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Te main challenge faced by video•based real•world anomaly detection systems is the accurate learning of unusual events that are
irregular, complicated, diverse, and heterogeneous in nature. Several techniques utilizing deep learning have been created to detect
anomalies, yet their efectiveness on real•world data is often limited due to the insufcient incorporation of motion patterns. To
address these problems and enhance the traditional functionality of anomaly detection systems for surveillance video data, we
propose a weakly supervised graph neural•network•assisted video anomaly detection framework called AD•Graph. To identify
temporal information from a series of frames, we extract 3D visual and motion features and represent these in a language•based
knowledge graph format. Next, a robust clustering strategy is applied to group together meaningful neighbourhoods of the graph
with similar vertices. Furthermore, spectral flters are applied to these graphs, and spectral graph theory is used to generate graph
signals and detect anomalous events. Extensive experimental results over two challenging datasets, UCF•Crime and Shang•
haiTech, show improvements of 0.35% and 0.78% against a state•of•the•art model.

1. Introduction

Te rapid development of video surveillance systems and the
underlying computer vision algorithms means that these
play a vital role in monitoring human activities and pre•
venting crime. Tese systems are implemented in smart
cities to enable trafc monitoring, assist in law enforcement,
and aid in an understanding of diferent anomalies. One task
of video surveillance applications is anomaly detection; this
is a very challenging problem, as unknown and possibly

abnormal events happen infrequently in real•world sur•
veillance situations. Te types of anomaly also vary with the
type of application and the particular scene under surveil•
lance. For instance, people running along a road with trafc
may be defned as an anomaly, whereas people running on
a football ground are considered having normal behaviour
 1, 2].

Anomaly detection has a wide range of possible appli•
cations associated with ensuring public safety and security,
preventing crime, and avoiding catastrophes, and one
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essential aspect is therefore a real•time decision•making
capability. For instance, events such as robbery, road acci•
dents, and fres require immediate and automatic coun•
teraction, which is made possible by the detection of the
anomalous event in real time. In view of this, several
anomaly detection algorithms have been introduced by
researchers for use in this area. In the earlier stages of de•
velopment, tracking using diferent trajectory•based tech•
niques was applied to detect certain anomalies; for example,
in  3], high•level intentionality features were extracted for
use in intentional agent modelling, to move individuals and
classify the trajectories of an intentional agent in a particle
framework for anomaly detection. Deep•learning concepts
have also been widely applied to tasks related to computer
vision and have yielded excellent performance. Te majority
of these deep•learning methods are based on supervised
learning (i.e., with labels); however, supervised or semi•
supervised learning is also used in anomaly detection, re•
quiring low training datasets  4–6]. Anomaly detection can
be broadly divided into two categories, based on the deep•
learning framework used: (i) frame generation and (ii)
probability estimation. Methods based on probability esti•
mation construct a model based on the features of the
training set and calculate an anomaly score for the targets.
For instance, the researchers in  7, 8] combined a parametric
model with an autoencoder (AE) to estimate the probability
distribution and detected anomalies via an autoregressive
procedure. In  9], the authors combined an AE with
a Gaussian mixture model to create an anomaly score. In
contrast, methods based on frame generation produce one
or more frames and authenticate them to detect anomalies.

In the past, a variety of handcrafted features have been
extracted to handle problems related to computer vision and
time series data. Te main limitations of these methods
involve the usage of traditional handcrafted feature engi•
neering techniques, and data•driven approaches are more
favourable in the later stages. Te emergence of deep•
learning (DL) methods has solved a wide range of prob•
lems faced by conventional techniques. For instance, Chong
and Tay  10] proposed a DL model comprising a recurrent
neural network (RNN) and convolutional flters. Tese
approaches are able to learn long•term contextual dynamics;
i.e., the motion and the appearance are encoded implicitly by
these methods within the proposed neural model. Although
these approaches have shown good performance, they sufer
from two limitations: First, the motion and appearance are
encoded using an RNN and convolutional flters, meaning
that the spatiotemporal relationship between the motion and
appearance is missing, which yields inferior performance.
Second, the features are learned from scratch without a well•
developed pretrained model. Handling complex anomalies
with such approaches becomes difcult when applied to real•
world surveillance videos.

Nowadays, convolutional neural networks (CNNs) are
applied for numerous computer vision undertaking in•
cluding activity recognition  11–13] and summary analysis
 14, 15]. However, these networks often encounter dif•
culties when applied to complex scenes for the detection of
anomalous events. Approaches based on probability

estimation can generate more fexible frameworks for
detecting anomalies by accommodating normal scenes at
a spatiotemporal scale; however, these methods rely on
probability models, which have difculty in simulating the
complicated distributions of diferent events and lead to the
generalisation of an unobserved event while reducing the
sensitivity to unfamiliar anomalies. Similarly, existing
anomaly detection methods have problems when faced with
occlusion or illumination issues and are mostly based on
traditional ways of detecting anomalous events in surveil•
lance scenarios.

