Product cones in dense pairs

Pantelis E. Eleftheriou*

School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Received 7 June 2021, revised 16 December 2021, accepted 7 January 2022 Published online 22 January 2022

Let $\mathcal{M} = \langle M, <, +, ... \rangle$ be an o-minimal expansion of an ordered group, and $P \subseteq M$ a dense set such that certain tameness conditions hold. We introduce the notion of a *product cone* in $\mathcal{M} = \langle \mathcal{M}, P \rangle$, and prove: if \mathcal{M} expands a real closed field, then $\hat{\mathcal{M}}$ admits a product cone decomposition. If \mathcal{M} is linear, then it does not. In particular, we settle a question from [10].

© 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH.

1 Introduction

Tame expansions $\widetilde{\mathcal{M}} = \langle \mathcal{M}, P \rangle$ of an o-minimal structure \mathcal{M} by a set $P \subseteq M$ have received lots of attention in recent literature (cf. [1-4, 6, 7, 12, 14]). One important category is when every definable open set is already definable in \mathcal{M} . Dense pairs and expansions of \mathcal{M} by a dense independent set or by a dense multiplicative group with the Mann Property are of this sort. In [10], all these examples were put under a common perspective and a cone decomposition theorem was proved for their definable sets and functions. This theorem provided an analogue of the cell decomposition theorem for o-minimal structures in this context, and was inspired by the cone decomposition theorem established for semi-bounded o-minimal structures (cf. [8, 9, 15]). The central notion is that of a *cone*, and, as its definition in [10] appeared to be quite technical, in [10, Question 5.14], we asked whether it can be simplified in two specific ways. In this paper we refute both ways in general, showing that the definition in [10] is optimal, but prove that if \mathcal{M} expands a real closed field, then a *product cone* decomposition theorem does hold.

In § 2, we provide all necessary background and definitions. For now, let us only point out the difference between product cones and cones, and state our main theorem. Let $\mathcal{M} = \langle M, \langle +, +, ... \rangle$ be an o-minimal expansion of an ordered group in the language \mathcal{L} , and $\mathcal{M} = \langle \mathcal{M}, P \rangle$ an expansion of \mathcal{M} by a set $P \subseteq M$ such that certain tameness conditions hold (these are listed in § 2). For example, \mathcal{M} can be a dense pair (cf. [6]), or P can be a dense independent set (cf. [5]) or a multiplicative group with the Mann Property (cf. [7]). By 'definable' we mean 'definable in \mathcal{M} , and by \mathcal{L} -definable we mean 'definable in \mathcal{M} '. The notion of a *small* set is given in Definition 2.1 below, and it is equivalent to the classical notion of being *P*-internal from geometric stability theory ([10, Lemma 3.11 & Corollary 3.12]). A supercone generalizes the notion of being co-small in an interval (Definition 2.2). Now, and roughly speaking, a cone is then defined as a set of the form

$$h\left(\bigcup_{g\in S} \{g\} \times J_g\right),$$

where h is an \mathcal{L} -definable continuous map with each h(g, -) injective, $S \subseteq M^m$ is a small set, and $\{J_g\}_{g \in S}$ is a definable family of supercones. In Definition 2.4 below, we call a cone a product cone if we can replace the above family $\{J_g\}_{g\in S}$ by a product $S \times J$. That is, C has the form

$$h(S \times J)$$

with h and S as above and J a supercone. Let us say that $\widetilde{\mathcal{M}}$ admits a product cone decomposition if every definable set is a finite union of product cones. Our main theorem below asserts whether \mathcal{M} admits a product cone decomposition or not based solely on assumptions on \mathcal{M} . Recall that \mathcal{M} is *linear* if it is an expansion of an ordered group and every definable function is piecewise affine (Definition 3.1).

^{*} E-mail: p.eleftheriou@leeds.ac.uk

Theorem 1.1 1. If \mathcal{M} is linear, then $\widetilde{\mathcal{M}}$ does not admit a product cone decomposition.

2. If \mathcal{M} expands a real closed field, then $\widetilde{\mathcal{M}}$ admits a product cone decomposition.

The counterexample in (1) is in fact uniform over all linear \mathcal{M} : it is a 'triangle' under the diagonal, with small projection (Claim 3.3).

Theorem 1.1(1), in particular, answers [10, Question 5.14(2)] negatively. [10, Question 5.14(1)] further asked whether one can define a supercone as a product of co-small sets in intervals, and still obtain a cone decomposition theorem. In Proposition 4.2 we also answer that question negatively in general, by constructing a counterexample whenever \mathcal{M} expands a real closed field.

