, solid lines) and 𝐸[𝑆
𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (right

column) as a function of𝑚, for values of 𝜇−1 ∈ {7, 14, 21} days, 𝛾−1 ∈ {30, 45, 60} days, 𝜏−11 = 5 days, 𝜏−12 = 10

days, and 𝑐 = 0.05.
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CHALUB et al. 15

F IGURE 3 The basic reproduction number 𝑅0 (left column, dotted lines) and expected values
𝐸[𝑅

𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (left column, solid lines) and 𝐸[𝑆
𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (right

column) as a function of𝑚, for values of 𝜏−11 ∈ {2.5, 5, 10} days, 𝜏−12 ∈ {5, 10, 20} days, 𝜇−1 = 14 days, 𝛾−1 = 30

days, and 𝑐 = 0.05.
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16 CHALUB et al.

F IGURE 4 The mass functions {𝑃(𝑅
𝑒𝑥𝑎𝑐𝑡,0 = 𝑟|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑟 ∈ 𝐍0} (left column) and

{𝑃(𝑆
𝑒𝑥𝑎𝑐𝑡,0 = 𝑠|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑠 ∈ 𝐍0} (right column) in scenarios with proportion𝑚 = 0.2

(black), 0.5 (red) and 0.8 (yellow), for values of 𝜇−1 = 14 days, 𝛾−1 ∈ {30, 45, 60} days, 𝜏−11 = 5 days, 𝜏−12 = 10 days,
and 𝑐 = 0.05.

will also decrease the prevalence of both resistant and sensitive strains, although no very signifi-
cant changes are observed in our numerical experiments in terms of expectations of𝑅

𝑒𝑥𝑎𝑐𝑡,0
and

𝑆
𝑒𝑥𝑎𝑐𝑡,0

.
Not surprisingly, the use ofmore effective drugs for which there is no resistance (i.e., increasing

values of 𝜏2) will result in a reduction in the prevalence of both resistant and sensitive bacterial
strains. More surprising, on at least first consideration, is the prediction that, at an early stage of
the epidemic, the effectiveness of drug 1 will not necessarily result in a remarkable variation in the
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CHALUB et al. 17

F IGURE 5 The mass functions {𝑃(𝑅
𝑒𝑥𝑎𝑐𝑡,0 = 𝑟|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑟 ∈ 𝐍0} (left column) and

{𝑃(𝑆
𝑒𝑥𝑎𝑐𝑡,0 = 𝑠|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑠 ∈ 𝐍0} (right column) in scenarios with proportion𝑚 = 0.2

(black), 0.5 (red) and 0.8 (yellow), for values of 𝜏−11 = 5 days, 𝜏−12 ∈ {5, 10, 20} days, 𝜇−1 = 14 days, 𝛾−1 = 30 days,
and 𝑐 = 0.05.

prevalence of resistant bacteria. More concretely, the model predicts that the use of less effective
drugs for which there is resistance will lead to a more significant reduction in the prevalence
of resistant bacteria only when more individuals already colonized with sensitive bacteria are
admitted to the hospital.
A more detailed description of 𝑅

𝑒𝑥𝑎𝑐𝑡,0
and of 𝑆

𝑒𝑥𝑎𝑐𝑡,0
is displayed in Figure 4 (respectively,

Figure 5) in terms of mass functions, instead of expected values, in selected scenarios with
𝑚 ∈ {0.2, 0.5, 0.8}, for values of 𝜇−1 = 14 days, 𝛾−1 ∈ {30, 45, 60} days, 𝜏−1

1
= 5 days and 𝜏−1

2
= 10

days (respectively, 𝜏−1
1

= 5 days, 𝜏−1
2

∈ {5, 10, 20} days, 𝜇−1 = 14 days, and 𝛾−1 = 30 days). The
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18 CHALUB et al.

random numbers𝑅
𝑒𝑥𝑎𝑐𝑡,0

and𝑆
𝑒𝑥𝑎𝑐𝑡,0

are seen to have unimodal distributions with a clear peak
at points 𝑟 = 0 and 𝑠 = 0, meaning that events {𝑅

