UNIVERSITYW

This is a repository copy of HexNet: An Orientation-aware Deep Learning Framework for
Omni-directional Input.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/202481/

Version: Accepted Version

Article:

Zhang, Chao, Liwicki, Stephan, He, Sen et al. (2 more authors) (2023) HexNet: An
Orientation-aware Deep Learning Framework for Omni-directional Input. IEEE
Transactions on Pattern Analysis and Machine Intelligence. pp. 14665-14681. ISSN 0162-
8828

https://doi.org/10.1109/TPAMI.2023.3307152

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 1

HexNet: An Orientation-aware Deep Learning
Framework for Omni-directional Input

Chao Zhang*, Stephan Liwicki

*, Sen He, William Smith and Roberto Cipolla, Senior Member, IEEE

Abstract—While omni-directional sensors provide holistic representations typical deep learning frameworks reduce the benefits by
introducing distortions and discontinuities as spherical data is supplied as planar input. On the other hand, recent spherical
convolutional neural networks (CNNs) often require significant memory and parameters, thus enabling execution only at very low
resolutions and shallow architectures. We propose HexNet, an orientation-aware deep learning framework for spherical signals, that
allows for fast computation as we exploit standard planar network operations on an efficiently arranged projection of the sphere.
Furthermore, we introduce a graph-based version for partial spheres, allowing us to compete at high-resolution with planar CNNs using
residual network architectures. Our kernels operate on the tangent of the sphere and thus standard feature weights, pretrained on
perspective data, can be transferred, enabling spherical pretraining on ImageNet. As our design is free of distortions and discontinuity,
our orientation-aware CNN becomes a new state of the art for semantic segmentation on the recent 2D3DS dataset, and the
omni-directional version of SYNTHIA introduced in this work. Moreover, we experimentally show the benefit of our spherical
representation over standard images on the Cityscapes dataset by reducing distortion effects of planar CNNs. We implement object
detection for the spherical domain. Rotation invariant classification and segmentation tasks are additionally presented for comparison

to prior art.

Index Terms—Spherical Deep Learning, Omni-directional Cameras, Semantic Segmentation, Object Detection

1 INTRODUCTION

D EEP convolutional neural networks (CNNs) have
pushed the performance on a wide array of high-
level computer vision tasks, including image classification,
object detection and semantic segmentation. However, most
frameworks focus on perspective images with small field of
view (e.g. [1], [2], [3], [4]). In our work, we focus on omni-
directional input that provides a holistic understanding of
the surrounding scene, which is especially important for
autonomous driving systems and robotics. Further, with
the rising availability of omni-directional cameras and the
increasing number of datasets with omni-directional signals,
CNN-based processing with spherical input is very relevant
for modern applications.

While spherical input could be represented as planar
equirectangular images where standard CNNs are directly
applied, such choice is limiting due to latitude dependent
distortions and discontinuities at boundaries. Instead, in
[5] a perspective network is distilled to work on equirect-
angular input. The main drawback is that weight sharing
is only enabled along longitudes. Therefore, the model
requires more parameters than a perspective one. SphereNet
[6] projects equirectangular input onto a latitude-longitude
grid. A constant grid kernel is convolved with each vertex
on the sphere by sampling on the tangent plane. However,
it is not straightforward to implement pooling and up-
sampling for dense prediction tasks.

Alternatively, the input could be seen as graph on 3D
shape manifolds. One of the challenges in applying CNNs
on such non-euclidean surfaces is how to define a natural
convolution operator. Works like [7], [8], [9] have focused on

Manuscript received February ??, 2022.
*main contributors.

beam board
bookcase ceiling
chair clutter
J column door
. floor sofa
‘ table wall

D window ! unknown

ANV AVAYA

AV VAVAVAY VAVAVAV VAVAVAY
We WYy WYy
Ay ' A

N\ Y

Fig. 1. Given spherical input, we convert it to an unfolded icosahedron
mesh. Hexagonal filters are then applied under consideration of north
alignment, as we efficiently interpolate vertices. Our approach is suited
to most classical CNN architectures, e.g. U-Net [2]. Since we work with
spherical data, final segmentation results provide a holistic labeling of
the environment.

networks for manifolds or graphs. However, unlike general
3D shapes, omni-directional images can be oriented if north
and south poles are well defined. Therefore, the lack for
shift-invariance on surfaces or graphs could be overcome
with an orientation-aware representation.

Most recently, several works proposed to use an icosa-
hedron mesh as the underlying spherical data representa-

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 2

ELET e

Input Image

road sidewalk building wall fence
pole traffic light traffic sign vegetation terrain

sky person rider car .] truck
bus train motorcycle bicycle

Fig. 2. Image distortion is challenging when a planar image representa-
tion is used. After formulating our spherical CNN as graph-based CNN
for partial input, we propose an in-place substitution to work on the less
distorted sphere manifold. Note, since geometric distortion is reduced,
the ‘truck’ is correctly classified.

tion [10], [11], [12], [13]. The base icosahedron is the most
regular polyhedron, consisting of 12 vertices and 20 faces. It
also provides a simple way of resolution increase via sub-
division. In [10], UGSCNN used the linear combinations
of differential operators weighted by learnable parameters.
Since the operators are precomputed, the number of pa-
rameters is reduced to 4 per kernel. The main issue of this
approach, also confirmed in our experiments, is that a large
amount of memory is required for the mesh convolution,
especially at high-resolution input/output quality. Similar
to our method in the use of icosahedron, [12] proposed
a gauge equivariant CNN. Here, filter weights are shared
across multiple orientations. Note however, while rotation
equivariance and invariance is essential in applications such
as 3D shape classification and climate pattern prediction, it
might be undesired for semantic segmentation and object
detection, which we consider here. On the contrary, we
argue that the orientation information of cameras attached
to vehicles or drones is an important cue and should be
exploited. Hence, we propose and investigate a novel frame-
work for the application of CNNs to omni-directional input,
targeting semantic segmentation and object detection. We
take advantage of both, the icosahedron representation for
efficiency and orientation information to improve accuracy
in orientation-aware tasks (Figure 1). Our hypothesis is that
aligning all learnable filters to the north pole is essential for
omnidirectional semantic segmentation. We also argue that
high-resolution meshes are needed for detailed segmenta-
tion. Due to memory restrictions, CNN operations need to
be implemented efficiently to reach such high resolution.
Further, apart from omni-directional input we also ad-
dress CNN computation quality on standard images (Fig-
ure 2). Motivated by our observation of geometrical dis-
tortions on the image plane, we hypothesize results could
be improved by projecting standard high-resolution images
onto the manifold of a sphere using known camera intrinsics
and then applying spherical CNN. Note however, while
most planar CNNs work on high-resolution input and very
deep architectures, existing spherical CNNs are not suitable
for such settings. In particular, partial input is often not

supported on spheres [10], [11], [12], while in practical
scenarios (e.g. the driving environments of Cityscapes [14])
the active view covers less than 3% of the sphere’s manifold.
Processing the invalid region is computational inefficient
and costly in memory. Thus, memory issues need to be
addressed to enable a fair comparison between results using
planar CNNs and spherical CNNs by exploiting partial
spheres.

1.1 Contribution

In order to enable deep learning on spherical data without
introducing distortions, we first map the spherical data to
an icosahedron mesh, which we unfold along the equator,
similarly to cube maps [15], [16] and [12], [17]. In the
icosahedron, vertices have at most 6 neighbors. Therefore,
we propose to use a hexagonal filter that is applied to each
vertex’s neighborhood. After simple manipulation of the un-
folded mesh, standard planar CNN operations compute our
hexagonal convolutions, pooling and up-sampling layers.
We validate our approach on semantic segmentation and
object detection tasks, as we use the omni-directional 2D3DS
dataset [18] and additionally prepare our Omni-SYNTHIA
dataset, which is produced from SYNTHIA data [19]. Qual-
itative as well as quantitative results demonstrate that our
method outperforms previous state-of-the-art approaches in
both scenarios. Moreover, we emphasize, since our filters are
similar to standard 3 x 3 kernels applied to the tangent of the
sphere, weight transfer from pretrained perspective CNNs
is possible. Performance on spherical MNIST classification
[20] and climate pattern segmentation [21] is also shown in
comparison with previous methods in literature.

Building on our spherical CNN, we then reformulate
our framework as a graph-based network, which facilitates
selective computation on masked spherical data. Our im-
plementation improves memory cost and running times,
enabling deep spherical learning at much higher resolution
than typically possible on spheres when partial input is
used. In our evaluation we apply our spherical representa-
tion and consistently achieve performance gains on popular
off-the-shelf architectures [2], [22] and common datasets
[14], [19]. Finally, we introduce spherical pre-training with
ImageNet [23], and further improve accuracy to a competi-
tive level. In summary, our contributions are:

1) We propose a memory efficient icosahedron-based
CNN framework for spherical data.

2) We introduce fast interpolation for orientation-
aware filter convolutions on the sphere.

3) We reformulate our spherical CNN as graph-based
CNN for arbitrarily masked input data, for efficient
computation on partial spheres.

4) We present weight transfer from kernels learned
through planar CNNs on perspective data.

5) We implement spherical pretraining from planar
datasets such as ImageNet [23] for ResNet-50 [24].

6) We evaluate our method on both non-orientation-
aware and orientation-aware, public datasets.

Our earlier results are presented in [25] and [26]. We
extend the evaluation and introduce further ablation studies
throughout. Furthermore, we enable the use of HexNet

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 3

for object detection on spheres, leveraging our introduced
spherical bounding cycles in this work. Thus we show
general applicability of HexNet to different tasks.

