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Universality of Z3 parafermions via edge-mode interaction and quantum
simulation of topological space evolution with Rydberg atoms
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Parafermions are Zn generalizations of Majorana quasiparticles, with fractional non-Abelian statistics. They
can be used to encode topological qudits and perform Clifford operations by their braiding. Here we investigate
the generation of quantum gates by allowing Z3 parafermions to interact in order to achieve universality. In
particular, we study the form of the nontopological gate that arises through direct short-range interaction of the
parafermion edge modes in a Z3 parafermion chain. We show that such an interaction gives rise to a dynamical
phase gate on the encoded ground space, generating a non-Clifford gate which can be tuned to belong to even
levels of the Clifford hierarchy. We illustrate how to access highly noncontextual states using this dynamical gate.
Finally, we propose an experiment that simulates the braiding and dynamical evolutions of the Z3 topological
states with Rydberg atom technology.
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I. INTRODUCTION

Fault-tolerant quantum computing schemes were shown
to exist using error-correcting techniques [1–3] aimed at di-
minishing logical error rates by minimizing the error rate on
individual gates. In this context, physical systems that provide
access to a set of exact elementary gates are advantageous.
Topological quantum computation was introduced as a way to
provide a computational framework for fault-tolerant quantum
computation by Kitaev, Freedman, and Preskill [4,5], which
directly addresses the very low error rate requirement. The
proposal is based on the use of anyons, i.e., localized two-
dimensional many-body quantum systems that display exotic
exchange statistics. While the braiding of Abelian anyons is
characterized by an arbitrary phase factor, the statistics of
non-Abelian anyon exchange are described by representations
of the braid group. The non-Abelian character renders these
objects useful for computation, which is carried out by cre-
ating pairs of anyons from the vacuum, inducing operations
by adiabatically moving them around each other and fusing
them, with the classical outcome defined by the resulting
charge types and a very low estimated error rate. Quasipar-
ticle modes emerging in condensed matter systems have been
shown to carry (projective) non-Abelian statistics which can
be identified with known anyon models. The most prominent
example of such objects is Majorana zero modes (MZMs),
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whose exchange is described by statistics of the Ising model
[6,7], and which were found to appear in a two-dimensional
electron gas in the fractional quantum Hall (FQH) regime [8],
as one candidate for an experimental realization.

Majorana fermions constitute the Z2 case of the more
general Zd parafermion model. The latter can be used to
encode qudits, and provides a wider set of braiding evo-
lutions, making it a more computationally powerful and
attractive counterpart [9]. Indeed, in contrast with Majorana
sparse encoding where additional measurements are required
[10], parafermions can provide a scalable entangling gate
by braiding alone [11,12]. Much like MZMs, proposals to
realize non-Abelian anyons typically consist of exploiting
the edge states of FQH systems. In the following, we con-
sider parafermionic zero-energy modes proposed to appear
at the edges of suitably defined one-dimensional fractional
topological superconductors [11,13], arising in Hamiltonians
described by Ref. [9].

The braid group representation describing Ising and
parafermionic statistics provides a reliable implementation of
Clifford gates, but does not extend to a universal quantum
gate set and can therefore be efficiently simulated classically
[14,15]. Proposals exist to remedy this drawback for Majorana
qubits, by allowing for additional noisy nontopological oper-
ations which take the form of direct short-range edge-mode
interaction, i.e., a tunneling process. Such operations can give
rise to the π/8 rotation that together with Clifford operations
constitutes a universal set [16,17]. Parafermions generalize
the Majorana encoding to topological qudits. For prime d ,
Clifford unitaries complemented by any arbitrary non-Clifford
gate are sufficient for universal quantum computing (UQC)
[18]. Hence, the parafermion edge-mode (PEM) interaction
is expected to provide a noisy non-Clifford gate to be made
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fault-tolerant using magic-state distillation (MSD) protocols.
Such schemes have been extensively studied in particular for
qudits of prime d .

Recent research has focused on quantum simulation with
Rydberg atoms due to their versatility [19]. They offer strong
and controllable long-range interactions realized by selecting
different Rydberg states and applying a wide range of optical
fields [20]. With the development of experimental techniques
improving the controllability of individual Rydberg atoms,
such as optical tweezers, these systems represent an effective
tool for simulating many-body physics of both coherent or
dissipative, in- or out-of-equilibrium systems. This can be
achieved by engineering the system Hamiltonian in order to
simulate various spin systems and quantum phases of mat-
ter [21–23]. Lienhard et al. and Verresen et al. [24,25] also
suggested that geometric phases and topological effects can
be probed with Rydberg atom-based quantum simulations.
Additionally, Rydberg systems provide a way of encoding a
qutrit by driving the Rydberg atom around three levels, using
microwave lasers as described in Refs. [26,27], which is of
interest in the light of works such as Ref. [28].

In the following, we investigate which family of gates the
interaction between the PEMs of a Z3 parafermion chain gives
rise to. Our main result concerns the adequacy of such gates
for UQC with parafermions. We have chosen to focus on
the three-dimensional qutrit space in this study since it has
the benefit of prime dimension and computational tractability,
though many of the features that we uncover are likely to be
generic. Besides, we also suggest how to use a Rydberg atom
to simulate topological evolution of the ground state of the
parafermion chain Hamiltonian.

This paper is organized as follows. In Sec. II, we describe
the Z3 parafermion chain and its edge modes, then briefly
describe computation with parafermions and the Clifford hi-
erarchy. In Sec. III we investigate the parafermion edge-mode
interaction and its action on the ground state space. In Sec. IV
we show that the addition of the dynamical gate available
using the PEM interaction to the Clifford group, accessible
through braiding operations, generates a gate set dense in
SU(3). In Sec. V, we discuss a potential physical implemen-
tation using a four-Rydberg-level atomic system interacting
with four microwave lasers, in order to simulate the direct
parafermion interaction and two-parafermion braiding. Fi-
nally, our results are discussed in Sec. VI.

II. BACKGROUND

A. The parafermion chain

In the following, we will consider a chain of Z3

parafermions. In Ref. [9], Fendley introduced a variation of
the Kitaev chain expressed in terms of parafermion operators,
whose Hamiltonian takes the general form

H = −
L−1∑
j=1

Jj (ψ
†
j χ j+1αω̄ + H.c.) −

L∑
j=1

f j (χ
†
j ψ j α̂ω̄ + H.c.),

(1)
where L is the length of the chain, and at each site j lie two
parafermions χ j and ψ j . The ω = e

2π i
3 factors ensure Her-

miticity, and the couplings f j and Jj are real and non-negative.