𝑒𝑥𝑎𝑐𝑡,0
= 0} and {𝑆

𝑒𝑥𝑎𝑐𝑡,0
= 0} occur more fre-

quently than the others. This does not mean that the corresponding expectations of𝑅
𝑒𝑥𝑎𝑐𝑡,0

and
𝑆

𝑒𝑥𝑎𝑐𝑡,0
are necessarily less than one, as shown in Figures 2 and 3. In our experiments, the tail of

the distribution of𝑅
𝑒𝑥𝑎𝑐𝑡,0

is heavier than that of𝑆
𝑒𝑥𝑎𝑐𝑡,0

, showing that the spread of the resistant
strain appears to be more likely to occur than the spread of the sensitive one in an early stage of
the epidemic. Despite this, the model predicts that 𝑅

𝑒𝑥𝑎𝑐𝑡,0
will also take small values with high

probability, just as𝑆
𝑒𝑥𝑎𝑐𝑡,0

will take large values with relatively significant, but small, probability.
In Figures 6–9, the interest is in analyzing the impact of the fitness cost, 𝑐, on the transmis-

sion dynamics. In particular, the expected values of 𝑅
𝑒𝑥𝑎𝑐𝑡,0

and 𝑆
𝑒𝑥𝑎𝑐𝑡,0

are plotted in Figure 6
(respectively, Figure 7) as a function of 𝑐, for values 𝜇−1 ∈ {7, 14, 21} days, 𝛾−1 ∈ {30, 45, 60} days,
𝜏−1
1

= 5 days, 𝜏−1
2

= 10 days (respectively, 𝜏−1
1

∈ {2.5, 5, 10} days, 𝜏−1
2

∈ {5, 10, 20} days, 𝜇−1 = 14

days, 𝛾−1 = 30 days), and𝑚 = 0.3. Figures 6–7 show how increasing values of 𝑐 lead to less trans-
mission of the resistant strain, with no transmission at all for 𝑐 = 1.0, as one would expect. Once
again, the impact of the fitness cost is influenced by the efficacy of drugs 1 and 2. For 𝑐 = 0.0 (no
transmission advantage for the sensitive strain), increasing values of 𝜏2 lead to smaller expected
values of 𝑅

𝑒𝑥𝑎𝑐𝑡,0
and 𝑆

𝑒𝑥𝑎𝑐𝑡,0
in Figure 7. Moreover, the impact of 𝑐 on the behavior of 𝑆

𝑒𝑥𝑎𝑐𝑡,0

is much less significant, as one would expect, since 𝑐 represents the fitness cost of the resistant
bacterial strain.
Figure 8 (respectively, Figure 9) is related to themass functions of𝑅

𝑒𝑥𝑎𝑐𝑡,0
and𝑆

𝑒𝑥𝑎𝑐𝑡,0
, and sce-

narios with fitness cost 𝑐 ∈ {0.05, 0.5, 0.95}, for values of 𝜇−1 = 14 days, 𝛾−1 ∈ {30, 45, 60} days,
𝜏−1
1

= 5 days, 𝜏−1
2

= 10 days (respectively, 𝜏−1
1

= 5 days, 𝜏−1
2

∈ {5, 10, 20} days, 𝜇−1 = 14 days,
𝛾−1 = 30 days), and𝑚 = 0.3. In a similar manner to Figures 6–7, the significant impact of 𝑐 on the
probability distribution of 𝑅

𝑒𝑥𝑎𝑐𝑡,0
can also be seen in our results in Figures 8–9, where increas-

ing fitness costs lead to distributions more concentrated around 𝑟 = 0 infections. This highlights
how bacterial strains that are at an advantage due to being resistant to one of the drugs, but at a
significant disadvantage due to a high fitness cost decreasing its transmission rate, would not be
competitive to cause significant outbreaks. On the other hand, the impact of 𝑐 on the probability
distribution of𝑆

𝑒𝑥𝑎𝑐𝑡,0
is negligible in Figures 8–9.

