
1

Federated K-means Clustering for Adaptive
OFDM-IM

Xueyu Wu, Andy M. Tyrrell, and Youngwook Ko

Abstract—In this letter, a new federated learning strategy for k-
means clustering assisted adaptive orthogonal frequency devision
multiplexing with index modulation (OFDM-IM) system, which
develops a global model using local learning outcomes aggregated
from distributed devices, is proposed. The proposed strategy aims
to efficiently leverage the computing power of all the devices in
a distributed system. Simulation results show that the proposed
strategy reduces the training steps required at each device and
simultaneously improve the throughput, with a federation cost
for model aggregation and broadcast.

Index Terms—Federated learning, k-means clustering, adaptive
modultion, OFDM-IM

I. INTRODUCTION

Index modulation has been considered as an energy ef-
ficient method for the mMTC network in 6G. In conven-
tional modulation schemes, all data bits are conveyed by
the amplitude-phase modulation (APM) symbols, whereas in
index modulation, part of data bits are conveyed by the indices
of active subcarriers or antenna. Exploiting the index modu-
lation concept in the multi-carrier systems, various OFDM-
IM schemes that have been proposed. [1] proposed a spread-
OFDM-IM scheme achieving high transmit diversity, which
applies a precoding matrix to the transmit signal. [2] proposed
a scheme called coordinate interleaved OFDM-IM (CI-OFDM-
IM) which seperately transmit the real and imaginary parts
of the data symbol using different active subcarriers. [3]
proposed a super-mode OFDM-IM (SuM-OFDM-IM) which
forms index symbol via both mode activation patterns (MAPs)
and subcarrier activation patterns (SAPs) at the same time
to maximize the number of data bits transmitted by index
symbol. Mainly focusing on coding gain and diversity gain,
such existing OFDM-IM schemes have neglected to discuss
new insights into learning-driven adaptive modulation signals,
which could improve the spectral efficiency and reliability in
multi-user heterogeneous environments.

Conventional adaptive modulation schemes require channel
state information (CSI) at the transmitter while learning driven
schemes can learn the pattern from the environment. In time
division duplexing (TDD) applications, the CSI of downlink
and uplink are the same so that downlink signal can be adopted
as the indicator of CSI for uplink. K-means clustering can
efficiently extract the implicit pattern of multi-dimensional
vectors by clustering them according to the Euclidean distance
between them. [4] proposed an OFDM-IM adaptation with the
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use of single user k-means clustering. However, the process
of constituting a sufficient size of training dataset is expensive
for resource limited MTC devices. Centralized learning is a
possible solution leveraging the resources of central servers
but it leads to high communication cost for sharing the data.

Federated learning (FL) is a potential enabler for connected
intelligence in 6G [5]. Compared to centralized learning
strategy, FL only shares the model updates instead of all the
data, which reduces the consumption of spectral and energy
resources. For example, [6] proposed a federated deep learning
strategy for automatic modulation classification (AMC), which
avoids data leakage while the performance loss is within 2%
compared to the centralized algorithm.

The model aggregation strategy is a crucial challenge in
federated learning. In FedSGD, a part of clients upload sam-
ples randomly selected from their local dataset and the model
parameters will be updated in the FL server, which causes
expensive cost in terms of communications. To optimize this
weakness, an algorithm named FedAvg was developed [7].
In FedAvg, clients update their local parameters locally, and
only upload the parameters to the FL server. The FL server
will average the local parameters with appropriate weights to
get global parameters. In [6], FedSGD and FedAvg based
algorithms are proved to have similar performance when
solving AMC problem. [8] proposed a federated stochastic
variance reduced gradient (FSVRG) optimization algorithm,
which improved the performance for non-independent, and
identical data distribution. Such strategies focus on using deep
learning, which may not suit to constrained MTC devices.
Only a few paper developed federation strategy for k-means
clustering. [9] proposed a federated k-means clustering algo-
rithm based on FedAvg for image recognition. [10] proposed
a federated k-means scheme for proactive caching, where the
training data are shared for model aggregation at the high cost.
Potential of effectively federating k-means clustering has been
overlooked in OFDM-IM variants at MTC devices.

