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Abstract

Mathematical analysis of blast pressures has typically involved the empirical fitting of parametric models,

which assumes a specific function shape. In reality, the true shape of the blast pressure is unknown and

may lack a parametric form, particularly in the negative phase following arrival of the secondary shock. In

this work, we develop a non-parametric (NP) representation that makes few assumptions and relies on

the observed experimental data to fit a unique and previously unknown model. This differs from

traditional approaches by not arbitrarily selecting a single, restrictive class of functions and estimating a
minimal set of parameters, but rather estimating the underlying function class for which the blast

pressure is generated; learning the model directly from the observed data. The method was applied to

experimental blast measurements and the NP estimates matched the experimental data with a high

degree of accuracy, both qualitatively and quantitatively. The NP approach was shown to significantly

outperform other commonly used approaches, near-perfectly track the entire pressure and specific

impulse history and predicting experimental peak specific impulse to within ±0.5% in all cases

(compared to ±5.0% for a trained artificial neural network (ANN) and ±7.5% for the UFC semi-

empirical approach). The NP approach predicts experimental net specific impulses (positive and
negative phases combined) with a maximum variation of 2.7%, compared to maximum variations

of�116% and 55% for theUFC andANNapproaches, respectively. Since the framework is probabilistic

in nature, it can naturally account for random noise in sensor measurements, which are typically more

pronounced in blast experiments than many other machine learning applications.
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Introduction

Detonation of a high explosive material will result in a substantial release of energy as the explosive

undergoes an exothermic chemical reaction and rapidly converts into a high pressure, high energy

gas (Dewey, 2016). These gaseous detonation products violently expand outwards into the sur-

rounding air, causing a shock wave to form which travels at velocities several times greater than the

ambient sound speed as it propagates away from the source of the explosion. In the early stages of an

explosion, the expanding fireball remains in contact with the shock wave and complex turbulent

structures emerge at the contact surface between the detonation products and the air (Brouillette,

2002). The region where the shock front is still being driven by the detonation products is known as

the near-field, and the emerging blast pressure waveforms have been shown to be highly complex

(Rigby et al., 2015a; Tyas et al., 2016).

After some time, however, the shock wave detaches from the detonation product fireball and

expands outwards in a regular, spherical manner. This detachment marks the beginning of what is

known as the far-field region. Here, the blast pressure profile takes the form of an almost in-

stantaneous rise to peak pressure, followed by an exponential decay back to ambient conditions.

Following the period of positive overpressure (where overpressure is the term given to the increase

in pressure above atmospheric conditions (Kinney and Graham, 1985) comes a period of below

atmospheric pressure, termed the negative phase (Rigby et al., 2014a). At a point near the minimum

of the negative phase comes a smaller “secondary shock,” caused by internal reflection of a

backwards-moving rarefaction wave formed by outward movement of the detonation product/air

interface (Brode, 1955). The magnitude and arrival time of the secondary shock is dependent on the

pressure/volume/energy state of the detonation products shortly after detonation and hence varies by

explosive type (Rigby and Gitterman, 2016). Thereafter, the pressure returns back to ambient

conditions.

A freely expanding blast wave is known as an incident wave. When a blast wave reflects off a

rigid surface, the fluid is momentarily brought to rest non-isentropically so that the translational

kinetic energy contributes toward the total reflected pressure on the surface (Dewey, 2016). Ex-

perimental measurement of incident and reflected blast pressure parameters has been a topic of

interest since the mid-1940s (see (Esparza, 1986) for a detailed review), and gained particular

prominence with the now well-established compilation of Kingery (1966), and later Kingery and

Bulmash (Kingery and Bulmash, 1984). These compiled blast parameters form the basis of design

guidance such as the UFC 3-340-02 manual Structures to Resist the Effects of Accidental Ex-

plosions (US DoD, 2008), and the computer code ConWep (Hyde, 1991).

While these semi-empirical methods exist in the literature for determining blast pressure from an

idealized situation, it remains vitally important for the civil and military engineering communities to

be able to experimentally measure blast pressure parameters for situations not covered in the above,

for example, different explosive shapes or types (Rigby et al., 2021; Langran-Wheeler et al., 2021),

complex internal or confined environments (Larcher and Casadeia, 2010; Alterman et al., 2019;

Dennis et al., 2021; Gan et al., 2022), and cityscapes (Rigby et al., 2020). The accurate and robust

treatment of recorded signals from commercial pressure gauges is not trivial, with typical ex-

perimental traces demonstrating features such as ringing, sensor drift, and noise (Kucera et al.,

2016).

Accordingly, it is common to fit a least-squares exponential curve to a later portion of the pressure-

time curve, which can be extrapolated back to the arrival time to yield peak pressure and integrated to

yield specific impulse. These fitted values are typically considered better representations of the true

blast parameters compared to those determined from the raw data (Farrimond et al., 2022). While this
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may be an acceptable approach for simple free-field loading cases, it generally requires the analyst to

define a function (or family of functions) to fit the raw data to. One such parametric form is the

“modified Friedlander” equation, described in detail in “Empirical Parametric Fits.” The accuracy

with which this equation can model a number of blast wave properties over a range of shock strengths

has led to suggestions of a fundamental relationship between the Friedlander exponential and the

explosive process (Dewey, 2010). However, it is known that this relationship cannot accurately

describe the negative phase (Rigby et al., 2014a; Hatfield et al., 2022) or secondary shock (Rigby and

Gitterman, 2016), even for idealized free-field blasts. Clearly, the quality of fit is dependent on the

availability of a suitable parametric function, and as the complexity of the problem increases the

likelihood of there being a satisfactory function decreases.

Furthermore, regarding parameter curves for the negative phase, Bogosian et al. (Bogosian et al.,

2002) noted that, “The precise provenance of these curves is unknown at the present time.” The

authors suggest that the reason why negative phase predictions are less trustworthy is in part to the

fact that “Not all (experimental recordings) were of sufficient duration and/or quality as to be able

to extract negative as well as positive values, and…others became suspect at later time and

therefore could not produce reliable impulses.”

An alternative is to use a non-parametric approach, that is, a Gaussian process (GP) formulation.

GPs form a non-parametric model, and are particularly useful when little is known about a specific

parametric model that could give accurate predictive performance. While most commonly utilized

in machine learning problems (Rasmussen and Williams, 2006), GPs have been used in a diverse

field of additional applications including mining (Coburn, 2000), model identification of dynamic

systems (Nguyen-Tuong et al., 2009), and modeling channel-to-noise ratios of wireless transmitters

(Kirchner, 2019), to name a few. In a blast-specific setting, they have recently been used to estimate

degradation and life-span of explosive materials from blast experiments (Kirchner and Kirchner,

2015), to predict blast-induced ground vibrations (Arthur et al., 2020), and to model the structural

response of reinforced concrete beams retrofitted with fiber-reinforced polymer (Almustafa and

Nehdi, 2021), although as noted in Bortolan Neto et al. (2020), there still appears to be a general lack

of studies verifying the applicability of GPs to blast and impact events. GPs have several advantages

over traditional parametric approaches in that they provide a natural representation of blast pressures

by incorporating qualitative prior knowledge of blast pressure profiles that regularize the problem.

