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Product cones in dense pairs
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Let M = 〈M,<, +, . . . 〉 be an o-minimal expansion of an ordered group, and P ⊆ M a dense set such that
certain tameness conditions hold. We introduce the notion of a product cone in M̃ = 〈M,P〉, and prove: if M
expands a real closed field, then M̃ admits a product cone decomposition. If M is linear, then it does not. In
particular, we settle a question from [10].

© 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH.

1 Introduction

Tame expansions M̃ = 〈M,P〉 of an o-minimal structure M by a set P ⊆ M have received lots of attention in
recent literature (cf. [1–4, 6, 7, 12, 14]). One important category is when every definable open set is already
definable inM. Dense pairs and expansions ofM by a dense independent set or by a dense multiplicative group
with theMann Property are of this sort. In [10], all these examples were put under a common perspective and a cone
decomposition theoremwas proved for their definable sets and functions. This theorem provided an analogue of the
cell decomposition theorem for o-minimal structures in this context, and was inspired by the cone decomposition
theorem established for semi-bounded o-minimal structures (cf. [8, 9, 15]). The central notion is that of a cone,
and, as its definition in [10] appeared to be quite technical, in [10, Question 5.14], we asked whether it can be
simplified in two specific ways. In this paper we refute both ways in general, showing that the definition in [10] is
optimal, but prove that ifM expands a real closed field, then a product cone decomposition theorem does hold.

In § 2, we provide all necessary background and definitions. For now, let us only point out the difference be-
tween product cones and cones, and state our main theorem. LetM = 〈M,<,+, . . . 〉 be an o-minimal expansion
of an ordered group in the language L, and M̃ = 〈M,P〉 an expansion of M by a set P ⊆ M such that certain
tameness conditions hold (these are listed in § 2). For example, M̃ can be a dense pair (cf. [6]), or P can be a
dense independent set (cf. [5]) or a multiplicative group with the Mann Property (cf. [7]). By ‘definable’ we mean
‘definable in M̃, and byL-definable we mean ‘definable inM’. The notion of a small set is given in Definition 2.1
below, and it is equivalent to the classical notion of being P-internal from geometric stability theory ([10, Lemma
3.11 & Corollary 3.12]). A supercone generalizes the notion of being co-small in an interval (Definition 2.2). Now,
and roughly speaking, a cone is then defined as a set of the form

h

(⋃
g∈S

{g} × Jg

)
,

where h is an L-definable continuous map with each h(g,−) injective, S ⊆ Mm is a small set, and {Jg}g∈S is a
definable family of supercones. In Definition 2.4 below, we call a cone a product cone if we can replace the above
family {Jg}g∈S by a product S× J. That is,C has the form

h(S× J),

with h and S as above and J a supercone. Let us say that M̃ admits a product cone decomposition if every definable
set is a finite union of product cones. Our main theorem below asserts whether M̃ admits a product cone decom-
position or not based solely on assumptions on M. Recall that M is linear if it is an expansion of an ordered
group and every definable function is piecewise affine (Definition 3.1).
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280 P. E. Eleftheriou: Product cones in dense pairs

Theorem 1.1 1. IfM is linear, then M̃ does not admit a product cone decomposition.

2. IfM expands a real closed field, then M̃ admits a product cone decomposition.

The counterexample in (1) is in fact uniform over all linearM: it is a ‘triangle’ under the diagonal, with small
projection (Claim 3.3).

Theorem 1.1(1), in particular, answers [10, Question 5.14(2)] negatively. [10, Question 5.14(1)] further asked
whether one can define a supercone as a product of co-small sets in intervals, and still obtain a cone decomposition
theorem. In Proposition 4.2 we also answer that question negatively in general, by constructing a counterexample
whenever M expands a real closed field.

Remark 1.2 Theorem 1.1 deals with the two main categories of o-minimal structures; namely, M is linear
or it expands a real closed field. In the ‘intermediate’, semi-bounded case (cf. [9]), where M defines a field on
a bounded interval but not on the whole of M, the answer to [10, Question 5.14] is rather unclear. Indeed, in the
presence of two different notions of cones in this setting, the semi-bounded cones (from [9]) and the current ones,
the methods in §§ 3.1 & 3.2 do not seem to apply and a new approach is needed.