Te identifcation of video anomalies using mainstream
methods often requires complex DL architectures with
a large number of parameters, which poses a computational
challenge. High•resolution surveillance videos are particu•
larly susceptible to this problem. In order to achieve a high
level of accuracy with acceptable computational efciency,
efcient architectures must be developed. In order to handle
these challenges and problems, we propose an efcient graph
neural network (GNN)•based anomaly detection method.
Te proposed model constructs a graph in which cars or
people are represented as nodes and analyses their move•
ments in surveillance videos. When applied to a parking lot,
for instance, the proposed model can identify unusual ac•
tivities such as cars driving against the trafc fow or lin•
gering in one spot for extended periods, which may indicate
suspicious behaviour. Similarly, in a crowded shopping mall,
the model can detect potential security threats such as
groups of people gathering suspiciously or an individual
loitering in one area for too long. Te data from the graph
nodes are used in the proposed model to improve the ac•
curacy of anomaly detection and enhance security and safety
in real•world applications.

An overview of the system is shown in Figure 1, which
illustrates how the detection of anomalous surveillance
events is improved through better knowledge of the con•
nections between graph nodes. Te segments of the sur•
veillance video are frst passed through the backbone model,
and meaningful visual features are extracted. From these
features, language•based knowledge graphs are generated
that are passed from the GNN. In addition to updating the
graph, the output of the GNN is used to detect instances of
anomalies and normal events from the graph, as well as the
losses between the nodes. We propose a straightforward
method for updating the graph’s structure which involves
learning better node representations and using them to
recompute the adjacency matrix. Te contributions of our
approach can be summarised as follows:

(1) We propose a mechanism for anomaly detection in
surveillance systems in which a GNN is trained in
a weakly supervised manner. Tis method in•
corporates both attributes and graph structure in•
formation. A language•based knowledge graph is
generated using time series motion and appearance
similarities to represent the conceptual relationships
within the video sequence.

(2) Mainstream anomaly detection approaches rely on
2D motion or appearance information to handle
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problems such as complex backgrounds and variable
illumination in surveillance videos and overlook the
most important details hidden in sequential patterns.
To tackle this challenge, we employ 3D visual and
motion features to interconnect similar frame seg•
ments in the graph through the computation of
frame•level characteristics, which enables precise
anomaly detection.

(3) Te majority of the graphs produced in this way
are highly complex and dynamic, making de•
tection more computationally demanding. We
therefore apply a clustering strategy to group
similar vertices, whereby the vertices are rear•
ranged and a balanced binary tree is constructed
from the clustered graph. To form a graphed
signal, a pooling operation is applied, and a reg•
ular 1D signal is generated that leads towards the
optimal output.

(4) We experimentally show that the proposed method
efciently uses the nodes of the graph to detect
anomalies and outperforms state•of•the•art (SOTA)
models on publicly available benchmarks.

Te paper consists of four sections. In Section 2, we
present a literature review that contextualises this research
and identifes gaps in the feld of anomaly detection. Section
3 introduces the proposed AD•Graph method with a de•
tailed description of its design, architecture, and capabilities.
In Section 4, we discuss the experiments conducted in the
study, including the methodology used, the results obtained,
and their implications. Finally, in Section 5, we summarise
our fndings, identify their potential impacts, and suggest
areas for future research.

2. Related Work

Te domain of anomaly detection is diverse and involves
a wide variety of settings and assumptions, as is obvious
from the numerous datasets that have been created to assess
the existing algorithms in this feld. Te identifcation of
anomalies from video data has been the subject of several
studies in recent years. Tese have mainly relied on DL•
based techniques, which can be divided into three categories:
(i) unsupervised methods, (ii) weakly supervised methods,
and (iii) temporal dependency•based anomaly detection
techniques, as discussed below.

2.1. Unsupervised Anomaly Detection. Unsupervised learn•
ing is often the approach taken for anomaly detection when
the training phase does not include abnormal events. Tra•
ditional approaches undertake the accessibility of ordinary
training samples and handle anomaly detection as a one•
class classifcation problem via traditional features. Tanks
to recent rapid advancements in DL, modern approaches
now adopt features from pretrained deep neural networks
 16–18]. Alternatively, to learn compact normality repre•
sentation constraints in the latent space, a normal manifold
strategy can be applied  19–21], where any diversion or small
change from the normal patterns in the same latent space is
considered to be an abnormal event. In addition to these
approaches, data reconstruction techniques can be used to
acquire information of usual events by reducing the re•
construction error using generative models  22–24].
Spectral•based (also called subspace•based) techniques and
neural network approaches are types of reconstruction•
based methods. When anomalies are projected into