Aside from this, GPs make few other assumptions and instead rely on the observed experimental

data to shape the model, making them particularly suited for complex/non-ideal blast settings as

discussed previously.

This article presents the formulation of a non-parametric Gaussian process for probabilistically

estimating the underlying latent shape of a blast curve, for the entire pressure history. This is

significant in two regards: first, the method is robust to the noise incurred during experimental

collection of blast wave data, and second; the method does not just infer a single, most-likely blast

wave, but rather a probabilistic estimate of the blast wave itself. This provides a quantitative

measure of how trustworthy the estimate is.

Results from the GP model are compared against raw experimental data from a series of simple

blast settings, each with a unique combination of explosive mass and distance to the measurement

location (6 unique combinations and 14 total test samples). Performance of the GP is assessed

against other common approaches including an empirical parametric model and an artificial neural

network. Additional unique features of the GP model are explored in further detail, including its

ability to problematically estimate the blast pressure history frommultiple trials concurrently, and its

ability to model complex near-field blast pressure histories.

Kirchner et al. 3



Gaussian process framework

Overview

In this section, we outline the development of a non-parametric Gaussian process for probabi-

listically estimating the underlying latent shape of a blast pressure history. First, it is essential to

identify certain broad necessary conditions of a blast wave, that is Axioms 1–5. Subsequently, we

generalize the GP method to incorporate these Axioms. These generalizations, while developed to

apply to blast waves in this paper, are more general and can be applied to other problems. Spe-

cifically, the developments in Sections “Gaussian Process Model with a Difference Operator” to

“Simultaneous Analysis of Multiple Trials” (inclusive) are novel in the field of GP regression,

regardless of application.

Blast characteristics

We assume there is an underlying latent function, denoted by f :Rþ→R, that relates time to blast

pressure at some radial distance from a (hemi-) spherical bare charge. We wish to estimate f, and are

given n noisy experimental observations to do so. Let pi 2R be the measured pressure sampled at

time ti 2Rþ. Then our generative model for the i-th measured sample is as follows

pi ¼ f ðtiÞ þ ϵ; (1)

with ϵ∼Nð0, σ2Þ being independent and identically distributed Gaussian noise. The blast pressure
profile is known to follow a general qualitative shape given in Figure 1. An idealized blast wave is

characterized by the following axioms:

Figure 1. Idealized pressure-time profile for a reflected blast wave. The variable f denotes the underlying
pressure wave as described by the model given in (1), and i denotes the impulse of the pressure wave.
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Axiom 1. The initial pressure is at atmospheric pressure, p0. Without loss of generality, we will

consider this to be zero for the remainder of this article.

Axiom 2. At some time ta, the blast wave front is observed as a jump-discontinuity

p ¼

�

p0t < ta

p0 þ pr,maxt ¼ ta,

with pr,max being the maximum overpressure of the blast wave. The time ta is commonly referred to

as the blast time-of-arrival (TOA). Hereafter, we shall only consider the overpressure of the blast

(i.e., p � p0).

Axiom 3. The intensity of the blast decreases with time, decaying monotonically from time ta
until it reaches the minimum pressure, pr,min, which occurs at time denoted by tneg.

Axiom 4. The blast wave increases monotonically after time tneg.

Axiom 5. The blast pressure function is piecewise smooth.

Gaussian process regression

Since we have little prior knowledge of the parametric form of f, we model this non-parametrically

as a Gaussian Process (GP), previously developed in Rasmussen and Williams (2006). The GP

model allows for immense generality of function classes while still having the potential to adhere to

the constraints listed in Axioms 1–5. However, the method is currently not robust to real data, so we

first need to generalize the GP method to incorporate these Axioms.

Formally we state the GP as:

Definition 1.AGaussian Process is a collection of random variables, any finite number of which

has a joint Gaussian distribution (Rasmussen and Williams, 2006).

A GP is effectively providing a distribution over the space of functions for which f lies. A GP is

completely described by a mean function

mðtiÞ ¼ E½f ðtiÞ�;

and, for each i, j, the covariance function

k
�

ti, tj; θ
�

¼ E
�

ðf ðtiÞ � mðtiÞÞ
�

f
�

tj
�

� m
�

tj
���

;

where we denote by θ as a vector of hyperparameters for which the covariance function depends. A

function being drawn from a GP distribution is denoted as

f ðtiÞ∼GP
�

mðtiÞ, k
�

ti, tj; θ
��

: (2)

The covariance function is a kernel operator, and is an expression of how correlated the output of

two points are, based on input proximity. For example, if two pressures were sampled 0.01 ms apart,

they would likely exhibit similar magnitude, but if 2 s were to have elapsed between samples we

would expect them deviate greatly. The covariance function describes this relation. In order to

comply with Axiom 1, we have a kernel of

Kirchner et al. 5



k
�

ti, tj; θ
�

¼ 0; (3)

if ti < ta or tj < ta. For blast pressure analysis after the arrival of the initial shock front, ti ≥ ta and tj ≥ ta,

we use the squared exponential kernel

k
�

ti, tj; θ
�

¼ θ2w e
�
kti�tjk

2

2θ2g , (4)

with θ ¼ ðθw, θgÞ. The use of the squared exponential kernel allows for a broad class of functions forwhich
f is allowed, as this type of kernel can form a universal approximator (Park and Sandberg, 1991) for smooth

functions. This kernel is so general that it can lead to instabilities during estimation as it can be close to ill-

posed. However, the properties listed in Axioms 1–4 regularizes the problem, making function estimation

stable.

For notational simplicity, we follow Rasmussen and Williams (2006) and define fi :¼ f ðtiÞ, and
use bold notation to refer to any collection of measurements or times, that is, p :¼ ðp1, p2,…, pnÞ

u

and t :¼ ðt1, t2,…, tnÞ
u
. To estimate f*, the value of the pressure function at desired times t*, we

place a GP prior on the data and from Definition 1 notice that

�

p

f*

�

∼N

	

0,

�

Kðt, t; θÞ þ σ2In Kðt, t*; θÞ

Kðt*, t; θÞ Kðt*, t*; θÞ

�


; (5)

with Kðx, y; θÞ denoting the matrix with each element described as in (3) and (4) such that

½K�ij ¼ k
�

xi, yj; θ
�

: (6)

Estimating for f* amounts to conditioning on the observed data to find pðf*jt,p, t*Þ. This can be
found (Rasmussen and Williams, 2006) to be

ðf*jt,p, t*Þ∼Nðμ,ΣÞ; (7)

with μ ¼ E½f*jt, p, t*� being the mean of the function estimate at t*. We can find the mean to be

μ ¼ Kðt*, t; θÞ
�

Kðt, t; θÞ þ σ2In
��1

p; (8)

and the covariance as

Σ ¼ Kðt*, t*; θÞ � Kðt*, t; θÞ
�

Kðt, t; θÞ þ σ2In
��1

Kðt, t*; θÞ: (9)

