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Abstract
Video games present a unique opportunity to study motor skill. First-person shooter (FPS) games have particular utility because they 
require visually guided hand movements that are similar to widely studied planar reaching tasks. However, there is a need to ensure 
the tasks are equivalent if FPS games are to yield their potential as a powerful scientific tool for investigating sensorimotor control. 
Specifically, research is needed to ensure that differences in visual feedback of a movement do not affect motor learning between the 
two contexts. In traditional tasks, a movement will translate a cursor across a static background, whereas FPS games use movements 
to pan and tilt the view of the environment. To this end, we designed an online experiment where participants used their mouse or 
trackpad to shoot targets in both visual contexts. Kinematic analysis showed player movements were nearly identical between 
contexts, with highly correlated spatial and temporal metrics. This similarity suggests a shared internal model based on comparing 
predicted and observed displacement vectors rather than primary sensory feedback. A second experiment, modeled on FPS-style aim- 
trainer games, found movements exhibited classic invariant features described within the sensorimotor literature. We found the 
spatial metrics tested were significant predictors of overall task performance. More broadly, these results show that FPS games offer a 
novel, engaging, and compelling environment to study sensorimotor skill, providing the same precise kinematic metrics as traditional 
planar reaching tasks.
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Significance Statement

Sensorimotor control underpins human behavior and is a predictor of education, health, and socioemotional well-being. First-person 
shooter (FPS) games hold promise for studying sensorimotor control at scale, but the visual feedback provided differs from traditional 
laboratory tasks. There is a need to ensure they provide measures that relate to traditional tasks. We designed an experiment where 
the visual contingency of movements could be varied while participants shot targets. Participant’s movements were similar between 
contexts, suggesting the use of a common internal model despite the sensory differences. A second experiment observed canonical 
learning patterns with practice and found measures of mouse control strongly predicted overall performance. Our results highlight 
the opportunity offered by FPS games to study situated skilled behavior.
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Introduction
Video games are an increasingly ubiquitous form of entertain-
ment, with many gamers so skilled they are employed to play in 
tournaments where hundreds of millions of dollars are awarded 
every year (1). Action video games (encompassing first-person 
shooter [FPS] games) are especially popular and typically engage 
a range of cognitive, perceptual, and motor abilities (2, 3). The 
links between gaming and perceptual and cognitive abilities 
have been well studied, finding that action video game players 
show better performance among many faculties (2, 4). Few stud-
ies, however, have focused on skill development in these games 
and, in particular, the role of the motor system in reaching and 

maintaining good performance, despite its clear relevance (5, 6). 
This is particularly disappointing given the importance of sensori-

motor control and learning in academic attainment (7), neuro-

logical deficit (8), and socioemotional development (9).
The possibility of using gameplay to measure skill development 

has long been recognized (10, 11), allowing the full history of a 

player’s trajectory to be tracked in an automatic and naturalistic 

manner (12). Previous research tends to measure skill develop-

ment in games using in-game measures, such as a player’s score 

per game (12), proprietary skill metrics (13–15), or multiplayer 

metrics like the ratio of kills and assists to deaths (16). While these 

provide interesting examples of how skills broadly improve, they 
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do not inform what specific subcomponents of behavior contrib-
ute to motor development. For example, an equal improvement 
in score may arise because of changes in decision-making or 
motor execution.

Two recent studies have used a commercial FPS aim-trainer to 
characterize motor performance by isolating the skill of aiming at 
stationary targets (17, 18). In FPS games, players see the virtual 
world from the first-person perspective of their character and 
use their mouse to control the character’s view, typically to aim 
toward and shoot enemies. The studies have found that broad 
measures of motor performance, such as hit accuracy and hit 
rate, improve with practice (18) and that specific features of a 
movement, such as reaction time and precision of movements, 
correlate well with a derived measure of motor skill (17). Similar 
tasks have been embedded into commercial FPS games, finding 
highly skilled gamers were better on a range of temporal meas-
ures (19, 20), and actual gameplay data have been analyzed, find-
ing professional players have improved hit rates, lower reaction 
times, and more efficient movements, compared with amateurs 
(21).

While the study of skill in FPS games has only recently come to 
the fore, the act of moving toward a target has been studied exten-
sively in a laboratory setting using visually guided reaching tasks. 
Much of our modern understanding of motor control and learning 
comes from studies where participants interact with a digitizing 
tablet or a robotic arm, representing their movements as those 
of a cursor moving across a screen, with many recent studies 
being performed using computer mice or trackpads (22–25). 
Further, the kinematic analysis of computer mouse movements 
has been common in the field of human–computer interaction 
(26–29).

Traditional computational schema for movement execution 
has an inverse model that translates an initial and desired state 
into a motor command (30, 31). More recent optimal feedback 
control frameworks use a control policy that generates motor 
commands through modification of feedback gains to achieve 
task goals (32, 33). Most computational frameworks propagate a 
copy of the outgoing motor through a forward model to predict 
the sensory consequences of the movement and integrate it 
with observed sensory feedback to compensate for noise and in-
herent sensorimotor loop delays (34, 35), with this optimal state 
estimate fed to the control policy to give closed-loop feedback. 
Many of these operations are thought to be carried out by distinct 
neural substrates (though this is an oversimplification, see 36): 
feedback gains within the premotor and primary motor cortices 
(37), forward modeling within the cerebellum (38), and state esti-
mation within the parietal cortex (39).

Current computational models do not exactly specify the na-
ture of the sensory predictions they employ. If sensory predictions 
are generated and compared at the level of primary sensory feed-
back, distinct forward models would be required to make accurate 
feedback corrections in traditional laboratory and FPS-style tasks, 
given the large differences in visual motion that result from a 
movement. Movements of an arm or computer mouse in a typical 
experiment translate a cursor across a static environment (known 
in human–computer interaction as Pointing, henceforth Point) in 
much the same way someone would interact with their com-
puter’s desktop. In contrast, FPS games use the movement of 
the mouse to pan and tilt the view of the game while the cursor re-
mains central to the screen, bringing peripheral targets to the cur-
sor (known in the gaming industry as Mouselook, henceforth 
Look). It is therefore possible the feedback differences between 
contexts could cause people to move in observably different 

ways. One study did find that acquiring targets when Looking 
took longer than Pointing (40), but movement requirements 
were not properly equated between contexts. No other work has 
compared movements between these contexts.