Notation The topological closure of a set X ⊆ Mn is denoted by cl(X ). Given any subset X ⊆ Mm ×Mn and
a ∈ Mn, we write Xa for

{b ∈ Mm : (b, a) ∈ X}.
If m ≤ n, then πm : Mn → Mm denotes the projection onto the first m coordinates. We write π for πn−1, unless
stated otherwise. A family J = {Jg}g∈S of sets is called definable if

⋃
g∈S{g} × Jg is definable. We often identify

J with
⋃

g∈S{g} × Jg.

2 Preliminaries

In this section we lay out all necessary background and terminology. Most of it is extracted from [10, § 2], where
the reader is referred to for an extensive account. We fix an o-minimal theory T expanding the theory of ordered
abelian groupswith a distinguished positive element 1.We denote byL the language of T and byL(P) the language
L augmented by a unary predicate symbol P. Let T̃ be an L(P)-theory extending T . IfM = 〈M,<,+, . . . 〉 |= T ,
then M̃ = 〈M,P〉 denotes an expansion of M that models T̃ . By ‘A-definable’ we mean ‘definable
in M̃with parameters from A’. By ‘LA-definable’ we mean ‘definable inMwith parameters from A’. We omit the
index A if we do not want to specify the parameters. For a subset A ⊆ M, we write dcl(A) for the definable closure
of A in M, and for an L-definable set X ⊆ Mn, we write dim(X ) for the corresponding pregeometric dimension.
The following definition is taken essentially from [7].

Definition 2.1 Let X ⊆ Mn be a definable set. We call X large if there is some m and an L-definable function
f : Mnm → M such that f (Xm) contains an open interval inM. We call X small if it is not large. We call X co-small
in a definable set Y , if Y \ X is small.

Consider the following Tameness Conditions (cf. [10]):

(I) P is small.

(II) Every A-definable set X ⊆ Mn is a boolean combination of sets of the form

{x ∈ Mn : ∃z ∈ Pmϕ(x, z)},
where ϕ(x, z) is an LA-formula.

(III) (Open definable sets are L-definable) For every parameter set A such that A \ P is dcl-independent over
P, and for every A-definable set V ⊂ Ms, its topological closure cl(V ) ⊆ Ms is LA-definable.

From now on, we assume that everymodelM̃ |= T̃ satisfies Conditions (I)-(III) above.We fix a sufficiently
saturated model M̃ = 〈M,P〉 |= T̃ .

We next turn to define the central notions of this paper. As mentioned in the introduction, the notion of a cone
is based on that of a supercone, which in turn generalizes the notion of being co-small in an interval. Both notions,
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supercones and cones, are unions of specific families of sets, which not only are definable, but they are so in a
very uniform way.

Definition 2.2 ([10]) A supercone J ⊆ Mk, k ≥ 0, and its shell sh(J) are defined recursively as follows:

1. M0 = {0} is a supercone, and sh(M0) = M0.

2. A definable set J ⊆ Mn+1 is a supercone if π (J) ⊆ Mn is a supercone and there are L-definable continu-
ous maps h1, h2 : sh(π (J)) → M ∪ {±∞} with h1 < h2, such that for every a ∈ π (J), Ja is contained in
(h1(a), h2(a)) and it is co-small in it. We let sh(J) = (h1, h2)sh(π (J)).

Abusing terminology, we call a supercone A-definable if it is an A-definable set and its closure is LA-definable.

Note that, for k > 0, sh(J) is the unique open cell in Mk such that cl(sh(J)) = cl(J). That is, sh(J) is the
interior of cl(J). In particular, if J is A-definable, then all defining maps h1, h2 used in its recursive definition are
LA-definable.

Recall that in our notation we identify a family J = {Jg}g∈S with
⋃

g∈S{g} × Jg. In particular, cl(J ) and πn(J )
denote the closure and a projection of that set, respectively.