Hyperparameter optimization

It is clear that solving for the posterior distribution in (8) and (9) is dependent on hyperparameters,

θ ¼ ðθw, θgÞ. Random samples from a GP prior incorporating a covariance function described by (4)

can be viewed as superpositions of functions of the form

f
�

t; ti, θg
�

¼ e
�
kt�tik

2

2θ2g ;

where σg is a parameter controlling the wide, or scale length of the Gaussian basis functions. This

creates a functional representation as
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f ðtÞ ¼
X

n

i¼1

wif
�

t; ti, θg
�

;

for each time of an observed pressure measurement, ti. When forming a GP model using this

covariance function, we are placing a Gaussian prior distribution on all parameters with

wi ∼Nð0, θ2wÞ. The hyperparameters θw and θg are not known a priori and are learned from the

experimental data by optimizing the marginal likelihood of the given observations. The marginal

likelihood is the likelihood of observing the experimental data given the model θ. It is defined as

pðpjt; θÞ ¼

Z

pðpjt, f ; θÞpðf jt; θÞdf ; (10)

and we can find the log marginal likelihood1 (Rasmussen and Williams, 2006) as

logðpðpjt; θÞÞ ¼ �
1

2
pu

�

Kðt, t; θÞ þ σ2In
��1

p�
1

2
log

�

�Kðt, t; θÞ þ σ2In
�

��
n

2
logð2πÞ: (11)

We then select the model by finding the hyperparameters with

θ ¼ arg max
θ

logðpðpjt; θÞÞ: (12)

This gives us the most likely model that generated the observed data.

Gaussian process model with a difference operator

From Axioms 3 and 4, we must impose a constraint that the function is monotonic. Riihimäki and

Vehtari (Riihimäki and Vehtari, 2010) suggested that we can impose a monotonicity constraint by

adding an additional observation that derivatives are decreasing. We propose to use a difference

operator as opposed to a derivative observation, due to ease of implementation with a wide variety of

covariance functions, since no complicated analytical derivatives of covariance functions are required

(only the squared exponential function is used in Riihimäki and Vehtari (2010). Non-Gaussian

likelihoods result with monotonicity observations, and the approximate inference technique of

Expectation Propagation (EP) (Minka, 2001) was proposed. EP uses a Gaussian approximation to the

likelihood function, and for this particular application, can bias the slope of the posterior curve. This is

critical for blast wave analysis, since estimation of the decay rate of the blast pressure is of primary

interest. We present an alternative method, that does not bias the slope estimate.

Define the matrix2 Ad 2R
ðn�1Þ×n such that Δf = Adf, where Δfi = fi+1� fi is the difference operator

for points i = 1,…, n� 1. We can create a new vector ðΔf , f , f*Þu with the following linear relation

2

4

Δf

f

f*

3

5 ¼

2

4

Ad 0

In 0

0 Im

3

5

�

f

f*

�

¼ D

�

f

f*

�

:

This implies that

2

4

Δf

f

f*

3

5∼N

	

0,D

�

Kðt, t; θÞ Kðt, t*; θÞ

Kðt*, t; θÞ Kðt*, t*; θÞ

�

Du




:
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This shows that the vector ðΔf , p, f*Þu relating the finite differences of the true underlying

function, f, with its noisy observations, p, and the desired function values, f*, is also a GP with

2

4

Δf

p

f*

3

5∼N

0

@0,

2

4

AdKðt, t; θÞA
u

d AdKðt, t; θÞ AdKðt, t
*; θÞ

Kðt, t; θÞAu

d Kðt, t; θÞ þ σ2In Kðt, t*; θÞ

Kðt*, t; θÞAu

d Kðt*, t; θÞ Kðt*, t*; θÞ

3

5

1

A:

Marginal likelihood with monotonicity constraints

We add an observation that f is monotonic at each point in time. For any time ti, we denote this

observation as mi 2f�1; 1g. We have the following likelihood

pðmijΔf ; θÞ ¼

�

1 if ðΔfi; θÞ ≤ 0,

0 otherwise:
(13)

The joint likelihood of observations is modeled conditionally independent with

pðmjΔf ; θÞ ¼ ∏
n�1

i¼1

pðmijΔf ; θÞ: (14)

where m is a vector of n � 1 monotonicity observations. The joint likelihood of measurements p,

and m can be factored as follows

pðm,pjt; θÞ ¼ pðmjp, t; θÞpðpjt; θÞ ¼ pðpjt; θÞ

Z

pðmjΔf , t; θÞpðΔf jp, t; θÞdΔf :

The term pðΔf jp, t; θÞ is a Gaussian distribution conditioned on the observed data points p, and is
found to be

ðΔf jp, t; θÞ∼N
�

CB�1p,A� CB�1Cu
�

: (15)

with A ¼ AdKðt, t; θÞAu
d , B ¼ Kðt, t; θÞ þ σ2In, and C ¼ AdKðt, t; θÞ. We observe that

logðpðpjt; θÞÞ is the log marginal likelihood without the monotonicity constraint and is defined in

(11). With the independence defined in (14) and the likelihood from (13) we have

Z

pðmjΔf , t; θÞpðΔf jp, t; θÞdΔf ¼ ∏
n�1

i¼1

Z 0

�∞

pðΔfijp, t; θÞdΔfi:

For numerical stability, we optimized the log marginal likelihood as

logðpðm,pjt; θÞÞ ¼ logðpðpjt; θÞÞ þ
X

n�1

i¼1

log

	
Z 0

�∞

pðΔfijp, t; θÞdΔfi




: (16)

The second term represents the sum of the log of Gaussian cumulative distribution functions, for

which fast and stable methods exist for computing this quantity. Solving for hyperparameter θ by

optimizing (12) using the new log marginal likelihood in (16) finds the most likely model that

generated the data and is monotonic.
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Generalization for additional waves

If the presence of an additional wave is known to exist in the raw blast data3, then the estimates can

be generalized to account for this phenomenon. This is achieved by decorrelating all measurements

from before the reflected wave with the measurements that occur after, effectively introducing a

discontinuity.

Let tr > ta denote the arrival time of the reflected wave, and we denote by p� ¼ ðp1, p2,…, piÞ
u

and t� ¼ ðt1, t2,…, tiÞ
u
such that ti < tr as the measurements that occur before the arrival of reflected

wave. Similarly, we denote p+ and t+ as the measurements that occur after the reflected wave.

Denoting K� as the covariance matrix constructed with only t
�, and K+ as the covariance matrix

with only t+, then the reflected covariance matrix, denoted as Kr, is found as

Kr ¼

�

K� 0

0 Kþ

�

:

where 0 is a matrix of the appropriate size with zeros in all entries.

We note here that tr is know in advance and used to construct the matrix Kr. This can be seen by

observing the raw experimental data, and we assume this is the case in all results that follow. In

general, however, we don’t need to know tr in advance. It can be added as an additional parameter

that can be found during the hyperparameter optimization. If optimizing for tr as an extra parameter,

care must be taken as it may introduce discontinuities in the optimization.