The above Hamiltonian can be rewritten in terms of the chiral
clock model, by reexpressing the parafermion operators as

χ j =
⎛
⎝ j−1∏

k=1

τk

⎞
⎠σ j and ψ j = ω

⎛
⎝ j−1∏

k=1

τk

⎞
⎠σ jτ j, (2)

where σ and τ generalize the usual Pauli σ z and σ x matrices to
a three-dimensional space. These respectively characterize the
flip and shift Hamiltonian terms in Eq. (1). For j < k, these
operators follow the commutation relations

χ jψ j = ωψ jχ j,

χ jχk = ωχkχ j, ψ jψk = ωψkψ j, χ jψk = ωψkχ j, (3)

and one can verify that χ3
j = ψ3

j = 1 while each operator
individually squares to its Hermitian conjugate. The three
physical parameters of significance are the relative strengths
of couplings in Eq. (1), and two angles φ, φ̂ which determine
the parameters α and α̂. In the following, we consider the
symmetric case of α = α̂ = e−i π

6 , which lies at the midsection
between the ferromagnetic and antiferromagnetic phases of
the model in order to ensure chiral interactions and robust
edge modes. Recent investigations of the parameter space of
the system using DMRG tools offer detailed insight into the
phases of this model [29,30].

B. Parafermion edge modes

When both time-reversal and spatial-parity symmetries are
broken, parafermion zero-energy modes can emerge in the
parafermion chain, localized at its edges. These are character-
istic of topological order, and described by the left and right
edge-mode operators 
L and 
R, which obey the relations

[H, 
L] = [H, 
R] = 0, ωP
 = ω
ωP, (4)

where ωP = ∏L
j=1 τ

†
j is the Z3 symmetry generator. These

properties respectively describe that these are zero-energy
modes, which map between Z3 parity sectors, giving rise to
the threefold degeneracy of the energy spectrum of H . From
Eq. (1) it is clear that exact PEMs exist when fi = 0 ∀ i such
that [H, χ1] fi=0 = [H, ψL] fi=0 = 0 for a chain of length L.

Since the system exhibits an energy gap, one expects its
PEMs to remain approximate zero modes for small enough
f /J , with their support on the bulk of the chain exponen-
tially suppressed in their distance to the bulk parafermions,
as shown in Fig. 1(b). The left edge-mode operator of a
chiral parafermion was constructed in Ref. [9] up to order
f /J (where the couplings were taken to be uniform across the
chain) using an iterative procedure, and takes the form


L = χ1 − 2i f e−iφ̂X + 2i f eiφ̂χ
†
1Y + · · · , (5)

where

X = 1

4J

1

sin(3φ)
(ψ1 + e2iφχ2 + e−2iφωψ

†
1 χ

†
2 ) (6)

and Y = −X †. It is straightforward to show that the right edge
mode can be derived in a similar fashion. This procedure
can be iterated, with the dimensionless expansion parameter
f /[2Jsin(3φ̂)], but does not work at the approach of the
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FIG. 1. Schematic of the localized (a) and delocalized (b) edge
modes, such that the latter are described by extended operators as
introduced in Eq. (5), where the χi and ψi operators represent left and
right parafermions occupying each site of the chain, as per Eq. (1).
The shaded curves indicate their support on the bulk parafermions.

parity-invariant ferromagnetic and antiferromagnetic points.
One can see that the symmetric points φ = π

6 (mod π
3 ) are

the most robust for the existence of edge modes. We note that
such edge modes have a strong character, necessary for such
an analysis to hold [31].

C. Computing with parafermions

Regardless of the underlying physical system which gives
rise to parafermionic excitations, computation relies on the
ability to adiabatically braid and fuse parafermions and dis-
tinguish between their fusion outcomes. Combining these
capabilities realizes a set of exact unitary operators and mea-
surements. In Ref. [12], Hutter and Loss derived the braiding
operators acting on a logical qudit encoded using four Zn

parafermions. In the qutrit case, one can write the most gen-
eral unitary representation of such gates as

Ui = 1√
3

∑
m∈Z3

cm(�i)
m, (7)

where �i = ωpi p
†
i+1 are local parity operators for

parafermions pi and pi+1, and cm are coefficients derived
by satisfying far commutativity and the Yang-Baxter
equation [32]. The parity operators can be identified
with �2i−1 = X †

i and �2i = ZiZ
†
i+1, which admit the same

spectrum as that of the generalized qutrit Pauli operators,
namely {1, ω, ω̄}. Hence, an eigenbasis {|0〉, |1〉, |2〉} can be
defined for each parity operator such that �i|mi〉 = ωm|m〉i,
for m ∈ Z3. These states form a basis of the fusion space
of the pair of parafermions pi and pi+1. More generally,
a three-dimensional Hilbert space is associated with each
pair of parafermions. A qutrit can also be encoded into
the fusion space of four parafermions {p1, p2, p3, p4}.
The corresponding Hilbert space can be restricted under a
global parity constraint �1�3 = 1. The group of unitaries
generated by U1,U2, and U3 as defined in Eq. (7) acts
on this computational subspace, spanned by the states
{|0〉1|3〉3, |1〉1|2〉3, |2〉1|1〉3}. The authors showed that the
braids U1 and U1U2U1 (up to global phases) respectively act
on the logical space following

X −→ XZ†, Z −→ Z and X −→ Z, Z −→ X †.

These gates were proven to be necessary and sufficient to gen-
erate the single-qutrit Clifford group in Ref. [33]. In Fig. 2(a)

FIG. 2. Schematic of single-qutrit gates on a logical qutrit en-
coded in four parafermions denoted by the black dots. Their world
lines are depicted as time flows upward. Panel (a) represents a
topological S gate produced by parafermion braiding [12]. In panel
(b) the closing distance between the world lines of the first two
parafermions represents the nontopological dynamical gate accessi-
ble by parafermion edge-mode interaction.

we show the U1U2U1 braid which realizes the topological
S gate. However, Clifford unitaries alone do not allow for
universal quantum computing. In our study, we consider a
similar approach to that in Ref. [17], namely allowing the
parafermion modes to interact by bringing them close together
so as to generate a dynamical non-Clifford unitary on the
logical space.