Surveillance Video Visual Features 

Nodes of Graph 

Knowledge Graph

Graph Neural NetworkOutput Graphs

Visual Features of
various anomalous
events 

Back bone Model 

Figure 1: Overview of the proposed AD•Graph system, in which knowledge graphs are used for video anomaly detection. Each knowledge
graph is based on various unusual activities and visual features extracted from surveillance videos showing each anomalous event.
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a lower•dimensional space, these approaches presume that
information is lost and cannot be successfully recreated.
However, these methods show limited performance in terms
of distinguishing between normal and abnormal events
because of a defciency of prior knowledge about abnormal
events.

2.2. Weakly Supervised Anomaly Detection (WSAD).
Signifcant improvements have been observed in the per•
formance of unsupervised approaches with the partial le•
verage of labelled samples  12, 25, 26]. Te creation of
labelled annotations for each frame in large amounts of
surveillance data is an expensive task. SOTA approaches
therefore apply weakly supervised training by adopting
cheap annotation methods for anomaly detection  25–29].
In one existing study  25], the authors described the usage of
video•level annotations and established a challenging
WSAD dataset called UCF•Crime. Te WSAD from videos
has been highlighted as a research area of intense interest
 29–31]. Tese approaches are purely established on the use
of multiple instance learning methods  25], whereas nu•
merous methods based on multiple instance learning are not
efective to leverage abnormal annotations, as they are af•
fected by the noisy annotations from the positive bag
produced by a normal segment that is inaccurately chosen as
the top irregular event in an anomaly video. In one prior
study  27], the authors handled this issue as a binary class
classifcation problem with noisy annotation and adopted
a graph convolution neural network (GCNN) to clear all the
noisy annotations. Training a GCNN and multiple instance
learning at the same time is computationally very expensive
and also leads to an unconstrained latent space, which causes
unstable performance. Despite these limitations, however,
this method has shown more accurate results than the
multiinstance learning approach  25].

2.3. Temporal Dependencies. Various traditional approaches
to anomaly detection have explored the use of temporal
dependencies  22, 27]. For instance, in  32], the authors
converted sequences of video frames into handcrafted
motion features to highlight the regional consistency among
adjacent frames. In DL•based anomaly detection, diverse
types of sequential information have been adopted, for
example, to predict sequential consistency in upcoming
video frames  22], with a stacked RNN  33], a dual stream
approach  34, 35], or convolutional long short•term memory
 36]. Some of these approaches are based on a small fxed•
ranged temporal correlation; for instance, fve frames per
sequence are considered in a stacked RNN  33]. Others
employ the long•range dependencies of all possible se•
quential locations and events with variable sequence lengths.
Vision transformer•based models have also been used in
recent studies  37, 38]; these techniques use a transformer
for feature extraction and sequential pattern learning. Te
authors of  37] proposed a hybrid technique called
TransCNN, in which a CNN was applied to extract features
from an input video and a transformer mechanism was then
used to acquire the temporal relationships between these

features. Another baseline method has been proposed for
surveillance anomaly recognition models. Te authors of
 38] used a vision transformer with a multihead attention
mechanism for feature extraction, and a multireservoir with
an attention model was designed for temporal pattern
learning. In some recent studies  27, 39], the authors have
explored GCN•based approaches to collect the long•range
dependencies among segmented features. In contrast, our
AD•Graph technique is based on motion and visual ap•
pearance and establishes relationship graphs of the simi•
larities between low• and high•confdence snippets. Spectral
representation of these snippets is applied to process the
graph signal for accurate classifcation of anomalous and
normal events.

3. The Proposed AD-Graph

Our objective in this work was to develop a temporal
anomaly detection system, as the temporal interactions
between objects are very informative for use in predicting
anomalous events or incidents from a video. During the
training phase, we utilize videos with weak labels, wherein
we are able to identify the events occurring in the video but
lack information regarding the timing and frequency of
anomalies. In order to train our model, we use weakly la•
belled videos. Te proposed method is based on three steps:
(i) extraction of temporal features, (ii) a graph coarsening
process that combines related edges, and (iii) a graph
grouping process that transfers higher flter resolution with
spatial resolution.

3.1. Architecture of AD•Graph. Te design of our AD•Graph
is depicted in Figure 2. It showcases the input, denoted as l
which represents a volume of features. In this context, l
refers to the number of time segments in the video, while din

represents the dimension of the features. Each time segment
is defned as xi, and the total number of input features is Xi.
Te input 3D features are then modifed by applying a graph
convolution layer. We employ optical fow and RGB•based
similarity with the graph’s weight edges, in which a distinct
linear layer μ is the similarity metric. For each input time
segment, AD•Graph generates a prediction score for every
class. Te fnal prediction score, denoted as l/c volume,
corresponds to the value Y. Here, c represents the total
number of anomaly detection classes.

