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Abstract 

Predicting friction at the wheel rail interface is a key problem in the rail industry. Current forecasts give regional 
level predictions, however, it is well known that friction conditions can change dramatically over a few hundred 
metres. In this study we aimed to produce a proof-of-concept friction prediction tool which could be used on trains 
to give an indication of the limiting friction present at a precise location. To this end field data including 
temperature, humidity, friction and images were collected. These were used to fit a statistical model including 
effects of local environmental conditions, surroundings and railhead state. The model predicted the friction well 
with an R2 of 0.97, falling to 0.96 for naive models in cross validation. With images and environmental data 
collected on a train a real time friction measurement would be possible. 

Keywords: low-adhesion, wheel-rail interface, friction prediction, machine learning 

1. Introduction 
Rail travel is the most fuel and carbon efficient mode of transport and is a critical part of the strategy to achieve 
net zero carbon emissions in Europe [1]. A large barrier to its wider adoption is delays and seasonal restrictions 
caused by low adhesion conditions. It is estimated that these problems cost the rail industry £350 million each 
year [2]. In addition, delays, largely caused by low adhesion, are the highest cause of customer dissatisfaction 
with rail services [3].   
 
Understanding the wheel rail contact is central to fixing this and many other problems, as such it has been 
modelled by many techniques. Models of tractive forces largely fall into three categories. Models which are used 
as inputs to multi body dynamics systems, such as FASTSIM [4,5,6] or Kalker's seminal CONTACT model for 
dry contact [7,8], typically assume the contact has a known friction coefficient or friction coefficient function. 
These models link the overall traction forces to the creep state of the wheel/rail interface, while resolving the 
contact patch into zones of stick and slip. The Extended Creep Force (ECF) model [9] represents an extension of 
these by assuming all slip is accommodated by a third body layer, however the properties of this layer cannot be 
directly measured and must be fitted from experimental data. 
 
Other models, such as WILAC and LILAC [10,11], look at the effect of single contaminants or pairs of 
contaminants on the friction in the contact. These models are typically fitted to or presented with experimental 
data from test machines, which limit the creep state of the contact to one dimensional creep in the rolling direction 
and the contact patch to a single size and shape. These models may be analytical/numerical, treating the 
contamination in question as a lubricant with measurable properties, or statistical where the effect of the 
contamination or treatment is inferred from the model parameters. As the number of experiments needed to 
validate these models increases exponentially with the number of parameters investigated, these models are 
typically restricted to one or two contaminants and a range of creep values or speeds. 
 
Lastly, forecasting models have been made which aim to predict the likelihood of real world events from weather 
data. Again these can be either purely statistical by fitting a model to past events and past weather data or analytical 
by, for example, predicting leaf fall and wind throw as a proxy measure for leaf contamination which is typically 
not directly measured or recorded in the real world. In the UK these models are produced by the Met Office [12] 
and others and they are used both to inform timetabling decisions and rail cleaning. 
 
Though many models have been created, there remains an important gap in this spectrum. The “real world” 
traction value experienced by a train varies strongly with location, weather, contamination, train weight, and creep 
state. Clearly this value cannot be forecast effectively at a regional level, and it is not possible to measure the 
railhead state with the precision required for an analytical model, however all the necessary information is, in 
theory, present on the track or in the surroundings.  
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Machine learning models have gained enormous popularity in recent years for regression or classification 
problems on complex data. Convolutional neural networks (CNNs) have been used successfully in many image 
processing tasks and commonly outperform traditional image analysis and humans. Companies like Keen AI 
currently use sideways facing cameras mounted on rolling stock to collect and analyse images of the vegetation 
around the track, this images help identify intrusive plant species and vegetation, ultimately improving vegetation 
management for Network Rail [13]. One Big Circle have developed a system (Automated Intelligent Video 
Review, AIVR) to assist Network Rail in vegetation management and remote rail condition monitoring using 
videos collected on board a train analysed by AI packages [14]. In tribology, machine learning models have been 
used to predict friction in a variety of situations including effects from environmental and contact parameters [15]. 
 