D. Clifford hierarchy

The theory behind quantum error correction and fault-
tolerant computation relies upon access to gates from different
levels of the Clifford hierarchy, defined by Gottesman and
Chuang in Ref. [34] as

C (k+1) := {U |UPU † ∈ C (k),∀P ∈ Pn}, (8)

where Pn := P⊗n in the n-qudit Pauli group, generated by
the τ and σ matrices introduced in Eq. (2), and k indicates
the level in the hierarchy [34]. With this definition, we can
identify the Pauli and Clifford groups respectively as C (1)

and C (2). Higher levels are of interest for any d-dimensional
qudit system in order to achieve universality, and in particular
any gate from the third level C (3) supplementing the Clifford
group generates a universal gate set. In the d = 2 case, the
T gate (i.e., π/8-phase gate) plays a special role as a natural
choice [35]. While in general for k � 3 the gate sets in the
Clifford hierarchy do not form a group, the subset of diagonal
operators C (k)

d ⊂ C (k) does, making investigations for a T-gate
qudit analog tractable as shown in Refs. [36–38]. In particular,
Cui et al. showed that a diagonal gate U in any level of the
Clifford hierarchy for qudits of dimension d can be written as

U =
∑
j∈Zd

exp

(
2π i

∑
m

δm( j)/dm

)
| j〉〈 j|, (9)

where δm( j) is a polynomial over Zm
d , and the level of the

Clifford hierarchy containing U is given by the degree of
δm( j) with the largest m [38]. In the following, this definition
is used to characterize the unitary operator we obtain from
parafermion edge-mode interaction.
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FIG. 3. Schematic of a three-site parafermion chain with weak
f and strong J couplings defined as per Eq. (1), where the χi and
ψi represent the left and right parafermion operators at each site of
the chain (a). The chains in (b) and (c) represent the decimation of
the terms connecting parafermions in the bulk upon applying the RG
method, with a final weaker effective coupling f ′′.

III. A DYNAMICAL GATE FROM PARAFERMION
INTERACTION

The main object of this section is to understand how
parafermion edge modes interact when the fi couplings in
Eq. (1) are nonzero. This interaction ensures that one can
induce a tunneling process by transporting such PEMs within
a sufficient distance of each other, running the interaction for
a desired time interval and returning the anyons to their initial
positions, whereby a dynamical gate is applied on a qutrit
encoded in the degenerate ground subspace of the system
[10,17].

A. Decimation of the highest-energy term

The strongly interacting nature of parafermion systems
makes their analytical study challenging, particularly the
computation of their spectrum. A general approach is to
use efficient DMRG techniques for numerical studies. In
the following we use the real-space renormalization group
method applied to the transverse-field Ising model by Fisher
in Ref. [39]. This approach requires decimating the highest-
energy term in the Hamiltonian and replacing it with effective
longer-range interactions. Specifically, in the case of the Ising
chain this prescribes decimating a spin if the stronger in-
teraction is a field fi, or forming a ferromagnetic cluster
if it is a bond Ji. We extend this scope to a parafermion
chain where the fi on-site couplings are weak, such that the
largest energy is the bond between chain sites as shown in
Fig. 3(a) for a three-site chain. This process freezes the clock
states at neighboring sites together in a ferromagnetic cluster
with an effective field f ′ = fi fi+1

2Ji,i+1
. This coupling is weaker

than the individual fi and fi+1 since the new interaction is a
next-to-nearest-neighbor one, which decimates the interaction
between sites i and (i + 1) (i.e., a parafermion pair). This
process is illustrated in Figs. 3(a)–3(c). Hence, the form of the
Hamiltonian remains the same, apart from an overall constant
shift in the spectrum, that can be neglected.

B. Effective Hamiltonian from PEM interaction

We first consider a two-site Z3-parafermion chain with a
Hamiltonian H2 describing the two-site version of Fig. 3(a),
such that H2 = F2 + V2 where

F2 = − 2√
3

e−iφω̄(J1ψ
†
1 χ2) + H.c.,

V2 = − 2√
3

e−iφ̂ ω̄( f1χ
†
1 ψ1 + f2χ

†
2 ψ2) + H.c., (10)

and we set the phase parameters to φ = φ̂ = π
6 . To define the

Hamiltonian we chose the representation

σ =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ and τ =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, (11)

to express the parafermion operators in Eq. (2). The
eigenspectrum of F2 is threefold degenerate, with eigen-
values {−2J1, 0, 2J1} and three degenerate ground states
{|e0〉, |e1〉, |e2〉}. When f1 and f2 are nonzero, the edge modes
of the parafermion chain are no longer exactly localized, as
described by Eq. (5). A perturbative treatment of the effect of
F2 on the ground-state manifold, in terms of f1/J1 and f2/J1,
produces the effective coupling induced by an interaction be-
tween the edge parafermions χ1 and ψ2 up to arbitrary order.
The first-order perturbation vanishes for our system, while
the second-order terms contribute to an effective Hamiltonian
given by

H (2)
2 = − f 2

1 + f 2
2

J1
+ f1 f2

J1
(ωχ1ψ

†
2 + ω̄ψ2χ

†
1 ), (12)

where we can see that the first term is a global energy shift
which we neglect, and the second term characterizes the in-
teraction of the parafermion zero modes, which happens with
a coupling f ′ = f1 f2

J1
, and acts on the ground-energy subspace

with the following Hamiltonian,

H (2)
2 =

⎛
⎝0 ω ω̄

ω̄ 0 ω

ω ω̄ 0

⎞
⎠. (13)

Following the prescription described in Sec. III A, the form of
the second term in Eq. (12) indicates that the decimation of the
parafermion pair (ψ1, χ2) induces an f ′ interaction between
the edge parafermions. This result is similar to the Majorana
case explicitly shown in Ref. [40] where the coupling between
Majorana zero modes takes an similar form for L = 2. We
iterate the above decimation procedure for a chain of arbitrary
length L by decimating bonds from left to right to derive the
interaction between the edge modes of a chain of arbitrary
size, as shown in Fig. 3. We find that the effective Hamiltonian
up to second order in the energy perturbation is given by

H (2)
L = − 1

JL−1

(∏L−1
i=1 f 2

i∏L−2
i=1 J2

i

+ f 2
L

)
+

∏L
i=1 fi∏L−1
i=1 Ji

(ωχ1ψ
†
L + ω̄ψLχ

†
1 ).