In the following, we discuss related work in Section 2.
Our motiviation for our spherical CNN framework is pre-
sented in Section 3. Our HexNet framework and its partial
input setup is introduced in Section 4 and Section 5 respec-
tively. Pretraining and weight transfer from planar datasets
is discussed in Section 6 and Section 7 defines our bound-
ing cycles for the object detection task. Section 8 presents
our evaluation on 3 tasks across 5 datasets, and Section 9
concludes this work. Additional details on experiments are
given in our appendices.

2 SPHERICAL DEEP LEARNING

Spherical CNNs are gaining popularity with the increasing
availability of omnidirectional sensor inputs in computer
vision such as LiDAR, 360°-cameras and other domains. We
summarize the most prominent methods here.

CNNs on Equirectangular Images: — Although classical CNNss
are not designed for omnidirectional data, they could still be
used for spherical input if the data are converted to equirect-
angular form. Conversion from spherical coordinates to
equirectangular images is a linear one-to-one mapping, but
spherical inputs are distorted drastically especially in polar
regions. Another artifact is that north and south poles are
stretched to lines. Lai ef al. [27] applied this method in
the application of converting panoramic video to normal
perspective. Another method along this line is to project
spherical data onto multiple faces of convex polygons, such
as a cube. In [15], omnidirectional images are mapped to
6 faces of a cube, and then trained with normal CNNs.
However, distortions still exist and discontinuities between
faces have to be carefully handled.

Spherical CNNs: In order to generalize convolution from
planar images to spherical signals, the most natural idea is
to replace shifts of the plane by rotations of the sphere. Co-
hen et al. [20] proposed a spherical CNN which is invariant
in the SO(3) group. Esteves et al. [28] used spherical har-
monic basis to achieve similar results. Zhou et al. [29] pro-
posed to extend normal CNNS to extract rotation-dependent
features by including an additional orientation channel.

CNNs with Deformable Kernels: Some works [30], [31]
consider adapting the sampling locations of convolutional
kernels. Dai et al. [30] proposed to learn the deformable con-
volution which samples the input features through learned
offsets. An Active Convolutional Unit is introduced in [31]
to provide more freedom to a conventional convolution
by using position parameters. These methods requires ad-
ditional model parameters and training steps to learn the
sampling locations.

CNNs with Grid Kernels: Another line of works aim to
adapt the regular grid kernel to work on omnidirectional
images. Su and Grauman [5] proposed to process equirect-
angular images as perspective ones by adapting the weights
according to the elevation angles. Weight sharing is only
enabled along longitudes. To reduce the computational cost
and degradation in accuracy, a Kernel Transformer Network

[32] is applied to transfer convolution kernels from per-
spective images to equirectangular inputs. Coors et al. [6]
presented SphereNet to minimize the distortions introduced
by applying grid kernels on equirectangular images. Here, a
kernel of fixed shape is used to sample on the tangent plane
according to the location on the sphere. Wrapping the kernel
around the sphere avoids cuts and discontinuities.

CNNs with Reparameterized Kernels: For the efficiency of
CNNs, several works are proposed to use parameterized
convolution kernels. Boscani et al. [9] introduced oriented
anisotropic diffusion kernels to estimate dense shape corre-
spondence. Cohen and Welling [33] employed a linear com-
bination of filters to achieve equivariant convolution filters.
In [34], 3D steerable CNNs using linear combination of filter
banks are developed. Recently, Jiang et al. [10] utilized pa-
rameterized differential operators as spherical convolution
for unstructured grid data. Here, a convolution operation
is a linear combination of four differential operators with
learnable weights. However, these methods are limited to
the chosen kernel types and are not maximally flexible.

CNNs on Icosahedron: Related to our approach in using
discrete representation, several works utilize an icosahedron
for spherical image representation. As the most uniform and
accurate discretization of the sphere, the icosahedron is the
regular convex polyhedron with the most faces. A spherical
mesh can be generated by progressively subdividing each
face into four equal triangles and reprojecting each node to
unit length. Lee et al. [11] is one of the first to suggest the
use of icosahedrons for CNNs on omnidirectional images.
Here, convolution filters are defined in terms of triangle
faces. In [10], UGSCNN is proposed to efficiently train a
convolutional network with spherical data mapped to an
icosahedron mesh. Liu et al. [17] used the icosahedron based
spherical grid as the discrete representation of the spher-
ical images and proposes an azimuth-zenith anisotropic
CNN for 3D shape analysis. Cohen et al. [12] employed
an icosahedron mesh to present a gauge equivariant CNN.
Equivariance is ensured by enforcing filter weight sharing
across multiple orientations.

3 REDUCING DISTORTION THROUGH SPHERES

Our motivation for spherical CNNs goes beyond spherical
input, as we observe reduced geometric distortion by using
a spherical input domain for standard planar images.

In particular, we note that an image consists of rays
representing a reduced description of the 3D world. Let us
denote 3D points P; projected onto the image plane and
the sphere’s manifold as p; = hom(P;) and s; = HIF,)—ZH
respectively, where hom(-) computes the homogeneous co-
ordinate. For general out-of-plane camera rotation R, we
observe distortions for planar, but not spherical projections,
since it typically holds that (Figure 3 and Appendix A)

[hom(RP;) — hom(R'P;)|| # [Ipi — pjl, ¢))
but for spheres the distance has no distortion, as
R™P RTQ ‘
=||s; — s;|-)
|1memt ~ R = s~

Therefore we hypothesize that CNN learning on spher-
ical images should be able to generalize to more pixel

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 4

Planar Projection

World Coordinates
(a) Translation Distortion

Spherical Projection

AN -
World Coordinates
(b) Rotation Distortion

Spherical Projection

Fig. 3. Planar projection suffers from translation and rotation distortion,
while spherical projection reduces distortions at translation and removes
them completely for rotation.

locations. As we strive for a confirmation of this, we note,
since most datasets provide planar images, we require the
camera calibration matrix to project to the sphere. Finally,
we emphasize, distortion on alternative projections such as
equirectangular or panorama images are reduced only along
longitudes.

4 PROPOSED FULL-HEXNET FRAMEWORK

We represent the spherical input through vertices on an
icosahedron mesh (Figure 4). The mapping is based on the
vertices” azimuth and zenith angles — e.g. the input color
is obtained from an equirectangular input through inter-
polation. Similar to cube maps [15], [16], the icosahedron
simplifies the sphere into a set of planar regions. While the
cube represents the sphere only with 6 planar regions, the
icosahedral representation is the convex geodesic grid with
the largest number of regular faces. In total, our grid consists
of 20 faces and 12 vertices at the lowest resolution, and
fr =20%4" faces and n,, = 2+ 10 % 4" vertices at resolution
level » > 0. Note, a resolution increase is achieved by
subdivision of each triangular face into 4 equal triangular
parts. In the following, we present an efficient orientation-
aware implementation of convolutions and our down- and
up-sampling techniques.

4.1

If a camera is attached to a vehicle, the orientation and
location of objects such as sky, buildings, sidewalks or roads
are likely similar across the dataset. Therefore, we believe an
orientation-aware system can be beneficial, while tasks with
arbitrary rotations may benefit from rotation invariance [20]
or weight sharing across rotated filters [12], [35].

Orientation-aware Convolutions

4.1.1 Efficient Convolutions through Padding

We first define the north and south pole as any two nodes
that have maximum distance on the icosahedron mesh.
Similar to [12], [17], the mesh is then converted to a planar
representation by unfolding it along the equator (Figure 4).
Finally, we split the surface into five components, denoted

a) Input sphere b) Icosahedron c) Unfolded representation

T

(d) Image-grid-aligned representation of spherical data

Fig. 4. Spherical input data (a) is represented by an icosahedron-based
geodesic grid (b). Similar to cubes [15], [16], we unfold our mesh (c)
and align its 5 components to the standard image grid (d) for efficient
computation of convolution, pooling and up-sampling.

" “Numms |

(a) Convolunon

(b) Up-sampling

Fig. 5. Convolution with our hexagonal filters (a) and up-sampling (b)
reduce to standard CNN operations after padding the sphere component
with features from neighboring sphere parts. Pooling is computed with a
standard 2x2 kernel with stride 2.

{C;};_,, and align the nodes with a regular image grid
through a simple affine transformation.

Notice, each node has a neighborhood of either 5 or 6
points, denoted p; € V") = {p;}r, and ./\fi(r) = {¢'}5_,
or {q;}5_, respectively, where ./\/'i(r) c V) and j indexes
the neighborhood of p; in a clock-wise fashion. We write
V) c pr+h since only new nodes are introduced when
resolution is increased. Note also, the connectivity at dif-
ferent resolutions changes (i.e. /\/i(r) + ./\/'i(rﬂ)). In the
following we omit r for simplified notation where possible.

We employ hexagonal filters in our work, instead of
regular 3 x 3 kernels. Let us ignore the vertices at the poles
(e.g. through reasoning of dropout), and adjust the neigh-
borhood cardinality to 6 for all vertices with 5 neighbors
through simple repetition. Now, our planar representation
of the icosahedron simplifies the convolution with hexago-
nal filters to standard 2D convolution with a masked kernel,
after padding as shown in Figure 5.

4.1.2 North-alignment through Interpolation

In its natural implementation, our filters are aligned to the
icosahedron mesh. Consequently, the filter orientation is
inconsistent, since the surfaces near the north and south
poles are stitched. We reduce the effect of such distortions by
aligning filters vertically through interpolation (Figure 6).