Remark 1.2 Theorem 1.1 deals with the two main categories of o-minimal structures; namely, \mathcal{M} is linear or it expands a real closed field. In the 'intermediate', semi-bounded case (cf. [9]), where \mathcal{M} defines a field on a bounded interval but not on the whole of M, the answer to [10, Question 5.14] is rather unclear. Indeed, in the presence of two different notions of cones in this setting, the semi-bounded cones (from [9]) and the current ones, the methods in §§ 3.1 & 3.2 do not seem to apply and a new approach is needed.

Notation The topological closure of a set $X \subseteq M^n$ is denoted by cl(X). Given any subset $X \subseteq M^m \times M^n$ and $a \in M^n$, we write X_a for

$$\{b \in M^m : (b, a) \in X\}.$$

280

If $m \le n$, then $\pi_m : M^n \to M^m$ denotes the projection onto the first *m* coordinates. We write π for π_{n-1} , unless stated otherwise. A family $\mathcal{J} = \{J_g\}_{g \in S}$ of sets is called definable if $\bigcup_{g \in S} \{g\} \times J_g$ is definable. We often identify \mathcal{J} with $\bigcup_{g \in S} \{g\} \times J_g$.

2 Preliminaries

In this section we lay out all necessary background and terminology. Most of it is extracted from [10, § 2], where the reader is referred to for an extensive account. We fix an o-minimal theory *T* expanding the theory of ordered abelian groups with a distinguished positive element 1. We denote by \mathcal{L} the language of *T* and by $\mathcal{L}(P)$ the language \mathcal{L} augmented by a unary predicate symbol *P*. Let \widetilde{T} be an $\mathcal{L}(P)$ -theory extending *T*. If $\mathcal{M} = \langle M, <, +, ... \rangle \models T$, then $\widetilde{\mathcal{M}} = \langle \mathcal{M}, P \rangle$ denotes an expansion of \mathcal{M} that models \widetilde{T} . By 'A-definable' we mean 'definable in $\widetilde{\mathcal{M}}$ with parameters from *A*'. By ' \mathcal{L}_A -definable' we mean 'definable in \mathcal{M} with parameters from *A*'. We omit the index *A* if we do not want to specify the parameters. For a subset $A \subseteq M$, we write dcl(*A*) for the definable closure of *A* in \mathcal{M} , and for an \mathcal{L} -definable set $X \subseteq M^n$, we write dim(*X*) for the corresponding pregeometric dimension. The following definition is taken essentially from [7].

Definition 2.1 Let $X \subseteq M^n$ be a definable set. We call *X* large if there is some *m* and an \mathcal{L} -definable function $f: M^{nm} \to M$ such that $f(X^m)$ contains an open interval in *M*. We call *X* small if it is not large. We call *X* co-small in a definable set *Y*, if $Y \setminus X$ is small.

Consider the following Tameness Conditions (cf. [10]):

- (I) *P* is small.
- (II) Every A-definable set $X \subseteq M^n$ is a boolean combination of sets of the form

 $\{x \in M^n : \exists z \in P^m \varphi(x, z)\},\$

where $\varphi(x, z)$ is an \mathcal{L}_A -formula.

(III) (Open definable sets are \mathcal{L} -definable) For every parameter set A such that $A \setminus P$ is dcl-independent over P, and for every A-definable set $V \subset M^s$, its topological closure $cl(V) \subseteq M^s$ is \mathcal{L}_A -definable.

From now on, we assume that every model $\widetilde{\mathcal{M}} \models \widetilde{T}$ satisfies Conditions (I)-(III) above. We fix a sufficiently saturated model $\widetilde{\mathcal{M}} = \langle \mathcal{M}, P \rangle \models \widetilde{T}$.

We next turn to define the central notions of this paper. As mentioned in the introduction, the notion of a cone is based on that of a supercone, which in turn generalizes the notion of being co-small in an interval. Both notions,

supercones and cones, are unions of specific families of sets, which not only are definable, but they are so in a very uniform way.

Definition 2.2 ([10]) A supercone $J \subseteq M^k$, $k \ge 0$, and its *shell sh*(J) are defined recursively as follows:

- 1. $M^0 = \{0\}$ is a supercone, and $sh(M^0) = M^0$.
- 2. A definable set $J \subseteq M^{n+1}$ is a supercone if $\pi(J) \subseteq M^n$ is a supercone and there are \mathcal{L} -definable continuous maps $h_1, h_2 : sh(\pi(J)) \to M \cup \{\pm \infty\}$ with $h_1 < h_2$, such that for every $a \in \pi(J)$, J_a is contained in $(h_1(a), h_2(a))$ and it is co-small in it. We let $sh(J) = (h_1, h_2)_{sh(\pi(J))}$.