Definition 2.3 (Uniform families of supercones [10]) Let J = ⋃
g∈S{g} × Jg ⊆ Mm+k be a definable family

of supercones (so S ⊆ Mm, and Jg ⊆ Mk, g ∈ S, are supercones). We call J uniform if there is a cell V ⊆ Mm+k

containing J , such that for every g ∈ S and 0 < j ≤ k,

cl(πm+ j(J )g) = cl(πm+ j(V )g).

We call such a V a shell for J . Abusing terminology, we call J A-definable, if it is an A-definable family of sets
and has an LA-definable shell.

In case S is a singleton, J can be identified with a supercone, and its shell with the shell from Definition 2.2
(after projecting on the last k coordinates).

In particular, if J is uniform, then so is each projection πm+ j(J ). Moreover, ifV is a shell for J , then πm+ j(V )
is a shell for πm+ j(J ). Observe also that if V is a shell for J , then for every x ∈ πm+k−1(J ), Jx is co-small in Vx.

A shell for J need not be unique. Whenever we say that J is a uniform family of supercones with shell V , we
just mean that V is a shell for J .

Definition 2.4 (Cones [10] and product cones) A set C ⊆ Mn is a k-cone, k ≥ 0, if there are a definable small
S ⊆ Mm, a uniform family J = {Jg}g∈S of supercones in Mk, and an L-definable continuous function h : V ⊆
Mm+k → Mn, where V is a shell for J , such that

1. C = h(J ), and

2. for every g ∈ S, h(g,−) : Vg ⊆ Mk → Mn is injective.

We callC a k-product cone if, moreover,J = S× J, for some supercone J ⊆ Mk. A (product) cone is a k-(product)
cone for some k. Abusing terminology, we call a (product) cone h(J ) A-definable if h is LA-definable and J is
A-definable.

The cone decomposition theorem below (Fact 2.6) is a statement about definable sets and functions. The notion
of a ‘well-behaved’ function in this setting is given next.

Definition 2.5 (FiberL-definablemaps [10]) LetC = h(J ) ⊆ Mn be a k-conewithJ ⊆ Mm+k, and f : D → M
a definable function with C ⊆ D. We say that f is fiber L-definable with respect to C if there is an L-definable
continuous function F : V ⊆ Mm+k → M, where V is a shell for J , such that

( f ◦ h)(x) = F (x), for all x ∈ J .

We call f fiber LA-definable with respect to C if F is LA-definable.

As remarked in [10, Remark 4.5(4)], the terminology is justified by the fact that, if f is fiber LA-definable
with respect to C = h(J ), then for every g ∈ π (J ), f agrees on h(g, Jg) with an LAg-definable map; namely
F ◦ h(g,−)−1. Moreover, the notion of being fiber L-definable with respect to a cone C = h(J ), depends on h
andJ ([10, Example 4.6]). However, it is immediate from the definition that if f is fiberLA-definable with respect

www.mlq-journal.org © 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH.
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282 P. E. Eleftheriou: Product cones in dense pairs

to a cone C = h(J ), and h(J ′) ⊆ h(J ) is another cone (but with the same h), then f is also fiber LA-definable
with respect to it.

We are now ready to state the cone decomposition theorem from [10].

Fact 2.6 (Cone decomposition theorem [10, Theorem 5.1])

1. Let X ⊆ Mn be an A-definable set. Then X is a finite union of A-definable cones.

2. Let f : X → M be an A-definable function. Then there is a finite collection C of A-definable cones, whose
union is X and such that f is fiber LA-definable with respect to each cone in C.

Another important notion from [10] is that of ‘large dimension’, which we recall next. The proof of Theo-
rem 1.1(2) runs by induction on large dimension.

Definition 2.7 (Large dimension [10]) Let X ⊆ Mn be definable. If X �= ∅, the large dimension of X is the
maximum k ∈ N such that X contains a k-cone. The large dimension of the empty set is defined to be −∞. We
denote the large dimension of X by ldim(X ).

