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Federated K-means Clustering for Adaptive

OFDM-IM
Xueyu Wu, Andy M. Tyrrell, and Youngwook Ko

Abstract—In this letter, a new federated learning strategy for k-
means clustering assisted adaptive orthogonal frequency devision
multiplexing with index modulation (OFDM-IM) system, which
develops a global model using local learning outcomes aggregated
from distributed devices, is proposed. The proposed strategy aims
to efficiently leverage the computing power of all the devices in
a distributed system. Simulation results show that the proposed
strategy reduces the training steps required at each device and
simultaneously improve the throughput, with a federation cost
for model aggregation and broadcast.

Index Terms—Federated learning, k-means clustering, adaptive
modultion, OFDM-IM

I. INTRODUCTION

Index modulation has been considered as an energy ef-

ficient method for the mMTC network in 6G. In conven-

tional modulation schemes, all data bits are conveyed by

the amplitude-phase modulation (APM) symbols, whereas in

index modulation, part of data bits are conveyed by the indices

of active subcarriers or antenna. Exploiting the index modu-

lation concept in the multi-carrier systems, various OFDM-

IM schemes that have been proposed. [1] proposed a spread-

OFDM-IM scheme achieving high transmit diversity, which

applies a precoding matrix to the transmit signal. [2] proposed

a scheme called coordinate interleaved OFDM-IM (CI-OFDM-

IM) which seperately transmit the real and imaginary parts

of the data symbol using different active subcarriers. [3]

proposed a super-mode OFDM-IM (SuM-OFDM-IM) which

forms index symbol via both mode activation patterns (MAPs)

and subcarrier activation patterns (SAPs) at the same time

to maximize the number of data bits transmitted by index

symbol. Mainly focusing on coding gain and diversity gain,

such existing OFDM-IM schemes have neglected to discuss

new insights into learning-driven adaptive modulation signals,

which could improve the spectral efficiency and reliability in

multi-user heterogeneous environments.

Conventional adaptive modulation schemes require channel

state information (CSI) at the transmitter while learning driven

schemes can learn the pattern from the environment. In time

division duplexing (TDD) applications, the CSI of downlink

and uplink are the same so that downlink signal can be adopted

as the indicator of CSI for uplink. K-means clustering can

efficiently extract the implicit pattern of multi-dimensional

vectors by clustering them according to the Euclidean distance

between them. [4] proposed an OFDM-IM adaptation with the
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use of single user k-means clustering. However, the process

of constituting a sufficient size of training dataset is expensive

for resource limited MTC devices. Centralized learning is a

possible solution leveraging the resources of central servers

but it leads to high communication cost for sharing the data.

Federated learning (FL) is a potential enabler for connected

intelligence in 6G [5]. Compared to centralized learning

strategy, FL only shares the model updates instead of all the

data, which reduces the consumption of spectral and energy

resources. For example, [6] proposed a federated deep learning

strategy for automatic modulation classification (AMC), which

avoids data leakage while the performance loss is within 2%

compared to the centralized algorithm.

The model aggregation strategy is a crucial challenge in

federated learning. In FedSGD, a part of clients upload sam-

ples randomly selected from their local dataset and the model

parameters will be updated in the FL server, which causes

expensive cost in terms of communications. To optimize this

weakness, an algorithm named FedAvg was developed [7].

In FedAvg, clients update their local parameters locally, and

only upload the parameters to the FL server. The FL server

will average the local parameters with appropriate weights to

get global parameters. In [6], FedSGD and FedAvg based

algorithms are proved to have similar performance when

solving AMC problem. [8] proposed a federated stochastic

variance reduced gradient (FSVRG) optimization algorithm,

which improved the performance for non-independent, and

identical data distribution. Such strategies focus on using deep

learning, which may not suit to constrained MTC devices.

Only a few paper developed federation strategy for k-means

clustering. [9] proposed a federated k-means clustering algo-

rithm based on FedAvg for image recognition. [10] proposed

a federated k-means scheme for proactive caching, where the

training data are shared for model aggregation at the high cost.

