Product cones in dense pairs

Pantelis E. Eleftheriou* (iD)

School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Received 7 June 2021, revised 16 December 2021, accepted 7 January 2022
Published online 22 January 2022

Let $\mathcal{M}=\langle M,<,+, \ldots\rangle$ be an o-minimal expansion of an ordered group, and $P \subseteq M$ a dense set such that certain tameness conditions hold. We introduce the notion of a product cone in $\widetilde{\mathcal{M}}=\langle\mathcal{M}, P\rangle$, and prove: if \mathcal{M} expands a real closed field, then $\widetilde{\mathcal{M}}$ admits a product cone decomposition. If \mathcal{M} is linear, then it does not. In particular, we settle a question from [10].

$$
\text { © } 2022 \text { The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH. }
$$

1 Introduction

Tame expansions $\widetilde{\mathcal{M}}=\langle\mathcal{M}, P\rangle$ of an o-minimal structure \mathcal{M} by a set $P \subseteq M$ have received lots of attention in recent literature (cf. [1-4, 6, 7, 12, 14]). One important category is when every definable open set is already definable in \mathcal{M}. Dense pairs and expansions of \mathcal{M} by a dense independent set or by a dense multiplicative group with the Mann Property are of this sort. In [10], all these examples were put under a common perspective and a cone decomposition theorem was proved for their definable sets and functions. This theorem provided an analogue of the cell decomposition theorem for o-minimal structures in this context, and was inspired by the cone decomposition theorem established for semi-bounded o-minimal structures (cf. [8, 9, 15]). The central notion is that of a cone, and, as its definition in [10] appeared to be quite technical, in [10, Question 5.14], we asked whether it can be simplified in two specific ways. In this paper we refute both ways in general, showing that the definition in [10] is optimal, but prove that if \mathcal{M} expands a real closed field, then a product cone decomposition theorem does hold.

In $\S 2$, we provide all necessary background and definitions. For now, let us only point out the difference between product cones and cones, and state our main theorem. Let $\mathcal{M}=\langle M,<,+, \ldots\rangle$ be an o-minimal expansion of an ordered group in the language \mathcal{L}, and $\widetilde{\mathcal{M}}=\langle\mathcal{M}, P\rangle$ an expansion of \mathcal{M} by a set $P \subseteq M$ such that certain tameness conditions hold (these are listed in § 2). For example, $\widetilde{\mathcal{M}}$ can be a dense pair (cf. [6]), or P can be a dense independent set (cf. [5]) or a multiplicative group with the Mann Property (cf. [7]). By 'definable' we mean 'definable in $\widetilde{\mathcal{M}}$, and by \mathcal{L}-definable we mean 'definable in \mathcal{M} '. The notion of a small set is given in Definition 2.1 below, and it is equivalent to the classical notion of being P-internal from geometric stability theory ([10, Lemma 3.11 \& Corollary 3.12]). A supercone generalizes the notion of being co-small in an interval (Definition 2.2). Now, and roughly speaking, a cone is then defined as a set of the form

$$
h\left(\bigcup_{g \in S}\{g\} \times J_{g}\right)
$$

where h is an \mathcal{L}-definable continuous map with each $h(g,-)$ injective, $S \subseteq M^{m}$ is a small set, and $\left\{J_{g}\right\}_{g \in S}$ is a definable family of supercones. In Definition 2.4 below, we call a cone a product cone if we can replace the above family $\left\{J_{g}\right\}_{g \in S}$ by a product $S \times J$. That is, C has the form

$$
h(S \times J)
$$

with h and S as above and J a supercone. Let us say that $\widetilde{\mathcal{M}}$ admits a product cone decomposition if every definable set is a finite union of product cones. Our main theorem below asserts whether $\widetilde{\mathcal{M}}$ admits a product cone decomposition or not based solely on assumptions on \mathcal{M}. Recall that \mathcal{M} is linear if it is an expansion of an ordered group and every definable function is piecewise affine (Definition 3.1).