Abusing terminology, we call a supercone A-definable if it is an A-definable set and its closure is \mathcal{L}_A -definable.

Note that, for k > 0, sh(J) is the unique open cell in M^k such that cl(sh(J)) = cl(J). That is, sh(J) is the interior of cl(J). In particular, if J is A-definable, then all defining maps h_1 , h_2 used in its recursive definition are \mathcal{L}_A -definable.

Recall that in our notation we identify a family $\mathcal{J} = \{J_g\}_{g \in S}$ with $\bigcup_{g \in S} \{g\} \times J_g$. In particular, $cl(\mathcal{J})$ and $\pi_n(\mathcal{J})$ denote the closure and a projection of that set, respectively.

Definition 2.3 (Uniform families of supercones [10]) Let $\mathcal{J} = \bigcup_{g \in S} \{g\} \times J_g \subseteq M^{m+k}$ be a definable family of supercones (so $S \subseteq M^m$, and $J_g \subseteq M^k$, $g \in S$, are supercones). We call \mathcal{J} uniform if there is a cell $V \subseteq M^{m+k}$ containing \mathcal{J} , such that for every $g \in S$ and $0 < j \leq k$,

$$cl(\pi_{m+j}(\mathcal{J})_g) = cl(\pi_{m+j}(V)_g).$$

We call such a V a *shell* for \mathcal{J} . Abusing terminology, we call \mathcal{J} A-*definable*, if it is an A-definable family of sets and has an \mathcal{L}_A -definable shell.

In case S is a singleton, \mathcal{J} can be identified with a supercone, and its shell with the shell from Definition 2.2 (after projecting on the last k coordinates).

In particular, if \mathcal{J} is uniform, then so is each projection $\pi_{m+j}(\mathcal{J})$. Moreover, if V is a shell for \mathcal{J} , then $\pi_{m+j}(V)$ is a shell for $\pi_{m+j}(\mathcal{J})$. Observe also that if V is a shell for \mathcal{J} , then for every $x \in \pi_{m+k-1}(\mathcal{J})$, \mathcal{J}_x is co-small in V_x .

A shell for \mathcal{J} need not be unique. Whenever we say that \mathcal{J} is a uniform family of supercones with shell *V*, we just mean that *V* is a shell for \mathcal{J} .

Definition 2.4 (Cones [10] and product cones) A set $C \subseteq M^n$ is a *k*-cone, $k \ge 0$, if there are a definable small $S \subseteq M^m$, a uniform family $\mathcal{J} = \{J_g\}_{g \in S}$ of supercones in M^k , and an \mathcal{L} -definable continuous function $h : V \subseteq M^{m+k} \to M^n$, where V is a shell for \mathcal{J} , such that

- 1. $C = h(\mathcal{J})$, and
- 2. for every $g \in S$, $h(g, -) : V_g \subseteq M^k \to M^n$ is injective.

We call *C* a *k*-product cone if, moreover, $\mathcal{J} = S \times J$, for some supercone $J \subseteq M^k$. A (product) cone is a *k*-(product) cone for some *k*. Abusing terminology, we call a (product) cone $h(\mathcal{J})$ *A*-definable if *h* is \mathcal{L}_A -definable and \mathcal{J} is *A*-definable.

The cone decomposition theorem below (Fact 2.6) is a statement about definable sets and functions. The notion of a 'well-behaved' function in this setting is given next.

Definition 2.5 (Fiber \mathcal{L} -definable maps [10]) Let $C = h(\mathcal{J}) \subseteq M^n$ be a *k*-cone with $\mathcal{J} \subseteq M^{m+k}$, and $f : D \to M$ a definable function with $C \subseteq D$. We say that *f* is *fiber* \mathcal{L} -*definable with respect to C* if there is an \mathcal{L} -definable continuous function $F : V \subseteq M^{m+k} \to M$, where *V* is a shell for \mathcal{J} , such that

$$(f \circ h)(x) = F(x)$$
, for all $x \in \mathcal{J}$.

We call *f* fiber \mathcal{L}_A -definable with respect to *C* if *F* is \mathcal{L}_A -definable.

As remarked in [10, Remark 4.5(4)], the terminology is justified by the fact that, if f is fiber \mathcal{L}_A -definable with respect to $C = h(\mathcal{J})$, then for every $g \in \pi(\mathcal{J})$, f agrees on $h(g, J_g)$ with an \mathcal{L}_{Ag} -definable map; namely $F \circ h(g, -)^{-1}$. Moreover, the notion of being fiber \mathcal{L} -definable with respect to a cone $C = h(\mathcal{J})$, depends on h and \mathcal{J} ([10, Example 4.6]). However, it is immediate from the definition that if f is fiber \mathcal{L}_A -definable with respect

to a cone $C = h(\mathcal{J})$, and $h(\mathcal{J}') \subseteq h(\mathcal{J})$ is another cone (but with the same *h*), then *f* is also fiber \mathcal{L}_A -definable with respect to it.