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 5

Qs o}

(a) North-alignment

(b) Interpolated filters

Fig. 6. Given arc-based interpolation of the neighborhood for north-
alignment (a), our convolution is computed with 2 weighted filters (b).
The weights are precomputed for all vertices.

The non-interpolated convolution with weights {w;}7_,
at node p; and its neighbors {¢}}%_,, is computed as
Z?=1 qu;» + wrp;. Instead, we north-align the neighbor-
hood with interpolations using arc-based weights {9; ?:1
as follows:

6
> wi(0iq) + (1= 02)q(; mod 6y41) + wrpi- ()
j=1

Since the hexagonal neighborhood is approximately sym-
metric, we further simplify (3) by introducing a unified
weight «;, such that {o; ~ 0;- ?:1 holds. Hence we write

6 6
R Zw]qj +(1_al) ijqéj mod 6)+1 +U)7pi. (4)
Jj=1 j=1

Thus, north-aligned filters can be achieved through 2 stan-
dard convolutions, which are then weighted based on the
vertices” interpolations «;.

The arc-interpolation «; is based on the angle distance
between the direction towards the position of the first and
sixth neighbors, denoted q} and qf respectively, and the
north-south axis when projected onto the surface of the
sphere. In particular, we first find the projective plane of
the north-southaxisa=[0 1 0]T towards the position
pi of p; as the plane with normal n; = p1§2 . Since the
spherical surface is approximated by the plane of vectors
pi; — qi and p; — g}, we only require the angles between
these vectors and the plane given by n;, to find interpolation

o = ¢1ﬂf‘i¢i with
8= arccos (pi —qi)"(I — n;nf)(p; —qj)
i i i
|(pi —)| |(T—nm])(p; — qj)
(pi —q8)" (I —nynj)(p; — qf) 5)

= arccos !)
;= ar b‘(pi_q%)’|(I_ning)(pi_q%)’

The resulting interpolation is visualized in Figure 7.

4.2 Pooling and Up-sampling

Down-sampling through pooling and bi-linear up-sampling
are important building blocks of CNNs, and are frequently
employed in the encoder-decoder framework of semantic
segmentation (e.g. [2]). Pooling is aimed at summarising the
neighborhood of features to introduce robustness towards
image translations and omissions. Typically, a very small
and non-overlapping neighborhood of 2 x 2 pixels is consid-
ered in standard images, to balance detail and redundancy.

N
S S ~ ~ ~
LNV NV N NV NV

NNV e NNV e NNV e NN e NNV e
R B L e L L o e T e N N N e L
D L b O e N L N N N L N N N
R S S e e e S S S N N S S D S S
NS D 0 B N N N N NI D 2
VNV VVUN-V VNV VSNV NV
SV S ~- ~- SV
Y AV Y AV

Fig. 7. Interpolated convolutions on the unfolded mesh (r = 2). Orien-
tations are north-south aligned, while 5-degree connections (red) are
padded through duplication, and poles (blue) are ignored.

Algorithm 1: Pad & WestPad (top & left only)

Result: Given sphere components {C; }i_, of height

2W and width W compute padded {P;}i—o
fori < {0,...,4} do // pad each component
Cw < Ci-1) mod 5/ // west neighbor
T+ [Co(W, W) to Cu(1,W) 0];

[Cw(W +1, W) to Co(2W, W) |"
L | [ColW,W —1)to Cu(2W,1) | |5
0
T
P, + [L Ci] ; // top & left
if pad all sides then

Ce + Cliy1) mod 55 // east neighbor
B+ [0 Cc(2W,1) to Ce(W +1,1) |;

0
R+ [Ce(1,W)to Ce(1,1) " |;
Ce(1,1) to Co(W +1,1) '
P+];l R |; // bottom & right
end

end

Bi-linear up-sampling is used in the decoder to increase sub-
sampled feature-maps to larger resolutions.

We note, in our icosahedron mesh the number of nodes
increases by a factor of 4 for each resolution (excluding
poles). Therefore during down-sampling from resolution r
to r —1, we summarize a neighborhood of 4 at r with 1 node
at r — 1. A natural choice is to pool over {p;, ¢, ¢, ¢} for
nodes p; € V"~ Thus, we apply a simple standard 2 x 2
strided pooling with kernel 2 x 2 on each icosahedron part.

Analogously, bi-linear up-sampling or transposed con-
volutions are applied by padding the icosahedron parts at
left and top followed by up-sampling by a factor of 2 in
height and width (Figure 5). Due to padding, this results
in a 1-pixel border at each size which we simply remove
to provide the expected up-sampling result. Finally we em-
phasize, methods like pyramid pooling [3] can be computed
by combining our pooling and up-sampling techniques.

4.3

We include the pseudo code of our main CNN opera-
tors, applied to the icosahedron mesh components, denoted
{Ci}1_,. Note, many operations will be a direct result of a
combination of these operators (i.e. Pyramid Pooling Layers

Implementation Detail

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 6

Algorithm 2: Hexagonal Convolution (HexConv)

Algorithm 4: Pooling on Sphere

Result: Given components {C;}i—, and precomputed
inter}l)olation weights {A;}{_, get filter results
{Fi}i=o of same size.

{Ci}izo + Pad({Ci}iso);

ws we 0

W1 < w4 W7 W1 ;

0 w3 w2

// Alg. 1
// Hexagon filter

wge ws O
Wy w3 Wy We ;
0 w2 w1
fori < {0,...,4} do
F} « conv2d(C;, W1);
F? < conv2d(C;, Ws);
// Element-wise Interpolation
F; (—AZ‘@F} +(17A¢)®Fi2
end

// Shift weights

// standard 2D conv

Algorithm 3: Bi-linear Up-sampling on Sphere

Result: Given components {C; }i_, get bi-linear
up-sampling {F; }i—.
{C:}iy + WestPadding({Ci}i—o);
fori «+ {0,...,4} do
F; < upsample(C;); // 2x up-sampling
Cut 1 pixel width from all sides of F3;
end

// Alg. 1

[3]). First we detail padding in Algorithm 1. Our orientation-
aware hexagonal convolutions with arc-based interpolations
for north-alignment are given in Algorithm 2. Note, inter-
polation weights are precomputed. Algorithm 3 presents
up-sampling. We emphasize, convolutions with kernel size
1, pooling, batch normalization, non-linearities and biases
are directly computed on the spherical components without
padding, through standard CNN operators (e.g. pooling in
Algorithm 4).

4.4

It is possible to include multiple rings to the convolution.
Specifically, for an s-ring convolution, we include all nodes
that have less than s graph distance to the convolution
center. Again, after simple padding following the discon-
tinuities on the icosahedron, an s-ring convolution can be
expressed by a (2s + 1) x (2s + 1)-kernel similar to the
3 X 3-kernel in Figure 6. We note however, since the arc-
based interpolation is defined between neighbors q; and
qs at 1 graph distance, it will be located somewhere be-
tween 3 nodes at graph distance 2 (Figure 8). Our uniform
convolution across the sphere can thus be computed by an
interpolation of s + 1 standard convolutions. It is worth
mentioning here that an interpolation weight for each graph
distance — as later presented in Section 5.3 — is also possible
to similar effect.

s-Ring Convolutions

5 MASKED-HEXNET FOR PARTIAL INPUT

Most deep learning literature focuses on novel network
architectures (e.g. [1], [2], [3], [4], [22]) and new datasets
(e.g. [14], [19], [36], [37]) for incremental performance im-
provements. In contrast, we aim to improve accuracy on

Result: Given components {C;}{_, get pooling { F; }i—.
fori + {0,...,4} do

‘ F; + pooling(C;);
end

// stride 2 pooling

Fig. 8. North alignment, as computed by nodes at graph distance 1, will
be located somewhere between s + 1 nodes at graph distance s.

planar images through our geometric motivation in Sec-
tion 3. Hence, we project onto the manifold of a sphere using
known camera intrinsics, and reduce the distortion prob-
lem with spherical CNN. However to date, most existing
spherical CNN methods cannot compete on high-resolution
datasets [10], [11], [12], [13]. In particular, existing spherical
CNNs assume that the visual information covers the whole
sphere. As a result, the convolution operations have to be
applied on all vertices of the icosahedron mesh. In practical
scenarios however, such as the driving environments of
Cityscapes [14], the active view covers less than 3% of the
sphere’s manifold. Consequently, a complete icosahedron of
more than 9.6 x 10° vertices is required to be equivalent to
the resolution of a 380px x 760px image. We reformulate our
spherical CNN for partial input to overcome this shortfall.

5.1 Graph-based Formulation of HexNet

Let us reformulate the full-HexNet from Section 4 using
a graph-based interpretation, as we redefine convolutions,
pooling and up-sampling (Figure 9).

5.1.1 Orientation-aligned Convolutions

All vertices that are not on the base icosahedron, ie. p; ¢
V() have a neighborhood cardinality of six. As above, we
increase the neighborhood of base vertices p; € V() to six
through duplication. Now, we can apply 1 x 7 convolutions
on the gathered neighborhoods, an n, x 7 feature map
where each row contains p; and its neighborhood /\/i(T) (Fig-
ure 9(a)).! We apply our arc-based interpolation to efficiently
enforce north-alignment of the kernel, as in (4). Note, the
naive implementation of (4) requires significant memory
and is slow in running time. We address implementation
details of masking and the execution in Section 5.2.