(14)

The PEM interaction term remains exactly H (2)
2 in Eq. (13),

and has an eigenspectrum of {E0 = 2A, E1 = −A, E2 = −A}
which now discriminates between the basis states up to
a global Z3 rotation, where the energy scale is given by
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FIG. 4. Three lowest-energy eigenvalues for H2 with Ji = 1 ∀i
and varying f . The numerical values are indicated by the continuous
lines. The perturbative approximations up to third order are indicated
with red dotted lines, which are in agreement with the exact results
for a wide range of f values.

A = ∏L
i=1 fi/

∏L−1
i=1 Ji. The exact eigenvalues of the three

lowest-energy states of H2 (for numerical convenience) are
numerically plotted in Fig. 4 for fi = f ∀ i and Ji = 1 ∀ i,
where the global energy shift was deducted. The degeneracy
is lifted by the splitting of the eigenstates when f �= 0. The
energy shifts obtained using the decimation prescription to
study the effect of edge-mode interaction are plotted up to
third order in f /J , and agree with the exact spectrum in the
perturbative, i.e., low f /J , regime.

C. Asymmetric Z3-parafermion chain

In this subsection we report the same procedure as in
Sec. III B while allowing the parafermion chain to deviate
from the super-integrable point of the chiral phase by setting
φ = π/6 and leaving φ̂ as a free parameter. In this case, the
effective Hamiltonian for the two-site chain up to second order
in f /J is given by

H (2)
2 (φ̂) = − f 2

1 + f 2
2

J1
− f1 f2

J1
(ω̄e2iφ̂χ1ψ

†
2 + ωe−2iφ̂ψ2χ

†
1 )

(15)
such that the parafermion interaction takes the form

H (2)
2 (φ̂) =

⎛
⎜⎝

0 e−2iφ̂ e2iφ̂

e2iφ̂ 0 e−2iφ̂

e−2iφ̂ e2iφ̂ 0

⎞
⎟⎠ (16)

up to a global energy shift, which maintains the structure of
H (2)

2 in Eq. (12), with an extra phase factor in the interaction
term. The eigenvalues of H (2)

2 (φ̂) are given by

E0 = 2 cos(2φ̂), E1 = − cos(2φ̂) +
√

3 sin(2φ̂),

E2 = − cos(2φ̂) −
√

3 sin(2φ̂),
(17)

where setting φ̂ = π
6 recovers the result in Eq. (14). This

suggests that by allowing a margin of deviation closer to
the ferromagnetic or antiferromagnetic phases of the system,

one can modify the form of the interaction in Eq. (16). We
note that while the following will focus on the dynamical
gate from the symmetric point, setting the parameter φ̂ = π

4 ,
which still exists in the chiral phase of the chain, gives rise
to an interesting eigenspectrum for the purpose of quantum
computation.

IV. NON-CLIFFORD GATE U FROM PEM INTERACTION

A. Dynamical gate

The results in Sec. III B show that the interaction between
the parafermions edge modes is described by a Hamiltonian
which acts nontrivially on the encoded ground space, for
which the leading term is shown in Eq. (13). Moreover, one
can verify that this interaction (i.e., ωχ1ψ

†
L + H.c.) commutes

with the parity operator �1 defined in Sec. II C and therefore
preserves the computational subspace [12]. Hence, bringing
the parafermion edge modes closer together allows for a
dynamical unitary operation given by the evolution of the
interaction Hamiltonian

U ≈ e−iβHintt , (18)

where β is a constant which depends on the effective cou-
pling between the edge modes, namely up to second order∏L

i=1 fi/
∏L−1

i=1 Ji.

B. U in the Clifford hierarchy

The Clifford hierarchy introduced in Sec. II D is useful
to categorize the accessible non-Clifford gates using the dy-
namical gate U , and probe geometrically significant gates and
eigenstates for fault-tolerant universal quantum computation.
In particular, defining gates such as the qudit equivalent of the
π/8 gate is useful to design magic-state distillation protocols.
It was shown in Ref. [38] that a diagonal gate in any level of
the Clifford hierarchy for qudits of dimension d can be written
in a diagonal form. The qutrit case is given by

Uv = U (v0, v1, . . .) =
∑
j∈Z2

ζ vk |k〉〈k| (vk ∈ Z9), (19)

where ζ = e
2π i

9 ; the indices vk are given by v0 = 0 mod 9,
v1 = 6z′ + 2γ ′ + 3ε′ mod 9, v2 = 6z′ + γ ′ + 6ε′ mod 9, and
z′, γ ′, ε′ ∈ Z3. Following this insight, one can see that the
dynamical gate U generated by the parafermion interaction on
a logical qutrit state can be decomposed as

U = H UDH†, (20)

where U if the gate in Eq. (18), H is the qutrit Hadamard
operator, and UD the diagonal matrix (up to a global phase)
respectively given by the following matrix representations,

H = 1√
3

⎛
⎝1 1 1

1 ω ω̄

1 ω̄ ω

⎞
⎠, UD ∼

⎛
⎝1 0 0

0 1 0
0 0 eiθ

⎞
⎠, (21)

where θ is specified by the interaction strength and duration
in Eq. (18).

Furthermore, it was shown that analogously to the qubit
case, the qutrit T gate is required to be in C (3)

3 /C (2)
3 , i.e.,

belong in the third level of the Clifford hierarchy but not be a
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Clifford gate. For that, one requires that T XT † ∈ C (2), where
X = ∑

j∈Z3
| j + 1 mod 3〉〈 j| is the qutrit Pauli-X operator.

Since we are interested in which gates we can access with U ,
we similarly verify its action on X and find that

UDXU†
D = XM(θ ), (22)

where M(θ ) = diag{1, eiθ , e−iθ }. In particular, M( 2π
3 ) = Z

and M( 2π
9 ) = T , where

Z =
∑
j∈Z3

ω j | j〉〈 j| and T =
∑
j∈Z3

ζ j3 | j〉〈 j| (23)

are matrix representations of the qutrit Z and T (analogous
to a qubit π

8 -phase gate) gates. Hence, for θ = 2π
9 , UD ∈ C (4),

i.e., in the fourth level of the Clifford hierarchy.
In general, for a phase θ = 2π

3m , we can write M in the
following diagonal form [38] where p = 3 is the qudit dimen-
sion:

M

(
2π

3m

)
= Pm(k) =

p∑
j=0,k �= j

| j〉〈 j| + e
2π i
3m |k〉〈k|, (24)

where Pm(k) ∈ Dm,p−1, the set of diagonal qutrit unitaries
defined recursively as