[^0]Theorem 1.1 1. If \mathcal{M} is linear, then $\widetilde{\mathcal{M}}$ does not admit a product cone decomposition.
2. If \mathcal{M} expands a real closed field, then $\widetilde{\mathcal{M}}$ admits a product cone decomposition.

The counterexample in (1) is in fact uniform over all linear \mathcal{M} : it is a 'triangle' under the diagonal, with small projection (Claim 3.3).

Theorem 1.1(1), in particular, answers [10, Question 5.14(2)] negatively. [10, Question 5.14(1)] further asked whether one can define a supercone as a product of co-small sets in intervals, and still obtain a cone decomposition theorem. In Proposition 4.2 we also answer that question negatively in general, by constructing a counterexample whenever \mathcal{M} expands a real closed field.

Remark 1.2 Theorem 1.1 deals with the two main categories of o-minimal structures; namely, \mathcal{M} is linear or it expands a real closed field. In the 'intermediate', semi-bounded case (cf. [9]), where \mathcal{M} defines a field on a bounded interval but not on the whole of M, the answer to [10, Question 5.14] is rather unclear. Indeed, in the presence of two different notions of cones in this setting, the semi-bounded cones (from [9]) and the current ones, the methods in $\S \S 3.1 \& 3.2$ do not seem to apply and a new approach is needed.

Notation The topological closure of a set $X \subseteq M^{n}$ is denoted by $c l(X)$. Given any subset $X \subseteq M^{m} \times M^{n}$ and $a \in M^{n}$, we write X_{a} for

$$
\left\{b \in M^{m}:(b, a) \in X\right\}
$$

If $m \leq n$, then $\pi_{m}: M^{n} \rightarrow M^{m}$ denotes the projection onto the first m coordinates. We write π for π_{n-1}, unless stated otherwise. A family $\mathcal{J}=\left\{J_{g}\right\}_{g \in S}$ of sets is called definable if $\bigcup_{g \in S}\{g\} \times J_{g}$ is definable. We often identify \mathcal{J} with $\bigcup_{g \in S}\{g\} \times J_{g}$.

2 Preliminaries

In this section we lay out all necessary background and terminology. Most of it is extracted from [10, § 2], where the reader is referred to for an extensive account. We fix an o-minimal theory T expanding the theory of ordered abelian groups with a distinguished positive element 1 . We denote by \mathcal{L} the language of T and by $\mathcal{L}(P)$ the language \mathcal{L} augmented by a unary predicate symbol P. Let \widetilde{T} be an $\mathcal{L}(P)$-theory extending T. If $\mathcal{M}=\langle M,<,+, \ldots\rangle \vDash T$, then $\widetilde{\mathcal{M}}=\langle\mathcal{M}, P\rangle$ denotes an expansion of \mathcal{M} that models \widetilde{T}. By ' A-definable' we mean 'definable in $\widetilde{\mathcal{M}}$ with parameters from A '. By ' \mathcal{L}_{A}-definable' we mean 'definable in \mathcal{M} with parameters from A '. We omit the index A if we do not want to specify the parameters. For a subset $A \subseteq M$, we write $\operatorname{dcl}(A)$ for the definable closure of A in \mathcal{M}, and for an \mathcal{L}-definable set $X \subseteq M^{n}$, we write $\operatorname{dim}(X)$ for the corresponding pregeometric dimension. The following definition is taken essentially from [7].

Definition 2.1 Let $X \subseteq M^{n}$ be a definable set. We call X large if there is some m and an \mathcal{L}-definable function $f: M^{n m} \rightarrow M$ such that $f\left(X^{m}\right)$ contains an open interval in M. We call X small if it is not large. We call X co-small in a definable set Y, if $Y \backslash X$ is small.

Consider the following Tameness Conditions (cf. [10]):
(I) P is small.
(II) Every A-definable set $X \subseteq M^{n}$ is a boolean combination of sets of the form

$$
\left\{x \in M^{n}: \exists z \in P^{m} \varphi(x, z)\right\}
$$

where $\varphi(x, z)$ is an \mathcal{L}_{A}-formula.
(III) (Open definable sets are \mathcal{L}-definable) For every parameter set A such that $A \backslash P$ is dcl-independent over P, and for every A-definable set $V \subset M^{s}$, its topological closure $\operatorname{cl}(V) \subseteq M^{s}$ is \mathcal{L}_{A}-definable.
From now on, we assume that every model $\widetilde{\mathcal{M}} \models \widetilde{T}$ satisfies Conditions (I)-(III) above. We fix a sufficiently saturated model $\widetilde{\mathcal{M}}=\langle\mathcal{M}, P\rangle \models \widetilde{T}$.