To investigate whether the visual differences between Looking 
and Pointing lead to observable differences in motor behavior, we 
designed a simple task where players had to execute movements 
in both contexts. Participants attempted to make center-out reach 
movements to land on and click a target to “pop” it while under 
imposed time pressure. Spatial and temporal properties of the 
movements executed in both contexts showed high correlation, 
with only slightly elevated reaction and correction times in 
Looking movements. To further explore behavior in FPS games, 
we ran a second experiment, modeled on popular aim-trainer 
games, that had participants complete 20 rounds of Looking 
movements consisting of shots to a sequence of 48 targets. Here, 
we observed a range of classic observations from the reaching lit-
erature and related the spatial measures of FPS aiming skill to 
overall performance.

Results
Experiment 1
In experiment 1, participants (n = 50) used the mouse or trackpad 
of their personal computer to perform a center-out reach task. 
Upon clicking a start point, they had to move to and click a target 
within a time limit to shoot it; otherwise, the target would dis-
appear (Fig. 1a). A staircasing procedure was used to manipulate 
the time limit throughout a block, where the time limit of a pair 
of interleaved staircases increased or decreased by 30 ms in re-
sponse to an unsuccessful or successful trial, respectively, giving 
participants personalized time pressure that resulted in success 
on roughly 50% of the trials. Participants completed a block of 
320 trials in both the Point and Look contexts, where mouse move-
ments either translated the cursor across a static background or 
panned and tilted the game’s view while the cursor remained stat-
ic respectively (Fig. 1b; see Video S1 for a demonstration). The 
visuomotor contexts were equated so that each required nearly 
identical mouse movements to shoot a given target, allowing dir-
ect comparisons.

Participants required more time to shoot targets in 
the Look context
Staircase time limits progressed similarly between contexts, ap-
pearing to become roughly asymptotic by the end of the block 
(Fig. 2a). The median time limit over the last 40 trials of each stair-
case showed no significant difference for the Point (t(49) = −0.78, 
P = 0.437, d = −0.11) or Look context (t(49) = −1.14, P = 0.259, d =  
−0.16), so we calculated a single asymptotic time limit per context 
over the last 40 trials of both staircases combined and used this as 
our measure of participant skill in this experiment. Asymptotic 
time limits per participant were highly correlated between con-
texts (r(48) = 0.95, P < 0.001; Fig. 2b) and were longer in the Look 
context (mean difference [95% CI] = 53 ms [33–73 ms], t(49) =  
5.18, P < 0.001, d = 0.73; Fig. 2c). While participants using a mouse 
had lower asymptotic time limits than those using a trackpad 
when averaged over context (mouse: 794 ms, trackpad: 
1,037 ms, t(48) = −4.46, P < 0.001, d = −1.26), the between-context 
correlation (Fisher’s z = −0.18, P = 0.856) and difference (t(48) =  
−1.71, P = 0.093, d = −0.48) was not significantly different. 
Further, the between-context difference was not significantly 
different based on the number of hours playing games per week 
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(F(4, 45) = 0.87, P = 0.489, η2
G = 0.07) or whether participants played 

FPS games (t(48) = 1.34, P = 0.188, d = −0.44).

Spatial measures are identical between contexts
We used the data within movements to better understand how 
this time difference arose. On successful trials, participant move-
ments showed variable curvature around the ideal movement 
path, but average hand paths were reasonably straight and di-
rected to the targets (Fig. 3a). Across all participants, average 
hand paths per target showed little curvature (Fig. 3b). While all 
successful trials end in the target, there were a range of ways a 
participant could fail a trial. The most common failure (48%) 
was that participants did not click in time to shoot the target, des-
pite being inside it (Fig. 3c and d), but participants also undershot 
or overshot the target or missed it due to poor directional aim. 
There appears to be little difference in the hand paths and end-
point distribution of between contexts.

Finding no apparent difference in hand paths, we investigated 
four spatial measures that may be able to explain the difference in 
time limit between contexts, which were all measured before dis-
crete feedback corrections are thought to occur (41). Because it 
was possible for some movement features to be missing on unsuc-
cessful trials, we only analyzed successful movements from 
the last 40 trials of either staircase to ensure a consistent sample 
across measures. We assessed both the radial extent over the 
whole movement and at the end of the primary movement 
(Fig. 4a). The average radial extent over the whole profile showed 
little difference between contexts (Fig. 4b), and the average radial 
extent at the end of the primary movement was strongly corre-
lated between contexts (r(48) = 0.81, P < 0.001), with no significant 
difference between the Look and Point contexts (−0.01 arbitrary 
Unity units [au] [−0.03–0.01 au], t(49) = −1.27, P = 0.211, d = −0.18; 
Fig. 4c). Further, the variability in the radial extent of the primary 
movement also correlated well between contexts (r(48) = 0.63, P <  
0.001), with no significant context difference (−0.01 au [−0.02– 
0.01 au], t(49) = −1.15, P = 0.255, d = −0.16; Fig. 4d).

A similar analysis was performed for reach speeds (Fig. 4e). The 
average speed profiles for each context were almost identical 
(Fig. 4f), with high correlation (r(48) = 0.85, P < 0.001), and no 

significant difference in average peak speed (−0.22 au/s [−0.46– 
0.02 au/s], t(49) = −1.79, P = 0.080, d = −0.25; Fig. 4g). Finally, the 
variability in angle from the target (Fig. 4h) was again very similar 
across the contexts (Fig. 4i), with high correlation (r(48) = 0.55, P <  
0.001), and no significant difference in variability in hand angle at 
the end of the primary movement (−0.48° [−1.07° to 0.11°], t(49) =  
−1.58, P = 0.120, d = −0.22; Fig. 4j). None of the correlation coeffi-
cients or differences were significantly different between input 
device (P’s > 0.0826).