In this proof-of-concept study, we aimed to produce a statistical model of the friction at this interface based on 
real world data. We have simplified the system by leaving out the creep state, wheel/rail relative positioning, and 
train specific parameters, instead using a tribometer to gather data from the running band. We included railhead 
and surroundings state information through easily collected images. This is combined with local meteorological 
sensor data (temperature and humidity). The model is validated by cross validation on the initial data set and 
through collection of a further validation set. A flow chart of the processes involved in building the prediction is 
shown in Figure 1. 
 

 
Figure 1: Machine learning friction prediction tool process 

 
2. Background 

2.1 Convoluted Neural Networks (CNNs) 
In order to establish a relationship between non-linearly related parameters such as friction, relative humidity and 
temperature with non-mathematical parameters in this case images, an appropriate statistical model has to be 
chosen. Statistical models relate a set of independent parameters to one or several dependent variables. For any 
statistical model the complexity of the model and dimensionality of the input space need to be balanced by the 
amount of data available for training [16]. More complex models, or models of high dimensional data require 
more training data. The most appropriate type of model will depend on the complexity of the relations present, 
how much data is available and what other information is required with the prediction. 
 
For image processing tasks, the dimensionality of the input is extremely large, for example, a one mega-pixel 
image with three colour channels requires a vector with three million dimensions to uniquely represent an input. 
In addition, the relations between individual pixel values and dependent variables of interest are often extremely 
complex, meaning that models need to be flexible, with many trainable parameters, to achieve good accuracy. 
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For these tasks CNNs are typically used, these leverage the structure of image data by filtering the input image, 
first producing maps of primitive features such as edges, then progressively higher order features such as simple 
shapes or objects. The result of this filtering is then fed into a further `fully connected' network which is used to 
classify the input image. The network is trained by automatically adjusting the filter values and the weights in the 
fully connected network based on their derivative of the error, which can be found using the chain rule of calculus 
[17]. 
 
As the number of parameters in the filter kernels is high and many are needed to represent complex shapes, this 
process requires an enormous amount of data to avoid spurious correlations. This data requirement is a direct 
result of the high input dimensionality and the complexity of model, not a specific feature of neural networks. The 
resulting model consists of two distinct parts: a filtering network which takes an input image and produces 
“ratings” for each of a set of high level features and a fully connected network which links these features to image 
classes or other variables of interest.  
 
2.2 Friction measuring approaches 
Out of the various methods for taking friction measurements on the railhead, 3 methods were compared looking 
at their disadvantages and advantages based on their suitability for being used in the field. The outcomes are 
shown in Table 1. Folorunso et al. have extensively discussed different methods of friction measurements and 
describe the methods described in Table 1 in more detail and more analysis was done using the data collected 
(discuss further in this paper) to understand the environmental influences (such as relative humidity and railhead 
temperature) on railhead friction [18]. 
 
Table 1: Methods of measuring friction in the field [18] 

S/N METHOD DISADVANTAGES ADAVANTAGES 
1 Tribometer Train (Vehicle-

borne Tribometer) 
It has been decommissioned. 
It is difficult to transport on-time 
due to its size and it requires a train 
path. 
 

It gives a real representation of the 
wheel/rail interface as it is a full-
scale rig using the same wheel 
load experienced in the 
wheel/contact hence scaling 
effects are not present. 
It gives actual representation of 
environmental and weather data. 

2 Pendulum Tribometer The contact pad material is made 
of rubber which is different from 
the materials of the wheel/rail 
interface. 
Scaling effects are present here 
because of the small contact area. 
The skid resistance is measured by 
the pendulum instead of the 
rolling/sliding peak of adhesion 
levels.  

It is a portable, relatively easy to 
operate and is accessible. 
It functions as an on-track and in-
lab measuring method. 
For a range of contaminants, it 
provides a notable resolution 
between the values for skid 
resistance. 

3 Hand Pushed Tribometer Scaling effects are present due to 
the size of the contact area.  
Its operation is at walking pace, 
hence low speed. 
It only measures the friction at slip 
of the worst point, therefore cannot 
be used for measuring all points on 
the track. 