Remark 2.8 The tameness conditions that we assume in this paper guarantee that the notion of large dimension
is well-defined; namely, the above maximum k always exists ([10, § 4.3]).

3 Product cone decompositions

In this section we prove Theorem 1.1.

3.1 The linear case

The following definition is taken from [13].

Definition 3.1 ([13]) Let N = 〈N,+,<, 0, . . . 〉 be an o-minimal expansion of an ordered group. A function
f : A ⊆ Nn → N is called affine, if for every x, y, x+ t, y+ t ∈ A,

f (x+ t ) − f (x) = f (y+ t ) − f (y). (1)

We call N linear if every definable f : A ⊆ Nn → N is piecewise affine, namely if there is a partition of A into
finitely many definable sets B, such that each f�B is affine.

The typical example of a linear o-minimal structure is an ordered vector space V = 〈V,<,+, 0, {d}d∈D〉 over
an ordered division ring D. In general, ifN is linear, then there exists a reduct S of such V , such that S ≡ N (cf.
[13] for details). Using this description, it is not hard to see that every affine function has a continuous extension
to the closure of its domain.

Assume now that our fixed structure M is linear.

Lemma 3.2 Let h : [a, b] × [c, d] → M be an L-definable continuous function, such that for every t ∈ (a, b),
h(t,−) : [c, d] → M is strictly increasing. Then

h(b, d) − h(b, c) > 0.

P r o o f . Let W be a cell decomposition of [a, b] × [c, d] such that for every W ∈ W , h�W is affine. Since
d − c > 0, there must be someW = ( f , g)I ∈ W , where I is an interval with sup I = b, and r ∈ I, such that the
map δ(t ) := g(t ) − f (t ) is increasing on [r, b). We claim that for every t ∈ (r, b),

h(t, g(t )) − h(t, f (t )) ≥ h(r, g(r)) − h(r, f (r)).

Indeed, there is k ≥ 0, such that

h(t, f (t ) + δ(t )) − h(t, f (t )) = h(t, f (t ) + δ(r) + k) − h(t, f (t ))

= h(t, f (t ) + δ(r) + k) + h(t, f (t ) + δ(r))

− h(t, f (t ) + δ(r)) + h(t, f (t ))

© 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH. www.mlq-journal.org
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≥ h(t, f (t ) + δ(r)) − h(t, f (t ))

= h(r, f (r) + δ(r)) − h(r, f (r)),

where the inequality holds because h(t,−) is increasing, and the last equality holds because h is affine onW . We
conclude that

h(b, d) − h(b, c) = lim
t→b

(h(t, d) − h(t, c))

≥ lim
t→b

(h(t, g(t )) − h(t, f (t )))

≥ h(r, g(r)) − h(r, f (r))

≤ 0,

where the first and last inequalities hold because h(t,−) and h(r,−) are strictly increasing. �

Counterexample to product cone decomposition Let S ⊆ M be a small set such that 0 is in the interior of its
closure (by translating P to the origin, such an S exists). Let

X =
⋃
a∈S>0

{a} × (0, a).

Claim 3.3 X is not a finite union of product cones.

P r o o f . First of all, X cannot contain any k-cones for k > 1, since ldim(X ) = 1, by [10, Lemmas 4.24 &
4.27]. Now let H(T × J) be an 1-product cone contained in X , with H = (H1,H2) : Z ⊆ Ml+1 → M2, such that
the origin is in its closure. Since H is L-definable and continuous, and for each g ∈ T , H2(g,−) is injective, we
may assume that the latter is always strictly increasing. By [10, Lemma 5.10] applied to J, f (−) = π1H(g,−)
and S, we have

for every g ∈ T , there is a ∈ S, such that H(g, J) ⊆ {a} × (0, a).

By continuity of H, it follows that

for every g ∈ cl(T ) ∩ π (Z), there is a ∈ M, such that H(g, cl(J)) ⊆ {a} × [0, a].

Let F : π (Z) → M be the L-definable map given by

F (g) = π1(H(g, cl(J))).