5.1.2 Pooling and Up-sampling on the Sphere

We redefine the pooling mechanisms as follows: During
pooling we sub-sample from resolution r to r — 1. Specif-
ically, we gather each vertex p; € V(") and its neighbor-
hood J\/Z-(T) into an n,_; x 7 feature map and applyal x 7
pooling (Figure 9(b)). Note, any pooling operator can be

1. We omit notation of input and output channels for simplicity.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 7

Convolution Kernel
21 2 2 A e
1x7

Feature Map

ar*
(1-a7)%

iv;

\

ayk
(1-ay)*

[LT 1T e

(10%4") x 7

(a) Convolution

Pooling Average Pooling

1x7
Feature Map
g3l a)ailat]aélp:
qi|a3) a3l ai] az) ai] -

(10%4"142) x 7

1x2
Feature Map
vilv.
V2

4]

(10%4™142) x 2

Q

(b) Pooling (c) Up-sampling

Fig. 9. Proposed graph-based CNN operations on the (full) icosahedron at resolution r. (a) For convolutions, sorted neighborhoods are gathered
and north-aligned to generate a (10 * 4" + 2) x 7 feature map. (b) During pooling, a feature map of the 10 * 4~ + 2 vertices at resolution r — 1 is
built. (c) Up-sampling finds the parents at resolution » + 1 and interpolates.

a* q§ (1- al)* qz % m (1-a;) % m (1- a,)*
% laz + % +(1 a,)* | a3] g + % laz)* +
ol corBE oo FE corEE ooEEl corEEl E

(a) Sequential Convolution
m
wz wl wd ws w5
(1-a)) % o q3 (1a)* a;* (1-a) %
. + lak)*n +(1ak)* qs + . + (1-a) % . +
(b) Stacked Convolut|on

Fig. 10. We present alternative graph-convolutions to save memory
and running time. (a) Only three m, x 2 feature maps are needed to
compute equivalent convolutions sequentially. (b) Stacking and padding
the neighbourhood further reduces gathering needs.

used. Figure 9(c) shows the up-sampling process, where we
increase resolution from 7 to r 4+ 1. We find the new vertices
pi € Y\ pir) thr0u§h averaging their parents, given
by vi,vi € VO AN The existing vertices p; € V(™)
remain unchanged.

It is worth noting, in Section 4 only 3 nodes are used for
efficiency, while here we use all 6 nodes for pooling. Either
mechanism is possible, but since we want to reflect the up-
sampling where two parents create a new node, we chose to
have each node affecting the pooling of its two parents.

5.2 Masking the Active Areas of the Sphere

Typical camera setups utilize only one or few camera views.
The active area which these views project onto are usually
small. We emphasize, the computation of icosahedron-based
CNNs on high-resolution usually requires the full sphere,
and are thus unfeasible for such data [10], [12]. In con-
trast, with our graph-based implementation, it is possible to
compute convolutions efficiently on a subset of pixels. We
denote subset M C V, with cardinality m,, = [V n M|,
and typically m, < n,. Convolution, pooling and up-
sampling only requires the points in V N M, and we apply
zero padding for neighbourhoods outside M.

5.2.1 Efficiency Consideration with Connected Masks

In a naive implementation, a 1 X 7 convolution needs to
be applied to two sets of m, x 7 feature maps simultane-
ously to compute an interpolated convolution (Figure 9(a)).
Since this is costly in memory, we present an alternative
approach. By rearranging the convolution weights and
the summations, we only require three sequential 1 x 2

Algorithm 5: Graph-based Convolutions

Result: Given 1 x M (") x C input, gather-indices for g;, and
reverse gather-indices for F);, compute convolution
with filter w; € R1X1x0 where C and O are number
of input and output channels, andj=1,...,7.
Output is F € RIxMx0,

forj = {1,3,5} do

g; < gathered 1 x Ly) x C feature map for q;'. = q;,“
// interpolation = 2 convolutions as ®
GZeg]O[wj wjiyr |

Gj <9 ® [W(G+a) mode)+1 w5 |

F‘l + gather 1 x M) x O results from GY

F;’ + gather 1 x M(") x O results from G;’.

end

Fr ¢ [pi])” ® fwr]

// Using ® as element-product

F « [(T)]M(T) @(Fla +Fa +F0’)

- o) & (B 1 B 4 F) + By

z

convolutions on two m, X 2 feature maps which reduces
memory requirements (Figure 10(a) and Appendix B). While
the mask can be arbitrary, we can also reduce run time,
if vertices in the mask are highly connected (as is the
case in image data). Specifically, we exploit the fact that
the neighborhoods of vertices frequently coincide, i.e. often
there exists two vertices p; and p such that q} 11 = qf.
Thus we optimize neighborhood connectivity, denoted g; =

(... ¢ ()
my < lé < 2m, (Figure 10(b) and Appendix B). Now,
three sequential 1 x 2 kernels are applied on the 1 X 1)
feature map. Note, the ordering of g; is precomputed.

Algorithm 5 details the computations.

Tp1 = f qﬁl . | of size)’ x 1, where

5.3 s-Ring Convolutions

We separate the neighbors within the s-ring based on the
graph distances to implement graph-based s-ring convo-
lutions: ; = (Jj_; D], where nodes in Dj have graph
distance j. Here north-alignment is defined for each D sep-
arately by arc-interpolation for the 2 most northern nodes in
D!, resulting in s interpolation weights. While all nodes in
the s-ring are gathered at each convolution center, only 2
convolutions are required in contrast to s + 1 in Section 4.4.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 8

AR
pedps| Wo =2

ws = Sin%plﬂ)“ =+ (1 —sin %)szrps

wy = sin § PP 4 (1 — sin T) 5P

w3 = pPs

wo = Sin%ps-i-pg + (1 _gin g)ps-i-ps
— ain T P3TP6 _ ain T\P2TPs5

wy = sin §P5PS 4 (1 — sin §) P25

w7 = Ps

Fig. 11. The weights of conventional 3 x 3 kernels trained on perspective
data can be transferred to our model via simple interpolation as our
filters operate on the sphere’s tangent planes.

(b) Planar Filters

(c) Spherical Filters

Fig. 12. Spherical ImageNet pretraining: (a) Data is sampled on a
hexagonal grid and projected with a shear transform to provide input with
standard image grid on which masked 3 x 3 convolutions are employed.
(b) First layer filter response is similar to planar filters. (Visualization is
normalized and sorted by intensities.)

6 WEIGHT INITIALIZATION FROM PLANAR DATA

We argue that spherical methods are advantageous as they
allow for a holistic interpretation of the environment. How-
ever, standard CNNs have so far focused mainly on planar
projected images. Since we want to benefit from the vast
research and datasets of planar domains, we discuss planar
to spherical weight transfer in Section 6.1 and pretraining
from planar data in Section 6.2.

6.1 Weight Transfer from Trained Planar Networks

Similar to SphereNet [6], our network applies an oriented
filter at the local tangent plane of each vertex on the sphere.
Consequently, the transfer of pretrained perspective net-
work weights is naturally possible in our setup. Since we
apply hexagonal filters with 7 weights, we interpolate from
the standard 3 x 3 kernels as shown in Figure 11. Specifically,
we align north and south of the hexagon with the second
and eighth weight of the standard convolution kernel re-
spectively. Bi-linear interpolation provides the remaining

Fig. 13. Bounding circles are defined by the nearest vertex on the sphere
using the offset 6, and &, on the sphere’s tangent plane, and object size
is given by radius r, which is the angle between center and boundary of
the object on the sphere (o = (0, 0, 0) denotes the sphere’s center).

values for our filter. After transfer, weight refinement is
necessary, but can be computed on a much smaller dataset
(as done in [6]), or reduced learning iterations.

6.2 Spherical Pretraining from Planar Datasets

Pretraining leverages large datasets (e.g. ImageNet [23]) to
provide improved initialization of common network param-
eters (e.g. ResNet-50 [24]). Unfortunately, however, spherical
datasets are rare. Weight transfer from planar networks
is an option. However, since we have access to training
data, a direct training algorithm for spherical parameter
initialization from planar data is likely more suited.

Since our kernels operate on the tangent plane of the
sphere, planar equivalents can be found. We visualize our
input data in (Figure 12(a)), where we also link spherical
convolutions to masked 3 x 3 kernels on the planar image
domain. Since the camera matrix is unknown for ImageNet,
we apply scale and crop data augmentation to simulate
different camera intrinsics. Note, pretraining only needs to
provide parameters with a good initialization.

In our work, we utilize ResNet-50 [24]. Following [3], we
replace the initial 7 x 7 filter by two consecutive 3 x 3 kernels,
or more specifically, the hexagonal kernel. The ImageNet
classification task completes with 25.03% error rate (7.55%
error for top 5). In Figure 12(b) we visualize the filter
weights of the initial layer. Note, our weights have similar
properties to standard planar convolution layers [38].

7 BOUNDING CIRCLES ON SPHERES

HexNet is a general convolutional framework and so not
limited to spherical semantic segmentation. The core layers
described above enable most common deep learning tasks.
The use of HexNet for pixel-based segmentation and holistic
classification is easily derived from planar approaches. The
task of object detection with boundaries is however non-
trivial and thus discussed in this section.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 9

Classical object detection employs axis aligned bounding
boxes on planar images to highlight detected objects. Specif-
ically, Redmon et al. [39] defined YOLO-v3 with bounding
boxes that use quantized pixel location « and y with related
offset J, and d,, and height and width h and w respectively,
such that the boundary is given by coordinates

h
top_left = (z+0, — %, Y+ 0oy — 5) (6)

. w h
bottom_right = (z+d, + o Y+ 0oy + 5) 7)

We now introduce an alternative representation of ground
truth for the spherical domain (Figure 13). Similarly to
YOLO-v3, we first find the nearest vertex on the icosahedron
mesh. Using the orientation aligned tangent plane of the
vertex, we define offsets d, and d,. The size of the object is
given by radial radius r.