Simultaneous analysis of multiple trials

The presented GP method can support joint analysis of several independent trials from the same

blast experiment, that is, the same charge weight, measurement distance, etc. This has the advantage

of incorporating multiple observations to improve estimation of the underlying blast phenomena.

We consider k independent trials, and denote by p½j� ¼ ðp
½j�
1 , p

½j�
2 ,…, p

½j�
nj Þ and t

½j� ¼ ðt
½j�
1 , t

½j�
2 ,…, t

½j�
nj Þ for

j2f1,…, kg, as the data from the j-th trial, each consisting of nj samples. Note that each trial may

have a different number of total samples and, in general, t
½j1�
i ≠ t

½j2�
i for any pair of trials j1 ≠ j2. While

in practice the measurement noise may be the same distribution just with different draws (each with

the same parameter, σ), we will consider the more general setting where each trial has a separate

noise parameter σj. We expand (5) as the following

2

6

6

4

p½1�

«

p½k�

f*

3

7

7

5

∼N

0

B

B

@

0,

2

6

6

4

K
�

t½1�, t½1�θ
�

þ σ2
1In1 / Kðt½1�, t½k�; θ

�

Kðt½1�, t*; θ
�

« 1 « «

K
�

t½k�, t½1�; θ
�

/ Kðt½k�, t½k�
�

þ σ2
kInk Kðt½k�, t*; θ

�

K
�

t*, t½1�; θ
�

/ Kðt*, t½k�; θ
�

Kðt*, t*; θÞ

3

7

7

5

1

C

C

A

:

We assume that all trials are aligned such that t
½j�
a ¼ 0 for each trial, j, that is, the main blast waves

are aligned. In general, any secondary shock may not be aligned and therefore requires a gen-

eralization to Sec. 2.7 to account for the presence of the reflected wave. Let tþr denote the largest

arrival time of the reflected waves

tþr :¼ max
j2f1,…, kg

t½j�r ;

Kirchner et al. 9



and denote by t�r as the smallest arrival time

t�r :¼ min
j2f1,…, kg

t½ j�r :

We consider a range of times, tr 2 ½t�r , t
þ
r �, that a secondary wave could occur. Our reflected wave

covariance matrix becomes

Kr ¼

2

4

K� 0 0

0 Krefl 0

0 0 Kþ

3

5:

where K� is the covariance matrix using t� ¼ ðt1, t2,…, tiÞ
u

such that ti < t
�
r , K

+ is the covariance

matrix using tþ ¼ ðti, tiþ1,/Þu such that ti > t
þ
r , and Krefl is the covariance matrix using all the

times ti such that t�r ≤ ti ≤ t
þ
r for all i.

Computational efficiency

Low rank approximation

Computing the posterior function estimate in (8) and (9), as well as the log marginal likelihood in

(11) and (16), require the inversion of an n × n matrix. This can be inefficient when n is large since

computing a matrix inversion4 isOðn3Þ. Blast experiments generate many pressure measurements at

high sample rates, guaranteeing nwill be large.While there is much research into fast approximation

techniques for use in GPs (Quinonero-Candela and Rasmussen, 2005), we find that a reduced rank

approximation works particularly well for blast analysis. We claim that the matrix Kðt, t; θÞ is

approximately low rank, and replace it with a rank k� nmatrix ~K. Following the Nyström method

(Williams and Seeger, 2001), we have

~K ¼ KnkK
�1
kk K

u

nk :

Kkk is k × k covariance matrix constructed by using only k data points selected uniformly at

random, without replacement, from the original set of n data points. Knk is a n × k covariance matrix

of the selected k points with all points in the dataset. We can write this equivalently as

~K ¼ QuQ;

where Q is a k × n matrix given by

Q ¼ L�1
kk K

u

nk ;

with Lkk being the lower triangular Cholesky factor of ðKkk þ νIkÞ. The term ν is a small5 positive

constant to ensure the Cholesky decomposition is strictly positive definite. Let

α ¼ ½Kðt, t; θÞ þ σ2In�
�1
p, be the solution to the linear system. With the low rank approximation

this becomes

αLR ¼
�

QuQþ σ2In
��1

p: (17)

This is now a diagonal plus low rank system and we can exploit this structure to create an efficient

solution using the matrix inversion lemma (Higham, 2002)
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αLR ¼ σ�2p� σ�2Qu
�

σ2Ik þ QQu
��1

Qp: (18)

We now only require the inversion of a k × k matrix in (18), as opposed to the inversion of n × n

matrix in (17). The mean estimate from (8) is now computed with low rank approximation as

μLR ¼ QuQαLR:

Likewise, the solution to the linear system β ¼ ½Kðt, t; θÞ þ σ2In�
�1ðAdKðt, t; θÞÞ

u
, associated with

the covariance in the distribution in (15) now becomes

β ¼
�

QuQþ σ2In
��1

QuQAu

d ;

Then we proceed to use the matrix inversion lemma to solve this linear system the same as above in

(18) with

βLR ¼ σ�2QuQAu

d � σ�2Qu
�

σ2Ik þ QQu
��1

QQuQAu

d ; (19)

which gives the low rank estimate of posterior covariance (9) as

ΣLR ¼ QuQ� σ�2QuβLR: (20)

The low rank approximation can also be applied for efficient computation of the determinant

jKðt, t; θÞ þ σ2Inj in (11) as

�

�QuQþ σ2In
�

� ¼
�

�Ik þ σ�2QQu
�

�

�

�σ2In
�

�:

We can take the Cholesky factor such that

LqL
u

q ¼ Ik þ QQu;

and then we find

log
��

�Ik þ σ�2QQu
�

�

�

�σ2In
�

�

�

¼ nlog σ2 þ 2
X

k

i¼1

log Lqði, iÞ:

Matrix order of operations

Another consideration is the order of operation of matrix multiplication that is introduced with the

low rank approximation in “Low Rank Approximation.” Multiplying a n × k matrix with a k × m

matrix is OðnkmÞ, and it’s easy to see that if we multiply two matrices that are n × n, the result is

Oðn3Þ. We can avoid many such instances by forcing the order of operation of multiple matrix

multiplications. Also we denote by x = A\b as the solution of the linear system Ax = b. This is used to

imply the solution was obtained by the proper decomposition followed forward-backward sub-

stitution. Following operator precedence6, we start with the computation of (18) as

αLR ¼ σ�2p� σ�2Qu
��

σ2Ik þ QQu
��

ðQpÞ
�

:

This reduces an Oðnk2Þ operation to Oðk2Þ. α is then used to compute the mean estimate
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μLR ¼ QuðQαLRÞ;

and is used to compute the mean of the difference operator in (15) as

E½Δf*jp, t; θ� ¼ ðAdQ
uÞðQαÞ: (21)

This replaces a product ofOðkn2 þ n2Þ withOð2nkÞ. To compute (20) and the covariance of the

distribution in (15), we introduce the matrix

T ¼ ðQQuÞ
�

QAu

d

�

;

as it avoids multiple computations of this quantity. Then (19) becomes

βLR ¼ T � QQu
�

σ2Ik þ QQu
��

T :

Since we assume conditional independence in (14) we only need the diagonal elements of the

covariance matrix in (15). This saves computation time and significantly reduces the memory

required to store the entire matrix. This is found as

diag
�

A� CB�1Cu
�

¼
X

i

�

ðAdQ
uÞ+

�

QAu

d

��

i
�
��

σ�2AdQ
u
�

+βuLR
�

i
;

where ◦ denotes the element-wise product and i is each row. This process is necessary to make the

method tractable for the large amount of samples collected during blast experiments.