It is portable, easy to use and 
accessible. 
It can measure different positions 
across the railhead because the 
measurement wheel can be 
adjusted. 
The measurement process per 
spot is fast, because it takes 
approximately 15 to 25 seconds to 
record one adhesion level 
measurement. 

 
The pendulum tribometer was selected as the friction measurement method for this project because it is easily 
accessible, portable and simple to use. The numerical values obtained from the pendulum’s have been correlated 
to the British Railway Research tribometer train [19]. The linear correlation has a R2 value of approximately 0.93 
shown in Figure 2, meaning there was a good linear relationship between the friction values of the pendulum 
tribometer and the British Railway Research tribometer train at the conditions tested. Although the apparatus has 
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a smaller contact area compared to the actual wheel/rail contact area, the correlation discussed above implies the 
pendulum tribometer produce similar relative results to established friction measurement methods  

 

 
 
Figure 2: Pendulum to BR Research Tribometer train friction value conversion graph [19] 

 
3. Data collection methodology 

Data were collected throughout the Autumn period of 2019 and 2020 in a variety of locations and conditions. It 
was important to collect a complete dataset at each measurement location to build the model with all inputs. Data 
collected included photos, air temperature, humidity, and railhead temperature. In addition, a measurement of 
friction was collected, to train the model. 
 
Data were collected at sites in the UK. Three heritage lines were used due to their ease of access, these were 
Ecclesbourne Valley Railway (Wirksworth, Shottle and Idridgehay stations), Midland Railway (Butterley and 
Swanwick stations), and Peak Rail (Matlock and Darley Dale stations) all located in Derbyshire, UK. As these 
were Heritage lines which are mainly run as tourist attractions mostly during holidays. Trains are driven over the 
tracks sparingly. 
 
Tests which were done during Autumn 2019 were on run-in and ‘shiny’ railheads (which are representative of 
clean rail), as would be typical. Whilst those performed in Autumn 2020 were on a more oxidised railhead as 
fewer trains were running due to the COVID-19 pandemic. 
 
3.1 Friction measurements and methodology 

The methodology established by Folorunso et al. was used in this work, and described briefly here. For a complete 
description refer to [18]. Friction measurements were taken by a pendulum tribometer. This apparatus, shown in 
Figure 3, swings a rubber pad against the rail. The distance which the pendulum travels after the contact is used 
to gauge the `skid resistance’ of the contact [20,21]. The skid resistance value was converted using the BR train 
conversion factor to give a coefficient of friction value. The apparatus must be set-up in the same position relative 
to the rail for every measurement and have the same pad/rail contact length. 
 
At track access points, measurements were spaced approximately 10m apart. In total data were collected from 
over 300 points.  
 
The pendulum was used in accordance with the guidance provided by GM/GN2642 and is outlined below:  

 The pendulum tribometer was visually inspected for damages and contaminants from previous tests 
on the contact pad before assembly. 
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 After inspection of the apparatus, it was set-up on the section of the rail chosen for measurement. 
 An Infra-Red thermometer was used to record the temperatures and relative humidity. 
 The pendulum tribometer was mounted on a wooden support (seen in Figure 3) to balance the 

tribometer on the railhead and it was set level using the three adjustable levelling screws (confirmed 
via a spirit level). 

 The fittings of each part of the pendulum tribometer were checked by swinging the pendulum swing 
arm for any loose fits, or potential damages. 

 The pendulum swing arm head was clamped securely in the spring-loaded release mechanism and 
the GoPro camera was clamped on the pendulum frame to take the railhead image.  

 The GoPro camera was detached from the pendulum frame in preparation for the start of 
measurements, to prevent obstruction of the pendulum swing arm movement. 

 The rubber slider was checked for damage, the energy loss scale was set zero and the contact length 
between the rubber pad and the railhead was set to approximately 127mm [19]. 

 
Figure 3: Pendulum tribometer measurement of friction [18] 

3.2 Image and Environmental data collection  
Other data collected at the same time as the friction values included environmental conditions (briefly highlighted 
in the pendulum usage procedures section 3.1): railhead temperature, air temperature, relative humidity and 
dewpoint temperature were measured with an infrared thermometer. Railhead contamination thickness was taken 
using a low-cost paint thickness gauge.  
 