We are now ready to state the cone decomposition theorem from [10].

Fact 2.6 (Cone decomposition theorem [10, Theorem 5.1])

- 1. Let $X \subseteq M^n$ be an A-definable set. Then X is a finite union of A-definable cones.
- 2. Let $f: X \to M$ be an A-definable function. Then there is a finite collection C of A-definable cones, whose union is X and such that f is fiber \mathcal{L}_A -definable with respect to each cone in C.

Another important notion from [10] is that of 'large dimension', which we recall next. The proof of Theorem 1.1(2) runs by induction on large dimension.

Definition 2.7 (Large dimension [10]) Let $X \subseteq M^n$ be definable. If $X \neq \emptyset$, the *large dimension* of X is the maximum $k \in \mathbb{N}$ such that X contains a k-cone. The large dimension of the empty set is defined to be $-\infty$. We denote the large dimension of X by ldim(X).

Remark 2.8 The tameness conditions that we assume in this paper guarantee that the notion of large dimension is well-defined; namely, the above maximum k always exists ([10, § 4.3]).

3 Product cone decompositions

In this section we prove Theorem 1.1.

3.1 The linear case

The following definition is taken from [13].

Definition 3.1 ([13]) Let $\mathcal{N} = \langle N, +, <, 0, ... \rangle$ be an o-minimal expansion of an ordered group. A function $f : A \subseteq N^n \to N$ is called *affine*, if for every $x, y, x + t, y + t \in A$,

$$f(x+t) - f(x) = f(y+t) - f(y).$$
(1)

We call N linear if every definable $f : A \subseteq N^n \to N$ is *piecewise affine*, namely if there is a partition of A into finitely many definable sets B, such that each $f_{\uparrow B}$ is affine.

The typical example of a linear o-minimal structure is an ordered vector space $\mathcal{V} = \langle V, <, +, 0, \{d\}_{d \in D} \rangle$ over an ordered division ring *D*. In general, if \mathcal{N} is linear, then there exists a reduct \mathcal{S} of such \mathcal{V} , such that $\mathcal{S} \equiv \mathcal{N}$ (cf. [13] for details). Using this description, it is not hard to see that every affine function has a continuous extension to the closure of its domain.

Assume now that our fixed structure \mathcal{M} is linear.

Lemma 3.2 Let $h : [a, b] \times [c, d] \rightarrow M$ be an \mathcal{L} -definable continuous function, such that for every $t \in (a, b)$, $h(t, -) : [c, d] \rightarrow M$ is strictly increasing. Then

h(b, d) - h(b, c) > 0.

Proof. Let \mathcal{W} be a cell decomposition of $[a, b] \times [c, d]$ such that for every $W \in \mathcal{W}$, $h_{\uparrow W}$ is affine. Since d - c > 0, there must be some $W = (f, g)_I \in \mathcal{W}$, where I is an interval with $\sup I = b$, and $r \in I$, such that the map $\delta(t) := g(t) - f(t)$ is increasing on [r, b). We claim that for every $t \in (r, b)$,

$$h(t, g(t)) - h(t, f(t)) \ge h(r, g(r)) - h(r, f(r)).$$

Indeed, there is $k \ge 0$, such that

$$\begin{aligned} h(t, f(t) + \delta(t)) - h(t, f(t)) &= h(t, f(t) + \delta(r) + k) - h(t, f(t)) \\ &= h(t, f(t) + \delta(r) + k) + h(t, f(t) + \delta(r)) \\ &- h(t, f(t) + \delta(r)) + h(t, f(t)) \end{aligned}$$

$$\geq h(t, f(t) + \delta(r)) - h(t, f(t))$$
$$= h(r, f(r) + \delta(r)) - h(r, f(r)),$$

where the inequality holds because h(t, -) is increasing, and the last equality holds because h is affine on W. We conclude that

$$h(b, d) - h(b, c) = \lim_{t \to b} (h(t, d) - h(t, c))$$

$$\geq \lim_{t \to b} (h(t, g(t)) - h(t, f(t)))$$

$$\geq h(r, g(r)) - h(r, f(r))$$

$$\leq 0,$$

where the first and last inequalities hold because h(t, -) and h(r, -) are strictly increasing.