In this paper, a federated k-means clustering called Fed-
k-means is developed to obtain the precise adaptive OFDM-
IM model enhancing the system throughput with less training
data at devices. The main contributions of this work are: (i)
to develop the multi-user adaptive OFDM-IM system with the
use of federated k-means clustering; (ii) to develop a novel
weighting strategy for the federated k-means clustering to
provide the accurate adaptation strategy of OFDM-IM signals;
(iii) to evaluate the effective throughput of the system by
simulations and the simulated results clearly present that the
proposed system can outperform the benchmarks, in terms of
the effective throughput.
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II. SYSTEM MODEL

Consider a distributed multi-carrier system where B users
send uplink data packets to the base station (BS) by employing
OFDM-IM in TDD mode. For the OFDM-IM transmission,
assume that the sub-block size for each user is N . Since the
communication and learning process run independently across
users, for simplify, the following discussion will focus on one
user. The communication process are introduced here with the
learning process in Sec. III.

Every transmission each user intends to adjust its modu-
lation mode. The KT modulation modes are combinations
of T modulation orders and K different numbers of active
subcarriers. Denote the t-th modulation order and the k-th
number of active subcarriers by Mt ∈ {M1, · · · ,MT } and
k ∈ {1, · · · ,K}, respectively. mq ∈ {m0, · · · ,mKT } is the
q-th modulation mode, where m0 means no transmission and

mq ≜

{
(0, 0) if q = 0

(k,Mt) if q ∈ {1, · · · ,KT} (1)

Given mq , there are p bits to be transmitted. Denote C(N, k)
the number of possible combinations of k active subcarriers
over N subcarriers, p is given by

p = p1 + p2

= ⌊log2 C(N, k)⌋+ k log2 Mt (2)

s = [s1, ..., sk]
T is the modulated symbol vector, sk ∈ Mt,

where Mt is the constellation of Mt-ary modulation. Notice
that for a given k, the index subset is i = {i1, · · · , ik}
where ia ∈ {1, · · · , N} for a = 1, · · · , k. The OFDM-
IM signal vector of each user in the frequency domain is
x = [x1, ..., xN ]T , where

xn =

{
sm if n = im ∈ i

0 otherwise (3)

Denote by H = diag{h1, ..., hN}, the frequency domain
channel matrix whose elements hi are complex Gaussian
random variables with hi ∼ CN (0, 1). Applying G the N×N
Zadoff-Chu precoding matrix by [1], in the frequency domain,
the uplink received signal is

y =
√
PᾱHGx+ n (4)

where n is the Additive White Gaussian Noise (AWGN) vector
whose elements follow CN (0, 1), and ᾱ is the average SNR.
At the BS side, maximum likelihood (ML) detector is adopted
to recover the signal of each user.

ω(x, x̂) is the number of error bits when x is decoded as
x̂. The upper bound of conditional bit error probability with
mq and channel matrix H is given by

Pb(mq,H) ≤

1

pCMk
t

∑
x

∑
x̂

ω(x, x̂)Q(

√√
Pᾱ∥HG(x− x̂)∥2

2N0
) (5)

Z(mq), the indicator on whether modulation mode mq is
chosen in i-th transmission, is given by

Z(mq) ≜

{
1 if mq is chosen
0 otherwise (6)

(a) Federated learning structure

(b) Learning-driven adaptive OFDM-IM
framework

Fig. 1: The structure of federated clustering adaptive OFDM-
IM

The lower bound of instantaneous effective throughput when
using modulation mode mq is given by

TE(mq,H) ≥ p(1− Pb(mq,H)) (7)

The effective throughput is measured by

TEavg = E[
KT∑
q=0

TE(mq,H)Z(mq)]

=

KT∑
q=0

(E[TE(H|mq)] Pr(m = mq|F)) (8)

where Pr(m = mq|F) is the probability of chosing modula-
tion mode mq with a given learned model F. In the simulations
presented in this paper, the effective throughput is measured by
the average number of correctly decoded bits per transmission.