Railhead photos were taken (Figure 4), using a ‘Go-Pro Hero 4’ camera, from a consistent height and position by 
mounting the camera on the pendulum rig. Full images were 12 megapixels, however, only a 750 by 500 pixel 
region of interest was used for processing. 

  
Figure 4: Samples of the Railhead images captured using a GoPro camera 

Forward-facing images were also collected from the measurement sites. The forward-facing photos are similar to 
the image shown in Figure 5. A resolution of 343 by 609 or higher is required. At a higher rail industry readiness 
level these would be collected with a camera mounted on the front of the vehicle. As the forward-facing image is 
intended to encode only the location information, and not as an indication of weather, they were not taken for each 
individual measurement. This image will give information on the nature of the track surroundings and how close 
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vegetation is. 
 
4. Image processing 
Image processing was carried out to reduce the images to a few features that are relevant for friction estimation. 
Different techniques were used for the forward facing images and the railhead images due to the different amounts 
of data available. 

4.1 Forward facing images 
Forward facing images were collected from the test sites alongside the friction data. These images are complex, 
containing many different objects and situations. As such traditional image processing would be impossible and 
manual labelling would be too time consuming to scale to a full network system. Neural networks offer an 
attractive solution, but the small number of images makes directly training a network impossible. Instead, these 
images were augmented with a large set (~20,000) of visually similar forward facing images scraped from various 
UK sources on the internet. The resulting set provides a representative sample of images from UK networks and 
can be used to train a dimensionality reduction model which retains relevant distinguishing information from the 
images, while discarding information common to all images. 
 
An example image from the augmented set is shown in Figure 5. Many parts of these images are common for 
every image, these areas are removed by cropping the image into two sub-images as shown. The sub images were 
then resized to the correct input size for a pre-trained CNN.  
 

 
Figure 5: An example forward facing image showing the sub images extracted for further analysis, image created 
by author 

These sub-images are passed through a CNN that has previously been trained on a large, labelled data set. In this 
study MobileNet V2 was used as it is suitable for high speed use on low cost devices. This network reduces the 
dimensionality of the data from millions of brightness values to a 2048 element feature vector. The feature vector 
consists of features which have been trained to be useful for common image classification tasks. These are high 
level features, many of which relate to familiar concepts (e.g. a human face). 
 
Within this vector many features are irrelevant for our task or strongly correlated to each other. To further reduce 
the dimensionality, a Principal Components Analysis (PCA) was carried out on the feature vectors. This finds 
orthogonal, linear combinations of parameters which contain the most variation for the data presented [22]. 
Examples from the extremes of the first three principal components are shown in Figure 6. The values for the first 
600 principal components were retained, these contained 90% of the total variation in the image data. These 
components are high level, abstract representations of the data and are unlikely to be summarised well by a 
description. 
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Figure 6: Images from the extremes of the first three principal components for the data set. Each pair of rows 
represents a principal component, image created by author 

With this lower dimensionality and a large number of images, an unsupervised classification tool can be used. 
This splits the data into groups which are similar to each other. There are many methods of completing this task, 
here we have used a self-organising map (a type of neural network). The results of this classification are shown 
in Figure 7. 
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Figure 7: Examples of the different groups of images found by the unsupervised learning technique. Columns are 
separate groups: grassland, trees, rural, urban, image created by author 

The result of this process is a pair of coordinates, which place a railhead image on the map. The groups presented 
in this map have been made from a representative sample of forward-facing images. 
 
4.2 Railhead images 
Railhead images (see Table 2 showing samples of images collected to give an indication of the railhead images 
seen) were collected along with associated environmental and friction data. Unlike the forward-facing images 
there is no large source of representative railhead images. In addition, pre-trained networks are typically trained 
on images which are very different from the railhead images and are unlikely to be useful. However, the 
dimensionality of the images must still be reduced before the images can be used (see Figure 8). To achieve this, 
features were extracted from the images using traditional image processing techniques. Examples of the traditional 
image processing techniques and tool kit used include, but are not limited to an Edge detector for identifying the 
boundaries of the railhead in the image, Numpy for indexing operations to modify the pixel values of the image 
and SciKit-image that works alongside Numpy which was used for feature extractions [23]. 
 