We next turn to define the central notions of this paper. As mentioned in the introduction, the notion of a cone is based on that of a supercone, which in turn generalizes the notion of being co-small in an interval. Both notions,
supercones and cones, are unions of specific families of sets, which not only are definable, but they are so in a very uniform way.

Definition 2.2 ([10]) A supercone $J \subseteq M^{k}, k \geq 0$, and its shell $\operatorname{sh}(J)$ are defined recursively as follows:

1. $M^{0}=\{0\}$ is a supercone, and $\operatorname{sh}\left(M^{0}\right)=M^{0}$.
2. A definable set $J \subseteq M^{n+1}$ is a supercone if $\pi(J) \subseteq M^{n}$ is a supercone and there are \mathcal{L}-definable continuous maps $h_{1}, h_{2}: \operatorname{sh}(\pi(J)) \rightarrow M \cup\{ \pm \infty\}$ with $h_{1}<h_{2}$, such that for every $a \in \pi(J), J_{a}$ is contained in $\left(h_{1}(a), h_{2}(a)\right)$ and it is co-small in it. We let $\operatorname{sh}(J)=\left(h_{1}, h_{2}\right)_{\operatorname{sh}(\pi(J))}$.
Abusing terminology, we call a supercone A-definable if it is an A-definable set and its closure is \mathcal{L}_{A}-definable.
Note that, for $k>0, \operatorname{sh}(J)$ is the unique open cell in M^{k} such that $\operatorname{cl}(\operatorname{sh}(J))=\operatorname{cl}(J)$. That is, $\operatorname{sh}(J)$ is the interior of $c l(J)$. In particular, if J is A-definable, then all defining maps h_{1}, h_{2} used in its recursive definition are \mathcal{L}_{A}-definable.

Recall that in our notation we identify a family $\mathcal{J}=\left\{J_{g}\right\}_{g \in S}$ with $\bigcup_{g \in S}\{g\} \times J_{g}$. In particular, $\operatorname{cl}(\mathcal{J})$ and $\pi_{n}(\mathcal{J})$ denote the closure and a projection of that set, respectively.

Definition 2.3 (Uniform families of supercones [10]) Let $\mathcal{J}=\bigcup_{g \in S}\{g\} \times J_{g} \subseteq M^{m+k}$ be a definable family of supercones (so $S \subseteq M^{m}$, and $J_{g} \subseteq M^{k}, g \in S$, are supercones). We call \mathcal{J} uniform if there is a cell $V \subseteq M^{m+k}$ containing \mathcal{J}, such that for every $g \in S$ and $0<j \leq k$,

$$
\operatorname{cl}\left(\pi_{m+j}(\mathcal{J})_{g}\right)=\operatorname{cl}\left(\pi_{m+j}(V)_{g}\right)
$$

We call such a V a shell for \mathcal{J}. Abusing terminology, we call $\mathcal{J} A$-definable, if it is an A-definable family of sets and has an \mathcal{L}_{A}-definable shell.

In case S is a singleton, \mathcal{J} can be identified with a supercone, and its shell with the shell from Definition 2.2 (after projecting on the last k coordinates).

In particular, if \mathcal{J} is uniform, then so is each projection $\pi_{m+j}(\mathcal{J})$. Moreover, if V is a shell for \mathcal{J}, then $\pi_{m+j}(V)$ is a shell for $\pi_{m+j}(\mathcal{J})$. Observe also that if V is a shell for \mathcal{J}, then for every $x \in \pi_{m+k-1}(\mathcal{J}), \mathcal{J}_{x}$ is co-small in V_{x}.