Counterexample to product cone decomposition Let $S \subseteq M$ be a small set such that 0 is in the interior of its closure (by translating *P* to the origin, such an *S* exists). Let

$$X = \bigcup_{a \in S^{>0}} \{a\} \times (0, a).$$

Claim 3.3 X is not a finite union of product cones.

Proof. First of all, X cannot contain any k-cones for k > 1, since $\operatorname{ldim}(X) = 1$, by [10, Lemmas 4.24 & 4.27]. Now let $H(T \times J)$ be an 1-product cone contained in X, with $H = (H_1, H_2) : Z \subseteq M^{l+1} \to M^2$, such that the origin is in its closure. Since H is \mathcal{L} -definable and continuous, and for each $g \in T$, $H_2(g, -)$ is injective, we may assume that the latter is always strictly increasing. By [10, Lemma 5.10] applied to J, $f(-) = \pi_1 H(g, -)$ and S, we have

for every $g \in T$, there is $a \in S$, such that $H(g, J) \subseteq \{a\} \times (0, a)$.

By continuity of *H*, it follows that

for every
$$g \in cl(T) \cap \pi(Z)$$
, there is $a \in M$, such that $H(g, cl(J)) \subseteq \{a\} \times [0, a]$.

Let $F : \pi(Z) \to M$ be the \mathcal{L} -definable map given by

$$F(g) = \pi_1(H(g, cl(J))).$$

Since the origin is in the closure of $H(T \times J)$, there must be an affine $\gamma : (a, b) \to cl(T) \cap \pi(Z)$ with $\lim_{t\to b} F(\gamma(t)) = 0$. Fix any $[c, d] \subseteq cl(J)$. Now the map

$$H_2(\gamma(-), -): (a, b) \times (c, d) \to M$$

is piecewise affine and hence has a continuous extension h to $[a, b] \times [c, d]$. By definition of X,

$$h(b, c) = h(b, d) = 0.$$

But, by Lemma 3.2,

h(b, d) - h(b, c) > 0,

a contradiction. Since X contains no product cone whose closure contains the origin, X cannot be a finite union of product cones. \Box

3.2 The field case

We now assume that \mathcal{M} expands an ordered field. The main idea behind the proof in this case is as follows. By Fact 2.6, it suffices to write every cone as a finite union of product cones. We illustrate the case of a 1-cone $C = h(\mathcal{J})$, for some $\mathcal{J} = \{J_g\}_{g \in S}$.

Step I (Lemma 3.4). Replace \mathcal{J} by a cone $\mathcal{J}' = \{J'_g\}_{g \in S}$, such that for some fixed interval I, each J'_g is contained in I and it is co-small in it. Here we use the field structure of \mathcal{M} , so this step would fail in the linear case.

Step II (Lemma 3.5). By [10, Lemma 4.25], the intersection $J = \bigcap_{g \in S} J'_g$ is co-small in I. Moreover, if we let $L = S \times J$, then, by [10, Lemma 4.29], we obtain that the large dimension of $\mathcal{J} \setminus L$ is 0.

Step III (Theorem 3.6). Use Steps I and II and induction on large dimension. Here, the inductive hypothesis is only applied to sets of large dimension 0. In general, $\operatorname{ldim}(\mathcal{J} \setminus L) < \operatorname{ldim}(\mathcal{J})$.

To achieve Step I, we first need to make an observation and fix some notation. Using the field operations, one can define an $\mathcal{L}_{\varnothing}$ -definable continuous $f: M^3 \to M$, such that for every $b, c \in M$,

$$f(b, c, -): (b, c) \to (0, 1)$$

is a bijection. Similarly, there are \mathcal{L}_{\emptyset} -definable continuous maps $f_1, f_2 : M^2 \to M$, such that for every $b, c \in M$, the maps

$$f_1(b, -): (b, +\infty) \to (0, 1)$$

and

$$f_2(c, -): (-\infty, c) \to (0, 1)$$

are bijections. To give all these maps a uniform notation, we write $f(b, +\infty, x)$ for $f_1(b, x)$, and $f(-\infty, c, x)$ for $f_2(c, x)$. We fix this f for the next proof. Observe that if $J \subseteq (b, c)$ is co-small in (b, c), for $b, c \in M \cup \{\pm\infty\}$, then f(b, c, J) is co-small in (0, 1).