 
Figure 8: Railhead Image before (left) and after (right) dimensionality reduction 

Before feature extraction, the images were normalised and the rail was located in the image, the rail was then 
cropped out for further processing. The features were chosen as features likely to be correlated with the friction 
present. These were: the number of black pixels in the image, the number of orange pixels in the image, the 
average colour of the railhead and the sum of the first derivatives in the along-rail and across-rail directions. The 
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first derivatives are higher when many strong edges are present, such as when the rail is rough. These features 
could then be used directly in the prediction tool. 
 
Table 2: Example of images collected under different conditions, classified under dry and wet 

DRY CONDITIONS WET CONDITIONS  

  

  

 
 

 
 

 
5. Regression model  
The forward-facing image map positions, railhead image features and sensor measurements were combined in a 
model to predict the railhead friction. A Gaussian process regression model was selected as it is flexible enough 
to accurately capture the relations which are likely to be present, and data efficient enough to be fitted well using 
a data set of this size. In addition, these models also provide an estimate of the error of the prediction given [24]. 
This mitigates the risk of incorrect estimation/prediction in new scenarios. Before fitting, all data have been 
linearly scaled to a unit scale, meaning that the highest value is scaled to 1 and the lowest value is scaled to 0. 
 
The Gaussian process is defined by a kernel function. This encodes the joint variability of the models parameters. 
This can be used to set prior information about how the data relate to each other, how much noise is present in the 
data and any underlying structure. The model consists of a summation of a constant kernel, a white noise kernel 
and a non-linear kernel. Multiple non-linear kernels were fitted and the one producing the highest marginal 
likelihood (rational quadratic) was chosen. The constant kernel is set to 0.5 while the further hyper-parameters of 
the model are set by optimisation during the fitting process. The optimisation aimed to achieve the maximum log 
marginal likelihood for the data given the model and a Gaussian error function. 
 
6. Results 
The fit achieved with the data is shown in Figure 9. The overall log likelihood of the model is 176.5 and the R2 
value for the model, with this data is 0.97. In order to validate the system, data were left out of the fitting process 
and the prediction of the naïve model compared to the actual value at the left-out points. The first step in the 
validation process was to leave a single point of data out at a time. The prediction of the naïve model at the left-
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out point can both be compared to the true value at that point as shown in Figure 10A and the prediction of the 
full model as shown on in Figure 10B. 
 

 
Figure 9: Model predictions compared to the actual value at each point, points are coloured by their leverage. 
Data on both axes are normalised to a 0-1 scale.  

These results show naïve models are still able to explain 96% of the variation in the data (coefficient of 
determination = 0.96). Additionally, the average change in prediction between the full model and the naïve models 
is only 3% of the measurement range. This shows that, in general, the model is not over-fitted to the data, and that 
trends fitted by the model are likely to be real. 
 

 
Figure 10: Results of the leave one out validation (A) and a comparison of the full model to the naïve model for 
each point (B), with a histogram of the change between the naïve and full models. Data on both axes are 
normalised to a 0-1 scale. 

This process was extended to leaving groups of twelve points out. The models fitted leaving groups of twelve 
points out are compared to the true value at the left-out points in Figure 11A, this plot is for one set of groups 
which include the whole data set. These values are again compared to the result from the full model in Figure 
11B. This process has been repeated for all possible groups of twelve points. 
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Figure 11: Results of the leave groups out validation for one set of groups (A) and a comparison of the full model 
to naïve models for each group (B). Data on both axes are normalised to a 0-1 scale. 

As above for the leave one out validation, the mean change in prediction between the full model and the naive 
models was only 3% of the measurement range. The mean coefficient of determination for the left-out points was 
0.96. 
 
While it is clear from Figure 9 and Figure 10A that several points are over leveraged, and not predicted well when 
left out, the majority of the points are not. In collecting these data, we have aimed to collect from locations and in 
conditions likely to cause low adhesion, as such much of the data are from low adhesion conditions and are well 
predicted when left out of the fitting process. 
 