Potential of effectively federating k-means clustering has been

overlooked in OFDM-IM variants at MTC devices.

In this paper, a federated k-means clustering called Fed-

k-means is developed to obtain the precise adaptive OFDM-

IM model enhancing the system throughput with less training

data at devices. The main contributions of this work are: (i)

to develop the multi-user adaptive OFDM-IM system with the

use of federated k-means clustering; (ii) to develop a novel

weighting strategy for the federated k-means clustering to

provide the accurate adaptation strategy of OFDM-IM signals;

(iii) to evaluate the effective throughput of the system by

simulations and the simulated results clearly present that the

proposed system can outperform the benchmarks, in terms of

the effective throughput.
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II. SYSTEM MODEL

Consider a distributed multi-carrier system where B users

send uplink data packets to the base station (BS) by employing

OFDM-IM in TDD mode. For the OFDM-IM transmission,

assume that the sub-block size for each user is N . Since the

communication and learning process run independently across

users, for simplify, the following discussion will focus on one

user. The communication process are introduced here with the

learning process in Sec. III.

Every transmission each user intends to adjust its modu-

lation mode. The KT modulation modes are combinations

of T modulation orders and K different numbers of active

subcarriers. Denote the t-th modulation order and the k-th

number of active subcarriers by Mt ∈ {M1, · · · ,MT } and

k ∈ {1, · · · ,K}, respectively. mq ∈ {m0, · · · ,mKT } is the

q-th modulation mode, where m0 means no transmission and

mq ≜

{

(0, 0) if q = 0

(k,Mt) if q ∈ {1, · · · ,KT} (1)

Given mq , there are p bits to be transmitted. Denote C(N, k)
the number of possible combinations of k active subcarriers

over N subcarriers, p is given by

p = p1 + p2

= ⌊log2 C(N, k)⌋+ k log2 Mt (2)

s = [s1, ..., sk]
T is the modulated symbol vector, sk ∈ Mt,

where Mt is the constellation of Mt-ary modulation. Notice

that for a given k, the index subset is i = {i1, · · · , ik}
where ia ∈ {1, · · · , N} for a = 1, · · · , k. The OFDM-

IM signal vector of each user in the frequency domain is

x = [x1, ..., xN ]T , where

xn =

{

sm if n = im ∈ i

0 otherwise (3)

Denote by H = diag{h1, ..., hN}, the frequency domain

channel matrix whose elements hi are complex Gaussian

random variables with hi ∼ CN (0, 1). Applying G the N×N
Zadoff-Chu precoding matrix by [1], in the frequency domain,

the uplink received signal is

y =
√
PᾱHGx+ n (4)

where n is the Additive White Gaussian Noise (AWGN) vector

whose elements follow CN (0, 1), and ᾱ is the average SNR.

At the BS side, maximum likelihood (ML) detector is adopted

to recover the signal of each user.

ω(x, x̂) is the number of error bits when x is decoded as

x̂. The upper bound of conditional bit error probability with

mq and channel matrix H is given by

Pb(mq,H) ≤

1

pCMk
t

∑

x

∑

x̂

ω(x, x̂)Q(

√√
Pᾱ∥HG(x− x̂)∥2

2N0

) (5)

Z(mq), the indicator on whether modulation mode mq is

chosen in i-th transmission, is given by

Z(mq) ≜

{

1 if mq is chosen

0 otherwise (6)

(a) Federated learning structure

(b) Learning-driven adaptive OFDM-IM
framework

Fig. 1: The structure of federated clustering adaptive OFDM-

IM

The lower bound of instantaneous effective throughput when

using modulation mode mq is given by

TE(mq,H) ≥ p(1− Pb(mq,H)) (7)

The effective throughput is measured by

TEavg = E[

KT
∑

q=0

TE(mq,H)Z(mq)]

=
KT
∑

q=0

(E[TE(H|mq)] Pr(m = mq|F)) (8)

where Pr(m = mq|F) is the probability of chosing modula-

tion mode mq with a given learned model F. In the simulations

presented in this paper, the effective throughput is measured by

the average number of correctly decoded bits per transmission.