Lemma 3.4 Let $\mathcal{J} = \bigcup_{g \in S} \{g\} \times J_g \subseteq M^{m+k}$ be an A-definable uniform family of supercones, with shell $Z \subseteq M^{m+k}$. Then there are

- 1. an A-definable uniform family $\mathcal{J}' = \{J'_g\}_{g \in S}$ of supercones $J'_g \subseteq M^k$, with shell $\pi(Z) \times (0, 1)^k$,
- 2. and an \mathcal{L}_A -definable continuous and injective map $F: Z \to M^{m+k}$, such that

$$F(\mathcal{J}) = \mathcal{J}'.$$

Proof. For every $g \in \pi_m(\mathcal{J})$, since J_g is a supercone, it follows that Z_g is an open cell. Hence, for every $0 < j \le k$, there are \mathcal{L}_A -definable continuous maps $h_1^j, h_2^j : \pi_{m+j-1}(Z) \to M$ such that

$$\pi_{m+j}(Z) = (h_1^j, h_2^j)_{\pi_{m+j-1}(Z)}$$

We define

$$F = (F_1, \ldots, F_{m+k}) : Z \rightarrow M^{m+k},$$

as follows. Let I = (0, 1) and f be the map fixed above. Let $(g, t) \in Z \subseteq M^{m+k}$. If $1 \le i \le m$,

$$F_i(g,t) = g_i$$

(the *i*th coordinate of g.) If i = m + j, with $0 < j \le k$,

$$F_{m+j}(g,t) = f(h_1^j(g,t_1,\ldots,t_{j-1}),h_2^j(g,t_1,\ldots,t_{j-1}),t_j).$$

Clearly, F is injective, \mathcal{L}_A -definable and continuous. Let

$$\mathcal{J}' = F(\mathcal{J}).$$

That is, $\mathcal{J}' = \{J'_g\}_{g \in S}$, where for every $g \in S$, $J'_g = F(g, J_g)$. It is not hard to check, by induction on *m*, that for every $0 < m \le k$, $\pi_{m+j}(\mathcal{J}')$ is an *A*-definable uniform family of supercones with shell $F(Z) = \pi(Z) \times I^m$. \Box

Lemma 3.5 Let $\mathcal{J} = \bigcup_{g \in S} \{g\} \times J_g \subseteq M^{m+k}$ be an A-definable uniform family of supercones in M^k with shell Z, and assume $S \subseteq M^m$ is small. Suppose that $Z = \pi(Z) \times I^k$, where I = (0, 1). Then \mathcal{J} is a disjoint union

$$(S \times J) \cup Y$$

where $S \times J$ is an A-definable uniform family of supercones with shell Z, and Y is an A-definable set of large dimension < k.

Proof. By induction on k. For k = 0, the statement is trivial. We assume the statement holds for k, and prove it for k + 1. Let $\pi : M^{m+k+1} \to M^{m+k}$ be the projection onto the first m + k coordinates. Since $\pi(\mathcal{J})$ is also an A-definable uniform family of supercones with shell $\pi(Z)$, by inductive hypothesis we can write $\pi(\mathcal{J})$ as a disjoint union

$$\pi(\mathcal{J}) = (S \times T) \cup Y,$$

where $T \subseteq M^k$ is an A-definable supercone with $cl(T) = cl(I^k)$, and Y is an A-definable set of large dimension < k. By [10, Corollary 5.5], the set $\bigcup_{t \in Y} \{t\} \times \mathcal{J}_t \subseteq \mathcal{J}$ has large dimension < k + 1, and hence we only need to bring its complement X in \mathcal{J} into the desired form. We have

$$X = \bigcup_{t \in S \times T} \{t\} \times \mathcal{J}_t$$

Define, for every $a \in T$,

$$K_a = \bigcap_{g \in S} \mathcal{J}_{g,a}.$$

Since each $\mathcal{J}_{g,a}$ is co-small in *I*, by [10, Lemma 4.25] K_a is co-small in *I*. Hence, the set

$$L = \bigcup_{a \in T} \{a\} \times K_a$$

is a supercone in M^{k+1} . Since $cl(T) = cl(I^k)$ and for each $a \in T$, $cl(K_a) = cl(I)$, it follows that $cl(L) = cl(I^{k+1})$. In particular, *Z* is a shell for $S \times L$. Since $S \times L \subseteq X$, it remains to prove that $ldim(X \setminus (S \times L)) < k + 1$. We have

$$X \setminus (S \times L) = \bigcup_{(g,a) \in S \times T} \{(g,a)\} \times (\mathcal{J}_{g,a} \setminus K_a).$$

But $\mathcal{J}_{g,a} \setminus K_a$ is small, and hence, by [10, Lemma 4.29], the above set has large dimension = $\operatorname{ldim}(S \times T) = k$. \Box

We can now conclude the main theorem of the paper.