Performance analysis

Overview

In this section, the non-parametric (Gaussian process) model described above is compared against

select experimental data, and several performance metrics are compared against those from two

other common approaches. These are detailed in full in the following sections, with a brief overview

of the four data types as well as the naming conventions used in this article below:

1. Experimental (“Exp.”). Raw experimental pressure and impulse histories

2. Non-parametric (“NP”). Non-parametric pressure and impulse histories, according to the

process outlined in this article

3. Empirical (“UFC”). Pressure and impulse histories derived from the UFC (US DoD, 2008)

semi-empirical predictive approach

4. Artificial neural network (“ANN”). A fully connected deep neural network, using the

hyperparameters determined in Dennis et al. (2021)

Experimental data

In this article, we make use of the results from a number of small-scale arena blast experiments

conducted at the University of Sheffield Blast and Impact Laboratory in Buxton, UK (Rigby et al.,

2015b). Here, 180–350 g hemispherical PE4 charges were situated either 4 or 6 m from a

blockwork-covered reinforced concrete bunker wall, which acted as a nominally rigid, semi-infinite

reflecting surface. Pressure was measured using flush-mounted, ground-level commercial pressure
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gauges (Kulie HKM 7 bar) embedded within the reflecting surface, perfectly normal to the charge.

Data were recorded using a 16-Bit Digital Oscilloscope at a sample rate of 100 kHz, and recordings

were synchronized with the detonation via a breakwire embedded in the charge periphery. The

charges were shaped using 3D printed hemispherical molds to ensure consistency, and then placed

uncased on small (50 mm thick) steel plates to limit repeated damage to the concrete ground slab at

the required stand-off distance for each test. The charges were base-detonated using an

L2A2 electrical detonator pushed through from the top-center of the explosive. The test arrangement

is shown in Figure 2 and further details are provided in Table 1.

In all cases, time is expressed as “relative time,” t* = t� ta, where ta is determined separately for

each test from visual inspection of the raw data. This is to ensure that all subsequent models share

the same time-base, allowing for direct comparisons. Time data were truncated once the recorded

signals were judged to have returned to ambient conditions following the negative phase.

Empirical parametric fits

The parametric blast pressure history is defined as the piecewise expression below

pðt*Þ ¼

8

>

<

>

:

pr,max




1�
t*

tþ

�

exp



�b
t*

tþ

�

t* ≤ tþ

�pr,min

	

27ðt* � tþÞ

4t�







1�
ðt* � tþÞ

t�

�2

t* � tþ ≤ t�,

(22)

where pr,max and pr,min are the peak over- and under-pressure as defined in Figure 1, t
+ and t� are the

periods over which pressure is above and below ambient, respectively, termed the positive and

negative phase duration, and b is the decay coefficient, or waveform parameter (Karlos et al., 2016).

The positive phase, t* < t+, is modeled after the “modified Friedlander” equation (Friedlander,

1946), and the negative phase, t* � t+ < t�, is modeled after the Granström cubic relationship

Figure 2. Set-up for small-scale tests at the University of Sheffield. Figure adapted from (Rigby and Sielicki,
2014).
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(Granström, 1956). Integration of the positive and negative phases with respect to relative time

yields the respective specific impulses

iþ ¼

Z tþ

0

pðt*Þ dt* ¼
pr,maxt

þ

b2
ðb� 1þ exp½�b�Þ (23)

i� ¼

Z tþþt�

tþ
pðt*Þ dt* ¼

�9pr,mint
�

16
(24)

Finally, we define net specific impulse, i = i+ + i�, as indicated in Figure 1. Values for positive and

negative phase peak pressure/specific impulse/duration, and decay coefficient7 are taken directly

from the polylogarithmic relations presented in UFC 3-340-02 (US DoD, 2008); the positive phase

values of which are taken from the original Kingery and Bulmash report (Kingery and Bulmash,

1984). A TNT equivalence of 1.20 was taken for PE4 (Rigby and Sielicki, 2014) since the UFC

predictions require the charge mass (and scaled distance) to be expressed in terms of an equivalent

mass of TNT.

Previous work has shown the UFC method to be a highly accurate first-order method for

modelling the positive phase of the blast (Rigby et al., 2014c; Farrimond et al., 2023). Note that

while these parameters may be further calibrated using curve-fitting techniques, this will neither

change the underlying fitting function nor the peak and net impulse. Since this article is focused on

assessing the quality of the form of the pressure history, and these two impulse values, then no

further calibration of the values determined from the UFC relations has been performed.

Artificial neural network

Artificial neural networks (ANNs) are a general machine learning tool commonly used in re-

gression, classification and image processing applications, as well as, more specifically, blast

parameter prediction (Dennis et al., 2021; Remennikov and Mendis, 2006; Remennikov and Rose,

2007; Pannell et al., 2022, 2022). In this article, we adopt the general form of the feed-forward, back

propagation, fully connected, regression network developed in (Dennis et al., 2021), summarized in

Table 2. The TensorFlow and Keras Python packages were used to train and test the ANN. The

network has three input nodes: charge mass (kg PE4), stand-off (m), and time (ms), two fully

connected layers of 60 nodes each,8 and one output node for pressure (kPa).

The network is trained using 33,210 input combinations, from all 14 experiments described in

“Experimental Data” and Table 1. Unlike many typical ANN applications, here we are not aiming to

Table 1. Summary of experimental tests. TNT equivalent scaled distance values calculated using an
equivalence of 1.20 for PE4 (Rigby and Sielicki, 2014).

Charge mass (g PE4) Stand-off Z (m/kg1/3) ZTNT (m/kg TNT1=3) Tests

180 4 7.08 6.67 2

250 4 6.35 5.98 4

350 4 5.68 5.34 2

250 6 9.52 8.96 2

290 6 9.06 8.53 2

350 6 8.51 8.01 2
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develop a tool to solve unseen problems, rather we are concerned with assessing the ability of the

ANN to generate complete pressure-time histories after the training process (similar in concept to

the work of Bortolan Neto et al. (2020). Hence the decision to train the network on 100% of the

available data. The trained network will subsequently be used to output complete sets of pressure-

time pairs for each combination of charge mass and stand-off.

Overview of non-parametric approach

Before proceeding, we assume that the user pre-processes the data. While not always required, it can

simplify the procedure. This includes locating the initial and secondary shock times and trimming

excess data, for example, any data recorded well after returning to atmospheric pressure. First, find

the hyperparameters by optimizing (16) for θ. Then use θ and p and compute the mean of the blast

pressure estimate using (8). Optionally, compute the covariance of the pressure estimate with (9).