It can be seen that the TEavg is effected by the learned-
model F. The main focus of this paper is to develop a federated
learning assisted adaptive OFDM-IM algorithm to find the best
modulation mode, enhancing the throughput without CSI.

III. FEDERATED CLUSTERING ADAPTIVE OFDM-IM

This section introduces the learning process of the proposed
system. Figure 1a shows the structure of federated learning. In
this phase, the BS uses the local models collected from B users
to develop a global model and send it to B users. Figure 1b
illustrates the structure of the learning-driven adaptive OFDM-
IM, where rd is the vector of downlink signal energy which is
acquired by observing the downlink signal of each subcarrier
at the user. In this stage, each user uses rd as the input of the
learned model to predict the modulation mode maximizing the
effective throughput.

Consider that each user has V different data vectors to
train itself over the learning process. The v-th training data
vector contains (|h1v|2, ..., |hNv|2, q), v ∈ {1, · · · , V }, where
the first N entries, |hiv|2, represent uplink subcarrier gains.
The (N + 1)-th element is the best modulation mode, which



3

achieves maximum effective throughput for the uplink channel
H over the learning process. The best modulation mode
estimation q for a given channel matrix H is obtained by

q =argmax
j

TE(mj ,H)

s.t . Pe(mj ,H) ≤ µ (9)

where µ is the BEP threshold.
To this end, denote, first, b-th user exploits its local dataset

obtained from experienment in advance to get local centroids
matrix Cb by using Algorithm 1. The superscripts represent
user index here and after.

Algorithm 1 Fed-k-means local model training at the b-th user

Denote Zb the matrix whose columns containing the training
data, Sbk the index set of the training data points assigned
to the k-th cluster, and |Sbk| the number of elements in Sbk
Input(s): (N + 1)× V training data matrix Zb, number of
local clusters KC

Output(s): (N+1)×KC local centroids matrix Cb, 1×KC

weights vector wb

Initialization: Randomly generate initial local centroids
matrix Cb and then assign each data point, Zb

1:N,v, v ∈
[1, V ], to its closest local cluster
Repeat until Cb does not change:
(1) Update Cb

for k = 1, ...KC do
Cb

1:N,k ← 1
|Sb

k|
∑

v∈Sb
k
Zb

1:N,v

Set Cb
N+1,k to the modulation mode which appears most

frequserntly in the k-th cluster
end for
(2) Assign each data point, Zb

1:N,v, v ∈ [1, V ], to its closest
cluster and then calculate the weight for each centroid
for k = 1, ...KC do

wb
k ← |Sbk|

end for

The BS collects local centroids from the users after the
local training process, and performs another clustering algo-
rithm with the local centroids to develop a global model. In
particular, computing the federated centroids in the global
model, the sum of weighted local centroids are iteratively
considered as shown in Algorithm 2. The weight coefficients
of local centroids represent the number of data points in
the local clusters, which can be used to indicate the relative
importance of local centroids with large data points against
those with small data points. Based on these, the global
model is computed. The global model accuracy increases when
the number of users increases by implicitly leveraging more
training data.

Such federated clustering is designed to decrease the loss
function, which is given by

L(F) =
∑
k

∑
l∈Ak

wl∥F1:N,k −C1:N,l∥22 (10)

Once the global model is updated, each user is assumed
to access the global model and predict their best modulation

Algorithm 2 Fed-k-means global model updating

Denote Ak the index set of the local centroids assigned to
the k-th global cluster
Input(s): C = [C1, · · · ,CB ], w = [w1, · · · ,wB ], number
of global clusters KG

Output(s): (N + 1)×KG global centroids matrix F
Initialization: Randomly generate initial global centroids
matrix F and then assign each data point, C1:N,l, l ∈ [1, L],
L = BKC , to its closest global cluster
Repeat until F does not change:
(1) Update F
for k = 1, ...KG do

F1:N,k ← 1∑
l∈Ak

wl

∑
l∈Ak

wlC1:N,l

Set FN+1,k to the modulation mode which appears most
frequserntly in the k-th global cluster
end for
(2) Assign each local centroid, C1:N,l, l ∈ [1, L], to its
closest global cluster

mode to be used at each adaptive transmission. During the
process of predicting the modulation mode maximizing the
effective throughput, the downlink signal energy vector rd
is adopted as the input of the online prediction model. The
prediction scheme is shown in Algorithm 3.