While these spatial measures are unlikely to account for the 
difference in time limit observed between contexts, given the 
high similarity, they may be able to account for good performance 
overall. All spatial measures were significantly correlated with 
asymptotic time limit when collapsed across context: average 
(r(48) = −0.63, P < 0.001) and variability in radial extent of the pri-
mary movement (r(48) = 0.50, P < 0.001), peak speed (r(48) =  
−0.30, P = 0.032), and variability in hand angle at the end of the pri-
mary movement (r(48) = 0.41, P = 0.004).

Temporal measures reveal difference between 
contexts
Because the spatial measures were all measured after motion on-
set and prior to corrections, other phases of the movement should 
account for the context difference. For successful trials, we can 
measure the acquire time – the total time required to go from see-
ing a target to shooting it. Acquire time was highly correlated be-
tween contexts (r(48) = 0.96, P < 0.001; Fig. 5a), with a higher 
average acquire time in the Look context (43 ms [26–59 ms], 
t(49) = 5.13, P < 0.001, d = 0.72). Given that the acquire time partic-
ipants can achieve while being successful determines the asymp-
totic time limit, it is no surprise that the acquire time and 
asymptotic time limit were nearly perfectly correlated (r(48) =  
0.99, P < 0.001).

Using movement kinematics, we can split the acquire time into 
distinct phases (Fig. 5b). We first extracted reaction time, meas-
ured as the time from a target being shown to the first sample 
where the radial speed was above a threshold of 0.5 au/s. We 
also extracted the primary movement time, between movement 
initiation and the end of the primary movement; the click dwell 

Fig. 1. Center-out reaching paradigm. a) Participants clicked on a start point located in a circular target plane. Upon a target appearing, participants 
attempted to use their mouse or trackpad to move a cursor to the target and left-click to shoot it. b) Participants could control the cursor in two contexts. 
In the Point context, participants’ mouse movements translated the cursor across an otherwise static scene. In the Look context, participants’ mouse 
movements panned a camera while the cursor remained central to the camera’s view (typical of FPS-style games), giving the visual effect that everything 
except the cursor moves. While a common input movement can reach the target in either context, the motion history shows how this difference in 
feedback leads to different progressions of visual feedback over time.
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time, between the target being entered and a successful click 
being registered; and the correction time, between the primary 
movement ending and the target being entered. Again, we only 
use the successful trials from the last 40 observations per 
staircase.

Across all temporal measures, performance in the Look and 
Point contexts was highly correlated (reaction time: r(48) = 0.89, 
P < 0.001; primary movement: r(48) = 0.72, P < 0.001; corrections: 
r(48) = 0.83, P < 0.001; click dwell: r(48) = 0.95, P < 0.001; Fig. 5c–f). 
Given that these measures combine to give the total acquire 
time and hence interact with the asymptotic time limit, they 
should be able to account for the differences between the con-
texts. Reaction time (25 ms [17–33 ms], t(49) = 6.24, P < 0.001, d =  
0.88) and correction time were significantly greater in the Look 

context (24 ms [8–39 ms], t(49) = 2.95, P = 0.005, d = 0.41), but nei-
ther the primary movement (−5 ms [−10–1 ms], t(49) = −1.93, P =  
0.059, d = −0.27) nor click dwell time (6 ms [−4–16 ms], t(49) =  
1.20, P = 0.235, d = 0.17) significantly differed between contexts 
(note that the sum of differences here does not equal the difference in ac-
quire time, as the sum of medians is not equal to the median of sums). 
None of the correlation coefficients or between-context differen-
ces significantly differed between input device (P’s > 0.083) beside 
correction time (t(48) = −2.41, P = 0.020, d = −0.68), where only 
trackpad users saw a between-context difference (mouse: 
t(25) = 0.62, P = 0.542, d = 0.12; trackpad: t(23) = 3.44, P = 0.002, d  
= 0.70). When trials were averaged across both contexts, all meas-
ures except for primary movement time were highly correlated 
with the asymptotic time limit (reaction time: r(48) = 0.63, P <  

Fig. 2. Comparison of trial time limit between contexts. a) Solid lines show the mean time limit across participants per context and staircase, starting 
either high (darker) or low (lighter). The last 40 trials are highlighted as comparisons between metrics were made over the last 40 trials of each context’s 
staircases through the rest of this experiment. b) Points show the within-subject median time limit per context, the thick line shows the regression line, 
and the shaded region shows the 95% CI of the regression line. c) Points show participant differences between the contexts, and the bar and vertical line 
show the group mean and 95% CI of the difference, respectively.

Fig. 3. Hand paths for successful trials a, b) and endpoint distribution for unsuccessful trials c, d). a) Hand paths for an example participant on successful 
trials, both for individual movements (thin lines) and for average movements to each target (thick lines). b) Average hand paths for each target on 
successful trials, both for participants (thin lines) and for group averages (thick lines). c) Hand paths and endpoints for an example participant on 
unsuccessful trials. Each thin line and point shows an individual trial. d) Endpoint distribution for all participants on unsuccessful trials.
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Fig. 4. Comparison between contexts on successful trials for derived spatial measures. a) An example of 10 trials showing how the radial extent measures 
were extracted. The light lines show the radial extent across time of individual trials, with a point showing the radial extent when the primary movement 
ended, and the dark line shows the average radial extent over the individual trials. b) The lines show the average across participants per context, with the 
shaded regions showing 95% CI. c) The average radial extent at the end of the primary movement was compared between contexts. Left panel: Points 
show individual participants’ average radial extent, the thick line shows the regression fit, and the shaded region shows the 95% CI. Right panel: 
Within-subject difference in average extent between contexts. Points show participant differences, the bar shows the mean difference and the vertical 
line shows the 95% CI. d) as c) but with variability in radial extent. e–g) and h–j) as a–c) but showing how the radial speed and hand angle were compared 
between contexts, respectively.
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0.001; primary movement: r(48) = −0.09, P = 0.525; online correc-
tions: r(48) = 0.76, P < 0.001; click dwell: r(48) = 0.87, P < 0.001).