Since the origin is in the closure of H(T × J), there must be an affine γ : (a, b) → cl(T ) ∩ π (Z) with
limt→b F (γ (t )) = 0. Fix any [c, d] ⊆ cl(J). Now the map

H2(γ (−),−) : (a, b) × (c, d) → M

is piecewise affine and hence has a continuous extension h to [a, b] × [c, d]. By definition of X ,

h(b, c) = h(b, d) = 0.

But, by Lemma 3.2,

h(b, d) − h(b, c) > 0,

a contradiction. Since X contains no product cone whose closure contains the origin, X cannot be a finite union
of product cones. �

3.2 The field case

We now assume that M expands an ordered field. The main idea behind the proof in this case is as follows.
By Fact 2.6, it suffices to write every cone as a finite union of product cones. We illustrate the case of a 1-cone
C = h(J ), for some J = {Jg}g∈S.

www.mlq-journal.org © 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH.
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284 P. E. Eleftheriou: Product cones in dense pairs

Step I (Lemma 3.4). Replace J by a cone J ′ = {J′
g}g∈S, such that for some fixed interval I, each J′

g is contained
in I and it is co-small in it. Here we use the field structure of M, so this step would fail in the linear case.
Step II (Lemma 3.5). By [10, Lemma 4.25], the intersection J = ⋂

g∈S J
′
g is co-small in I. Moreover, if we let

L = S× J, then, by [10, Lemma 4.29], we obtain that the large dimension of J \ L is 0.
Step III (Theorem 3.6). Use Steps I and II and induction on large dimension. Here, the inductive hypothesis is

only applied to sets of large dimension 0. In general, ldim(J \ L) < ldim(J ).
To achieve Step I, we first need to make an observation and fix some notation. Using the field operations, one

can define an L∅-definable continuous f : M3 → M, such that for every b, c ∈ M,

f (b, c,−) : (b, c) → (0, 1)

is a bijection. Similarly, there are L∅-definable continuous maps f1, f2 : M2 → M, such that for every b, c ∈ M,
the maps

f1(b,−) : (b,+∞) → (0, 1)

and

f2(c,−) : (−∞, c) → (0, 1)

are bijections. To give all these maps a uniform notation, we write f (b,+∞, x) for f1(b, x), and f (−∞, c, x) for
f2(c, x). We fix this f for the next proof. Observe that if J ⊆ (b, c) is co-small in (b, c), for b, c ∈ M ∪ {±∞},
then f (b, c, J) is co-small in (0, 1).

Lemma 3.4 Let J = ⋃
g∈S{g} × Jg ⊆ Mm+k be an A-definable uniform family of supercones, with shell Z ⊆

Mm+k. Then there are

1. an A-definable uniform family J ′ = {J′
g}g∈S of supercones J′

g ⊆ Mk, with shell π (Z) × (0, 1)k,

2. and an LA-definable continuous and injective map F : Z → Mm+k, such that

F (J ) = J ′.

P r o o f . For every g ∈ πm(J ), since Jg is a supercone, it follows that Zg is an open cell. Hence, for every
0 < j ≤ k, there are LA-definable continuous maps h j1, h

j
2 : πm+ j−1(Z) → M such that

πm+ j(Z) = (h j1, h
j
2)πm+ j−1(Z).

We define

F = (F1, . . . ,Fm+k ) : Z → Mm+k,

as follows. Let I = (0, 1) and f be the map fixed above. Let (g, t ) ∈ Z ⊆ Mm+k. If 1 ≤ i ≤ m,

Fi(g, t ) = gi

(the ith coordinate of g.) If i = m+ j, with 0 < j ≤ k,

Fm+ j(g, t ) = f (h j1(g, t1, . . . , t j−1), h
j
2(g, t1, . . . , t j−1), t j ).

Clearly, F is injective, LA-definable and continuous. Let

J ′ = F (J ).