It can be seen that the TEavg is effected by the learned-

model F. The main focus of this paper is to develop a federated

learning assisted adaptive OFDM-IM algorithm to find the best

modulation mode, enhancing the throughput without CSI.

III. FEDERATED CLUSTERING ADAPTIVE OFDM-IM

This section introduces the learning process of the proposed

system. Figure 1a shows the structure of federated learning. In

this phase, the BS uses the local models collected from B users

to develop a global model and send it to B users. Figure 1b

illustrates the structure of the learning-driven adaptive OFDM-

IM, where rd is the vector of downlink signal energy which is

acquired by observing the downlink signal of each subcarrier

at the user. In this stage, each user uses rd as the input of the

learned model to predict the modulation mode maximizing the

effective throughput.

Consider that each user has V different data vectors to

train itself over the learning process. The v-th training data

vector contains (|h1v|2, ..., |hNv|2, q), v ∈ {1, · · · , V }, where

the first N entries, |hiv|2, represent uplink subcarrier gains.

The (N + 1)-th element is the best modulation mode, which



3

achieves maximum effective throughput for the uplink channel

H over the learning process. The best modulation mode

estimation q for a given channel matrix H is obtained by

q =argmax
j

TE(mj ,H)

s.t . Pe(mj ,H) ≤ µ (9)

where µ is the BEP threshold.

To this end, denote, first, b-th user exploits its local dataset

obtained from experienment in advance to get local centroids

matrix Cb by using Algorithm 1. The superscripts represent

user index here and after.

Algorithm 1 Fed-k-means local model training at the b-th user

Denote Zb the matrix whose columns containing the training

data, Sbk the index set of the training data points assigned

to the k-th cluster, and |Sbk| the number of elements in Sbk
Input(s): (N + 1)× V training data matrix Zb, number of

local clusters KC

Output(s): (N+1)×KC local centroids matrix Cb, 1×KC

weights vector wb

Initialization: Randomly generate initial local centroids

matrix Cb and then assign each data point, Zb
1:N,v , v ∈

[1, V ], to its closest local cluster

Repeat until Cb does not change:

(1) Update Cb

for k = 1, ...KC do

Cb
1:N,k ← 1

|Sb

k
|

∑

v∈Sb

k

Zb
1:N,v

Set Cb
N+1,k to the modulation mode which appears most

frequserntly in the k-th cluster

end for

(2) Assign each data point, Zb
1:N,v , v ∈ [1, V ], to its closest

cluster and then calculate the weight for each centroid

for k = 1, ...KC do

wb
k ← |Sbk|

end for

The BS collects local centroids from the users after the

local training process, and performs another clustering algo-

rithm with the local centroids to develop a global model. In

particular, computing the federated centroids in the global

model, the sum of weighted local centroids are iteratively

considered as shown in Algorithm 2. The weight coefficients

of local centroids represent the number of data points in

the local clusters, which can be used to indicate the relative

importance of local centroids with large data points against

those with small data points. Based on these, the global

model is computed. The global model accuracy increases when

the number of users increases by implicitly leveraging more

training data.

Such federated clustering is designed to decrease the loss

function, which is given by

L(F) =
∑

k

∑

l∈Ak

wl∥F1:N,k −C1:N,l∥22 (10)

Once the global model is updated, each user is assumed

to access the global model and predict their best modulation

Algorithm 2 Fed-k-means global model updating

Denote Ak the index set of the local centroids assigned to

the k-th global cluster

Input(s): C = [C1, · · · ,CB ], w = [w1, · · · ,wB ], number

of global clusters KG

Output(s): (N + 1)×KG global centroids matrix F

Initialization: Randomly generate initial global centroids

matrix F and then assign each data point, C1:N,l, l ∈ [1, L],
L = BKC , to its closest global cluster

Repeat until F does not change:

(1) Update F

for k = 1, ...KG do

F1:N,k ← 1∑
l∈Ak

wl

∑

l∈Ak
wlC1:N,l

Set FN+1,k to the modulation mode which appears most

frequserntly in the k-th global cluster

end for

(2) Assign each local centroid, C1:N,l, l ∈ [1, L], to its

closest global cluster

mode to be used at each adaptive transmission. During the

process of predicting the modulation mode maximizing the

effective throughput, the downlink signal energy vector rd
is adopted as the input of the online prediction model. The

prediction scheme is shown in Algorithm 3.