Typically, object detection loss and non-max suppression
needs object overlaps. On spheres, we calculate the overlap
A of two bounding circles through the intersection between
two caps [40]:

A = 27 —2mcos(r1) — 2mwcos (ra)

cos (0) — cos (ry) cos (7“2))

sin (r1) sin (r2)

—2 arccos <

1208 (1) arccos (cos (r1) cos (8) — cos (rg))

sin (r1) sin &
cos () cos (§) — cos (rl)) ®)

sin () sin §

+2 cos (r9) arccos (

where r; and r; is the estimate radius of each prediction,
and 0 is the arc-distance between the centres of the sphere
caps on the sphere’s manifold. Finally we note, while this
representation is suitable for simple objects, elongated ob-
jects may be represented by slanted ellipses in future work.

8 EVALUATION

Our evaluation presents HexNet on 3 tasks across 5 datasets,
comparing to planar and spherical methods. First, in Sec-
tion 8.1 and Section 8.2, rotation invariant classification
and segmentation is shown. Section 8.3 presents results on
an orientation aware indoor segmentation task. Spherical
semantic segmentation in urban road scenes are compared
to spherical and planar state of the art in Section 8.4, which
also shows a detailed ablation study of HexNet. Finally,
object detection results are shown in Section 8.5.

8.1 Spherical MNIST: Rotation-invariant Classification

We follow [20] in the preparation of the spherical MNIST
dataset, as we prepare non-rotated training and testing
(N/N), non-rotated training with rotated testing (N/R) and
rotated training and testing (R/R) tasks. Specifically, planar
images of digits are projected onto the unit sphere surface.
For the non-rotated version, digits are moved to the equator
to prevent ambiguity at north or south pools, while for
the rotated version, a random rotation is applied without
ruling out pole-coverage. Both non-rotated and rotated ver-
sions are generated using public source code provided by
UGSCNN [10].2 Training set and test set include 60,000 and

2. https:/ / github.com/maxjiang93 /ugscnn

10,000 digits, respectively. Input signals for this experiment
are on a level-4 mesh (i.e. r = 4). The residual U-Net
architecture of [10], including the necessary modifications to
adapt to the classification task, is used in our experiments
(Appendix C.1). We call this network Hex-RUNet-C.

TABLE 1
Spherical MNIST with non-rotated (N) and rotated (R) training and test
data. Orientation-aware Hex-RUNet-C is competitive only when training
and test data match (i.e. N/N and R/R).

Method Orientation N/N N/R R/R
Spherical CNN [20] invariant 9. 94._ 95.__
Gauge Net [12] part-invariant | 99.43 69.99 99.31
UGSCNN [10] aware 99.23 35.60 94.92
Hex-RUNet-C aware 99.45 29.84 97.05

Hex-RUNet-C is compared to other spherical frame-
works: Spherical CNN [20], Gauge Net [12] and
UGSCNN [10] in Table 1. Our method outperforms previous
methods for N/N, achieving 99.45% accuracy. In R/R, our
method performs better than competing Spherical CNN
and UGSCNN. Gauge Net benefits from weight sharing
across differently oriented filters, and achieves best accu-
racy for this task amongst all approaches. Similar to [10],
our method is orientation-aware by design and thus not
rotation-invariant. Therefore, it is expected to not generalize
well to randomly rotated test data in the N/R setting, while
Spherical CNN performs best in this case.

8.2 Climate Pattern: Orientation-free Segmentation

[]tc
P AR
(e

Fig. 14. Semantic segmentation results of Hex-RUNet-32 on climate
pattern (right) in comparison to ground truth (left).

We further evaluate our method on the task of cli-
mate pattern segmentation. The task is first proposed by
Mudigonda ef al. [21], and the goal is to predict extreme
weather events, ie. Tropical Cyclones (TC) and Atomo-
spheric Rivers (AT), from simulated global climate data. The
training set consists of 43,916 patterns, and 6,274 samples
are used for validation. As above, we use the same residual
U-Net architecture as UGSCNN [10] (Appendix C.2). We
include two variants using different numbers of parameters:
Hex-RUNet-8 and Hex-RUNet-32 use 8 and 32 as output
channels for the first convolution layer, respectively. Eval-

TABLE 2
Climate pattern segmentation results. We include mean class accuracy
and mean average precision (mAP) where available. (The background
class is denoted BG.)

Method BG TC AR Mean mAP
Gauge Net [12] | 97.4 97.9 97.8 97.7 0.759
UGSCNN [10] 97._ 94._ 93._ 94.7 -
Hex-RUNet-8 95.71 9557 95.19 | 9549 0.518
Hex-RUNet-32 | 97.31 9631 9745 | 97.02 0.555

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 10

TABLE 3
Mean intersection over union (loU) comparison on 2D3DS dataset. Per-class loU is shown when available.
Method mloU | beam board bookcase ceiling chair clutter column door floor sofa table wall window
UNet-sphere 35.9 8.5 27.2 30.7 78.6 35.3 28.8 49 33.8 89.1 8.2 38.5 58.8 239
Gauge Net 39.4 - - - - - - - - - - - - -
UGSCNN 38.3 8.7 32.7 33.4 82.2 42.0 25.6 10.1 41.6 87.0 7.6 41.7 61.7 23.5
Hex-RUNet 43.3 10.9 39.7 37.2 84.8 50.5 29.2 11.5 45.3 92.9 19.1 49.1 63.8 294
TABLE 4
Mean class accuracy (mAcc) comparison on 2D3DS dataset. Per-class accuracy is shown when available.
Method mAcc | beam board bookcase ceiling chair clutter column door floor sofa table wall window
UNet-sphere 50.8 17.8 40.4 59.1 91.8 50.9 46.0 8.7 44.0 948 26.2 68.6 77.2 34.8
Gauge Net 55.9 - - - - - - - - - - - - -
UGSCNN 54.7 19.6 48.6 49.6 93.6 63.8 43.1 28.0 632 964 210 700 746 39.0
Hex-RUNet 58.6 23.2 56.5 62.1 94.6 66.7 41.5 18.3 64.5 96.2 41.1 79.7 77.2 41.1

GT RGB

UGSCNN

Hex-RUNet

beam board bookcase cellmg
clutter column door floor
.] table . wall . window . unknown

Fig. 15. Qualitative segmentation results on 2D3DS dataset.

uation results on the validation set are shown in Table 2
and Figure 14. Hex-RUNet-8 and Hex-RUNet-32 outperform
UGSCNN in terms of mean accuracy. With 32 features, Hex-
RUNet-32’s mean accuracy is similar to best performing
Gauge Net. However, our method does not match Gauge
Net in terms of mean average precision (mAP). We attribute
this to the fact that there is no direct orientation information
to exploit in this climate data. In contrast, Gauge Net shows
its advantage of weight sharing across orientations.

8.3 Stanford 2D3DS: Indoor Segmentation

For our first orientation-aware omnidirectional semantic
segmentation experiment, we evaluate our HexNet frame-
work on the 2D3DS dataset [18], which consists of 1,413
equirectangular RGB-D images. The groundtruth attributes
each pixel to one of 13 classes. Following [10], we convert
the depth data to be in meter unit and clip to between 0 and
4 meters. RGB data is converted to be in the range of [0, 1]

(a) Synthia-O

(b) Synthia-S (c) Cityscapes

Fig. 16. We use (a) omni-directional view Synthia to compare with
state-of-the-art spherical CNNs, and (b) single view Synthia and
(c) Cityscapes to compare with planar alternatives.

by dividing 255. Finally, all data is mean subtracted and
standard deviation normalized. The preprocessed signals
are sampled on a level-5 mesh (r = 5) using bi-linear
interpolation for images and nearest-neighbors for labels.
Class-wise weighted cross-entropy loss is used to balance
the class examples. Using our proposed network operators,
we employ the residual U-Net architecture of [10], which we
call Hex-RUNet (Appendix C.3). We evaluate following the
3-fold splits of 2D3DS.

Qualitative results are shown in Figure 15 and we report
the mean intersection over union (mloU) and class accu-
racy (mAcc) in Table 3 and Table 4, respectively. Proposed
Hex-RUNet outperforms orientation-aware UGSCNN [10],
rotation-equivariant Gauge Net [12] and the U-Net baseline
[2] on equirectangular images (denoted UNet-sphere) that
have been sub-sampled to match level-5 mesh resolution.
As for per-class evaluations, our method achieves best per-
formance in most classes. This demonstrates that semantic
segmentation benefits from an orientation-aware framework
with more expressive filters than UGSCNN [10].

8.4 Segmentation on Urban Roads

We now test HexNet in more detail, first in comparison
to other spherical methods, and then as substitute to other
planar CNNs using partial spheres.

8.4.1 Datasets

It is important to realize that we require camera calibration
matrices to project onto the sphere. Therefore, two datasets
with known camera intrinsic are used.

SYNTHIA: The SYNTHIA dataset [19] contains photo-
realistic frames of synthetic sequences rendered from a
virtual scene. It provides pixel-level semantics for 13 classes.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 11

TABLE 5
Mean loU comparison at » = 6 on Synthia-O dataset.