A shell for \mathcal{J} need not be unique. Whenever we say that \mathcal{J} is a uniform family of supercones with shell V, we just mean that V is a shell for \mathcal{J}.

Definition 2.4 (Cones [10] and product cones) A set $C \subseteq M^{n}$ is a k-cone, $k \geq 0$, if there are a definable small $S \subseteq M^{m}$, a uniform family $\mathcal{J}=\left\{J_{g}\right\}_{g \in S}$ of supercones in M^{k}, and an \mathcal{L}-definable continuous function $h: V \subseteq$ $M^{m+k} \rightarrow M^{n}$, where V is a shell for \mathcal{J}, such that

1. $C=h(\mathcal{J})$, and
2. for every $g \in S, h(g,-): V_{g} \subseteq M^{k} \rightarrow M^{n}$ is injective.

We call C a k-product cone if, moreover, $\mathcal{J}=S \times J$, for some supercone $J \subseteq M^{k}$. A (product) cone is a k-(product) cone for some k. Abusing terminology, we call a (product) cone $h(\mathcal{J})$ A-definable if h is \mathcal{L}_{A}-definable and \mathcal{J} is A-definable.

The cone decomposition theorem below (Fact 2.6) is a statement about definable sets and functions. The notion of a 'well-behaved' function in this setting is given next.

Definition 2.5 (Fiber \mathcal{L}-definable maps [10]) Let $C=h(\mathcal{J}) \subseteq M^{n}$ be a k-cone with $\mathcal{J} \subseteq M^{m+k}$, and $f: D \rightarrow M$ a definable function with $C \subseteq D$. We say that f is fiber \mathcal{L}-definable with respect to C if there is an \mathcal{L}-definable continuous function $F: V \subseteq M^{m+k} \rightarrow M$, where V is a shell for \mathcal{J}, such that

$$
(f \circ h)(x)=F(x), \text { for all } x \in \mathcal{J}
$$

We call f fiber \mathcal{L}_{A}-definable with respect to C if F is \mathcal{L}_{A}-definable.
As remarked in [10, Remark 4.5(4)], the terminology is justified by the fact that, if f is fiber \mathcal{L}_{A}-definable with respect to $C=h(\mathcal{J})$, then for every $g \in \pi(\mathcal{J}), f$ agrees on $h\left(g, J_{g}\right)$ with an $\mathcal{L}_{A g}$-definable map; namely $F \circ h(g,-)^{-1}$. Moreover, the notion of being fiber \mathcal{L}-definable with respect to a cone $C=h(\mathcal{J})$, depends on h and \mathcal{J} ([10, Example 4.6]). However, it is immediate from the definition that if f is fiber \mathcal{L}_{A}-definable with respect
to a cone $C=h(\mathcal{J})$, and $h\left(\mathcal{J}^{\prime}\right) \subseteq h(\mathcal{J})$ is another cone (but with the same h), then f is also fiber \mathcal{L}_{A}-definable with respect to it.

We are now ready to state the cone decomposition theorem from [10].
Fact 2.6 (Cone decomposition theorem [10, Theorem 5.1])

1. Let $X \subseteq M^{n}$ be an A-definable set. Then X is a finite union of A-definable cones.
2. Let $f: X \rightarrow M$ be an A-definable function. Then there is a finite collection \mathcal{C} of A-definable cones, whose union is X and such that f is fiber \mathcal{L}_{A}-definable with respect to each cone in \mathcal{C}.

Another important notion from [10] is that of 'large dimension', which we recall next. The proof of Theorem 1.1(2) runs by induction on large dimension.

Definition 2.7 (Large dimension [10]) Let $X \subseteq M^{n}$ be definable. If $X \neq \varnothing$, the large dimension of X is the maximum $k \in \mathbb{N}$ such that X contains a k-cone. The large dimension of the empty set is defined to be $-\infty$. We denote the large dimension of X by $\operatorname{ldim}(X)$.

Remark 2.8 The tameness conditions that we assume in this paper guarantee that the notion of large dimension is well-defined; namely, the above maximum k always exists ([10, §4.3]).

3 Product cone decompositions

In this section we prove Theorem 1.1.