3.2. Feature Extraction. Te aim at this stage is to extract the
prime representative features from the video. To do this, we
leverage a frame•level feature extraction inception model
that has been previously trained on the Kinetics dataset  41].
In order to show every video segment, we extract 3D features
from the videos following the method in  42]. Specifcally,
every video consists of two sets l of 1024 volumes features.
Te frst set originates from an RGB•based stream, while the
second set comes from an optical fow•based stream. Here, l
represents the count of time segments used as input. Tese
dual features are combined to present a fnal feature vector of
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size l× 2048. Te notation utilized in this work is listed in
Table 1.

3.3. Graph Construction. GNNs and graph convolutional
networks (GCNs) have attracted considerable interest in
various domains such as action recognition  43, 44], video
summarisation  45, 46], surveillance  27, 39], and
healthcare  47, 48]. In a GCN, the input time is divided into
segments, and each segment is considered a node in
a graph. Interpretation is then carried out over this graph.
Its similarity is measured on the node edges, enabling
similar time chunks to be combined and irrelevant time
segments to be separated in the feature space, thereby
informing each other simultaneously during the train and
test stages. During this stage, graph convolutions can help
improve localisation by requiring the network to analyse
and evaluate each sequence class against the background of
other segments of the duration, which are both similar and
distinct. Te following transformation is performed by the
graph layer on X:

Z � �gXW, (1)

where W is weighted matrix of size 2048 ×dout acquired
using backpropagation, Z is the output of graph with size
l × dout, and g is a normalised afnity matrix. Tis matrix g

has size l × l, and gij are the edge weights for xi and xj.
Our aim is to process the defned signals on connected

and undirected graphs g= (E, ],w), where E is the edge, ]
is the set of vertices, and w ∈ Rn×n is the adjacent matrix
encoding of the weights for two consecutive vertices. Te
signal of x: v⟼R graph connections is considered a vector
x ∈ Rn. Te Laplacian graph is a vital operator that is used to
perform spectral analysis  49] and is expressed as L=D
w ∈ Rn×n. Te diagonal degree matrix is represented as D ∈

Rn×n; each element along the diagonal is Di�ijwij, which
in normalised form is calculated as L � ln − D− 1/2wD− 1/2,
where ln represents the identity matrix. Taking into con•
sideration the eigen decomposition of L as U∧U′, ∧ is the
matrix called as graph Fourier modes (eight vectors), and
diagonal elements of the matrix being non•negative eigen
values are the frequencies of the graph  50]. Spectral con•
volution is a distinct graph operator that is obtained by
primarily projecting a provided graph signal and applying
the eigen decomposition of L, and before the backproject,
we multiply the resulting projections in the original signal
space by a convolution flter. Te convolution flters ∗g
applied to the graph signal are defned as ψ(]) ∈ Rn×n, where
(ψ ∗gθ)(]) � Ugθ(∧)U′ψ(]). gθ represents those flters
for which all parameters are free, also known as non•
parametric flters; these flters are expressed as
gθ(Λ) � diag(θ), where the parameter θ ∈ Rn is a Fourier
coefcient vector. Te main problem with nonparametric
flters is that they cannot be localised in space dimensionality
of data, and we therefore use the following alternative  49]:

Normal
Score 

Anomaly
Score

Prediction
Features
Fusion

Graph Generation Edges weights

C
lu

st
er

in
g

T
im

e 
se

gm
en

t 
as

 n
o

d
es

7 8 9 10 11 12

Video anomaly Clips 

RGB Stream

Optical Flow Stream

Features

Features

I3
D

I3
D

Graph Signal filters

Temporal consistency of Graph

Max pooling

7 8 9 10 11 12

Figure 2: Pipeline used in the proposed AD•Graph system for video anomaly detection. 3D features are extracted from video snippets that
are grouped together using the Graclus multilevel clustering algorithm. A graph is generated to model the temporal consistency and the
similarity among these snippet features. A Laplacian flter is used to achieve Chebyshev decomposition  40], and max pooling is applied
prior to the fnal prediction, in which graph signals are used to predict the event as anomalous or normal.

Table 1: Notation used in AD•Graph.