Note that the Section on “Computational Efficiency” provides for an alternate implementation of

Equations (16), (8), and (9), that dramatically decreases the computational time.

The low rank approximation derived in “Computational Efficiency”was used with k = 100. Since

nearly 20,000 pressure measurements were collected for each mass–distance pair, the reduction of

rank to 100 results in orders of magnitude of improvement in computation complexity over a naive

computation, and with little degradation in the quality of the estimate. The optimization of the log

marginal likelihood in (16) used the Nelder–Mead simplex approach (Lagarias et al., 1998) for

unconstrained optimization. All data before the initial shock were trimmed and hence partitioning

the covariance matrix so (3) is satisfied is no longer necessary.

Results and discussion

Qualitative appraisal

Figures 3 and 4 show example experimental and fitted9 results from 250 g PE4 at 4 m and 6 m stand-

off distance, respectively, where specific impulse histories are determined from cumulative trap-

ezoidal integration of the pressure histories. Note that in each figure the middle row is a re-scaled

version of the top row to allow for clearer qualitative appraisal of the quality of each fit with regards

to the negative phase. While the ANNwas trained on all 14 experimental tests, here we only present

results from the first test of each mass–distance pair and the corresponding fits.

Table 2. Network parameters, based on those used in (Dennis et al., 2021).

Network structure 3–60–60–1

Activation function ReLU (Linear at output)

Error function Mean squared error

Regularization terms L2

Gradient descent algorithm AdaGrad

Learning rate Variable

Number of training steps 500

Training batch size 100

Dropout rate 0.1
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It appears as though the NP and ANN approaches represent the positive phase pressure history

remarkably well, albeit with some initial rounding of the shock front in both cases.10Conversely, the

UFC approach appears to overpredict the pressure history in both the early and late stages of the

pressure history, resulting in an overprediction of specific impulse.

The NP approach exhibits near-perfect tracking of the impulse history. The ANN approach

appears to be slightly corrupted by the arrival of the secondary shock shortly after the end of the

positive phase, and therefore the ANN predictions begin to lose accuracy at this time. Furthermore,

ANNs are prone to learning non-physical behavior (Pannell et al., 2022), which is observed here as

sporadic changes in gradient during the positive phase as a result of fitting to noisy data. Since the

NP approach probabilistically estimates the underlying latent shape of a blast curve, its behavior is

generally physically consistent.

Both the ANN and UFC approach are unable to model the secondary shock (the ANN approach

is unable to generalize this effectively discontinuous behavior, and the UFC simply neglects it),

resulting in poorer quality fits in the negative phase, and a general drift in terms of negative phase

Figure 3. Comparison of non-parametric (NP), empirical (UFC), and artificial neural network (ANN)
pressure and specific impulse histories against raw experimental data (Exp.): 250 g PE4 hemisphere at 4 m
stand-off.
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specific impulse values. The NP approach is able to accommodate the secondary shock and the near-

perfect tracking of the impulse history persists for the entire loading duration.

It should be noted that an advantage of the UFC method is that it does not require any additional

experimental data in order to generate its predictions. As discussed previously, the trained ANN

could subsequently be used to generate predictions for intermediate values of charge mass and

stand-off, which the NP approach is unable to do in its current form. Since the NP approach forms an

equation with differentiable functions, it can easily interface with other forms of linear differential

equations, that is, equations of motion for structural response, although the equations posses no

intrinsic link to the physical properties of a blast wave.

Results of performance assessment

A comparison of the three fitting methods is given in Table 3, with the Young’s correlation co-

efficient and mean absolute error (MAE) of the positive phase, negative phase, and overall

overpressure profile being evaluated according to (25) and (26) given below

Figure 4. Comparison of non-parametric (NP), empirical (UFC), and artificial neural network (ANN)
pressure and specific impulse histories against raw experimental data (Exp.): 250 g PE4 hemisphere at 6 m
stand-off.
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R2ðo,mÞ ¼ 1�

PN

n¼1 ðmn � onÞ
2

PN

n¼1 o
2
n

(25)

MAE ¼
1

N

X

N

n¼1

jmn � onj (26)

where R2 is the correlation coefficient, MAE is the mean absolute error,mn is the predicted value, on
is the empirical value (at the same value of time, index n) and N is the total number of data points in

the time history. The performance measures above are evaluated for each curve fits separately for

both the positive phase histories, p+(t*), and negative phase histories, p�(t*). Bold values in Tables 3

and 4 signify the best scoring value in each category for each test (respectively: largest R2,

smallest MAE).

Finally, peak positive phase specific impulse, i+, and net impulse, i, are directly compared against

the raw data in Table 4, with percentage difference between experiment and fit also shown. Note that

while peak pressure is a common metric, it is not reported in detail here since the focus is the quality

of fit for the entire loading duration. In all cases, reported values of peak pressure were similar, with

the UFC fits generally over-predicting slightly.

Table 3. Comparison of performance metrics: pressure and impulse histories. Best performing model for
each metric is highlighted in bold.

Test Method

p+(t*) p�(t*) i(t*)

R2
MAE

(kPa) R2
MAE

(kPa) R2
MAE

(kPa.ms)

4 m
180 g

Exp. — — — — — —

NP 0.981 1.90 0.963 0.87 1.000 0.14

UFC 0.971 2.96 0.855 1.90 0.987 3.10
ANN 0.970 3.21 0.891 1.71 0.998 1.14

4 m
250 g

Exp. — — — — — —

NP 0.976 2.84 0.94 1.12 1.000 0.30

UFC 0.958 3.40 0.788 2.34 0.988 3.91
ANN 0.977 2.59 0.865 1.75 0.997 1.91

4 m
350 g

Exp. — — — — — —

NP 0.977 3.41 0.945 1.28 1.000 0.48

UFC 0.972 3.36 0.741 2.71 0.955 10.79
ANN 0.979 3.39 0.871 1.88 0.998 2.61

6 m
250 g

Exp. — — — — — —

NP 0.982 1.58 0.940 0.89 1.000 0.31

UFC 0.975 1.69 0.819 1.57 0.963 4.26
ANN 0.978 1.80 0.907 1.10 0.993 2.28

6 m
290 g

Exp. — — — — — —

NP 0.977 1.71 0.942 0.97 1.000 0.29

UFC 0.972 1.92 0.733 2.21 0.972 4.50
ANN 0.976 1.66 0.823 1.79 0.996 1.47

6 m
350 g

Exp. — — — — — —

NP 0.979 1.61 0.937 1.02 1.000 0.36

UFC 0.972 2.06 0.795 1.97 0.981 3.91
ANN 0.972 1.91 0.877 1.48 0.995 2.22
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Discussion of performance assessment

Of the performance metrics in Table 3, the NP approach outperforms both ANN and UFC ap-

proaches in all but a small number of cases, and of the cases where the NP approach is outperformed,

the difference is marginal. The NP approach exhibits R2 values of no less than 0.976 when

considering positive phase pressure histories only, p+(t*), and scored the highest R2 and lowest

MAE for four out of the six mass–distance pairs. When considering negative phase and full specific

impulse histories, p�(t*) and i(t*), respectively, the NP approach is the top-performing model in all

cases considered, with R2 values of no less than 0.937 and 1.000 for the negative phase and entire

impulse histories, respectively. Due to the presence of the secondary shock and the inability of the

ANN and UFC models to account for this, R2 values for these two methods are generally lowest

when considering negative phase histories (minimum values of 0.823 and 0.733 for ANN and UFC,

respectively).