3.1 The linear case

The following definition is taken from [13].
Definition 3.1 ([13]) Let $\mathcal{N}=\langle N,+,<, 0, \ldots\rangle$ be an o-minimal expansion of an ordered group. A function $f: A \subseteq N^{n} \rightarrow N$ is called affine, if for every $x, y, x+t, y+t \in A$,

$$
\begin{equation*}
f(x+t)-f(x)=f(y+t)-f(y) \tag{1}
\end{equation*}
$$

We call \mathcal{N} linear if every definable $f: A \subseteq N^{n} \rightarrow N$ is piecewise affine, namely if there is a partition of A into finitely many definable sets B, such that each $f_{\lceil B}$ is affine.

The typical example of a linear o-minimal structure is an ordered vector space $\mathcal{V}=\left\langle V,<,+, 0,\{d\}_{d \in D}\right\rangle$ over an ordered division ring D. In general, if \mathcal{N} is linear, then there exists a reduct \mathcal{S} of such \mathcal{V}, such that $\mathcal{S} \equiv \mathcal{N}$ (cf. [13] for details). Using this description, it is not hard to see that every affine function has a continuous extension to the closure of its domain.

Assume now that our fixed structure \mathcal{M} is linear.
Lemma 3.2 Let $h:[a, b] \times[c, d] \rightarrow M$ be an \mathcal{L}-definable continuous function, such that for every $t \in(a, b)$, $h(t,-):[c, d] \rightarrow M$ is strictly increasing. Then

$$
h(b, d)-h(b, c)>0
$$

Proof. Let \mathcal{W} be a cell decomposition of $[a, b] \times[c, d]$ such that for every $W \in \mathcal{W}, h_{\upharpoonright W}$ is affine. Since $d-c>0$, there must be some $W=(f, g)_{I} \in \mathcal{W}$, where I is an interval with $\sup I=b$, and $r \in I$, such that the $\operatorname{map} \delta(t):=g(t)-f(t)$ is increasing on $[r, b)$. We claim that for every $t \in(r, b)$,

$$
h(t, g(t))-h(t, f(t)) \geq h(r, g(r))-h(r, f(r))
$$

Indeed, there is $k \geq 0$, such that

$$
\begin{aligned}
h(t, f(t)+\delta(t))-h(t, f(t))= & h(t, f(t)+\delta(r)+k)-h(t, f(t)) \\
= & h(t, f(t)+\delta(r)+k)+h(t, f(t)+\delta(r)) \\
& -h(t, f(t)+\delta(r))+h(t, f(t))
\end{aligned}
$$

$$
\begin{aligned}
& \geq h(t, f(t)+\delta(r))-h(t, f(t)) \\
& =h(r, f(r)+\delta(r))-h(r, f(r))
\end{aligned}
$$

where the inequality holds because $h(t,-)$ is increasing, and the last equality holds because h is affine on W. We conclude that

$$
\begin{aligned}
h(b, d)-h(b, c) & =\lim _{t \rightarrow b}(h(t, d)-h(t, c)) \\
& \geq \lim _{t \rightarrow b}(h(t, g(t))-h(t, f(t))) \\
& \geq h(r, g(r))-h(r, f(r)) \\
& \leq 0
\end{aligned}
$$

where the first and last inequalities hold because $h(t,-)$ and $h(r,-)$ are strictly increasing.
Counterexample to product cone decomposition Let $S \subseteq M$ be a small set such that 0 is in the interior of its closure (by translating P to the origin, such an S exists). Let

$$
X=\bigcup_{a \in S^{>0}}\{a\} \times(0, a)
$$

Claim 3.3 X is not a finite union of product cones.