That is, J ′ = {J′
g}g∈S, where for every g ∈ S, J′

g = F (g, Jg). It is not hard to check, by induction on m, that for
every 0 < m ≤ k, πm+ j(J ′) is an A-definable uniform family of supercones with shell F (Z) = π (Z) × Im. �

Lemma 3.5 Let J = ⋃
g∈S{g} × Jg ⊆ Mm+k be an A-definable uniform family of supercones in Mk with shell

Z, and assume S ⊆ Mm is small. Suppose that Z = π (Z) × Ik, where I = (0, 1). Then J is a disjoint union

(S× J) ∪ Y,

where S× J is an A-definable uniform family of supercones with shell Z, and Y is an A-definable set of large
dimension < k.

© 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH. www.mlq-journal.org
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P r o o f . By induction on k. For k = 0, the statement is trivial. We assume the statement holds for k, and
prove it for k + 1. Let π : Mm+k+1 → Mm+k be the projection onto the first m+ k coordinates. Since π (J ) is also
an A-definable uniform family of supercones with shell π (Z), by inductive hypothesis we can write π (J ) as a
disjoint union

π (J ) = (S× T ) ∪ Y,

where T ⊆ Mk is an A-definable supercone with cl(T ) = cl(Ik ), and Y is an A-definable set of large dimension
< k. By [10, Corollary 5.5], the set

⋃
t∈Y {t} × Jt ⊆ J has large dimension < k + 1, and hence we only need to

bring its complement X in J into the desired form. We have

X =
⋃
t∈S×T

{t} × Jt .

Define, for every a ∈ T ,

Ka =
⋂
g∈S

Jg,a.

Since each Jg,a is co-small in I, by [10, Lemma 4.25] Ka is co-small in I. Hence, the set

L =
⋃
a∈T

{a} × Ka

is a supercone inMk+1. Since cl(T ) = cl(Ik ) and for each a ∈ T , cl(Ka) = cl(I), it follows that cl(L) = cl(Ik+1).
In particular, Z is a shell for S× L. Since S× L ⊆ X , it remains to prove that ldim(X \ (S× L)) < k + 1. We have

X \ (S× L) =
⋃

(g,a)∈S×T
{(g, a)} × (Jg,a \ Ka).

ButJg,a \ Ka is small, and hence, by [10, Lemma 4.29], the above set has large dimension= ldim(S× T ) = k. �
We can now conclude the main theorem of the paper.

Theorem 3.6 (Product cone decomposition in the field case) Let X ⊆ Mn be an A-definable set. Then

1. X is a finite union of A-definable product cones.

2. If f : X → M is an A-definable function, then there is a finite collection C of A-definable product cones,
whose union is X and such that f is fiber LA-definable with respect to each cone in C.

P r o o f . (1) By induction on the large dimension of X . Suppose ldim(X ) = k. By Fact 2.6, we may assume
that X is a k-cone. Every 0-cone is clearly a product cone. Now let k > 0. By induction, it suffices to write X as
a union of an A-definable product cone and an A-definable set of large dimension < k. Let X = h(J ) be as in
Definition 2.4, and Z ⊆ Mm+k a shell for J .

Claim We can write X as a k-cone h′(J ′), such that for every g ∈ π (J ′), cl(J ′)g = (0, 1)k.

P r o o f o f C l a i m . LetJ ′ andF : Z → Mm+k be as in Lemma 3.4, and define h′ = h ◦ F−1 : F (Z) → Mn.
Then

h(J ) = hF−1(F (J )) = h′(J ′)

is as required. �
By the claim, wemay assume that for every g ∈ S, cl(J )g = (0, 1)k. By Lemma 3.5, we haveJ = (S× J) ∪ Y ,

where J ⊆ Mk is an A-definable supercone, and ldimY < k. Thus h(J ) = h(S× J) ∪ h(Y ) has been written in the
desired form.

(2) By Fact 2.6, we may assume that X is a k-cone and that f is fiber LA-definable with respect to it. So let
again X = h(J ) with shell Z ⊆ Mm+k, and in addition, τ : Z ⊆ Mm+k → M with J ⊆ Z, be LA-definable so that
for every x ∈ J ,

( f ◦ h)(x) = τ (x).

www.mlq-journal.org © 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH.