Dm,a = 〈Um,b〉a
b=1 · {eiφ} · Dm−1·p−1, (25)

where Um,b :=
∑
j∈Zp

exp

(
2π i

pm
jb

)
| j〉〈 j|,

and {eiφ} accounts for all global phase shifts. Hence, UD ∈
Dm,2. Cui et al. also showed that for m ∈ N and 1 � a �
p − 1, Dm,a = C ((p−1)(m−1)+a)

d . According to this result Dm,2 =
C(2m)

d , which signifies that for θ = 2π
3m , the corresponding UD

belong to the 2mth levels of the Clifford hierarchy, i.e.,

UD ∈ C (2m), (26)

so that for m � 2, UD is a non-Clifford operator. As stated
in Eq. (20), U is related to UD by a Hadamard operator,
which belongs to C (2). We therefore use Theorem 1 in the
Appendix to show that for θ = 2π

3m ,

U ∈ C (2m). (27)

Setting m = 2 gives rise to the gate U in C (4) directly, from
which implementing the qutrit T gate is done with the combi-
nation T = X †UDXU†

D.
In order to obtain a set dense in SU(d ), one requires at

least one non-Clifford element in the operational gate set as
shown in Ref. [37] for prime d by combining results from
Nebe, Rains, and Sloane [41]. The above illustrates how the
parafermion interaction provides such gates, by choosing a
parametrization which creates a gate from low levels of the
Clifford hierarchy, namely third and fourth. Additionally, we
note that the form of the qutrit T gate arises naturally from the
eigenspectrum of the interaction Hamiltonian in Eq. (16) for
φ̂ = π

4 .

FIG. 5. Magnitude (a) and phase (b) plots for 5000 sampled
states computed by creating random words of length 50 using U and
Clifford operations, and applying them on the initial state |ψ〉 = |0〉.

C. Universality with U
In the following, we consider a generic logical qutrit state

encoded in a set of parafermions, as described in Sec. II C. In
order to study the universality of the parafermion computing
scheme that encompasses parafermion zero-mode braiding
as well as interaction, we created a series of words W :=
U1U2 . . .Un such that Ui is chosen randomly from the set
{X, S, H,U} where the first three elements are Clifford opera-
tors. In this representation S takes the form

S =
⎛
⎝1 0 0

0 ω 0
0 0 1

⎞
⎠, (28)

generalizing the qubit
√

Z , and H is the qutrit Hadamard
defined in Eq. (21). The non-Clifford U of the set is given
by Eq. (18) with θ = 1 for simplicity. We apply words W to
an initial logical qutrit state |ψini〉 = |0〉, and write the final
states |ψfin〉 = W |ψini〉 as |ψfin〉 = α|0〉 + eiδ1β|1〉 + eiδ2γ |2〉,
where α, β, γ ∈ R. We plot the resulting phases (δ1, δ2) and
magnitudes (α, β, γ ) from the final states in Figs. 5(a) and
5(c) by sampling 5000 words of length 50 and applying them
to |ψini〉. The resulting parameter spaces are densely popu-
lated, which indicates the universality of the braiding Clifford
operations supplemented with U .

D. Noncontextual qutrit states using U
With the consideration that the set {X, S, H,U} is dense

in SU(3), and can be used to generate arbitrary elements in
the qutrit-state space using four parafermions, one can char-
acterize such accessible states by their resourcefulness in the
context of magic-state distillation (MSD) protocols. Indeed,
MSD represents a powerful method to distill reliable quantum
states from multiple noisy counterparts, which proves useful
in our context since contrary to the Clifford operations, the dy-
namical gate U is nontopological. Moreover, MSD can also be
used to obtain useful nonstabilizer states granted one accesses
a state in the appropriate distillable region to the former.
In Ref. [42], Veitch et al. showed that all qutrit states with
positive Wigner function are undistillable, and the positive
region was charted out in Ref. [18]. In particular, Howard
et al. argued in Ref. [43] that contextuality supplies the
magic for quantum computation, and introduced the following
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FIG. 6. Magnitude (a) and phase (b) plots of a dense set of 10 000 sampled qutrit states using random words of length 50 composed of the
U and Clifford operations. The color plot indicates the values of M.

contextuality measure

M ≡ max
r

Tr[Arρ]
NCHV
� 0, (29)

where ρ is an arbitrary qutrit state and the Ar are projectors
onto eigenstates of the qutrit stabilizer operators given by
Ax,z = Dx,zA0,0Dx,z†

where x, z ∈ Z3 and A0,0 = 1
3

∑
x,z Dx,z

using Dx,z = ω2xzX xZz, where X and Z are the qutrit Pauli op-
erators. The inequality sets the threshold for a noncontextual
hidden variable (NCHV) model reproducing such quantum
tests. We sampled a large set of qutrit states starting from a
random choice of basis states, and plot the negative Wigner
states, i.e., violating Eq. (29), indicating their contextuality
measure in Fig. 6. In Fig. 6, we see an overlap of points with
different M. This is clearly due to the fact that the phase and
magnitude projections introduced in the figures above do not
constitute a direct map of the state space, though they are
useful to witness the coverage density of the Hilbert space
accessible with our parafermion universal gate set. Indeed, we
use this representation as a witness that our gate set provides
access to a dense set of negative, and therefore potentially
distillable, states. In fact states which considerably violate
Eq. (29) can be obtained from short gate combinations [e.g.,
U (t1)HU (t2)|0〉 given optimal evolution times t1 and t2]. We
note from Fig. 6 that the majority of the 10 000 sample states
created using the full gate set fulfill the condition M < 0.

There exists a class of states which maximally violates
Eq. (29), namely the “strange” states defined by having one
negative Wigner function entry of value −1/3 [44] such as
|Sa〉 = |1〉−|2〉√

2
[45]. These are the eigenstates of the qutrit

Fourier transform, and are located at the midsections between
basis states on the magnitude plot as indicated in Fig. 7, with
M = −0.5. Finding a combination of gates to generate |S〉
exactly is a nontrivial problem. However, we show in Fig. 5
that using U and Clifford gate combinations one can access
states close to the strange states. We indicate in Fig. 7 the
points of maximal M by labels |Sa,b,c〉, and characterize this
using the trace distance, i.e., D = Tr(ρ, σ ) = 1

2 ||ρ − σ ||1,
where ρ and σ are the density matrices of the sampled states

and |Sa,b,c〉, respectively. In Fig. 7 states with Tr(ρ, σ ) < 0.2
are plotted to indicate the regions of interest, and Table I
summarizes the trace distances and M for the three points
closest to the strange states in Fig. 7. We note that both points
admit a close to maximal violation of Eq. (29).