Experiment 2
Experiment 1 showed that kinematic analysis can be successfully 
applied to FPS-style movements, with task performance decom-
posed into spatial and temporal metrics that showed high correla-
tions between the Point and Look contexts. Further, all spatial 
measures correlated with the asymptotic time limit, suggesting 
they may be important predictors of FPS skill. However, given 

that this task was designed as a comparison between traditional 
Pointing tasks and FPS-style mouse Looking, it did not assess kine-
matic markers of FPS gaming skill within their typical context. We 
therefore designed a second experiment that only assessed 
Looking movements in an aim-trainer style task.

In this experiment, participants (n = 86) completed 20 rounds, 
each consisting of shots to 48 targets. To start a round, partici-
pants clicked a start point, which made a target appear as a filled 
circle. The next target location was also simultaneously shown as 
a hollow, faded circle. For the rest of the round, any time the cur-
rent target was shot, the next target immediately filled in, and the 

Fig. 5. Temporal measures. a) Left panel shows the correlation between acquire time in the Look and Point contexts, with points showing participant 
medians, thick line showing the regression line, and the shaded region showing 95% CI for the regression line. Right panel shows the difference between 
the Look and Point contexts, with points showing the within-subject difference, the bar showing the group mean difference, and the vertical line showing 
the 95% CI in the mean difference. b) Derivation of the temporal metrics. Reaction time: time from stimuli onset to movement onset. Time to peak speed: 
time from movement onset to peak speed being reached. Online corrections: time from peak speed being reached to the target being entered. Click dwell: 
time from the target being entered to a successful shot. c–f) as a) but for the derived measures.
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following target appeared as another faded hollow circle. There 
was no time limit for movements, but participants were told to 
complete each round as quickly as they could, with a clock shown 
during and after the round indicating how long they had taken. 
The target locations were chosen as a combination of three move-
ment distances (0.4, 0.6, and 0.8 au) and eight directions (0–315° in 
45° increments), with each combination sampled twice per round. 
Video S2 shows a demonstration of the task.

Looking movements show classic reaching 
observations
To further investigate the similarity between Pointing and Looking 
movements, we considered whether the Looking movements here 
showed classic features of reaching movements from the litera-
ture, delivered with arm reaches and shown with either actual 
feedback of one’s hand or with Pointing style feedback. All results 
are consistent across mouse and trackpad users.

Reaches are straight
By arranging movements at their initial position, we can see that, 
both at the individual movement level (Fig. 6a) and at the group 
level (Fig. 6b), movements are generally straight and aimed direct-
ly at the target (42, 43). The linearity index was calculated for the 
group, giving an average value of 0.08, similar in magnitude to oth-
er observations of horizontal reaching movements (44, 45). This 
observation is important, as it has been demonstrated that people 
optimize movements to ensure visual feedback cursors move in a 
straight line over other factors like metabolic costs (46).

Movement time scales with distance
Movement times were found to increase as the required move-
ment distance increased (Fig. 6c, left panel) (47, 48). A repeated 
measures ANOVA on participant median movement times 
found a significant main effect of movement distance (F(1.33, 
112.84) = 825.37, P < 0.001, η2

G = 0.22), with pairwise comparisons 
(Bonferroni–Holm corrected) showing greater movement times 
for greater distances (P’s < 0.001, d’s > 2.70). In addition, the effect-
ive index of difficulty was calculated for each participant (49), and 
group averages were taken over participants (Fig. 6c, right panel). 
A mixed-effect model was fit, which showed a group-level inter-
cept of 35 ms (P = 0.044) and a slope of 243 ms/bit (P < 0.001), com-
parable in magnitude to Pointing performance (40, 50) and 
exhibited the classic linear relationship between movement 
time and index of difficulty (48).

Speed scales with distance
Speed profiles showed scaling with movement distance, where 
further movements showed higher velocities throughout 
(Fig. 6d, left panel) (45, 47). This can be assessed more directly 
by finding the peak speed reached on trials, which increased 
with movement distance (Fig. 6d, right panel). A repeated meas-
ures ANOVA on participant median peak speeds found a signifi-
cant main effect of movement distance (F(1.17, 99.57) = 980.17, 
P < 0.001, η2

G = 0.56), with greater speeds at greater movement dis-
tances (P’s < 0.001, d’s > 2.66). Further, a repeated measures 
ANOVA on the within-subject variability of peak speed found a 
significant main effect of movement distance (F(1.18, 100.52) =  
120.10, P < 0.001, η2

G = 0.28), with greater variability for greater 
movement distances (P’s < 0.001, d’s > 0.86), consistent with 
signal-dependent noise (51).

Greater variability along the primary movement 
axis
To assess variability in feed-forward movement commands, we 
evaluated early kinematic markers, which have been shown to 
correlate well with end-point kinematics for uncorrected move-
ments (52, 53). Cursor positions at the primary movement end 
were fit with 95% error ellipses per participant (Fig. 6e). A repeated 
measures ANOVA on participant ellipsoid aspect ratios found a 
significant main effect of movement distance (F(1.93, 164.03) =  
52.26, P < 0.001, η2

G = 0.08). Aspect ratios were significantly greater 
than 1 for all distances (2.14–2.51, P’s < 0.001, d’s > 2.16), indicat-
ing more variability in extent than direction (52, 53).

Systematic angle bias
The group showed a consistent bias in the angle of their movement 
at the end of the primary movement (54, 55). The average direction-
al error appeared to follow a curve with two peaks and troughs 
(Fig. 6f), consistent with previous studies using arm reaches and 
mouse Pointing (55, 56), as well as studies in progress from our 
laboratory on mouse Pointing movements. A repeated measures 
ANOVA on participant median directional errors showed a main ef-
fect of movement angle (F(4.46, 334.29) = 25.16, P < 0.001, η2

G = 0.22).