Theorem 3.6 (Product cone decomposition in the field case) Let $X \subseteq M^n$ be an A-definable set. Then

- 1. X is a finite union of A-definable product cones.
- 2. If $f: X \to M$ is an A-definable function, then there is a finite collection C of A-definable product cones, whose union is X and such that f is fiber \mathcal{L}_A -definable with respect to each cone in C.

Proof. (1) By induction on the large dimension of X. Suppose $\operatorname{Idim}(X) = k$. By Fact 2.6, we may assume that X is a k-cone. Every 0-cone is clearly a product cone. Now let k > 0. By induction, it suffices to write X as a union of an A-definable product cone and an A-definable set of large dimension $\langle k$. Let $X = h(\mathcal{J})$ be as in Definition 2.4, and $Z \subseteq M^{m+k}$ a shell for \mathcal{J} .

Claim We can write X as a k-cone $h'(\mathcal{J}')$, such that for every $g \in \pi(\mathcal{J}')$, $cl(\mathcal{J}')_g = (0, 1)^k$.

Proof of Claim. Let \mathcal{J}' and $F: Z \to M^{m+k}$ be as in Lemma 3.4, and define $h' = h \circ F^{-1}: F(Z) \to M^n$. Then

$$h(\mathcal{J}) = hF^{-1}(F(\mathcal{J})) = h'(\mathcal{J}')$$

is as required.

By the claim, we may assume that for every $g \in S$, $cl(\mathcal{J})_g = (0, 1)^k$. By Lemma 3.5, we have $\mathcal{J} = (S \times J) \cup Y$, where $J \subseteq M^k$ is an A-definable supercone, and ldim Y < k. Thus $h(\mathcal{J}) = h(S \times J) \cup h(Y)$ has been written in the desired form.

(2) By Fact 2.6, we may assume that X is a k-cone and that f is fiber \mathcal{L}_A -definable with respect to it. So let again $X = h(\mathcal{J})$ with shell $Z \subseteq M^{m+k}$, and in addition, $\tau : Z \subseteq M^{m+k} \to M$ with $\mathcal{J} \subseteq Z$, be \mathcal{L}_A -definable so that for every $x \in \mathcal{J}$,

$$(f \circ h)(x) = \tau(x).$$

www.mlq-journal.org

By induction on large dimension, it suffices to show that X is the union of a product cone C and a set of large dimension $\langle k$, such that f is fiber \mathcal{L}_A -definable with respect to C. Let $X = h'(\mathcal{J}')$ be as in Claim of (1) and $F : Z \to M^{m+k}$ as in its proof. So $h' = h \circ F^{-1} : F(Z) \to M^n$. Define $\tau' : F(Z) \to M^n$ as $\tau' = \tau \circ F^{-1}$. We then have, for every $x' \in \mathcal{J}'$,

$$fh'(x') = fh'F(x) = fh(x) = \tau(x) = \tau F^{-1}(x) = \tau'(x),$$

witnessing that f is fiber \mathcal{L}_A -definable with respect to $h'(\mathcal{J}')$.

Therefore, we may replace *h* by *h* and \mathcal{J} by \mathcal{J}' . Now, as in the proof of (1), we can write $h(\mathcal{J})$ as the union of a product cone $h(S \times J)$ and a set of large dimension < k. By the remarks following Definition 2.5, *f* is also fiber \mathcal{L} -definable with respect to $h(S \times J)$.

Remark 3.7 From the above proof it follows that in cases where we have disjoint unions in Fact 2.6 (as in [10, Theorem 5.12]), this is also the case in Theorem 3.6.

4 Refined supercones

In this section we answer [10,Question 5.14(1)] negatively. The question asked whether the Structure Theorem holds if we strengthen the notion of a supercone as follows.

Definition 4.1 A supercone \mathcal{J} in M^k is called *refined* if it is of the form

 $\mathcal{J}=J_1\times\cdots\times J_k,$

where each J_i is a supercone in M. Let us call a (k-)cone $C = h(\mathcal{J})$ a (k-)refined cone if \mathcal{J} is refined.

Our result is the following.¹

Proposition 4.2 Assume \mathcal{M} expands a real closed field. Then there is a supercone in \mathcal{M}^2 which contains no 2-refined cone. In particular, it is not a finite union of refined cones.

Proof. The 'in particular' clause follows from [10, Corollaries 4.26 & 4.27]. Now, for every $a \in M$, let

$$J_a = M \setminus (P + aP)$$

and define $\mathcal{J} = \bigcup_{a \in M} \{a\} \times J_a$. Towards a contradiction, assume that \mathcal{J} contains a 2-refined cone. That is, there are supercones $J_1, J_2 \subseteq M$, an open cell $U \subseteq M^2$ with $cl(J_1 \times J_2) = cl(U)$, and an \mathcal{L} -definable continuous and injective map $f : U \to M^2$, such that $C = f(J_1 \times J_2) \subseteq \mathcal{J}$. We write X = f(U), and for each $a \in M, X_a \subseteq M$ for the fiber of X above a. Suppose C is A-definable.