Method mloU | building car cyclist fence marking misc pedestrian pole road sidewalk sign sky vegetation
UNet 38.8 80.8 59.4 0.0 03 54.3 12.1 438 164 743 58.2 02 904 49.6
UGSCNN | 36.9 63.3 33.3 0.0 0.1 73.7 1.2 23 10.0 799 69.3 1.0 891 56.3
Hex-UNet 43.6 81.0 66.9 0.0 2.9 71.0 13.7 5.6 304 83.1 67.0 1.5 933 50.2
TABLE 6
Per-class accuracy comparison at » = 6 on Synthia-O dataset.
Method mAcc | building car cyclist fence marking misc pedestrian pole road sidewalk sign sky vegetation
UNet 451 91.9 63.6 0.0 45 57.1 17.9 5.0 19.7 888 73.9 02 948 69.3
UGSCNN 50.7 93.2 81.4 0.0 5.3 83.2 33.7 2.5 149 908 82.7 1.3 961 74.0
Hex-UNet 52.2 88.7 72.7 0.0 3.3 85.9 36.6 6.2 425 89.6 83.7 1.6 956 71.6
TABLE 7
Datasets’ training and test samples, the native resolution and coverage
of sphere.
Dataset | #Train #Test Resolution Coverage
Synthia-O | 1818 451 2096 x 4192 54.69%
Synthia-S | 7272 1804 760 x 1280 14.92%
Cityscapes | 2975 500 1024 x 2048 2.74%

We use a subset of the SYNTHIA datset, and create an omni-
directional version. In particular, we select the “Summer”
sequences of all five places (2xNew York-like, 2xHighway
and 1xEuropean-like) to create omni-directional data. We
split the dataset into a training set of 1818 images (from
New York-like and Highway sequences) and use 451 images
of the European-like sequence for validation. Only RGB
channels are used in our experiments. The icosahedron
mesh is populated with data from 4 viewing direction per
camera pose using interpolation for RGB data and nearest
neighbor for labels. We use two setups: Omnidirectional and
Single-view, denoted Synthia-O and Synthia-S respectively
(Figure 16). In Synthia-O, we use the omnidirectional images
merged from 4 single-view images. In Synthia-S, images of
different viewpoints are projected to the same place on the
sphere, and treated as individual samples. Further details
are given in Table 7.

Cityscapes: ~ We also evaluate on Cityscapes [14]. This
dataset contains a diverse set of high-resolution images
captured from 50 different cities in Europe. It comes with
high quality semantic labels and we use 19 classes for our
evaluation. The training set consists of 2,975 images and 500
images are used for validation (Table 7).

8.4.2 Comparing Spherical CNNs

We report mloU and mAcc. Here we use the standard U-
Net architecture [2]. We call this network Hex-UNet. We
compare our method to UGSCNN [10] using data sampled
at mesh level-6 (r = 6). We also include planar U-Net [2]
using original perspective images, which have been sub-
sampled to match the icosahedron resolution. Specifically,
we count the number of vertices on the icosahedron mesh
that fall onto the image region. We then set the image
resolution to be approximately equivalent to this number
of vertices, resulting in image resolution 48 x 80 for level-
6, 96 x 160 for level-7 and 192 x 320 for level-8 meshes.
Table 5 and 6 report mloU and mAcc respectively, while

UGSCNN

-

O

Z

=

x

)

a
J building car cyclist J fence marking
B misc Bl pedestrian pole B road sidewalk
| |sign L sky vegetation | |invalid

Fig. 17. Segmentation results on Synthia-O dataset.

Figure 17 shows qualitative results. Hex-UNet outperforms
previous state of the art with significant margin across most
classes. The performance on small objects, e.g. “pedestrian”
and “sign”, is poor, while all methods fail for “cyclist”. We
attribute this to an unbalanced dataset. It is worth noting
here, class-wise weighted cross-entropy loss is not used.

Finally we note that most previous methods report re-
sults only up to mesh resolution level r = 5 which con-
sists of merely 2,562 vertices to represent omnidirectional
input. We evaluate our method at different resolutions
(r = {6,7,8}), shown in Table 8. Our method achieves
best performance at » = 7. Since we use a standard U-Net
structure consisting of only 4 encoder (and decoder) layers,
perception of context is reduced at r = 8. This is further
illustrated by Figure 18 (last column), where a car’s wheel
is misclassified as road-markings at r = 8. Resolution r = 6
and r = 7 are able to adequately label this.

8.4.3 Comparing Spherical with Planar CNNs

Motivated by reduced distortion (Section 3) we investigate
the impact of the spherical representation for planar datasets

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 12

AL

A

6

T =

7

T =

8

T =

l:‘ invalid ! building ! car ! cyclist ! fence ! marking ! misc ! pedestrian |:] pole ! road ! sidewalk sign ! sky ! vegetation

Fig. 18. Unfolded visualization of semantic segmentation results of Hex-UNet at different resolutions on Synthia-O dataset.

TABLE 8
Evaluation at different resolution on Synthia-O. (Current
implementation of [10] could not fit data with resolution at » = 8. Note
ground-truth at lower resolution is sub-sampled, thus evaluations of
different resolutions are only indicative.)

r==6 r="7 r=28
Method mloU mAcc | mloU mAcc | mloU mAcc
UNet 38.8 45.1 44.6 52.6 43.8 52.4
UGSCNN 36.9 50.7 37.6 489 - -
Hex-UNet 43.6 52.2 49.5 57.1 471 55.1
Hex-UNet-T 36.7 44.8 38.0 472 45.3 52.8
Hex-UNet-nl 424 50.6 45.1 53.4 454 53.2

as we compare planar and spherical projections on the
single-view semantic segmentation task of Synthia-S and
Cityscapes. Both datasets have known camera intrinsics,
which is necessary for projecting planar images onto the
unit sphere. We project planar images onto the sphere using
bi-linear interpolation. All results are evaluated after back
projecting into the planar domain at full resolution for fair
comparison.

Our graph-based interpretation of HexNet provides es-
sential building blocks for existing CNN architectures. We
choose U-Net [2]* and DANet [22]° for evaluation. Specif-
ically, we employ a residual U-Net which comprises a
residual encoder and decoder branch [10], [25]. As for
DANet, ResNet-50 [24] is adopted as feature extraction

3. In fact, the evaluation is biased towards improved planar accuracy
due to evaluation on planar ground truth.

4. We reimplement original U-Net with residual blocks used in [10]

5. Code available at https://github.com/junful115/DANet

backbone, then dual attention blocks (spatial and channel)
are employed to facilitate accurate segmentation [22]. In our
implementation we follow [3], and replace the initial 7 x 7
convolution with two 3 x 3 convolutions, or more specif-
ically our hexagonal kernel with 1-ring neighborhood.® In
all experiments, we use Adam optimizer [41] with learning
rate 0.001, without learning rate decay, and train until con-
vergence. Data augmentation is not used. The number of
trainable parameters for spherical U-Net is 3.3M (5.0M for
planar), and 41.8M for DANet (50.1M for planar). Since we
reduce 3 x 3 kernels with 1-ring neighborhood kernels of 7
weights, our networks use less parameters.

We study different input size as we match spherical reso-
lution to similar planar equivalents (Table 9). On Synthia-S,
a mesh for level-7 (r = 7) and level-8 (r = 8) is matched
to 1/6 and 1/3 of full resolution respectively. In Cityscapes,
level-9 and level-10 is employed and matched to 1/6 and
1/3 resolution respectively. Since € N, mesh resolution
cannot be arbitrary (e.g. 1/2 or 1/4). We sub-sample to
ensure minimal interpolation artifacts.

In Table 9 we report mean intersection over union
(mIoU) for the residual U-Net and the DANet architecture.
First, we discuss results without pretraining. Our spherical
representation consistently achieves improved results over
the standard planar version on both datasets. We also note,
both methods improve at higher resolution. Therefore we
conclude, it is necessary to develop spherical CNN methods
that support high-resolution data.

6. In the appendix we show that two 1-ring convolutions are more
efficient with similar accuracy to one 3-ring convolution

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 13

TABLE 9
U-Net and DANet results on Synthia-S and Cityscapes for planar and spherical images at different resolutions. Results are computed on ground
truth in planar domain at full resolution. Planar and spherical pretraining with ImageNet (Section 6.2), and pretrained weight transfer (Section 6.1)
is additionally reported for DANet.

Dataset Input U-Net DANet mloU (%)
Resolution #Points | mloU(%) | No Pretraining Pretraining Transfer
planar@1/6 24,563 53.2 47.0 51.0 -
Svnthia-S sphere@lv-7 24,467 54.3 50.0 51.4 49.29
Y planar@I/3 98,494 56.5 549 58.6 -
sphere@lv-8 97,750 57.6 56.0 58.7 59.35
planar@1/6 72,200 51.5 51.2 57.9 -
Citvscapes sphere@lv-9 71,652 54.3 52.5 56.6 56.56
yscap planar@l/3 288,800 555 63.0 67.0 =
sphere@lv-10 286,175 56.3 63.1 67.8 66.69
Input Ground-truth Planar Ours (Projected) Ours (Sphere)

J building car cyclist J fence
|_|pole road sidewalk | |sign

misc
vegetation

pedestrian

marking
sky

Fig. 19. Qualitative results using DANet on Synthia-S for mesh level-8 or resolution 1/3. The sign is missed by planar methods, while our spherical

CNN labels this correctly.