Hence, using the Clifford gates supplemented with U one
can possibly reach states arbitrarily close to the strange states,
allowing for large enough gate sequences, and time evolutions
in Eq. (18). Recent results in Ref. [46] show how one can
distill strange states using an MSD protocol (ternary Golay
code [47]) with particularly high threshold. This showcases
the advantage of accessing such states.

V. QUANTUM SIMULATION WITH RYDBERG ATOMS

Rydberg systems offer an attractive potential candidate for
quantum simulation, since they possess several advantageous
properties [19]. For instance, their strong interactions, long
lifetimes, greater than about 50 μs at room temperature, al-
low high-fidelity state-resolved readout [48,49], high-fidelity
entangling operations with F > 0.991 [48], and high-control
native multiqubit gates [50]. We also possess various ex-
perimental techniques to suppress the error and enhance the
fidelity of Rydberg operation suggested in [48,51]. Rydberg
systems hold great promise for simulating topologically pro-
tected quantum systems. In the light of these facts, Rydberg
atoms offer alternative ways to effectively simulate the Hamil-
tonian as in Eq. (13). In practice, it is preferable to use
ground-state hyperfine levels for the qutrit basis states and
Rydberg states only for entangling operations.

Here, we propose a setting for the quantum simulation of
PEM interaction by engineering the interaction Hamiltonian
in the ground-energy three-dimensional subspace with four
atomic levels coupled by four classical light fields as shown
in Fig. 8(a). In order to use a Rydberg atom to simulate
the Hamiltonian as in Eq. (13), we need a three-dimensional
Rydberg atom which can be realized by many-photon excita-
tions to 3 different Rydberg states, denoted |0〉, |1〉, and |2〉.
In general, this process is not trivial, since some transitions
may be dipole-forbidden due to the selection rule of dipole

023076-7



ASMAE BENHEMOU et al. PHYSICAL REVIEW RESEARCH 5, 023076 (2023)

FIG. 7. Magnitude (a) and phase (b) plots of states close to the strange states |Sa〉, |Sb〉, and |Sc〉, within a trace distance of 0.2. The states
were sampled using random words of length 50 composed of the U and Clifford operations. The color plot indicates the values of M.

interaction. However, this can be overcome by introducing an
intermediate state |3〉, which one can later eliminate by per-
forming an adiabatic elimination [see Fig. 8(a) for the setting].
This experimental technique is analogous to the one used
in stimulated Raman transitions. In the following procedure,
we will first derive the Hamiltonian for a general four-level
system and then perform an adiabatic elimination to the inter-
mediate state |3〉 that could lead to a desired effective three-
level Hamiltonian. We then choose the specific parameters
to imitate the Hamiltonian in Eq. (13). All classical light fields
are monochromatic microwave laser, described by the overall
field

E = ε̂1E1cos(ω1t + φ1) + ε̂2E2cos(ω2t + φ2)

+ ε̂3E3cos(ω3t + φ3) + ε̂4E4cos(ω4t + φ4), (30)

where ε̂α and φα are a unit polarization vector and rel-
ative phase of each field, respectively. The electric fields
can then be decomposed into two exponential terms E =
E (+) + E (−), where E (+) = ∑4

j=1
1
2 ε̂ jE je−i(ω j t+φ j ) is the

positive-rotating component and E (−) = ∑4
j=1

1
2 ε̂ jE jei(ω j t+φ j )

negative-rotating. Additionally, we assume that the wave-
length of the field is much longer than the size of the atom.
Hence, the spatial dependence of the field can be ignored over
the size of the atom as per the dipole approximation.

Since the dipole operator d = −ere is an odd-parity opera-
tor, its diagonal elements vanish, and the (real) dipole matrix

TABLE I. Trace distances D and noncontextuality measure M
of the three sampled states in Fig. 7 closest to |Sa〉, |Sb〉, and |Sc〉.

|Sa〉 |Sb〉 |Sc〉
D 0.059 0.057 0.035
M –0.436 –0.422 –0.469

elements of each coupling pair are given by

d = 〈0|d|1〉(σ1 + σ
†
1 ) + 〈0|d|2〉(σ2 + σ

†
2 )

+ 〈2|d|3〉(σ3 + σ
†
3 ) + 〈0|d|3〉(σ4 + σ

†
4 ), (31)

where σ1 = |0〉〈1|, σ2 = |1〉〈2|, σ3 = |2〉〈3|, and σ4 = |0〉〈3|.
Under free atomic evolution, the expectation values of
σ1,2,3,4 have unperturbed time-dependence terms of e−iω01t ,
e−i(ω02−ω01 )t , e−i(ω03−ω02 )t , e−iω03t which are all positive-
rotating. These terms can be considered as d(+). Similarly,
the expectation values of σ

†
1,2,3,4 have unperturbed time de-

pendence of opposite sign, which therefore can be considered
as d(−), such that the dipole operator can be decomposed
as d = d(+) + d(−). The interaction Hamiltonian caused by
dipole interaction is given by Ĥint = −d · E. After ap-
plying the rotating-wave approximation which focuses on
slow dynamics rather than fast, thereby ignoring interaction
terms d(+) · E (+) and d(−) · E (−), the interaction Hamiltonian

FIG. 8. (a) The four-level atomic system coupled by four
monochromatic classical microwave fields, where we indicate the
respective Rabi frequencies and detunings between our levels by �i

and �i for i ∈ {1, 2, 3, 4}. (b) The additional states |0′〉, |1′〉, and |2′〉
coupled to states |0〉, |1〉, and |2〉 with Rabi frequencies �′

0, �′
1, �′

2

and detunings �′
0, �′

1, �′
2, respectively. These additional couplings

are to induce the light shifts that could compensate out the diagonal
terms.
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becomes

Ĥint = − (d(+) · E (−) + d(−) · E (+) )

=�1

2
(σ1ei(ω1t+φ1 ) + σ

†
1 e−i(ω1t+φ1 ) )

+ �2

2
(σ2ei(ω2t+φ2 ) + σ

†
2 e−i(ω2t+φ2 ) )

+ �3

2
(σ3ei(ω3t+φ3 ) + σ

†
3 e−i(ω3t+φ3 ) )