Proof. First of all, X cannot contain any k-cones for $k>1$, since $\operatorname{ldim}(X)=1$, by [10, Lemmas $4.24 \&$ 4.27]. Now let $H(T \times J)$ be an 1-product cone contained in X, with $H=\left(H_{1}, H_{2}\right): Z \subseteq M^{l+1} \rightarrow M^{2}$, such that the origin is in its closure. Since H is \mathcal{L}-definable and continuous, and for each $g \in T, H_{2}(g,-)$ is injective, we may assume that the latter is always strictly increasing. By [10, Lemma 5.10] applied to $J, f(-)=\pi_{1} H(g,-)$ and S, we have

$$
\text { for every } g \in T \text {, there is } a \in S \text {, such that } H(g, J) \subseteq\{a\} \times(0, a)
$$

By continuity of H, it follows that

$$
\text { for every } g \in c l(T) \cap \pi(Z) \text {, there is } a \in M \text {, such that } H(g, c l(J)) \subseteq\{a\} \times[0, a] \text {. }
$$

Let $F: \pi(Z) \rightarrow M$ be the \mathcal{L}-definable map given by

$$
F(g)=\pi_{1}(H(g, c l(J))) .
$$

Since the origin is in the closure of $H(T \times J)$, there must be an affine $\gamma:(a, b) \rightarrow c l(T) \cap \pi(Z)$ with $\lim _{t \rightarrow b} F(\gamma(t))=0$. Fix any $[c, d] \subseteq c l(J)$. Now the map

$$
H_{2}(\gamma(-),-):(a, b) \times(c, d) \rightarrow M
$$

is piecewise affine and hence has a continuous extension h to $[a, b] \times[c, d]$. By definition of X,

$$
h(b, c)=h(b, d)=0
$$

But, by Lemma 3.2,

$$
h(b, d)-h(b, c)>0
$$

a contradiction. Since X contains no product cone whose closure contains the origin, X cannot be a finite union of product cones.

3.2 The field case

We now assume that \mathcal{M} expands an ordered field. The main idea behind the proof in this case is as follows. By Fact 2.6, it suffices to write every cone as a finite union of product cones. We illustrate the case of a 1-cone $C=h(\mathcal{J})$, for some $\mathcal{J}=\left\{J_{g}\right\}_{g \in S}$.

Step I (Lemma 3.4). Replace \mathcal{J} by a cone $\mathcal{J}^{\prime}=\left\{J_{g}^{\prime}\right\}_{g \in S}$, such that for some fixed interval I, each J_{g}^{\prime} is contained in I and it is co-small in it. Here we use the field structure of \mathcal{M}, so this step would fail in the linear case.

Step II (Lemma 3.5). By [10, Lemma 4.25], the intersection $J=\bigcap_{g \in S} J_{g}^{\prime}$ is co-small in I. Moreover, if we let $L=S \times J$, then, by [10, Lemma 4.29], we obtain that the large dimension of $\mathcal{J} \backslash L$ is 0 .

Step III (Theorem 3.6). Use Steps I and II and induction on large dimension. Here, the inductive hypothesis is only applied to sets of large dimension 0 . In general, $\operatorname{ldim}(\mathcal{J} \backslash L)<\operatorname{ldim}(\mathcal{J})$.

To achieve Step I, we first need to make an observation and fix some notation. Using the field operations, one can define an $\mathcal{L}_{\varnothing}$-definable continuous $f: M^{3} \rightarrow M$, such that for every $b, c \in M$,

$$
f(b, c,-):(b, c) \rightarrow(0,1)
$$

is a bijection. Similarly, there are $\mathcal{L}_{\varnothing}$-definable continuous maps $f_{1}, f_{2}: M^{2} \rightarrow M$, such that for every $b, c \in M$, the maps

$$
f_{1}(b,-):(b,+\infty) \rightarrow(0,1)
$$

and

$$
f_{2}(c,-):(-\infty, c) \rightarrow(0,1)
$$

are bijections. To give all these maps a uniform notation, we write $f(b,+\infty, x)$ for $f_{1}(b, x)$, and $f(-\infty, c, x)$ for $f_{2}(c, x)$. We fix this f for the next proof. Observe that if $J \subseteq(b, c)$ is co-small in (b, c), for $b, c \in M \cup\{ \pm \infty\}$, then $f(b, c, J)$ is co-small in $(0,1)$.