Algorithm 3 Prediction algorithm

Input(s): Global centroids matrix F, downlink signal en-

ergy vector rd
Output(s): Index of modulation mode q

for every transmission do

Predict q (assign rd to its closest global centroid)

Find l = argmink ∥F1:N,k − rd∥22
q ← FN+1,l

end for

IV. SIMULATION RESULTS

Simulation results of the proposed algorithms in the dis-

tributed adaptive OFDM-IM systems are presented in this sec-

tion. To measure their efficacy, the focus is on two simulation

scenarios: (i) the effective throughtput and BER performance

in different average SNRs of the Fed-k-means and the single

user k-means strategy; and (ii) the sensitivity of the federated

OFDM-IM adaptation with different number of users in terms

of effective throughput. For all the simulations, Rayleigh

fading channel is applied to each subcarrier, the number of

subcarriers N = 4, the number of active subcarriers k ∈
{1, 2}, the cardinality of possible modulation constellations

Mt ∈ {0, 2, 4}. The BEP threshold µ = 0.01. By using the

well known elbow method, the number of clusters of the local

model, KC , are found to be 10, 20, 40, 100 for the training

dataset sizes of 50, 100, 200, 500, respectively, and the number

of clusters of the global model, KG, is chosen to 100.

In Figure 2 and Figure 3, the effective throughput and BER

of the four schemes, (i) Classical k-means with 200 training

data; (ii) Fed-k-means with 200 training data at each user;
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Fig. 2: Effective throughput versus average SNR of Fed-k-

means adaptive OFDM-IM with 70 users.

Fig. 3: Average BER versus average SNR of Fed-k-means

adaptive OFDM-IM with 70 users.

(iii) Classical k-means with 500 training data; and (iv) Non-

adaptive modulation, are presented in a 70 users scenario.

The theoretical lower bounds of effective throughput and the

theoretical upper bounds of BER, with a given learned model,

are also depicted for validation. At mid and low SNRs, the

Fed-k-means has higher effective throughput than the single

user k-means with either 200 training data or 500 training

data. The BER of the Fed-k-means and single user k-means

are similar, which are lower than the non-adaptive modulation.

When the SNR is greater than 14dB, the effective throughput

of all the four schemes are similar because the mode with

highest data rate becomes the majority choice. These results

show that the proposed Fed-k-means algorithm can improve

the effective throughput with an even smaller training dataset

than the single user k-means algorithm.

In Figure 4, the effects of number of users on the effective

throughput of the Fed-k-means schemes with different size

of training dataset are depicted. Note that all the results in

this part are average values of 50 simulations, and the SNRs

for all the three settings are 4dB. The effective throughput

increases when the number of users increases. The plots

with 200 and 100 training data points reaches their highest

effective throughput, at 5.5 bits/cu, at 50 users and 100 users,

Fig. 4: Effective throughput versus number of users of Fed-k-

means adaptive OFDM-IM.

respectively. This result indicates that the required number of

users for achieving the best performance decreases when the

size of training dataset in each user increases.

V. CONCLUSION

This paper proposed the federated k-means clustering strat-

egy for adaptive OFDM-IM. By aggregating the learning

outcome of distributed users, the adaptation strategy developed

at the BS improved the accuracy of the global learning model,

requiring less training data from individual devices. With

the global adaptation model, distributed users were able to

reliably adjust OFDM-IM signals to their local conditions.

The simulation results showed that the Fed-k-means OFDM-

IM improved the throughput through the multi-user federation.

Heterogeneous training features across users such as asymmet-

ric sets of modulation modes will be investigated in the future.
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