Concurrent improvements in temporal and 
spatial variables
In line with a previous study looking at effects of practice in an aim- 
training game (18), participants improved their performance over the 
course of the experiment (Fig. 7a), improving their acquire time by 
317 ms over the 20 rounds ([249–385], t(85) = 9.17, P < 0.001, d =  
0.99). Performance improved rapidly over the first five rounds, fol-
lowed by a sustained slower improvement. The improvement in ac-
quire time did not significantly differ by input device (t(84) = 1.82, P =  
0.072, d = 0.40), gaming hours (F(4, 80) = 1.40, P = 0.242, η2

G = 0.07), or 
whether participants played FPS games (t(83) = −1.20, P = 0.235, d =  
0.28). Participant performance by the end of the experiment did not 
depend on gaming hours (F(4, 80) = 1.55, P = 0.197, η2

G = 0.07), but 
mouse users were significantly faster than trackpad users (mouse: 
614 ms; trackpad: 793 ms, t(84) = 4.31, P < 0.001, d = 0.95), and FPS 
players were significantly faster than non-FPS players (FPS players: 
588 ms; non-FPS players: 727 ms, t(83) = 2.99, P = 0.004, d = 0.70).

As in the first experiment, we can divide the total acquire time 
into different phases of the movement (Fig. 7b). All phases of the 
movement showed significant improvements (reaction time: 
70 ms [55–86 ms], t(85) = 9.03, P < 0.001, d = 0.97; primary move-
ment: 14 ms [4–25 ms], t(85) = 2.67, P = 0.009, d = 0.29; corrections: 
134 ms [105–164 ms], t(85) = 8.92, P < 0.001, d = 0.96; click dwell: 
72 ms [51–92 ms], t(85) = 6.98, P < 0.001, d = 0.75). Given that each 
phase of the movement improved, we would expect this to be ac-
companied by improvements in the spatial variables. All four spatial 
variables showed significant improvements over the experiment 
(peak speed: 0.58 au/s [0.41–0.76 au/s], t(85) = 6.51, P < 0.001, 
d = 0.70; angle variability: 2.56° [1.60°–3.52°], t(85) = 5.25, P < 0.001, 
d = 0.57; extent average: 0.07 [0.05–0.09], t(85) = 6.68, P < 0.001, d =  
0.72; extent variability: 0.03 [0.02–0.05], t(85) = 4.37, P < 0.001, d =  
0.47). None of the improvements significantly differed between 
input device (P’s > 0.163, d’s < 0.31) other than click dwell time, 
which improved significantly more for trackpad users (mouse: 
52 ms; trackpad: 100 ms, t(84) = 2.33, P = 0.022, d = 0.51).

Spatial variables explain individual differences
To understand whether the spatial variables were important pre-
dictors of performance, we looked at whether the acquire time 
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across the experiment was significantly predicted by any of the 
spatial variables used. A linear mixed effect model was fit, with 
acquire time as the dependent variable, the four spatial measures 

as independent variables, a random intercept for participants, 
and a random slope for round per participant. The model (margin-
al R2 = 0.22, conditional R2 = 0.89) showed that all four spatial 

Fig. 6. Looking movements show common features of reaching movements. a) Participants completed rounds that consisted of 48 back-to-back 
movements. While targets had the appearance of being randomly located, they were organized so that all combinations of three distances (0.4, 0.6, and 
0.8 au) and eight angles (0°–315° in 45° increments) were tested twice. Arranging movements at their start points allowed them to be analyzed as 
center-out reach style movements. b) Participant movements were generally straight. Thin lines show participant average movements to each of the 
three distances and eight directions, with thick lines showing group averages. c) Movement times (from motion onset to successful click) scaled with the 
target distance. Left panel—points show participant average movement times, bars show group average, and lines show group 95% CI. Right panel— 
linear relationship between movement time and index of difficulty, with small points and lines showing participant average and regression slope, and 
large points and line showing group average and regression slope. d) Speed scaled with movement distance. Left panel—line shows group average speed 
profile and shaded region shows 95% CI. Right panel—points show participant average movement times, bars show group average, and lines show group 
95% CI. e) Movements showed more variability in extent than direction. Heat map of cursor position at primary movement end, after aligning all 
movements as if directed to the target directly up. Target shown as a thin circle and 95% error ellipse shown as thick ellipse. f) Primary movements 
showed a systematic directional bias. Points show participant average directional error, bars show group average, and lines show group 95% CI.
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variables significantly predicted acquire time. A 1 SD (scaled 
across the group) increase in the average and variability in the pri-
mary movement extent led to a 34 ms lower (P < 0.001) and 25 ms 
higher (P < 0.001) acquire time, respectively. The same increase 
for the average peak speed and variability in angle led to a 
37 ms lower (P < 0.001) and 60 ms higher (P < 0.001) acquire time, 
respectively. All variables were significant predictors of acquire 
time for both mouse and trackpad users. That a small number 
of kinematic variables can predict task success highlights the util-
ity in trying to understand the subcomponents of skilled FPS 
movements.

Discussion
Despite widespread interest in the cognitive and perceptual abil-
ities of video gamers, only recently have studies begun to assess 
the motor skills demonstrated. We isolated the skill of aiming at 
and shooting targets and analyzed its subcomponents using the 
kinematics of participant’s movements. We found movements 
in an FPS-style Look context to be nearly identical to those in a 
more traditional Point context across a range of spatial and 

temporal measures, only differing slightly in reaction time, as 
well as correction time for trackpad users. We also showed that 
FPS movements are consistent with several classic observations 
from the reaching literature. We observed concurrent improve-
ments in all tested spatial and temporal metrics with practice 
and found that the spatial metrics significantly predicted task per-
formance. Our metrics can be generalized to studying FPS move-
ments in other tasks, and actual gameplay data, providing an 
opportunity to advance our understanding of what factors set 
the best players apart.

Studying skill in FPS games
Typical approaches to the study of skill involve abstract labora-
tory tasks or making restricted observations of real-world behav-
ior using specialized equipment. Video games provide a unique 
opportunity to observe the development and maintenance of skill 
in its natural environment by simply recording the game inputs, 
typically provided by a keyboard and computer mouse. Only re-
cently have studies begun to leverage this to assess skilled motor 
behavior in FPS games (17–21, 57, 58), though earlier studies have 

Fig. 7. Temporal and spatial variables show concurrent improvements over the experiment. a) The main measure of performance on the task, the 
acquire time, improved continuously over the course of the experiment. The improvements appeared to consist of two phases—an initial rapid 
improvement followed by a sustained but slower improvement. b) The constituent temporal variables all show improvements over the experiment. c) 
The tested spatial variables also show improvements over the experiment. For all panels, thick line shows group mean and shaded regions show 95% CI.
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taken this approach to understand skill in real-time strategy 
games (14, 59).