5 CONCLUSIONS

In this work, we have developed aMarkov chain version of the deterministic model for the spread
of antibiotic-resistant bacteria in hospital settings proposed in Ref. 11. We have focused our analy-
sis on the exact number of secondary infections caused by all patients using a marked bed, which
is initially occupied by an infected patient, until this bed is eventually occupied by a suscepti-
ble one. This stochastic descriptor allows one to estimate the “infectivity of a bed” in the ward,
rather than of a single patient, by taking into account that patients arriving into the hospital ward
can already be colonized with certain probability, and infect others. Our approach allows one to
split the reproduction number into two random variables, depending on the type of infections
caused (i.e., by either the antibiotic-sensitive or resistant bacterial strains), and to compute the
joint probability distribution of these.
Our numerical results highlight the competition dynamics expected between the antibiotic-

sensitive and antibiotic-resistant bacterial strains, which is directly related to the assumption
of cross-immunity. Our results also show that the probability distributions of these exact
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CHALUB et al. 19

F IGURE 6 The expected values 𝐸[𝑅
𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (left column) and

𝐸[𝑆
𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (right column) as a function of 𝑐, for values of 𝜇−1 ∈ {7, 14, 21} days,

𝛾−1 ∈ {30, 45, 60} days, 𝜏−11 = 5 days, 𝜏−12 = 10 days, and𝑚 = 0.3.
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20 CHALUB et al.

F IGURE 7 The expected values 𝐸[𝑅
𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (left column) and

𝐸[𝑆
𝑒𝑥𝑎𝑐𝑡,0|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)] (right column) as a function of 𝑐, for values of 𝜏−11 ∈ {2.5, 5, 10} days,

𝜏−12 ∈ {5, 10, 20} days, 𝜇−1 = 14 days, 𝛾−1 = 30 days, and𝑚 = 0.3.
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CHALUB et al. 21

F IGURE 8 The mass functions {𝑃(𝑅
𝑒𝑥𝑎𝑐𝑡,0 = 𝑟|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑟 ∈ 𝐍0} (left column) and

{𝑃(𝑆
𝑒𝑥𝑎𝑐𝑡,0 = 𝑠|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑠 ∈ 𝐍0} (right column) in scenarios with fitness cost 𝑐 = 0.05

(black), 0.5 (red) and 0.95 (yellow), for values of 𝜇−1 = 14 days, 𝛾−1 ∈ {30, 45, 60} days, 𝜏−11 = 5 days, 𝜏−12 = 10

days, and𝑚 = 0.3.

reproduction numbers can, in fact, be very wide. Interestingly, one can find parameter regimes
where themean exact reproduction number is less than one, but there is a nonnegligible probabil-
ity of themarked bed causing a significant number of infections in early times, and regimes where
the mean exact reproduction number is greater than one, but there is a significant probability
of the marked bed causing zero infections. This could have a direct impact on the probabil-
ity of an outbreak happening from a particular bed, and highlights the need to analyze these
stochastic descriptors as random variables (i.e., in terms of probability distributions) rather than
mean quantities.
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22 CHALUB et al.

F IGURE 9 The mass functions {𝑃(𝑅
𝑒𝑥𝑎𝑐𝑡,0 = 𝑟|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑟 ∈ 𝐍0} (left column) and

{𝑃(𝑆
𝑒𝑥𝑎𝑐𝑡,0 = 𝑠|(𝑆(0) + 𝑅(0), 𝑅(0)) = (1, 1)) ∶ 𝑠 ∈ 𝐍0} (right column) in scenarios with fitness cost 𝑐 = 0.05

(black), 0.5 (red) and 0.95 (yellow), for values of 𝜏−11 = 5 days, 𝜏−12 ∈ {5, 10, 20} days, 𝜇−1 = 14 days, 𝛾−1 = 30 days,
and𝑚 = 0.3.
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APPENDIX A: EXPRESSIONS FORMATRICES 𝐁𝟎 AND 𝐂𝟎(𝟎) IN EQUATION (5)
From Equations (3)–(4), it is seen that 𝐁0 and 𝐂0(0) are square matrices of order 𝑁 and have the
form

𝐁0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚𝜇

𝑞(1,0)

(𝑁 − 1)𝛽

𝑞(1,0)
𝑚𝜇

𝑞(2,0)

(𝑁 − 2)𝛽

𝑞(2,0)
⋱ ⋱

𝑚𝜇

𝑞(𝑁−1,0)

𝛽

𝑞(𝑁−1,0)

𝑚𝜇

𝑞(𝑁,0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝐂0(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐′
(1,0)

𝑐′′
(1,0)

𝑐(2,0) 𝑐′
(2,0)

𝑐′′
(2,0)

𝑐(3,0) 𝑐′
(3,0)

𝑐′′
(3,0)

⋱ ⋱ ⋱

𝑐(𝑁−1,0) 𝑐′
(𝑁−1,0)