Notations Meaning

l Volume of features
din Dimensions of features
xi Individual segments
Xi Total number of input features
Μ Similarity metric
g Normalised afnity matrix
W Weighted matrix
g Undirected graphs
E Edges
] Vertices
Y Final prediction

International Journal of Intelligent Systems 5



(ψ ∗gθ)(]) � 
κ−1

Κ�0
θΚ∁Κ(L)ψ(]). (2)

In equation (2), κ is constant and θ ∈ Rκ are the
learned parameters of the convolutional flter. We apply
a normalised Laplacian variant at the training stage, i.e.,
2L/λmaxln as an alternative L, including λmax as the
highest eigenvalue. ∁Κ is the Chebyshev kth order poly•
nomial, recursively expressed as ∁Κ(L) � 2L∁Κ−1(L),
where ∁Κ(L) ∈ Rn×n and ∁0 � l, ∁1 �L. For further de•
tails, the reader is referred to the explanation given in  50].
A list of abbreviations used in the AD•Graph model is
presented in Table 2.

3.4. GraphCoarsening andPooling. For the pooling process,
signifcant neighbourhoods are necessary in graphs where
identical vertices are clustered. Tis process is similar to
multilayer graph clustering, which retains geometric local
structures. However, this graph clustering problem is NP•
hard  51], meaning that approximations must be applied.
Although there are several possible clustering approaches,
such as the well•known spectral clustering method  52], we
are particularly interested in a multilevel clustering method
with a coarser graph for each level that corresponds to
various data domains. In addition, a clustering method in
which the graph size is reduced by a factor of two at each
level provides accurate control of pooling size and coars•
ening. In this research, the Graclus multilevel clustering
method is used, as it has been proved to be highly efective
for clustering large numbers of graphs. However, this
method of graph coarsening generally leads to unbalanced
hierarchical representations for extremely irregular graphs,
which signifcantly infuences the precision of the acquired
graph presentations. Pooling operations are performed
several times and must be efective for multilevel graph
coarsening. Te coarsened graph and the vertices of the
input graph are not organised in any meaningful way after
coarsening. Tus, a table would be required to store all the
matched vertices to allow the pooling process to be applied
directly. Tis would lead to inefcient memory usage, a lack
of parallelisation, and slow implementation. However, the
vertices may be arranged to make the graph pooling process
as efcient as 1D pooling. In this paper, we explore an
alternate approach to pooling. Our technique involves two
stages: an expansion process is frst performed at the node
level, and average global pooling is then applied to ensure
permutation invariance  50]. Te frst stage is required in
order to build large (and scant) node representations and
thereby retain the discriminating power of the nodes before
global average pooling is carried out in the second stage. In
other words, average pooling without expansion enables
permutation invariance but dilutes the node information
and leads to less discriminating graphs, as demonstrated in
tests. Te main objective of this work is to model temporal
visual and motion similarity relationships among the time
segments of a surveillance video to detect anomalous
events. For this purpose, we use a GNN to treat the given
features as nodes in a graph, and a clustering algorithm is

then employed to make use of coarsening to efciently
cluster the huge variety of graphs. Graph Laplacian flters
are applied to the weighted edges to convert the graph
signal, for precise classifcation of normal and anomalous
events. Tere are several key advantages to using the
proposed model based on GNN to detect anomalous
events from surveillance videos. For instance, it provides
an efective way to model the temporal relationships
between visual and motion features over diferent time
segments, which are crucial for detecting anomalies that
may develop over time. In addition, graph clustering is
used to represent complex and varied graphs in an ef•
cient way, which is important for handling both large and
diverse input datasets. Furthermore, the application of
graph Laplacian flters to the edge weights enables ac•
curate diferentiation between normal and anomalous
events. As a result, the proposed model ofers a powerful
approach for detecting anomalous events in surveillance
videos and has important applications in the felds of
security and safety.

4. Results and Discussion

Te proposed AD•Graph was evaluated on various
challenging video anomaly detection datasets. Te per•
formance comparison was carried out using unsupervised
and WSAD techniques to test the efectiveness of our AD•
Graph against SOTA alternatives, and our method was
found to give the best performance. We compared the
performance of the proposed AD•Graph with 22 other
recent models using both supervised and unsupervised
techniques, as summarised in Table 3. We also present
quantitative and qualitative results from the proposed
AD•Graph method that highlight the improvements and
achieves over SOTA techniques which do not explicitly
model the connections among time segments.

4.1.Dataset andEvaluationMetrics. In this work, we use two
challenging recent datasets to evaluate our AD•Graph
model, called UCF•Crime and ShanghaiTech, which have
predefned training and test sets. To ensure a fair evaluation
of AD•Graph, we use the standard evaluation protocol used
in the prior studies  22, 25, 29, 31], based on the ROC curve
and the frame•level area under the curve (AUC) for all
datasets.

Table 2: Abbreviations used for surveillance anomaly detection.