We found that participants improved their Look performance 
with practice during the aim-training task (experiment 2), with an 
initial period of rapid improvement followed by a sustained but 
slower learning. This dual-rate pattern is consistent with improve-
ments in hit speeds previously found (18) and with classic studies of 
motor learning (60–62). To move beyond broad measures of per-
formance, we used the kinematics of participants’ movements to 
understand this development across a range of spatial and tem-
poral metrics, finding that players improved across all metrics 
tested. Further, we characterized the importance of these measures 
to overall performance, finding all spatial metrics to be significant 
predictors of task performance. While mouse users acquired tar-
gets faster than trackpad users, we found that task improvements 
were similar across input devices, consistent with other work com-
paring motor learning between input devices (25).

While other studies have addressed similar questions and ob-
served results consistent with our own, finding that similar tem-
poral measures improved with practice (20) and reaction time 
and movement precision were significant correlates of motor skill 
(17), we believe our metrics have a number of advantages over 
those previously reported. Where Toth et al. (20) investigated an 
analogous measure to our click dwell time, it was based on 
when participants’ movement speed last dropped below a thresh-
old. This allows the phase to begin before the target is reached, 
with subthreshold movements traversing the remaining distance. 
We instead delineated correction and click dwell phases by when 
the target was entered for the last time, ensuring that our click 
dwell metric only accrued time when a trial could have been 
ended successfully. Further, Donovan et al. (17) derived metrics 
from sigmoid fit to submovements, but this forces a model onto 
the data that assumes that submovements are distinct and ballis-
tic; yet, individual trial speed profiles shown in Fig. 4e and other 
studies investigating speeded reaches with online feedback (63, 
64) find asymmetric speed profiles and discrete corrections while 
speed was still high. Therefore, we used well-validated techniques 
to identify discontinuities in speed profiles (65, 66) to characterize 
spatial metrics at the end of the primary movement, making fewer 
assumptions about the exact form of the movements.

While the studies discussed thus far, and our own, utilized pur-
posely simplified aim-trainer style tasks (to isolate specific com-
ponents of behavior), the kinematic analyses described here are 
also applicable to FPS games generally. Indeed, similar analyses 
have been performed on actual gameplay data (21), finding profes-
sional players execute more effective shots, exhibit lower reaction 
times, and make more efficient movements. We believe that the 
utility of this approach will be most apparent if researchers can 
collect such gameplay data at scale to describe differences within 
a wide population of players. As the environmental constraints 
are weaker than those in an aim trainer (like nonstationary tar-
gets, multiple ideal aiming locations, and simultaneous character 
movement), the analysis techniques will need to account for the 
greater range of behaviors that may be observed.

Experiments using the FPS gaming approach described here 
could also have utility for studying individuals with movement dis-
orders and younger participants. Assessment of how movement is 
impaired in conditions such as developmental coordination dis-
order and autism is typically made using standard reaching tasks 
(67, 68). We suggest that experiments modeled on FPS games, which 
allow detailed kinematic analysis of movements, might provide ex-
periences more closely aligned with recreational activities and lead 
to higher degrees of engagement.

FPS games inform our understanding of the 
neural control of movement
To understand whether there were any fundamental differences 
in how participants controlled their movements in the Look and 
Point contexts, we fully equated the movements required such 
that an identical mouse input would produce the same relative 
movement in the game. Participants required a 53 ms larger 
time limit to complete Looking movements, accounted for by lar-
ger reaction and correction times, each taking around 25 ms lon-
ger (though correction times were only elevated for trackpad 
users), while spatial features of the movements were nearly iden-
tical between contexts. A lack of familiarity with FPS games could 
not explain this effect, as the context difference did not signifi-
cantly differ based on whether participants played them.

The only other study to compare these two contexts found 
Looking movements took around 230 ms longer than Pointing 
movements (40). This difference was quantified between the in-
tercepts of linear regressions of movement time against index of 
difficulty, sometimes interpreted as measuring processes distinct 
from the movement itself (69), so it could be consistent with our 
finding of greater reaction times. However, Pointing was assessed 
via cursor movements to 2D rectangular targets and Looking in 
Unreal Tournament where users shot aliens, so several factors be-
yond the visual feedback difference could contribute, for example, 
if target localization was more demanding for the 3D task. Such 
confounds hamper interpretation of the observed differences in 
Looser et al. (40) but are addressed by our task design, which 
shows more modest context differences. This controlled compari-
son required a Looking context that is less rich in visual cues than 
a typical FPS game, however, so future work could investigate 
similar kinematic decomposition in more FPS-like environments.

Despite the two visual contexts entailing fundamentally differ-
ent mappings between movement and visual motion feedback, 
behavior was highly similar. This is important because pre-
eminent models of motor control propose that sensorimotor be-
havior is guided by a sensory state estimate generated through 
comparison of actual and predicted sensory feedback (32, 36, 
70). Critically, if forward models predict primary sensory input, 
then feedback control would require different forward models 
for Point and Look contexts, as the sensory consequences of the 
same motor command evolve differently over time. It has previ-
ously been proposed that we maintain distinct models for differ-
ent movement contexts to alleviate the complexity of a single 
controller accounting for all contextual information (71, 72).

It is unlikely that Look and Point contexts require entirely differ-
ent internal models. Most of our participants (38 of the 50 in experi-
ment 1) reported not playing FPS games, and 11 reported playing no 
video games at all. All were regular computer users, with a wealth of 
experience in the Point context. If distinct internal models were re-
quired for these contexts, the well-practiced Point movements 
should be relatively accurate and fast while Look movements would 
be slow and inaccurate, requiring de novo development of an intern-
al model or association of arbitrary sensory feedback with existing 
motor commands. Visuomotor tasks that require such learning re-
quire an extended period of practice to approach good performance 
(62, 73–76). Instead, the majority of participants in our experiments 
could readily perform movements in the Look context, and perform-
ance was highly correlated across the two contexts.