With reference to Table 4, it can be seen that the NP approach is able to predict peak specific

impulse, i+, to within ±0.5% in all cases, compared to ±5.0% for ANN and ±7.5% for UFC. While

relative comparisons of net impulse, i, are less meaningful due to experimental and/or predictive

values being close to zero in some cases, it is clear that the NP approach outperforms the others by a

significant margin: only the 6 m, 350 g net impulse predictions are greater than 1.1% from the

experimental value, with a maximum variation of 2.7%. The UFC and ANN approaches perform

Table 4. Comparison of performance metrics: peak and net impulse and % difference from experiments.

Test Method i+(kPa.ms) % diff. i(kPa.ms) % diff.

4 m
180 g

Exp. 53.46 — 8.98 —

NP 53.43 0.0 9.08 1.1
UFC 54.67 2.3 2.01 �77.6
ANN 52.48 �1.8 6.98 �22.3

4 m
250 g

Exp. 64.28 — 11.85 —

NP 64.11 �0.3 11.98 1.1
UFC 69.07 7.4 4.64 �60.8
ANN 65.41 1.8 12.78 7.9

4 m
350 g

Exp. 89.76 — 20.65 —

NP 89.36 �0.4 20.81 0.8
UFC 86.97 �3.1 7.75 �62.5
ANN 86.20 �4.0 17.43 �15.6

6 m
250 g

Exp. 44.22 — 7.18 —

NP 44.04 �0.4 7.12 �0.8
UFC 44.61 0.9 �1.18 �116.4
ANN 42.03 �4.9 3.47 �51.6

6 m
290 g

Exp. 48.37 — 5.49 —

NP 48.20 �0.4 5.54 1.1
UFC 49.42 2.2 �0.74 �113.5
ANN 47.49 �1.8 4.21 �23.3

6 m
350 g

Exp. 54.39 — 3.79 —

NP 54.41 0.0 3.90 2.7
UFC 56.06 3.1 �0.25 �106.5
ANN 56.88 4.6 5.86 54.6
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considerably less well when predicting net impulse (i.e., the total combined impulse delivered over

the positive and negative phase), with maximum variations of �116% and 55%, respectively.

It is worth highlighting that the UFC method consistently and substantially over-predicts the

magnitude of negative phase impulse and therefore under-predicts net impulse. Take, as an example,

the 6 m, 250 g test. Here, the experimental and NP net impulses are positive; if applied as a purely

impulsive load this would result in displacements in the direction of travel of the blast wave.

Conversely, the UFC approach predicts a net negative impulse; applied impulsively this would

result in smaller displacements towards the source of the explosion. In all cases the UFC net impulse

is non-conservative, and in half the cases the sign is incorrect. This has potentially significant

implications for lightweight, flexible structures, which are particularly sensitive to these effects on

account of their relatively large natural periods (Teich and Gebbeken, 2012; Yang and Ahmari,

2013). Additionally, the full form of the loading history, including the negative phase and therefore

net impulse, is an important consideration for the blast response of glazing (Krauthammer and

Altenberg, 2000; Wei and Dharani, 2006; Teich and Gebbeken, 2010); the majority of non-fatal

injuries from terrorist attacks are caused by either airborne glass fragments or damage to hearing

from failed glass panels (Norville et al., 1999).

Finally, advantages and disadvantages of each method, as discussed in this and previous sections,

are summarized in Table 5.

Example results from simultaneous analysis

As an illustration of the NP method’s ability to jointly analyze pressure signals from a number of

independent trials, a new non-parametric fit was evaluated for all four experimental results from the

250 g PE4, 4 m stand-off distance tests, according to the process outlined in “Simultaneous Analysis

of Multiple Trials.” The results of this simultaneous analysis are shown in Figure 5, alongside upper

and lower 90% confidence intervals derived from the analysis.

Generally, the positive and negative phase histories are well represented by the NP fit, with the

90% confidence intervals typically forming a ±5 kPa band about the NP fit. There is a region of

increased uncertainty around t* = 2.9–3.3 ms corresponding to the arrival of the secondary shocks,

which suggests that the formation and expansion of these secondary waves is highly sensitive to the

early pressure–volume–energy state of the detonation products. Clearly, simultaneous NP fits to

data from nominally identical blast trials used in this manner can provide further information on the

magnitude and sources of variability in blast experimental data.

Example results from near-field analysis

In order to illustrate the versatility of the NP approach, in particular for modelling blast pressure

histories for non-simple cases, NP fits were generated for the experimental data from Barr et al. (Barr

et al., 2023). Here, a 113 g sphere of PE10 (86% PETN, 14% plasticizer) was detonated at 70 mm

clear from a rigid reflecting surface, embedded in which was a single Hopkinson pressure bar (4 mm

diameter) measuring normally reflected pressure. Data were recorded at a sampling rate of 5 MHz

and 14-bit resolution, and have been corrected for dispersion (Barr et al., 2020).

Figure 6 shows pressure and specific impulse histories for the experimental data, NP fit, and UFC

predictions assuming a TNTequivalence of 1.22 for PE10 (Farrimond et al., 2023). The NP fit is less

satisfactory during the first 10 μs due to the highly transient nature of the experimental history. As a

consequence, the initial peak pressure is under-predicted by around 100 MPa. However, the

complex blast pressure history is faithfully replicated by the NP fit beyond this brief initial period,
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and the specific impulse is near-perfectly tracked thereafter, as was the case with the far-field test

data previously. The UFC predictions are considerably less accurate, which is unsurprising given

that semi-empirical predictions in the extreme near-field are not based on direct measurements and

instead are inferred from indirect measurements and rudimentary numerical analyses (Rigby et al.,

2015a; Esparza, 1986). Of particular note is that at 20 μs, both NP and experimental specific

Table 5. Evaluation of each method’s advantages and disadvantages considering their use for blast predictions
and with subsequent analyses.

Method Advantages Disadvantages

Non-
parametric

• Near-perfect tracking of impulse history.
• Full overpressure form captured, including
the secondary shock.

• Forms an equation that can be used in
subsequent analysis requiring differentiable
functions.

• Superior performance in all but a small
number of metrics

• Some rounding of the shock front.
• Requires experimental data in order to
generate predictions.

• No intrinsic link to physical properties of
blast wave.

Empirical
(UFC)

• Simplest approach with “off the shelf”
values that provide reasonable accuracy.

• Poor performance in the negative phase
with the secondary shock being neglected.

Artificial neural
network

• Forms profile predictions for intermediate
values of stand-off and charge mass (within
the limits of the training data set).