Abbreviations Description

CNN Convolutional neural network
AE Autoencoder
RNN Recurrent neural network
GNN Graph neural network
2D Two•dimensional
3D Tree•dimensional
GCNN Graph convolution neural network
AD•graph Anomaly detection graph
I3D Infated 3D networks
AUC Area under the curve
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4.1.1. ShanghaiTech. Tis is a medium•sized dataset of
static•angle street surveillance videos, with 13 diferent
background scenes. It contains a total of 437 videos, of which
130 contain anomalous events and 307 normal scenes. Tis
dataset is a well•known benchmark for anomaly detection, in
which the training data include only normal videos  22]. Te
dataset was reorganised by Zhong et al.  27] to create
a weakly supervised video labelled by choosing a subset from
the anomalous event test set into the training set to cover 13
background events in both the training and testing sets. We
performed experiments on this weakly supervised dataset, as
described in  27, 30, 31].

4.1.2. UCF•Crime. UCF•Crime is a large•scale dataset of
anomalous events that contains 1,900 long and untrimmed
videos  25]. Te total duration of these videos is 128 h, and
they include 13 types of anomaly recorded in real•world
indoor and outdoor surveillance environments. Unlike the
stationary backgrounds contained in ShanghaiTech, these
videos have a diverse range of complicated backgrounds.
Tis is a relatively balanced dataset that contains equal
numbers of normal and unusual events in both the training
and test sets. Te challenging aspect of this dataset is the lack
of temporal annotation for the training videos, with only
video•level labels and test videos.

4.2. Implementation Details. To describe the proposed AD•
Graph architecture, we use the following notation: 5ck,
Ƿk,Ck, and GCk are the fully connected, pooling, and
convolutional layers with k hidden units, stride and size, and
feature maps, respectively. Te ReLU activation function is

used forGCk, Ƿk, andCk.Te output of GCk is passed to the
nonlinear ReLU activation function, normalised with l 2
regulation, and then input to the linear Softmax classifcation
layer with a batch size of 128. A dropout rate of 0.5% is used
in the graph and linear layers. We train AD•Graph for 120
epochs with the Adam optimiser and a learning rate of 0.001.
We buildg during both training and testing from video time
segments at a time. During both the training and testing
processes, AD•Graph constructs a graph from video seg•
ments and then processes each segment individually. Tis
allows the model to analyse the temporal relationships be•
tween the frames within each segment and to identify any
anomalies present in the video data. Te process of extracting
features from video frames in AD•Graph follows the baseline
method in  27]. More specifcally, features are extracted from
clips containing 16 frames. To ensure consistency, each video
is divided into Tsnippets, and the average is computed for all
16•frame clip•level features within each snippet. Tis ap•
proach helps maintain a consistent number of snippets in
each video and allows for efective feature extraction from
the video data. Te implementation was based on Python 3.6
and TensorFlow, and the AD•Graph model was tested on
a GeForce Titan•X graphics processing unit.

4.3. Experimental Evaluation of AD•Graph on ShanghaiTech.
Te experimental results on the ShanghaiTech dataset using
frame•level AUC are shown in Table 4. A comprehensive
evaluation of the AD•Graph network reveals that it achieves
superior results against weakly supervised SOTA techniques.
AD•Graph achieves AUC results that are 75.2% better than
the weakly supervised•based approaches in  39, 61], and

Table 3: AUC performance of AD•Graph compared with other weakly supervised and unsupervised techniques on the UCF•Crime and
ShanghaiTech datasets.

Methods Years Backbone ShanghaiTech AUC (%) UCF•Crime AUC (%)

Hasan et al.  53] 2016 Fully convolutional AE 60.90 50.60
Luo et al.  33] 2017 Stacked RNN 68.00 —
Liu et al.  54] 2018 Ensemble classifer strategies 72.80 —
Sohrab et al.  55] 2018 C3D — 58.50
Sultani et al.  25] 2018 C3D — 75.41
Gong et al.  56] 2019 Memory•based AE 71.20 —
GODS  57] 2019 One class learning — 70.46
Zhu and Newsam  26] 2019 Temporal augmented network — 79.00
GCN•Anomaly  27] 2019 I3D — 82.12
Dong et al.  58] 2020 Dual GAN 73.70 —
Doshi et al.  59] 2020 CNN•KNN 71.60 —
Park et al.  20] 2020 Memory module 70.50 —
Tang et al.  60] 2020 U•Net generator 73.00 —
Chang et al.  61] 2020 Clustering•based deep AE 73.30 —
Ano•Graph  39] 2021 Spatial temporal graph 74.42 —
Tangqing et al.  62] 2021 Clustering•based AE — 72.90
Doshi et al.  63] 2021 Hybrid modules 70.90
Chandrakala et al.  64] 2022 Bag of events model — 83.50
Liu et al.  65] 2022 Dual stream AE 73.60 —
EDM  66] 2023 Difusion model — 65.22
STR•VAD  67] 2023 Spatial temporal 73.2 —
RAE  68] 2023 Residual AE 73.60 —
AD•Graph (ours) RGB•optical fow (I3D) 75.20 83.85

Te best results are highlighted as bold text in the table.
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 60], with increases in the AUC scores of 0.78%, 1.9%, and
2.2%, respectively. In terms of accuracy, AD•Graph out•
performs Ano•Graph  39] and the methods put forward by
Chang et al.  61], Yang et al.  60], Dong et al.  58], and Park
et al.  20] by 0.78%, 1.9%, 2.2%, 1.5%, and 4.7%, respectively.
In addition, our AD•Graph outperforms the unsupervised
methods in  56, 63, 65] with increases in 1.6%, 4.3%, and 4%,
respectively.