Lemma 3.4 Let $\mathcal{J}=\bigcup_{g \in S}\{g\} \times J_{g} \subseteq M^{m+k}$ be an A-definable uniform family of supercones, with shell $Z \subseteq$ M^{m+k}. Then there are

1. an A-definable uniform family $\mathcal{J}^{\prime}=\left\{J_{g}^{\prime}\right\}_{g \in S}$ of supercones $J_{g}^{\prime} \subseteq M^{k}$, with shell $\pi(Z) \times(0,1)^{k}$,
2. and an \mathcal{L}_{A}-definable continuous and injective map $F: Z \rightarrow M^{m+k}$, such that

$$
F(\mathcal{J})=\mathcal{J}^{\prime}
$$

Proof. For every $g \in \pi_{m}(\mathcal{J})$, since J_{g} is a supercone, it follows that Z_{g} is an open cell. Hence, for every $0<j \leq k$, there are \mathcal{L}_{A}-definable continuous maps $h_{1}^{j}, h_{2}^{j}: \pi_{m+j-1}(Z) \rightarrow M$ such that

$$
\pi_{m+j}(Z)=\left(h_{1}^{j}, h_{2}^{j}\right)_{\pi_{m+j-1}(Z)}
$$

We define

$$
F=\left(F_{1}, \ldots, F_{m+k}\right): Z \rightarrow M^{m+k}
$$

as follows. Let $I=(0,1)$ and f be the map fixed above. Let $(g, t) \in Z \subseteq M^{m+k}$. If $1 \leq i \leq m$,

$$
F_{i}(g, t)=g_{i}
$$

(the i th coordinate of g.) If $i=m+j$, with $0<j \leq k$,

$$
F_{m+j}(g, t)=f\left(h_{1}^{j}\left(g, t_{1}, \ldots, t_{j-1}\right), h_{2}^{j}\left(g, t_{1}, \ldots, t_{j-1}\right), t_{j}\right)
$$

Clearly, F is injective, \mathcal{L}_{A}-definable and continuous. Let

$$
\mathcal{J}^{\prime}=F(\mathcal{J})
$$

That is, $\mathcal{J}^{\prime}=\left\{J_{g}^{\prime}\right\}_{g \in S}$, where for every $g \in S, J_{g}^{\prime}=F\left(g, J_{g}\right)$. It is not hard to check, by induction on m, that for every $0<m \leq k, \pi_{m+j}\left(\mathcal{J}^{\prime}\right)$ is an A-definable uniform family of supercones with shell $F(Z)=\pi(Z) \times I^{m}$.

Lemma 3.5 Let $\mathcal{J}=\bigcup_{g \in S}\{g\} \times J_{g} \subseteq M^{m+k}$ be an A-definable uniform family of supercones in M^{k} with shell Z, and assume $S \subseteq M^{m}$ is small. Suppose that $Z=\pi(Z) \times I^{k}$, where $I=(0,1)$. Then \mathcal{J} is a disjoint union

$$
(S \times J) \cup Y
$$

where $S \times J$ is an A-definable uniform family of supercones with shell Z, and Y is an A-definable set of large dimension $<k$.

Proof. By induction on k. For $k=0$, the statement is trivial. We assume the statement holds for k, and prove it for $k+1$. Let $\pi: M^{m+k+1} \rightarrow M^{m+k}$ be the projection onto the first $m+k$ coordinates. Since $\pi(\mathcal{J})$ is also an A-definable uniform family of supercones with shell $\pi(Z)$, by inductive hypothesis we can write $\pi(\mathcal{J})$ as a disjoint union

$$
\pi(\mathcal{J})=(S \times T) \cup Y
$$

where $T \subseteq M^{k}$ is an A-definable supercone with $c l(T)=c l\left(I^{k}\right)$, and Y is an A-definable set of large dimension $<k$. By [10, Corollary 5.5], the set $\bigcup_{t \in Y}\{t\} \times \mathcal{J}_{t} \subseteq \mathcal{J}$ has large dimension $<k+1$, and hence we only need to bring its complement X in \mathcal{J} into the desired form. We have