+ �4

2
(σ4ei(ω4t+φ4 ) + σ

†
4 e−i(ω4t+φ4 ) ), (32)

where the Rabi frequencies for each coupling pair
are �1 = −〈0|ε̂1 · d|1〉E1, �2 = −〈1|ε̂2 · d|2〉E2, �3 =
−〈0|ε̂3 · d|3〉E3, and �4 = −〈0|ε̂4 · d|3〉E4. The free atomic

Hamiltonian is defined as

ĤA = ω01|1〉〈1| + ω02|2〉〈2| + ω03|3〉〈3|, (33)

where |0〉 denotes the zero-energy ground state. The evolu-
tion of the system is calculated by solving the Schrödinger
equation i∂t |ψ̃〉 = (ĤA + Ĥint )|ψ̃〉. The state |ψ̃〉 is defined
as the quantum state in the rotating frame. In this frame, we
assume that the state |3〉 maintains the same velocity of its
dynamics in the original frame, while other states are sped
up with different velocities such that |ψ̃〉 = c̃0|0〉 + c̃1|1〉 +
c̃2|2〉 + c3|3〉 where c̃0 = e−i(ω1+ω2+ω3 )t c0, c̃1 = e−i(ω2+ω3 )t c1,
and c̃2 = e−iω3t c2. The multiplied exponential factors are in-
serted to fasten the dynamics of states |0〉, |1〉, and |2〉. It
can be shown that the resulting Hamiltonian under which
the state |ψ̃〉 evolves is explicitly time-independent when the
condition �4 = �1 + �2 + �3 is satisfied, also known as
the four-photon resonance condition. The time-independent
Schrödinger equation is given by

i∂t

⎛
⎜⎜⎝

c̃0

c̃1

c̃2

c3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−(�1 + �2 + �3) �1
2 eiφ1 0 �4

2 eiφ4

�1
2 e−iφ1 −(�2 + �3) �2

2 eiφ2 0

0 �2
2 e−iφ2 −�3

�3
2 eiφ3

�4
2 e−iφ4 0 �3

2 e−iφ3 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

c̃0

c̃1

c̃2

c3

⎞
⎟⎟⎠, (34)

where for convenience the energy reference is adjusted such
that the state |3〉 is the zero-energy level.

Since the ground subspace of the parafermion chain is
three-dimensional, we will perform an adiabatic elimination
to the system’s equations of motion in Eq. (34), which yields
the effective three-level Hamiltonian that can simulate the
three-dimensional subspace. First, we multiply the overall
phase factor ei�t to the system’s four-state vector to shift all
the energy level by �. This has no physical impact on quan-
tum state since their relative phases do not change. However,
to satisfy the condition of an adiabatic elimination, the �,
which is the fast-oscillation term of c3 from the Schrödinger
equation, needs to be much larger compared to other oscil-
lation terms for c̃0, c̃1, and c̃2, i.e., |�| � |� − �3|, |� −
(�2 + �3)|, |� − (�1 + �2 + �3)|. The last three terms
here are respectively the oscillation terms for c̃2, c̃1, and
c̃0 after multiplying ei�t . To make sure that the state |3〉
is never populated, the conditions �3 � �3 and �4 � �4

are required. Besides, the condition |�3,4| � �, where � is
natural decay rate of the state |3〉, is also needed to make
sure that the spontaneous emission can be negligible. For
convenience, we can set � = �3 = �4, and the overall con-
straints on � by the above conditions due to an adiabatic
elimination are (1) |�| � |�1| + |�2|, (2) |�| � |�3,4|, (3)
|�| � �. Considering the equation of motion for c3, when �

is satisfied for all the above conditions, it is obvious that c3

carries the fast oscillation at frequencies of order |�| � � so
that c3 is damped by coupling to the vacuum on timescales of
1/�. Here, we only consider the motions on timescales slow
compared to 1/�, i.e., c̃2, c̃1, and c̃0, and thus can make the
approximation that c3 damps to equilibrium instantaneously,
i.e., ∂t c3 = 0. Therefore, we can obtain the substitution for c3

by c̃0, c̃1, c̃2 from the last equation of Eq. (34) such that c3 =
−( �4

2�
e−iφ4 c̃0 + �3

2�
e−iφ3 c̃2). Substituting this into the equa-

tion for c̃0, c̃1, c̃2 in Eq. (34), we finally obtain the effective
three-level Hamiltonian in which the state |3〉 is eliminated,

i∂t

⎛
⎝c̃0

c̃1

c̃2

⎞
⎠ =

⎛
⎜⎜⎜⎝

−(
�1 + �2 + �3 + �2

4
4�

)
�1
2 eiφ1 −�4�3

4�
ei(φ4−φ3 )

�1
2 e−iφ1 −(�2 + �3) �2

2 eiφ2

−�4�3
4�

e−i(φ4−φ3 ) �2
2 e−iφ2 −(

�3 + �2
3

4�

)

⎞
⎟⎟⎟⎠

⎛
⎝c̃0

c̃1

c̃2

⎞
⎠. (35)

Since the states |0〉 and |2〉 initially interact directly with
the state |3〉, the adiabatic elimination of the state |3〉 gives
rise to an effective Rabi coupling between the states |0〉 and
|2〉, which is �R = −�4�3

2�
ei(φ4−φ3 ). Additionally, the energy

terms are also shifted due to AC Stark shifts, amounting to
�2

4/(4�) and �2
3/(4�) for the states |0〉 and |2〉, respectively.

In order to recover the parafermion interaction Hamiltonian
given in Eq. (13), we first need all the diagonal terms to
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be zero. This can be realized by coupling the states |0〉,
|1〉 and |2〉 to complemented states |0′〉, |1′〉, and |2′〉,
respectively, as shown in Fig. 8(b). This is to allow the
additional light shifts, i.e., �′2

0 /4�′
0, �′2

1 /4�′
1, and �′2

2 /4�′
2,

for each diagonal term to be canceled. Experimentally, one
can choose the complemented states and parameters such that
the diagonal terms disappear. Additionally, the nondiagonal
terms can also be set to simulate the Hamiltonian as in
Eq. (13) by choosing the states and parameters such that
|�1| = |�3�4

2�
| = |�2| = g, and relative phases of the laser

fields following φ1 = φ2 = −(φ4 − φ3) = 2π
3 , where g is a

controllable factor depending on laser detuning.
By fixing the external field parameters according to these

identities, we can implement the braiding of parafermions, by
realizing a Berry phase evolution on states |2〉 and |3〉. This
entails turning on solely the interaction between the latter
states, and allowing for an adiabatic evolution in order for
a geometric phase to accumulate, as described in Ref. [52],
where it was shown that the adiabatic evolution of a two-level
model in the presence of an external classical electric field
yields the Berry phase,