 15213870, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

alq.202100028 by T
est, W

iley O
nline L

ibrary on [10/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



286 P. E. Eleftheriou: Product cones in dense pairs

By induction on large dimension, it suffices to show that X is the union of a product cone C and a set of large
dimension < k, such that f is fiber LA-definable with respect to C. Let X = h′(J ′) be as in Claim of (1) and
F : Z → Mm+k as in its proof. So h′ = h ◦ F−1 : F (Z) → Mn. Define τ ′ : F (Z) → Mn as τ ′ = τ ◦ F−1. We then
have, for every x′ ∈ J ′,

f h′(x′) = f h′F (x) = f h(x) = τ (x) = τF−1(x) = τ ′(x),

witnessing that f is fiber LA-definable with respect to h′(J ′).
Therefore, we may replace h by h and J by J ′. Now, as in the proof of (1), we can write h(J ) as the union of

a product cone h(S× J) and a set of large dimension < k. By the remarks following Definition 2.5, f is also fiber
L-definable with respect to h(S× J). �

Remark 3.7 From the above proof it follows that in cases where we have disjoint unions in Fact 2.6 (as in [10,
Theorem 5.12]), this is also the case in Theorem 3.6.

4 Refined supercones

In this section we answer [10, Question 5.14(1)] negatively. The question asked whether the Structure Theorem
holds if we strengthen the notion of a supercone as follows.

Definition 4.1 A supercone J in Mk is called refined if it is of the form

J = J1 × · · · × Jk,

where each Ji is a supercone inM. Let us call a (k-)cone C = h(J ) a (k-)refined cone if J is refined.

Our result is the following.1

Proposition 4.2 Assume M expands a real closed field. Then there is a supercone in M2 which contains no
2-refined cone. In particular, it is not a finite union of refined cones.

P r o o f . The ‘in particular’ clause follows from [10, Corollaries 4.26 & 4.27]. Now, for every a ∈ M, let

Ja = M \ (P+ aP)

and define J = ⋃
a∈M{a} × Ja. Towards a contradiction, assume that J contains a 2-refined cone. That is, there

are supercones J1, J2 ⊆ M, an open cell U ⊆ M2 with cl(J1 × J2) = cl(U ), and an L-definable continuous and
injective map f : U → M2, such thatC = f (J1 × J2) ⊆ J . We write X = f (U ), and for each a ∈ M, Xa ⊆ M for
the fiber of X above a. Suppose C is A-definable.

By saturation, there is a ∈ M which is dcl-independent over A ∪ P, and further g, h ∈ P which are dcl-
independent over a. So

dim(g, h, a) = 3.

By assumption, there are (p, q) ∈ U \ (J1 × J2), such that

f (p, q) = (a, g+ ha).

Observe that a ∈ dcl(p, q). Also, one of p, q must be in dcl(AP). Indeed, we have p �∈ J1 or q �∈ J2. If, say, the
former holds, then p ∈ π (U ) \ J1. Since the last set is A-definable and small, we obtain by [10, Lemma 3.11], that
p ∈ dcl(AP).

We may now assume that p ∈ dcl(AP). If we write f = ( f1, f2), we obtain

f2(p, q) = g+ h f1(p, q). (2)

Since a is dcl-independent over A ∪ P, there must be an open interval I ⊆ M of p, such that for every x ∈ I,

f2(x, q) = g+ h f1(x, q).

1 The proof is based on an idea suggested by Hieronymi.

© 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH. www.mlq-journal.org
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Viewing both sides of the equation as functions in the variable f1(x, q), and taking their derivatives with respect
to it, we obtain:

∂ f2(x, q)

∂ f1(x, q)
= f1(x, q) + h.

Evaluated at p, the last equality gives h ∈ dcl(p, q). By (2), also g ∈ dcl(p, q). All together, we have proved that
g, h, a ∈ dcl(p, q). It follows that

dim(g, h, a) ≤ dim(p, q) ≤ 2,

a contradiction. �
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