Input Ground-truth

Planar

Ours (Projected) Ours (Sphere)

. road . sidewalk . building . wall . fence . pole D traffic light D traffic sign . vegetation l:‘ terrain

! sky ! person ! rider

! car ! truck ! bus ! train

! motorcycle ! bicycle

Fig. 20. Qualitative results using DANet on Cityscapes for mesh level-10 or resolution 1/3. The bus in the centre of the image is missed with planar
distortions, while spherical projection correctly labels this. Planar methods detect terrain on image boarder more accurately.

N

]

30
20
10
0

(a) Training Distribution

- 2
1
0

b) TP, (i) — TPy (4)

Fig. 21. Training data location bias (a) and results difference (b) be-
tween spherical and planar method for ‘pedestrian’ in Synthia-S (after
Gaussian filter).

DANet employs ResNet-50 for its feature extraction. We
now compare planar and spherical pretraining (Section 6.2),
and the spherical weight transfer of pretrained weights
(Section 6.1). In Table 9, the planar representation benefits
more from pretraining, e.g. achieving 6.74% gain at 1/6 res-
olution for Cityscapes. Nevertheless, pretraining improves
the spherical performance by more than 4% in Cityscapes
data. Overall, we can improve segmentation accuracy to
a competitive level with spherical pretraining throughout

all experiments.” We believe that since our pretraining uti-
lizes ImageNet data with planar images, improvements are
slightly reduced. A spherical version of ImageNet with cam-
era calibration matrices may be beneficial in future work.
Finally we note for most cases, that even simple interpo-
lated weight transfer improves the overall performance of
spherical methods, but at a reduced scale.

In Figure 19 and Figure 20, qualitative results are given.
We observe that objects with fixed size are distortion depen-
dent and therefore the spherical projection improves results
(e.g. ‘bus’, ‘traffic sign’), while continuous objects suffer
less from distortion (e.g. ‘terrain’). We further compare, and
compute a per-class prediction heatmap, which shows the
difference between the true positive numbers per method,
TPs(i) and TP,(i) for spherical and planar respectively,
at pixel location i, i.e. TP,(i) — TP,(i). Figure 21 shows
the heatmap for ‘pedestrian’ in Synthia-S. Note, while the
training distribution biases the class to left and right part
of the frame, our method is able to improve recognition
results in centre and bottom of the image. This supports
our hypothesis of Section 3, where we suggest that fewer

7. Cityscapes accuracy @ 1/2 and @ 1/4 is 71.8% [42] and 59.1% [43],
hence 67.8% @ 1v-10 is competitive.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 14

TABLE 10
Omni-directional Synthia-O results for our method, as full and partial
input, compared to UGSCNN. Inference memory and run-time is given
for batch size 1, per sample.

Method mloU (%) | Memory (MB) Time (s)
UGSCNN 37.6 6,831 1.52
HexNet (full) 48.3 1,063 0.02
Graph-HexNet (full) 49.5 3,596 0.16
Graph-HexNet (masked) 50.1 595 0.07

distortion aids generalization.

8.4.4 Ablation Study

Weights Transfer: While we have already shown perspec-
tive weight transfer for pretraining in Table 9, we now apply
direct weight transfer from a perspective network. Initial-
ized with the learned filters (3 x 3 kernels) from perspective
U-Net, we perform weight refinement of only 10 epochs (in
contrast to up-to 500 epochs otherwise), and report results
as “Hex-UNet-T” in Table 8. The proposed filter transfer
obtains competitive results, especially at resolution level
r=28.

Arc-based Interpolation: ~ We evaluate our method without
north-alignment (Section 4.1), denoted as “Hex-UNet-nl” in
Table 8. Here, Hex-UNet performs better than Hex-UNet-nl,
thus verifying the importance of orientation-aware filters in
semantic segmentation.

Spherical CNN Runtime: It is not uncommon that the valid
information only covers partial areas on the sphere. In this
scenario, most spherical CNNs require costly memory and
runtime by consuming full spheres. In this experiment,
we compare execution of Full-HexNet and Masked-HexNet
with UGSCNN [10] using Synthia-O data. All networks
employ the residual U-Net architecture. Table 10 shows
accuracy, memory and run-time at mesh level-7. Overall,
our partial implementation performs best, since only active
areas are used for computations. It is worth noting that
Synthia-O input is not of full spheres, thus Full-HexNet
remains less efficient than Masked-HexNet due to computa-
tion of unused data.

Gathering Efficiency: In Table 11, we compare our imple-
mentation of Algorithm 5 (Sph-v3) with naive convolutions
in Figure 9(a) (Sph-v1) and sequential version in Figure 10(a)
(Sph-v2). We include planar DANet as baseline. We note, for
spherical convolutions, the grouped version (Sph-v3) has
overall best memory and run-time performance. However,
compared to planar training, spherical CNN is still inferior.
Here we note, our current implementation of feature gath-
ering is costly in back-propagation as we do not exploit the
one-to-one mapping nature of most indices. Nevertheless,
our method is competitive for test time where planar is
only twice as fast, due to the arc-based interpolation needed
for spherical data, making spherical versions of semantic
segmentation feasible for deployment.

Checking Kernel Bias: We check if the improved results
in Table 9 are due to the hexagonal filter, rather than the
spherical projection. In particular, using the method applied
to pretraining in Section 6.2, we now apply a hexagonal

TABLE 11
Comparison of memory usage and computation time for training and
inference on Cityscapes (level-10 and 1/3) with NVidia Titan X
(Maxwell) using Pytorch v1.12. Batch size 1 for all cases. Run-time is
reported per sample.

Trainin; Inference
Method mem. (MB) gtime (s) | mem.(MB) time (s)
DANet 3,524 0.92 1,367 0.23
Sph-vl 9,110 11.47 2,889 0.40
Sph-v2 8,112 12.57 1,771 0.50
Sph-v3 5,358 10.36 1,847 0.43

kernel on a planar version of Cityscapes. Table 12 shows the
results, where the hexagonal kernel consistently performs
with slight reduced accuracy to standard 3 x 3 kernels.
Thus we conclude, the hexagonal kernel is not the reason
for improved results.

TABLE 12
Ablation study for hexagonal kernel without spherical projection
(hexagonal) on Cityscapes. Overall, hexagonal performs very
comparable to planar, but consistently with slightly reduced accuracy.

Resolution U-Net DANet mloU (%)
mloU(%) | No Pretraining Pretraining
planar@1/6 51.5 51.2 57.9
hexagonal@1/6 51.4 51.1 57.1
planar@l/3 55.5 63.0 67.0
hexagonal@1/3 55.2 62.9 66.9

8.5 Object Detection with Bounding Circles

TABLE 13
Synthia-O vehicle detection results, evaluated by average precision
(AP). Resolution is given by W for ERP, and r for icosahedron methods.

Method Resolution Predictions | Average Precision
256 43,008 8.9
ERP 512 172,032 46.2
1024 688,128 52.8
6 53,766 56.8
HexNet 7 215,046 67.6
6 107,520 39.8
spherePHD 7 430,080 524

In this section, we apply HexNet to object detection
following the YOLO-v3 framework [39]. Each node in the
icosahedron mesh predicts an offset, a circle dimension
(Section 7) and a detection confidence score. All meth-
ods predict at multiple scales, using feature pyramid net-
works [44]. Specifically, we append convolutional layers
after each block of the feature extractor and predict the 3D
tensor encoding of bounding circles (05, d,,), and detection
confidence c. Similar to [39] we predict circles based on three
anchor radii. The anchors’ radius sizes is computed using
k-means clustering on training data. We use ResNet-50 as
our base feature extractor but using HexNet operations.
Non-maximum suppression using (8) is employed to filter
overlapping predictions. Again, we use Synthia-O with the
same training and test split as in Section 8.4, and we extract
car object ground truth from instance segmentation labels
of SYNTHIA [19]. We keep every 5 frame to reduce tem-
poral redundancy in the dataset. In total, our training and

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 15

Fig. 22. Visualization of vehicle detection results on Synthia-O. Green represents ground-truth bounding circles, and red, yellow and blue denote
HexNet (ours), ERP (equirectangular images), and spherePHD [11], respectively.

testing set has 354 and 102 images respectively. We compare
HexNet results to planar YOLO-v3 [39] directly applied to
equirectangular images (ERP), and spherePHD [11]. Note,
since the number of YOLO predictions depends on the num-
ber of pixels/vertices, each method has different prediction
quantitites: For equirectangular height i and width W, and
icosahedron resolution r, we get I * W predictions for ERP,
20 * 4" for spherePhD, and 2 + 10 * 4" for HexNet.® During

8. Numbers differ as HexNet uses icosahedron nodes as vertices,
while SpherePhD uses faces.

training, all methods use per-pixel color jittering and left-
right flipping for data augmentation. Performance is based
on average precision (AP). The Network architecture is the
same for all methods.

Table 13 shows the results. A higher resolution leads
to better performance for all methods. Nevertheless, even
though HexNet has a relatively small number of predic-
tions available for its resolution, the best performances
are reached. The distortions of ERP make object detection
challenging, while spherePHD does not use axis aligned
filters as kernels are mesh aligned and their shape differ

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 16

TABLE 14
Evaluation of rotation invariance and equivariance for SO(2) rotations
round the north-south axis, and random SO(3) rotations.

Task Dataset r | Original | SO(2) | SO(3)
Classification MNIST 4 99.45 98.39 29.84
Segmentation | Synthia-O | 7 49.5 47.9 22.4

Detection Synthia-O | 6 56.8 55.9 53

at each icosahedron face [11]. In particular, we see an AP
of 67.6, while spherePHD reaches 55.6 and ERP only 50.8
at highest resolution level. Qualitative results are shown in
Figure 22. While ERP struggles with discontinuities at the
equirectangular image edge, and distortions, spherePHD
fails to detect the smaller objects in the scene as the kernels
are not as optimal at fine detail.