Our results suggest that participants’ movements were largely 
impervious to the specifics of visual motion that result from 
movement. Instead, they appear to infer the relative positions of 
target and effector despite large differences in visual motion. 
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These observations align with existing motor control theory if for-
ward models in these frameworks make predictions of displace-
ment vectors for visuospatial coordinates, allowing the motor 
system to use the same internal model for both movement con-
texts without a requirement to specify the categorical differences 
in visual motion (or more qualitative factors such as color). These 
complex facets of a visual scene would, however, need to be 
parsed upstream in higher visual areas. There is good evidence 
that the posterior parietal cortex combines hand and gaze refer-
ence frames into a hand-target displacement vector that is used 
in movement correction (77–79). Though speculative, we propose 
that visual target and effector positions for Look and Point would 
be parsed by the visual system at or before this step in the parietal 
cortex, and that forward model sensory predictions would be at 
the level of the combined hand-target displacement vector rather 
than any primary sensory modality. The ability of such a modular 
hierarchy to deal with stark differences in visual motion may help 
explain why movement vectors have been shown to be a critical 
link for both motor planning and learning (52, 80–82) and why 
visuomotor adaptation may occur at the step between parietal 
cortex and premotor cortices (83). We do wish to reiterate that 
these proposals are speculative.

In pointing movements, the eyes will typically saccade to the 
movement target before the hand movement is initiated and fixate 
it for the duration of the movement. Larger hand movement errors 
are made if the target is not foveated during these movements, sug-
gesting this process improves target localization (84, 85). As both con-
texts appear identical before movement is initiated, we would expect 
a similar initial saccade for both Point and Look. However, upon mov-
ing the mouse, the target will begin to move in the Look context, 
which might require an extra saccade or smooth pursuit to maintain 
foveation during the final parts of the movement, with previous work 
suggesting the majority of fixations in FPS games are located around 
the aiming reticle (86). As the data were collected online, we could not 
collect detailed eye tracking data, so future work should compare 
patterns of eye movements between contexts and clarify whether 
they do differ, and if so, whether it can account for increased acquire 
times in the Look context.

Wider applications
A perennial issue for FPS games is detecting cheats who gain an 
unfair advantage through use of third-party software that allows, 
for example, enemies to be seen through walls or automatically 
aimed at. Analyzing gameplay data for abnormal aiming abilities 
or other behavioral patterns has been suggested as an effective 
method for cheat detection (87). Our analysis of kinematics is 
both more general and precise than previous work and could be 
readily adapted to help detect cheaters.

As professional e-sports teams increasingly look to use analyt-
ical approaches to inform training programs (88), the analysis of 
kinematic metrics may allow tailored training, for instance, in-
creasing focus on clicking predictively to reduce click dwell 
time. Further, players in teams are typically assigned a specific 
role to fulfill, like executing accurate shots with a sniper rifle, 
and a more thorough understanding of the strengths and weak-
nesses of the team roster may allow better role assignment.

Methods
Participants
Participants were recruited through the online testing platform 
Prolific and were paid £6 upon completion. They were only 

recruited if they resided in the United Kingdom or the United 
States, had English as a first language, and had a Prolific approval 
rating of 95% or above. Given the experiments were completed on-
line, which is typically associated with noisier responses within 
and between participants compared with laboratory studies (e.g. 
Tsay et al. (25)), we applied stringent screening criteria to ensure 
the final sample was sufficiently high quality. The experiments 
were approved by the School of Psychology Ethics Committee at 
the University of Leeds, and participants gave informed consent 
via a web form prior to starting the study.

In experiment 1, 12 of the 62 participants were removed from 
analysis, giving a final sample of 50 participants (16 males, 34 fe-
males; mean age ± SD = 38 ± 13, age range = 21–66; 26 optical 
mouse users, 24 trackpad users). We removed five participants 
whose frame rate was either too low (<30 fps, as kinematic ana-
lysis resolution was poor for low frame rates) or differed between 
contexts (>10 fps, to remove frame rate–dependent changes in 
performance). A further three participants were excluded because 
their performance had not stabilized by the end of a block (success 
rate more than 10% away from intended 50% success rate over the 
last 40 trials of both staircases per context). Finally, four partici-
pants were excluded whose difference in time limit between the 
two contexts was above 3 median absolute deviations (MADs; cal-
culated throughout using a consistency constant of 1.4826 to 
make it a robust estimator of SD) away from the group median dif-
ference (between 4.72 and 9.78, far higher than usual cutoffs), rep-
resenting a subset of participants who struggled to perform in the 
Look context. Their performance was around 500–1,000 ms worse 
in the Look context, with greatly increased reaction and correction 
times. The latter appeared to be driven by shorter primary move-
ments (∼0.3 au reduction), requiring greater feedback corrections, 
which introduced weak significant context differences for the pri-
mary movement extent and peak speed. While the results were 
otherwise the same at the group level with their inclusion and 
would not change our interpretation of the results, we chose to ex-
clude these participants so that the group-level estimates of con-
text differences were not unduly influenced by a small number of 
outliers.

In experiment 2, 14 of the 100 participants were removed from 
analysis, giving a final sample of 86 participants (44 males, 41 
females; mean age ± SD = 43 ± 13, age range 22–78; 51 optical 
mouse users, 35 trackpad users). We removed 10 participants 
whose average frame rate was less than 30 fps or dropped by 
more than 10 fps between the first and last round, and a further 
four participants were excluded whose median acquire time was 
more than 3 MADs from the group median over the experiment 
(3.07–4.92). Exclusion of these participants does not change any 
statistical results.