𝑐′′
(𝑁−1,0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝑐(𝑖,0) = 𝑞−1
(𝑖,0)

(𝑖 − 1)(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇), for 𝑖 ∈ {2, … ,𝑁}, 𝑐′
(𝑖,0)

= 𝑞−1
(𝑖,0)

((𝑁 − 𝑖)(1 −

𝑚)𝜇 + (𝑖 − 1)𝑚𝜇), for 𝑖 ∈ {1, … ,𝑁}, and 𝑐′′
(𝑖,0)

= 𝑞−1
(𝑖,0)

(𝑁 − 𝑖)((𝑖 − 1)𝛽 + 𝑚𝜇), for 𝑖 ∈ {1, … ,𝑁 − 1}.

APPENDIX B: EXPRESSIONS FORMATRICES 𝐁𝒋, 𝐂𝒋(𝟎), 𝐂𝒋−𝟏(𝟏), AND 𝐂𝒋+𝟏(𝟐) IN
EQUATION (6)
In Equation (6),𝐁𝑗 and𝐂𝑗(0) are squarematrices of order𝑁 − 𝑗, andmatrices𝐂𝑗−1(1) and𝐂𝑗+1(2)

are of dimension (𝑁 − 𝑗) × (𝑁 − 𝑗 + 1) and (𝑁 − 𝑗) × (𝑁 − 𝑗 − 1), respectively. They are given by

𝐁𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚𝜇

𝑞(𝑗+1,𝑗)

(𝑁 − 𝑗 − 1)𝛽

𝑞(𝑗+1,𝑗)

𝑚𝜇

𝑞(𝑗+2,𝑗)

(𝑁 − 𝑗 − 2)𝛽

𝑞(𝑗+2,𝑗)

⋱ ⋱

𝑚𝜇

𝑞(𝑁−1,𝑗)

𝛽

𝑞(𝑁−1,𝑗)

𝑚𝜇

𝑞(𝑁,𝑗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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𝐂𝑗(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐′
(𝑗+1,𝑗)

𝑐′′
(𝑗+1,𝑗)

𝑐(𝑗+2,𝑗) 𝑐′
(𝑗+2,𝑗)

𝑐′′
(𝑗+2,𝑗)

𝑐(𝑗+3,𝑗) 𝑐′
(𝑗+3,𝑗)

𝑐′′
(𝑗+3,𝑗)

⋱ ⋱ ⋱

𝑐(𝑁−1,𝑗) 𝑐′
(𝑁−1,𝑗)

𝑐′′
(𝑁−1,𝑗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝐂𝑗−1(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑗(𝛾 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑗+1,𝑗)

𝑗𝑚𝜇

𝑞(𝑗+1,𝑗)

𝑗(𝛾 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑗+2,𝑗)

𝑗𝑚𝜇

𝑞(𝑗+2,𝑗)

⋱ ⋱

𝑗(𝛾 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑁−1,𝑗)

𝑗𝑚𝜇

𝑞(𝑁−1,𝑗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝐂𝑗+1(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑁 − 𝑗 − 1)𝑗(1 − 𝑐)𝛽

𝑞(𝑗+1,𝑗)

(𝑁 − 𝑗 − 2)𝑗(1 − 𝑐)𝛽

𝑞(𝑗+2,𝑗)

⋱

𝑗(1 − 𝑐)𝛽

𝑞(𝑁−1,𝑗)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where 𝑐(𝑗+𝑖,𝑗) = 𝑞−1
(𝑗+𝑖,𝑗)

(𝑖 − 1)(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇), for 𝑖 ∈ {2, … ,𝑁 − 𝑗}, 𝑐′
(𝑗+𝑖,𝑗)

=

𝑞−1
(𝑗+𝑖,𝑗)

((𝑁 − 𝑗 − 𝑖)(1 − 𝑚)𝜇 + (𝑖 − 1)𝑚𝜇), for 𝑖 ∈ {1, … ,𝑁 − 𝑗}, and 𝑐′′
(𝑗+𝑖,𝑗)

= 𝑞−1
(𝑗+𝑖,𝑗)

(𝑁 −

𝑗 − 𝑖)((𝑖 − 1)𝛽 + 𝑚𝜇), for 𝑖 ∈ {1, … ,𝑁 − 𝑗 − 1}.