4.4. Experimental Evaluation of AD•Graph on UCF•Crime.
Te AUC results for UCF•Crime are displayed in Table 5.
AD•Graph achieved better results than the weakly su•
pervised schemes in  25–27, 62, 64] and the unsupervised
techniques in  53, 55, 57]. In terms of accuracy, it out•
performed the recent unsupervised SOTA GODS method
 57] with an increase of 12.39%. It was also interesting to
observe that AD•Graph outperformed the weakly
supervised•based SOTA methods, i.e., those of Hasan
et al.  53], Sohrab et al.  55], Sultani et al.  25], Yi Zhu and
Shawn Newsam  26], GCN•Anomaly  27], Li et al.  62],
and Chandrakala et al.  64], by 32.25%, 24.35%, 12.39%,
3.85%, 0.73%, 9.6%, and 0.65%, respectively. Te accuracy
of AD•Graph was also compared with unsupervised ap•
proaches  53, 55, 57] and was found to be superior, with
increases of 32.25%, 24.35%, and 12.39%, respectively.

4.5. Anomaly Heterogeneity. Te UCF•Crime dataset
contains various anomalous events, such as stealing,
shooting, and road accidents. We therefore analysed the
ability of our AD•Graph model to distinguish anomalous
events from normal events, as shown in Figure 3, and
found that it was superior to the baseline approach  25].
To explore the AUC performance for each individual
anomaly class, we performed an experiment on the UCF•
Crime dataset. To train the model, we used the full
training and testing datasets from UCF•Crime and
considered the scheme in  25] as a baseline to test the
performance of our method. AD•Graph showed

good performance and outperformed SOTA when
compared with the outcomes from the baseline tech•
niques for individual anomaly classes. Te results
are shown in Figure 3 and confrm the superiority of our
AD•Graph approach for almost every class, even for
abnormalities that are very subtle. Our AD•Graph sur•
passed the baseline model  25] in 11 classes of anomalous
events (abuse, arrests, fghts, shootings, arson, shop•
lifting, road accidents, assaults, theft, explosions, and
vandalism), with a noticeably improved AUC perfor•
mance of 5% to 17% for the most confusing classes.
For burglary and robbery, AD•Graph was less efective,
but its performance was competitive with that of the
baseline  25].

4.6. Ablation Study of Various 3D Models. Te statistics in
Table 6 reveal the considerable advantages of the proposed
AD•Graph method in terms of its anomaly detection per•
formance compared to recent 3D models. Primarily, we
selected the I3D model  41] for experiments on the UCF•
Crime dataset, in which we considered I3D•RGB features,
I3D optical•fow•based features, and a combination of I3D
RGB•optical fow features, followed by experiments on
a C3D model  70]. We also tested other 2D CNN models
such as ResNet10, InceptionV3, ResNet152, and VGG19.
Te results of our ablation study show that ResNet101 with
RGB modality achieved the highest AUC score of 65.30%
among the tested 2D CNN backbones. InceptionV3 with
RGB modality achieved an AUC score of 64.70%, which was
slightly lower than that of ResNet101. Te use of ResNet152
or VGG19 with RGB modality resulted in even lower AUC
scores of 61.30% and 58.50%, respectively. ResNet101 with
RGB modality achieved the highest AUC score of 65.30%
among the tested 2D CNN backbones, but this perfor•
mance was still lower than that of the I3D model with
RGB•optical fow modality. Te best results were observed
for AD•Graph with RGB•optical fow; the reason for this is
that this method considers both motion and appearance
features to detect anomalous acts, thereby providing good
detection performance.