Apparatus
Participants used their own personal computer to complete the 
experiments and were restricted to users on a laptop or desktop 
using Prolific’s screening tool. The experiments were created us-
ing the Unity game engine (2019.4.15f) and the Unity Experiment 
Framework (89) and delivered via a WebGL build hosted on a 
web page, with data uploaded to a remote database. Given partic-
ipants used their own computers with varying sizes and aspect ra-
tios, the physical size of the task was not consistent across 
participants but was developed to be visible on a 4:3 aspect ratio 
monitor. The height of the scene, 4 au, always took up the full 
height of the participant’s monitor, with wider aspect ratios fea-
turing more of a task-irrelevant background texture. Full screen 
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was forced throughout, and during the experiment, the desktop 
cursor was hidden and locked so it could not be used to interact 
with the web page. Instead, the raw mouse or trackpad input 
was used to perform in-game movements of the cursor (eliminat-
ing mouse acceleration from the operating system). The sensitiv-
ity of in-game movements was initially calibrated to be similar to 
the participants’ desktop cursor, which could be adjusted in a cali-
bration stage.

Equating Pointing and Looking movements
See online supplementary material.

Experimental task and procedure
In both experiments, participants first filled in details on their age, 
gender, whether they were using a mouse or trackpad, a desktop 
or laptop, and then pressed a button to ensure they could hear 
game audio. During this stage, participants used their usual desk-
top cursor to navigate the form, and the cursor movements in pix-
els and Unity game units were tracked to provide an initial 
calibration for the in-game cursor sensitivity that was around 
their regular desktop cursor sensitivity. Following this, the desk-
top cursor was hidden and locked, and interactions were only pos-
sible using their in-game cursor. Participants were shown a brief 
cutscene to provide exposition for the game (popping deadly non-
sentient space bubbles), before progressing to a tutorial that intro-
duced elements of a trial sequentially and interactively. At the 
end of the tutorial, participants were required to complete prac-
tice trials in each context, during which they could toggle context 
and adjust their cursor sensitivity. After completing at least 20 tri-
als in each context, they could progress to the main task.

Experiment 1
Participants used their computer mouse or trackpad to try to 
move to and shoot a target using an FPS-style cursor in either 
the Look or Point mode, depending on experimental condition. 
Participants saw a circular target plane (3 au diameter), on top 
of which targets could appear. The target plane was black, with 
a thin white ring around it. Behind this was a dark, space-themed 
background. A start point (0.1-au-diameter circle, initially colored 
orange) was located at the center of the target plane. Participants 
were required to move their in-game cursor, a small white circle 
surrounded by a thin white ring (diameter 0.15 au), to the start 
point and left-click to initiate a trial. If participants were within 
0.05 au of the start point when making a homing movement, the 
cursor snapped to the start point to provide an FPS-style 
“auto-aim.” Upon left-clicking the start point, the color of the start 
point would turn green to indicate participants could move and a 
target (0.2-au-diameter magenta circle) would immediately ap-
pear on the target plane in one of eight locations. Potential targets 
were placed in increments of 45° around a virtual circle of radius 
1 au, where 0° represented a target directly right of the center. 
Participants had to move to and click on the target within a time 
limit to shoot it, in which case it exploded and a shooting sound 
was made; otherwise, it would disappear and make a whooshing 
sound. A shot was only successful if, at the time of a left-click, 
the center of the cursor intercepted the target circle (there was 
no limit on the number of unsuccessful shots allowed within a tri-
al). This feedback was provided for 300 ms, during which the start 
point was colored gray. After the feedback disappeared, the start 
point turned orange, indicating a new trial could begin.

Participants completed 640 experimental trials, split into a 
320-trial block of Pointing and a 320-trial block of Looking. The 

order of the blocks was counterbalanced across participants, 
with half completing the Point block first. The blocks were ar-
ranged into cycles of eight trials, where each of the possible target 
angles was tested once in a random order. To induce the sort of 
time pressure experienced in a typical FPS game, the time limit 
within which targets had to be shot was continuously staircased 
throughout the experiment, using a one-up/one-down method. 
Within each block, two staircases were interleaved, one starting 
at a time limit of 300 ms and another starting at 1,500 ms, with 
the order shuffled such that the staircase switched after most tri-
als. After a successful or unsuccessful trial, the time limit for the 
tested staircase was reduced or increased by 30 ms, respectively. 
By the end of each block, each staircase’s time limit should be-
come asymptotic at a value that gives roughly a 50% success 
rate. Participants were given a self-paced break every 80 trials. 
Between blocks, participants were informed the context would 
switch. Following completion of the experimental trials, partici-
pants completed a questionnaire probing their enjoyment of the 
game, perceived lag in the game, gaming experience, and any oth-
er comments. Video S1 demonstrates trials from this experiment.

Experiment 2
Participants only completed movements in the Look context. 
Experimental trials began the same as in experiment 1, up until par-
ticipants had clicked the start point. After the start point was 
clicked, it disappeared and a target appeared at one of three distan-
ces (0.4, 0.6, and 0.8 au) and eight angles (0°–315° in 45° increments). 
Simultaneously, the upcoming target after the current had been 
shot was shown as a hollow, faded magenta circle. This was imple-
mented as pilot testing showed that without knowledge of the up-
coming target, participants moved toward the workspace center 
following a successful shot, presumably to be equidistant from 
any given workspace area until the new target had been visually 
processed. Upon successfully shooting the current target, the up-
coming target immediately became the new current target, and a 
new upcoming target was revealed. The new upcoming target 
was always located in a new location at one of the three distances 
and eight angles away from the current target. Participants contin-
ued shooting targets until 48 targets had been shot. While move-
ments had no time limit, participants were told to complete each 
round as quickly as possible, with an on-screen timer visible during 
and after the round showing how long it had taken.

The 48 targets per round were arranged into two uninterrupted 
cycles, where each combination of the three distances and eight 
angles was tested once per cycle, with the criterion that no indi-
vidual target could be located more than 1 au from the center of 
the workspace. The position of targets in each round was gener-
ated by simulating new sequences until this criterion was met. 
This had the effect of making seemingly random sequences of tar-
gets, while controlling the statistics of the reaches and staying 
within the intended workspace. Participants completed 20 rounds 
of 48 movements and were given a self-paced break between each 
round. Following completion of the rounds, participants com-
pleted a questionnaire probing game enjoyment, perceived lag, 
strategies they used to improve, gaming experiment, and any oth-
er comments, with many participants indicating they had enjoyed 
playing this experiment. Video S2 demonstrates a round from this 
experiment.

Data and statistical analyses
See online supplementary materials.
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