Algorithm 3 Prediction algorithm

Input(s): Global centroids matrix F, downlink signal en-
ergy vector rd
Output(s): Index of modulation mode q
for every transmission do

Predict q (assign rd to its closest global centroid)
Find l = argmink ∥F1:N,k − rd∥22
q ← FN+1,l

end for

IV. SIMULATION RESULTS

Simulation results of the proposed algorithms in the dis-
tributed adaptive OFDM-IM systems are presented in this sec-
tion. To measure their efficacy, the focus is on two simulation
scenarios: (i) the effective throughtput and BER performance
in different average SNRs of the Fed-k-means and the single
user k-means strategy; and (ii) the sensitivity of the federated
OFDM-IM adaptation with different number of users in terms
of effective throughput. For all the simulations, Rayleigh
fading channel is applied to each subcarrier, the number of
subcarriers N = 4, the number of active subcarriers k ∈
{1, 2}, the cardinality of possible modulation constellations
Mt ∈ {0, 2, 4}. The BEP threshold µ = 0.01. By using the
well known elbow method, the number of clusters of the local
model, KC , are found to be 10, 20, 40, 100 for the training
dataset sizes of 50, 100, 200, 500, respectively, and the number
of clusters of the global model, KG, is chosen to 100.

In Figure 2 and Figure 3, the effective throughput and BER
of the four schemes, (i) Classical k-means with 200 training
data; (ii) Fed-k-means with 200 training data at each user;
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Fig. 2: Effective throughput versus average SNR of Fed-k-
means adaptive OFDM-IM with 70 users.

Fig. 3: Average BER versus average SNR of Fed-k-means
adaptive OFDM-IM with 70 users.

(iii) Classical k-means with 500 training data; and (iv) Non-
adaptive modulation, are presented in a 70 users scenario.
The theoretical lower bounds of effective throughput and the
theoretical upper bounds of BER, with a given learned model,
are also depicted for validation. At mid and low SNRs, the
Fed-k-means has higher effective throughput than the single
user k-means with either 200 training data or 500 training
data. The BER of the Fed-k-means and single user k-means
are similar, which are lower than the non-adaptive modulation.
When the SNR is greater than 14dB, the effective throughput
of all the four schemes are similar because the mode with
highest data rate becomes the majority choice. These results
show that the proposed Fed-k-means algorithm can improve
the effective throughput with an even smaller training dataset
than the single user k-means algorithm.

In Figure 4, the effects of number of users on the effective
throughput of the Fed-k-means schemes with different size
of training dataset are depicted. Note that all the results in
this part are average values of 50 simulations, and the SNRs
for all the three settings are 4dB. The effective throughput
increases when the number of users increases. The plots
with 200 and 100 training data points reaches their highest
effective throughput, at 5.5 bits/cu, at 50 users and 100 users,

Fig. 4: Effective throughput versus number of users of Fed-k-
means adaptive OFDM-IM.

respectively. This result indicates that the required number of
users for achieving the best performance decreases when the
size of training dataset in each user increases.

V. CONCLUSION

This paper proposed the federated k-means clustering strat-
egy for adaptive OFDM-IM. By aggregating the learning
outcome of distributed users, the adaptation strategy developed
at the BS improved the accuracy of the global learning model,
requiring less training data from individual devices. With
the global adaptation model, distributed users were able to
reliably adjust OFDM-IM signals to their local conditions.
The simulation results showed that the Fed-k-means OFDM-
IM improved the throughput through the multi-user federation.
Heterogeneous training features across users such as asymmet-
ric sets of modulation modes will be investigated in the future.
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[8] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
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