Table 4: Performance comparison of AD•Graph with other
existing weakly supervised and unsupervised techniques on the
ShanghaiTech dataset

Methods Years Approach AUC (%)

Hasan et al.  53] 2016

Unsupervised

60.85
Luo et al.  33] 2017 68.00
Liu et al.  54] 2018 72.80
Gong  56] 2019 71.20
Doshi and Yilmaz  63] 2021 70.90
Liu et al.  65] 2022 73.60
RAE  68] 2023 73.60

Dong et al.  58] 2020

Weakly supervised

73.70
Doshi and Yilmaz  59] 2020 71.60
Park et al.  20] 2020 70.50
Tang et al.  60] 2020 73.00
Chang et al.  61] 2020 73.30
Ano•Graph  39] 2021 74.42
STR•VAD  67] 2023 73.2
AD•Graph (ours) 75.20

Table 5: Comparison of AUC results for AD•Graph with other
existing weakly supervised and unsupervised techniques on the
UCF•Crime dataset.

Methods Years Approach AUC (%)

Hasan et al.  53] 2016

Unsupervised

50.60
Sohrab et al.  55] 2018 58.50
GODS  57] 2019 70.46
EDM  66] 2023 65.22

Sultani et al.  25] 2018

Weakly
supervised

75.41
Yi Zhu and Shawn Newsam
 26]

2019 79.00

GCN•Anomaly  27] 2019 82.12
Li et al.  62] 2021 72.90
Chandrakala et al.  64] 2022 83.50
BSPR  69] 2022 83.39
AD•Graph (ours) 83.85

Te best results are highlighted as bold text in the table.
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4.7. Comparison and Discussion. To evaluate the perfor•
mance of our AD•Graph technique, we compared it with
existing alternatives using the ShanghaiTech and UCF•
Crime datasets. We used the test sets of these datasets to
determine the AUC and compared our results with those of
19 SOTA models, including both supervised and un•
supervised techniques, as presented in Table 3. Te AUC
values in Table 3 show that the proposed AD•Graph model
achieved the highest score of 83.85%, while the model of
Chandrakala et al.  64] achieved the next highest score of
83.50%. Te schemes presented in  25–27, 53, 55, 57, 62]
achieved AUC values of 75.41%, 79.00%, 82.12%, 50.6%,
72.90% 58.50%, and 70.46%, respectively, on the UCF•Crime
dataset.

Our proposed AD•Graph method also achieved the
highest AUC performance on the ShanghaiTech dataset with
a value of 75.2%, representing an increase of 0.78% com•
pared with the recent Ano•Graph approach  39]. Te
techniques described in  20, 33, 53, 54, 56, 58, 60, 61, 63, 65]
achieved AUC scores of 70.5%, 68.0%, 73.7%, 73.0%, 73.3%,
60.90%, 72.8%, 71.2%,73.6%, and 70.9%, respectively. Tese
results for AD•Graph indicate that it has the potential to
improve the accuracy of anomaly detection in surveillance
videos and could be used in real•world applications to
enhance security and safety. However, it is important to note

that the performance of AD•Graph may vary across diferent
datasets and scenarios, and further research is needed to
evaluate its robustness and generalizability. Overall, our
fndings suggest that AD•Graph is a promising approach for
detecting anomalies in surveillance videos and can con•
tribute to the development of more efective and reliable
surveillance systems.

5. Conclusion

In the feld of video anomaly detection, learning•based
systems are used to detect abnormal behaviour from
video streams. However, the design of efective deep•
learning solutions is difcult due to the low in•
terpretability of the models. In this paper, we propose a new
mechanism for anomaly detection based on a weakly su•
pervised method called AD•Graph. Te main strength of our
technique is its ability to train multiple Laplacian con•
volutional operators, each of which is assigned to a certain
confguration of the manifold comprising the input
graph data.

Te primary conclusions that could be drawn from this
work were as follows. In general, the learning of short• and
long•term temporal relations is vital for anomaly detection
when training an end•to•end model. To learn the temporal
relationships among video segments, we extracted 3D fea•
tures from the input video and generated graphs based on
the similarity between these segments. Our approach im•
proved the AUC performance for anomaly detection by 1.5%
and 0.73% on the ShanghaiTech and UCF•Crime datasets,
compared with SOTA techniques. Experimental results for
these challenging datasets indicated that AD•Graph
achieved considerably better performance than existing
weakly supervised and unsupervised video anomaly de•
tection techniques, thus proving the efectiveness of our
approach. Our model experiences difculties in certain
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Figure 3: Performance comparison between AD•Graph and the method of Sultani et al.  25] in terms of AUC results for the classes of
anomalies in the UCF•Crime dataset.

Table 6: Ablation study of various 3D models with AD•Graph.

Backbone Modality AUC (%)

I3D  41] RGB 78.62
I3D  41] Optical fow 80.14
I3D  41] RGB•optical fow 81.56
ResNet101

RGB

65.30
InceptionV3 64.70
ResNet152 61.30
VGG19 58.50
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challenging situations, such as images with low resolution,
low levels of illumination, fast motion, and groups of people.
In future work, we aim to solve these problems using in•
cremental learning, explainable AI, and temporal
transformation•based self•supervision.
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