By saturation, there is $a \in M$ which is dcl-independent over $A \cup P$, and further $g, h \in P$ which are dcl-independent over a. So

$$\dim(g, h, a) = 3.$$

By assumption, there are $(p, q) \in U \setminus (J_1 \times J_2)$, such that

$$f(p,q) = (a, g + ha).$$

Observe that $a \in dcl(p, q)$. Also, one of p, q must be in dcl(AP). Indeed, we have $p \notin J_1$ or $q \notin J_2$. If, say, the former holds, then $p \in \pi(U) \setminus J_1$. Since the last set is A-definable and small, we obtain by [10, Lemma 3.11], that $p \in dcl(AP)$.

We may now assume that $p \in dcl(AP)$. If we write $f = (f_1, f_2)$, we obtain

$$f_2(p,q) = g + hf_1(p,q).$$
 (2)

Since a is dcl-independent over $A \cup P$, there must be an open interval $I \subseteq M$ of p, such that for every $x \in I$,

 $f_2(x,q) = g + hf_1(x,q).$

¹ The proof is based on an idea suggested by Hieronymi.

Viewing both sides of the equation as functions in the variable $f_1(x, q)$, and taking their derivatives with respect to it, we obtain:

$$\frac{\partial f_2(x,q)}{\partial f_1(x,q)} = f_1(x,q) + h.$$

Evaluated at p, the last equality gives $h \in dcl(p, q)$. By (2), also $g \in dcl(p, q)$. All together, we have proved that $g, h, a \in dcl(p, q)$. It follows that

$$\dim(g, h, a) \le \dim(p, q) \le 2,$$

a contradiction.

Acknowledgements I thank Philipp Hieronymi for several discussions on this topic, and the referee for a very careful reading of the paper. This research was partially supported by an EPSRC Early Career Fellowship (EP/V003291/1) and a Zukunftskolleg Research Fellowship (Konstanz).

References

- O. Belegradek and B. Zilber, The model theory of the field of reals with a subgroup of the unit circle, J. Lond. Math. Soc. 78, 563–579 (2008).
- [2] A. Berenstein, C. Ealy, and A. Günaydin, Thorn independence in the field of real numbers with a small multiplicative group, Ann. Pure Appl. Log. 150, 1–18 (2007).
- [3] G. Boxall, P. Hieronymi, Expansions which introduce no new open sets, J. Symb. Log. 77, 111–121 (2012).
- [4] A. Dolich, C. Miller, and C. Steinhorn, Structures having o-minimal open core, Trans. Amer. Math. Soc. 362, 1371–1411 (2010).
- [5] A. Dolich, C. Miller, and C. Steinhorn, Expansions of o-minimal structures by dense independent sets, Ann. Pure Appl. Log. 167, 684–706 (2016).
- [6] L. van den Dries, Dense pairs of o-minimal structures, Fund. Math. 157, 61-78 (1988).
- [7] L. van den Dries and A. Günaydın, The fields of real and complex numbers with a small multiplicative group, Proc. Lond. Math. Soc. 93, 43–81 (2006).
- [8] M. Edmundo, Structure theorems for o-minimal expansions of groups, Ann. Pure Appl. Log. 102, 159–181 (2000).
- [9] P. Eleftheriou, Local analysis for semi-bounded groups, Fund. Math. 216, 223–258 (2012).
- [10] P. Eleftheriou, A. Günaydin, and P. Hieronymi, Structure theorems in tame expansions of o-minimal structures by dense sets, Israel J. Math. 239, 435–500 (2020).
- [11] P. Eleftheriou and S. Starchenko, Groups definable in ordered vector spaces over ordered division rings, J. Symb. Log. 72, 1108–1140 (2007).
- [12] A. Günaydın and P. Hieronymi, The real field with the rational points of an elliptic curve, Fund. Math. **215**, 167–175 (2011).
- [13] J. Loveys and Y. Peterzil, Linear o-minimal structures, Israel J. Math. 81, 1–30 (1993).
- [14] C. Miller and P. Speissegger, Expansions of the real line by open sets: o-minimality and open cores, Fund. Math. 162, 193–208 (1999).
- [15] Y. Peterzil, A structure theorem for semibounded sets in the reals, J. Symb. Log. 57, 779–794 (1992).