8.6 Rotation Equivariance

In this section, we conduct experiments on multiple tasks
with horizontal rotations, and random rotations. Specifi-
cally, we consider three tasks: MNIST classification, urban
semantic segmentation and vehicle detection as introduced
above. For each task, the model trained on the original
(non-rotated) training set is evaluated on two versions of
the test set: horizontally rotated (SO(2) around the north-
south axis) and randomly rotated in full SO(3). Table 14
shows that HexNet performs with similar accuracy for
horizontal rotations in all experiments, while it fails for
random rotations. This supports HexNet as horizontal ro-
tation equivariant spherical convolution framework. We
node, true rotation equivariance is achieved for horizontal
rotations with equivalent quantization of the icosahedron
(i.e. rotations with angles that are multiples of 72°).

9 CONCLUSION

We introduce HexNet, an orientation-aware deep learning
framework for processing omnidirectional input data. Our
method builds on common CNN operations, and can there-
fore operate efficiently on full spherical data. Furthermore,
we introduce a partial equivalent method to overcome the
resolution challenge for spherical images where only a par-
tial field of view is used. Finally, weight-transfer and pre-
training is introduced for HexNet which exploits commonly
available planar datasets or pretrained network weights.
In our experiments, we outperform alternative spherical
networks in multiple orientation-aware experiments. More-
over, through reasoning of geometric distortion, we mo-
tivate improved accuracy for common planar estimation
tasks, which we then confirm on popular planar datasets by
exploiting our Masked-HexNet at high resolution. Our eval-
uation presents competitive performance of the proposed
HexNet framework on 3 tasks and 5 public datasets.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in CVPR’15, 2015, pp. 3431-
3440.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in MICCAI'15,
2015, pp. 234-241.

(3]
(4]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

H. Zhao, J. Shi, X. Qi, X. Wang, and]. Jia, “Pyramid scene parsing
network,” in CVPR’17, 2017, pp. 2881-2890.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834-848, 2018.
Y.-C. Su and K. Grauman, “Learning spherical convolution for fast
features from 360 imagery,” in NIPS'17, 2017, pp. 529-539.

B. Coors, A. P. Condurache, and A. Geiger, “SphereNet: Learning
spherical representations for detection and classification in omni-
directional images,” in ECCV’18, 2018, pp. 518-533.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: going beyond euclidean
data,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18-42,
2017.

E. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds
using mixture model cnns,” in CVPR’17, 2017, pp. 5115-5124.

D. Boscaini, J. Masci, E. Rodola, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,”
in NIPS’16, 2016, pp. 3189-3197.

C. M. Jiang, J. Huang, K. Kashinath, Prabhat, P. Marcus, and
M. Nief3ner, “Spherical CNNs on unstructured grids,” in ICLR'19,
2019.

Y. Lee, J. Jeong, J. Yun, W. Cho, and K.-J. Yoon, “Spherephd:
Applying cnns on a spherical polyhedron representation of 360deg
images,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9181-9189.

T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge
equivariant convolutional networks and the icosahedral CNN,”
Int. Conf. Machine Learning, ICML’19, 2019.

M. Eder and]J.-M. Frahm, “Convolutions on spherical images,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 1-5.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
3213-3223.

R. Monroy, S. Lutz, T. Chalasani, and A. Smolic, “Salnet360:
Saliency maps for omni-directional images with cnn,” Signal Pro-
cessing: Image Communication, 2018.

H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, and T.-L. Liu,
“Cube padding for weakly-supervised salience prediction in 360°
videos,” in CVPR'19, 2019.

M. Liu, E Yao, C. Choi, S. Ayan, and K. Ramani, “Deep learning 3d
shapes using alt-az anisotropic 2-sphere convolution,” in ICLR’19,
2019.

I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2d-3d-
semantic data for indoor scene understanding,” arXiv preprint
arXiv:1702.01105, 2017.

G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez,
“The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes,” in CVPR’16, 2016, pp.
3234-3243.

T. S. Cohen, M. Geiger, J. Kohler, and M. Welling, “Spherical
CNNs,” in ICLR’18, 2018.

M. Mudigonda, S. Kim, A. Mahesh, S. Kahou, K. Kashinath,
D. Williams, V. Michalski, T. O'Brien, and M. Prabhat, “Segment-
ing and tracking extreme climate events using neural networks,”
in Deep Learning for Physical Sciences Workshop, held with NIPS'17,
2017.

J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual
attention network for scene segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 3146-3154.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition, 2009, pp. 248—
255.

K. He, X. Zhang, S. Ren, and]. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

C. Zhang, S. Liwicki, W. Smith, and R. Cipolla, “Orientation-aware
semantic segmentation on icosahedron spheres,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
3533-3541.

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ?, ? ???? 17

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

C. Zhang, S. He, and S. Liwicki, “A spherical approach to planar
semantic segmentation,” in British Machine Vision Conference, 2020.
W.-S. Lai, Y. Huang, N. Joshi, C. Buehler, M.-H. Yang, and S. B.
Kang, “Semantic-driven generation of hyperlapse from 360 degree
video,” IEEE Trans. Visualization and Computer Graphics, vol. 24,
no. 9, pp. 2610-2621, 2018.

C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis,
“Learning so (3) equivariant representations with spherical cnns,”
in ECCV'18, 2018, pp. 54 — 70.

Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, “Oriented response networks,”
in CVPR'17, 2017, pp. 4961-4970.

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” in ICCV’17, 2017, pp. 764—
773.

Y. Jeon and J. Kim, “Active convolution: Learning the shape of
convolution for image classification,” in CVPR’17, 2017, pp. 4201-
4209.

Y.-C. Su and K. Grauman, “Kernel transformer networks for
compact spherical convolution,” arXiv preprint arXiv:1812.03115,

T. S. Cohen and M. Welling, “Steerable CNNSs,” arXiv preprint
arXiv:1612.08498, 2016.

M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen,
“3d steerable cnns: Learning rotationally equivariant features in
volumetric data,” in NIPS18, 2018, pp. 10402-10413.

D. Worrall and G. Brostow, “Cubenet: Equivariance to 3d rotation
and translation,” arXiv preprint arXiv:1804.04458, 2018.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects
in context,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2014, pp. 740-755.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The pascal visual object classes
challenge: A retrospective,” International Journal of Computer Vision,
vol. 111, no. 1, pp. 98-136, Jan 2015.

M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in ECCV’18, 2014, pp. 818-833.

J. Redmon and A. Farhadi, “Yolov3: An incremental improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

J. Dupuy, E. Heitz, and L. Belcour, “A spherical cap preserving
parameterization for spherical distributions,” ACM Transactions on
Graphics, vol. 36, no. 4, 2017.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution
residual networks for semantic segmentation in street scenes,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4151-4160.

Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic image
segmentation via deep parsing network,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1377-1385.
T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Be-
longie, “Feature pyramid networks for object detection,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 2117-2125.

Chao Zhang received the PhD degree in com-
puter science from the University of York, United
Kingdom. During his PhD study, he worked on
3D statistical shape modelling and collaborated
with researchers from University of Bonn, Ger-
many and Max Planck Institute for Intelligent
Systems, Tlbingen. He is currently a research
scientist at Toshiba Europe Ltd, Cambridge,
United Kingdom. His research interests are in
omni-directional signal processing and scene
understanding.

Stephan Liwicki received the M.Phil. degree
from the University of Cambridge, and the Ph.D.
degree from Imperial College London. He then
conducted his postdoctoral research at the Uni-
versity of Oxford in the topic of 3D reconstruction
and online learning. In 2015 he joined Toshiba’s
Cambridge Research Laboratory as computer
vision researcher, and he is now leading the
Vision and Learning Group. Dr Liwicki has been
recognized on multiple occasions for his abilities.
Most notably, he received the prestigious Intel
Fellowship, which honors the most promising computing and engineer-
ing Ph.D. students throughout Europe.

Sen He received the PhD degree in computer
science from the University of Exeter, United
Kingdom. He was a postdoctoral research fel-
low at University of Surrey from 2020 to 2022.
He is currently a research scientist at Meta Al,
London, United Kingdom. His research interests
are in generative models for computer vision and
deep learning.

William Smith received the BSc degree in com-
puter science, and the PhD degree in computer
vision from the University of York, United King-
dom. He is currently a Reader with the Depart-
ment of Computer Science, University of York,
United Kingdom. He holds a Royal Academy of
Engineering/The Leverhulme Trust Senior Re-
search Fellowship. His research interests are in
shape and appearance modelling, model-based
supervision and physics-based vision. He has
published more than 100 papers in international
conferences and journals.

Roberto Cipolla is Professor of Information En-
gineering at the University of Cambridge and a
researcher in computer vision. He is also the Di-
rector of Toshiba’s Cambridge Research Labora-
tory, Professor of Computer Vision at the Royal
Academy of Arts Schools and a Fellow of the
Royal Academy of Engineering. He has authored
three books and co-authored over 400 articles in
computer vision and related fields. He is known
for his contributions to the reconstruction, regis-
tration and recognition of three-dimensional ob-
jects from images. In 2013, he was elected a Distinguished Fellow of the
British Machine Vision Association; in 2020 he became a Fellow of the
International Association for Pattern Recognition; and in 2022 he was
elected a Fellow of the Royal Society.