APPENDIX C: EXPRESSIONS FORMATRICES 𝐄𝒋, 𝐅𝒋, 𝐃𝒋(𝟎), 𝐃𝒋−𝟏(𝟏), and 𝐃𝒋+𝟏(𝟐) IN
THEOREMS 3 AND 3
Matrices𝐄𝑗 , for 𝑗 ∈ {1, … ,𝑁}, and 𝐅𝑗 , for 𝑗 ∈ {1, … ,𝑁 − 1}, in Theorems 2 and 3 are of dimension
(𝑁 − 𝑗 + 1) × (𝑁 − 𝑗 + 1) and (𝑁 − 𝑗 + 1) × (𝑁 − 𝑗), respectively, and are given by

𝐄𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑚𝜇

𝑞(𝑗,𝑗)
𝑚𝜇

𝑞(𝑗+1,𝑗)
⋱

𝑚𝜇

𝑞(𝑁,𝑗)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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𝐅𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑁 − 𝑗)(1 − 𝑐)𝛽

𝑞(𝑗,𝑗)
(𝑁 − 𝑗 − 1)(1 − 𝑐)𝛽

𝑞(𝑗+1,𝑗)
⋱

(1 − 𝑐)𝛽

𝑞(𝑁−1,𝑗)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrices𝐃𝑗(0),𝐃𝑗−1(1), and𝐃𝑗+1(2) are of dimension (𝑁 − 𝑗 + 1) × (𝑁 − 𝑗 + 1), (𝑁 − 𝑗 + 1) ×

(𝑁 − 𝑗 + 2), and (𝑁 − 𝑗 + 1) × (𝑁 − 𝑗), respectively, and have the form

𝐃𝑗(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑′
(𝑗,𝑗)

𝑑′′
(𝑗,𝑗)

𝑑(𝑗+1,𝑗) 𝑑′
(𝑗+1,𝑗)

𝑑′′
(𝑗+1,𝑗)

𝑑(𝑗+2,𝑗) 𝑑′
(𝑗+2,𝑗)

𝑑′′
(𝑗+2,𝑗)

⋱ ⋱ ⋱

𝑑(𝑁−1,𝑗) 𝑑′
(𝑁−1,𝑗)

𝑑′′
(𝑁−1,𝑗)

𝑑(𝑁,𝑗) 𝑑′
(𝑁,𝑗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝐃𝑗−1(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑗 − 1)(𝛾 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑗,𝑗)

(𝑗 − 1)𝑚𝜇

𝑞(𝑗,𝑗)
(𝑗 − 1)(𝛾 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑗+1,𝑗)

(𝑗 − 1)𝑚𝜇

𝑞(𝑗+1,𝑗)

⋱ ⋱

(𝑗 − 1)(𝛾 + 𝜏2 + (1 − 𝑚)𝜇)

𝑞(𝑁,𝑗)

(𝑗 − 1)𝑚𝜇

𝑞(𝑁,𝑗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

𝐃𝑗+1(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑁 − 𝑗)(𝑗 − 1)(1 − 𝑐)𝛽

𝑞(𝑗,𝑗)
(𝑁 − 𝑗 − 1)(𝑗 − 1)(1 − 𝑐)𝛽

𝑞(𝑗+1,𝑗)

⋱

(𝑗 − 1)(1 − 𝑐)𝛽

𝑞(𝑁−1,𝑗)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where 𝑑(𝑗+𝑖,𝑗) = 𝑞−1
(𝑗+𝑖,𝑗)

𝑖(𝛾 + 𝜏1 + 𝜏2 + (1 − 𝑚)𝜇), for 𝑖 ∈ {1, … ,𝑁 − 𝑗}, 𝑑′
(𝑗+𝑖,𝑗)

= 𝑞−1
(𝑗+𝑖,𝑗)

((𝑁 −

𝑗 − 𝑖)(1 − 𝑚)𝜇 + 𝑖𝑚𝜇), for 𝑖 ∈ {0, … ,𝑁 − 𝑗}, and 𝑑′′
(𝑗+𝑖,𝑗)

= 𝑞−1
(𝑗+𝑖,𝑗)

(𝑁 − 𝑗 − 𝑖)(𝑖𝛽 + 𝑚𝜇), for 𝑖 ∈

{0, … ,𝑁 − 𝑗 − 1}.
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