• Requires an extensive experimental dataset
and a relatively computationally expensive
training, testing and validation process in
order to generate predictions.

• Rounding of the shock front.
• Inability to generalize the secondary shock.
• Potential non-physical behavior.

Figure 5. Experimental and simultaneous non-parametric pressure histories for 250 g PE4 hemisphere at 4 m
stand off.
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impulses are 2940 MPa.μs, which is 91% of the peak value (3240 MPa.μs). Conversely, at the same

point the UFC specific impulse is 2330 MPa.μs, which is 63% of the peak value (3670 MPa.μs).

That the accumulation of specific impulse in the UFC loading is much more gradual than ex-

perimental data suggests that the true loading function is considerably different than the assumed

modified Friedlander. The incorrect evolution of specific impulse, and the considerably higher peak

value of the UFC approach is likely to have significant implications for modelling of structures with

short natural period (i.e., stiff systems with relatively short span). This is considered to be a major

limitation of the semi-empirical predictive approach in its current form.

Summary and conclusions

We presented a non-parametric methodology to analyze blast pressure histories based on Gaussian

process regression; learning the model directly from the observed data. The method was applied to

experimental blast data and the estimates match experimental blast pressures with a high degree of

accuracy, both qualitatively and quantitatively. The NP approach was shown to significantly

outperform other commonly used approaches, namely the UFC empirical approach and a trained

artificial neural network, particularly when considering net specific impulse. The NP approach was

able to near-perfectly track the entire pressure and specific impulse history, where the two other

methods were unable to accommodate the arrival of the secondary shock and generally exhibited

poorer performance.

Specifically, the NP approach achieved the highest Young’s correlation coefficient for 4/6 of the

positive phase pressure histories, 6/6 of the negative phase pressure histories, and 6/6 of the full-

duration specific impulse histories. The NP’s ability to replicate the experimental specific impulse

history was particularly noteworthy, with R2 values of 1.000 for all 6 of the examples tested. The NP

approach achieved the lowest mean absolute error for 4/6 of the positive phase pressure histories,

and again for all of the negative phase pressure and full-duration specific impulse histories. In terms

of peak specific impulse, all NP predictions were within ±0.5% of the experiments, compared

to ±5.0% for outputs from the trained artificial neural network and ±7.5% for the UFC semi-

empirical predictions. In terms of net specific impulse (i.e., the specific impulse of the entire loading

duration), the NP approach predicted all but one of these values to within 1.1% of the experimental

Figure 6. Comparison of non-parametric (NP) and empirical (UFC) pressure and specific impulse histories
against raw experimental data (Exp.): 113 g PE10 sphere at 70 mm clear stand-off.
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values, with a maximum variation of 2.7%. This is compared to maximum variations of�116% and

55% for the UFC predictions and trained neural network, respectively.

In addition to its enhanced accuracy and ability to better generalize blast pressure histories, the

NP approach offers two further benefits and applications for blast load modelling. First, we are now

able to simultaneously analyze multiple independent trials and derive a single fit. A simultaneous

analysis was performed herein on the data from all four tests using 250 g PE4 at 4 m, with the

resulting confidence intervals forming a band of approximately 5 kPa either side of the NP fit.

Regions of increased confidence intervals allow for clear qualitative discussion on the nature of

variability in blast load measurements (i.e., secondary shock arrival time).

Second, the ability of the NP approach to accommodate more complex waveforms can be

especially advantageous for analyzing blast events in non-simple settings, for example, crowded

building interiors (Larcher and Casadeia, 2010; Alterman et al., 2019; Dennis et al., 2021; Gan et al.,

2022), cityscapes (Rigby et al., 2020), and in the near-field (Rigby et al., 2015a; Tyas et al., 2016).

This has been demonstrated with a final example where a non-parametric fit was evaluated for the

pressure signal measured from a 113 g PE10 sphere detonated at 70 mm clear distance from a rigid

measurement plane. Again, the NP fit was shown to clearly outperform the UFC predictions, and

aside from a brief period at the beginning of the signal characterized by high pressure, extremely

short duration transients, near-perfectly matched the experimental pressure and specific impulse

histories. The UFC predictions were shown to much more gradually accumulate specific impulse,

suggesting a fundamentally different loading mechanism to the standard modified Friedlander

waveform currently adopted in the UFC near-field predictions.

The NP method presented herein has conceptual similarities to regression problems that have

become popular in machine learning applications, such as those that utilize convolutional neural

networks as a universal function approximator and then perform regression to determine the

coefficients of a very high-dimensional parameter space. Those methods, however, require large

amounts of labeled data to help avoid “over-fitting” since the problem is close to being ill-posed. We

avoid such problems using a GP and only need to solve for a small number of hyperparameters. We

can utilize, unlike general machine learning classification problems, a set of axioms (see “Gaussian

Process Framework”) to guide the class of functions that can realistically represent blast pressure

data. This regularizes the problem and can lead to effective blast pressure estimates with a rea-

sonable amount of data collected. Since the GP framework is probabilistic in nature, we naturally

account for random noise in sensor measurements, which can be more pronounced in blast ex-

periments than many other machine learning applications.

Since the model can be generalized to include any linear operator, this enables a simple future

expansion by any (dynamic) process that can be described by linear operators. For example,

correction and removal of smoothing artifacts due to anti-aliasing filters which are typically applied

prior to digital sampling in data collection. This would essentially create a regularized decon-

volution process jointly at the time of blast wave estimation. Additionally, future work can aim to

reconstruct the blast pressures from acceleration measurements taken on elastic structures for which

the motion can be described by a linear ordinary differential equation. This offers the potential for

more sophisticated use of inverse modelling in blast engineering (Gallet et al., 2022).
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Notes

1. Using the log of the marginal likelihood is more stable numerically, since in any interesting problem the

marginal likelihood is smaller than the machine precision of any typical computer.

2. It is worth noting that the matrix Ad can be stored as a sparse matrix, reducing computation significantly.

3. That is, from the well-known “secondary shock” (Rigby and Gitterman, 2016), a rarefaction “clearing”

wave (Rigby et al., 2014b), ground reflections from a “height of bust” scenario (Schwer and Rigby, 2018),

or complex pressure histories in an internal environment (Larcher and Casadeia, 2010; Alterman et al.,

2019; Dennis et al., 2021).

4. In practice, we solve the linear system associated with the matrix inverse.

5. For all experiments listed in this article, we choose ν = 1 × 10�6.

6. MatLab, Python, C++, and many others follow a left to right order.

7. While empirical relations for decay coefficient exist, it is more common to first determine pr,max, i
+, and t+,

and then determine b through iteration of equation (23); this is the approach taken in this article.

8. Determined through trial and error, with the candidate structure selected in order to reduce the risk of

overfitting while maintaining computational efficiency.

9. NP, UFC, and ANN refer to non-parametric, empirical, and artificial neural network approaches, re-

spectively, as outlined in “Performance Analysis - Overview.”

10. On inspection of all the fitted data, shock front rounding is discernibly more pronounced for the ANN

model than the NPP model, however, this is not apparent from the figures presented in this article alone.
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