5. Discussion 

This project has shown that it is possible to accurately predict the friction conditions on the rail using low-cost 
sensor data and images of the railhead and surroundings. The overall coefficient of determination of the model 
was 0.97. This is in line with or better than many machine learning models which have been applied to other 
tribology systems, despite the complexity of the wheel rail system [25,26]. 
 
At its current state, the tool has some limitations which restricts its use in its current form. Firstly, and most 
importantly, the friction value which is predicted is the friction measured by a pendulum tribometer. Previous 
field results have shown that the readings of this tribometer are correlated with the adhesion a wheel would 
experience on the same track, however, as with all friction measurement devices, they give slightly different 
results for tests carried out on the same section of rail. This happens due to the different operating mechanisms of 
each device, geometry and material of contacting parts (with the railhead), contact forces etc. therefore the 
pendulum results alone could be correlated directly with wheel/rail friction, but the BR Research conversion gives 
more confidence as this involved a full-scale and actual measurement of wheel/rail interface friction. With the use 
of the BR Research conversion the tool is expected to predict friction results representative of the wheel/rail 
friction values. 
 
Extra care must be taken when using the measuring apparatus, because residue on the rubber contact pad, or 
improper placement of support platform, can cause false friction readings to occur. Ultimately leading to training 
the prediction tool on wrong information 
 
Secondly, in its current state much of the image processing is not optimal, features extracted from CNNs are 
optimised for the tasks which the CNNs were originally trained for. Many of these will relate to faces or other 
features we do not expect to see in a lineside context. This is reflected in the PCA being able to effectively remove 
hundreds of these features with little loss in variation of the data set. Likewise, the groups from the self-organising 
map are selected only to keep variation in the images. With a large amount of data these processes could be 
optimised for friction estimation as could the image processing of the railhead images. 
 
The issues discussed above highlight the need for large sets of friction data from on train data recorders. To be 
useful in a statistical model these data must additionally tie the friction values to other factors, raw friction values 
with only a time stamp are not usable except to be tied to historical weather forecasts, which would limit 
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predictions to a regional level. However, there are substantial difficulties in collecting such data, due to safety 
considerations when attaching electrical equipment to in-service trains. Additionally, the type of data which is 
needed is not simple to collect and not collected by default. These problems lead to a disconnect between the 
quality and content of data collected by train operators and the needs of modellers. 
 
Work is underway, testing the image sensitivity of the model. This will inform us of the robustness of the 
prediction tool’s image processing capability, highlighting areas of weaknesses such as image resolution, lighting 
conditions and focus distance that may need further attention. The model is also undergoing continuous retraining 
with new data sets to optimise the railhead image processing for the friction estimation. 
 
Next steps in this work involves: 

 Additional model-training from a diverse range of locations to increase the spectrum of data the tool is 
trained with, therefore increasing scenarios for accurate prediction 

 Developing and testing an image capturing system with sensors, that can be placed on-board a train  
 Collection of railhead and forward facing images (using the system developed) on board a moving train 

with corresponding friction measurements. This will be a step moving towards a fully implemented train-
borne system. 

 
6. Conclusions 

In conclusion, we have shown that: 
● Friction conditions on the rail can be estimated/predicted from images of the surroundings, images of the 

railhead and some easily obtained sensor data. However, progressing the system described above to a 
real-world context primarily requires further data gathering from the real-world. 

● Retraining the tool with specific data to an environment is possible and straightforward with python and 
basic ML knowledge. 

● The R2 value for the prediction model was 0.97 showing the precision at the moment is very good and 
the naïve model’s R2 value was 0.96. Although the R2 value is likely to change with increased training, 
the precision of a neural network is not fully measured by it. 

● The use of a Gaussian process (GP) is applicable in the analysis of non-mathematical relations such as 
images characteristics, conditional statements and established non-linear relationship used in friction, 
railhead and air temperature. The GP model has aided the establishment of a link between the properties 
and made prediction possible. 
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