γl = l

2

∮ T

0
dt

|D(t )|2
Fl (t )

φ̇3(t ), (36)

where l indicates the instantaneous eigenstates of the
model, D(t ) = 〈2|d|3〉 · ε̂3E3(t ), Fl (t ) = ( ω23

2 )2 + |D(t )|2 −
l · ( ω23

2 )
√

( ω23
2 )2 + |D(t )|2, and φ3(t ) is the time-dependent

relative phase of the coupling laser between states |2〉 and
|3〉. While dynamical phases arise in this procedure, leading
to unwanted dephasing in the time evolution, these can be
closely monitored and compensated for. Indeed, to cancel out
the dynamical phase accumulated in the adiabatic evolution,
the other coupling channels are turned on, as shown in Fig. 8.
This allows us to apply adiabatic elimination to state |3〉,
which yields the additional AC Stark shift to state |2〉 that de-
structively compensates for the unwanted dephasing, leaving
only the geometric phase. This corresponds to the Berry phase
required to simulate the braiding of parafermions as derived in
Eq. (A6) in Ref. [12].

VI. DISCUSSION

Motivated by the use of direct short-range interaction be-
tween Majorana quasiparticles to achieve the π

8 -phase gate on
a topologically encoded qubit [17], we investigated a similar
prescription in the case of Z3 parafermions. We studied the
interaction between the edge modes of a parafermion chain
using exact perturbation for low orders, in order to find its
effect on the degenerate ground space of the system, which
is used to encode one qutrit. We find that allowing the edge
modes a degree of delocalization facilitates the generation of
a nontopological dynamical gate. In particular, the structure of
this gate can directly be exploited to realize interesting non-
Clifford operations such as the qutrit equivalent of the (qubit)
π
8 -phase gate (provided access to extra Clifford operations), as
well as unitaries in higher levels of the Clifford hierarchy. This
is a crucial complement to the topological operations since
the addition of any non-Clifford gate to the Clifford group
generates a set of unitaries that is dense in SU(d ) [37]. We

illustrated this universality by sampling states obtained with
Clifford operations (as provided by braiding parafermions
[12]), complemented with the dynamical non-Clifford gate U ,
visualized using two parameter spaces which we defined to
characterize qutrit states. While such representations served
their purpose within our study, we refer the reader to the recent
Ref. [53] by Eltschka et al. for a three-dimensional model of
the qutrit-state space that captures its prominent and essential
geometric features. We additionally adopted recent results on
the universality of one-qudit gates [54] in order to test our
gate set supplemented with the nontopological U with success,
which was completed as a sanity check and left outside the
scope of our presented results.

The non-Clifford gate accessible through PEM interac-
tion is not topologically protected. However, fault tolerance
can be reinstated using stabilizer operations in a magic-state
distillation protocol [17,18,37]. Contextuality represents a
critical resource for MSD and can be characterized by a state-
independent measure M [43]. Using this result we showed
that our gate set provides noncontextual states under stabilizer
measurements, which can be exploited in appropriate distilla-
tion routines. While we studied the Z3 case for convenience,
one could generalize the above analysis to Zd parafermion
edge-mode interaction, particularly for prime odd d as the
emergent gates are of interest in the context of quantum in-
formation processing.

Finally, we showed how the two-parafermion (edge-mode)
interaction and braiding can be simulated using a four-level
Rydberg system, offering an experimental setting for prob-
ing simulated topological qudits. Alternatively, it has been
suggested to use ultracold molecules to realize qudits with dif-
ferent four vibrational levels as shown in [55] which benefits
from its longer coherence time [56]. However, the strength
of dipole-dipole interactions between molecules remains less
significant than in the case of Rydberg atoms, making them
more favorable to implement a qutrit. Finally, it is worth
mentioning that quantum simulations with qutrits might yield
a novel tool for studying quantum many-body physics such
as quantum phase transitions and out-of-equilibrium phenom-
ena. It is of interest that the Hamiltonian of many qutrit
systems with dipole-dipole interactions can show quantum
phase transitions or topological effects which might yield
exotic results in condensed matter physics. As an example,
in recent work from Blok et al. [57] quantum information
scrambling was witnessed on a superconducting processor
which can provide insight into quantum chaos and black hole
dynamics.
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APPENDIX: THE GATE U IN THE CLIFFORD
HIERARCHY

Theorem 1. Let U = HV H† where H ∈ C (2), V ∈ C (n), and
C (k) is kth level of the Clifford hierarchy, U ∈ C (n).

In order to prove this succinctly we define Lemma 1 below
which follows from Eq. (8) along with the observation that
H3 = H†.

Lemma 1. Let U ∈ C (k) and P ∈ C (1),

(HUH†)P(HU †H†) = HŨH†, (A1)

where Ũ ∈ C (k−1).
Proof of Theorem 1. Let V ∈ C (n) and P be an arbitrary

Pauli operator such that V PV † ∈ C (n−1). We define the unitary
operator U = HV H†. Using Lemma 1 the following ensues,

UPU † ∼ Hβn−1H†, (A2)

where βi is a unitary operator in the ith level of the Clifford
hierarchy, i.e., βi ∈ C (i). The case for n = 2 is straightforward
as V PV † ∈ C (1), from which we obtain

(HV H†)P(HV †H†) ∈ C (1). (A3)

For general n � 3, one can start from Eq. (A2) and again act
on an arbitrary Pauli operator with Hβn−1H† to find that

(Hβn−1H†)P(Hβ
†
n−1H†) ∼ Hβn−2H†, (A4)

where P ∈ C (1). One can iterate this procedure m times such
that for m = 0,

(HβnH†)P(Hβ†
n H†) ∼ Hβn−1H†, (A5)

and subsequently for general m,

(Hβn−mH†)P(Hβ
†
n−mH†) ∼ Hβn−m−1H†. (A6)

Finally, when m = n − 3,

(Hβ3H†)P(Hβ
†
3 H†) ∼ Hβ2H†, (A7)

where one identifies Hβ2H† ∈ C (2). Using Eq. (A5) recur-
sively, it is then straightforward to show that HβnH† ∈ C (n),
and therefore U ∈ C (n).
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