$$
X=\bigcup_{t \in S \times T}\{t\} \times \mathcal{J}_{t}
$$

Define, for every $a \in T$,

$$
K_{a}=\bigcap_{g \in S} \mathcal{J}_{g, a}
$$

Since each $\mathcal{J}_{g, a}$ is co-small in I, by [10, Lemma 4.25] K_{a} is co-small in I. Hence, the set

$$
L=\bigcup_{a \in T}\{a\} \times K_{a}
$$

is a supercone in M^{k+1}. Since $c l(T)=c l\left(I^{k}\right)$ and for each $a \in T, \operatorname{cl}\left(K_{a}\right)=c l(I)$, it follows that $c l(L)=c l\left(I^{k+1}\right)$. In particular, Z is a shell for $S \times L$. Since $S \times L \subseteq X$, it remains to prove that $\operatorname{ldim}(X \backslash(S \times L))<k+1$. We have

$$
X \backslash(S \times L)=\bigcup_{(g, a) \in S \times T}\{(g, a)\} \times\left(\mathcal{J}_{g, a} \backslash K_{a}\right)
$$

But $\mathcal{J}_{g, a} \backslash K_{a}$ is small, and hence, by [10, Lemma 4.29], the above set has large dimension $=\operatorname{ldim}(S \times T)=k$.
We can now conclude the main theorem of the paper.
Theorem 3.6 (Product cone decomposition in the field case) Let $X \subseteq M^{n}$ be an A-definable set. Then

1. X is a finite union of A-definable product cones.
2. If $f: X \rightarrow M$ is an A-definable function, then there is a finite collection \mathcal{C} of A-definable product cones, whose union is X and such that f is fiber \mathcal{L}_{A}-definable with respect to each cone in \mathcal{C}.
Proof. (1) By induction on the large dimension of X. Suppose $\operatorname{ldim}(X)=k$. By Fact 2.6 , we may assume that X is a k-cone. Every 0 -cone is clearly a product cone. Now let $k>0$. By induction, it suffices to write X as a union of an A-definable product cone and an A-definable set of large dimension $<k$. Let $X=h(\mathcal{J})$ be as in Definition 2.4, and $Z \subseteq M^{m+k}$ a shell for \mathcal{J}.

Claim We can write X as a k-cone $h^{\prime}\left(\mathcal{J}^{\prime}\right)$, such that for every $g \in \pi\left(\mathcal{J}^{\prime}\right), \operatorname{cl}\left(\mathcal{J}^{\prime}\right)_{g}=(0,1)^{k}$.
Proof of Claim. Let \mathcal{J}^{\prime} and $F: Z \rightarrow M^{m+k}$ be as in Lemma 3.4, and define $h^{\prime}=h \circ F^{-1}: F(Z) \rightarrow M^{n}$. Then

$$
h(\mathcal{J})=h F^{-1}(F(\mathcal{J}))=h^{\prime}\left(\mathcal{J}^{\prime}\right)
$$

is as required.
By the claim, we may assume that for every $g \in S, \operatorname{cl}(\mathcal{J})_{g}=(0,1)^{k}$. By Lemma 3.5, we have $\mathcal{J}=(S \times J) \cup Y$, where $J \subseteq M^{k}$ is an A-definable supercone, and $\operatorname{ldim} Y<k$. Thus $h(\mathcal{J})=h(S \times J) \cup h(Y)$ has been written in the desired form.
(2) By Fact 2.6 , we may assume that X is a k-cone and that f is fiber \mathcal{L}_{A}-definable with respect to it. So let again $X=h(\mathcal{J})$ with shell $Z \subseteq M^{m+k}$, and in addition, $\tau: Z \subseteq M^{m+k} \rightarrow M$ with $\mathcal{J} \subseteq Z$, be \mathcal{L}_{A}-definable so that for every $x \in \mathcal{J}$,

$$
(f \circ h)(x)=\tau(x)
$$

By induction on large dimension, it suffices to show that X is the union of a product cone C and a set of large dimension $<k$, such that f is fiber \mathcal{L}_{A}-definable with respect to C. Let $X=h^{\prime}\left(\mathcal{J}^{\prime}\right)$ be as in Claim of (1) and $F: Z \rightarrow M^{m+k}$ as in its proof. So $h^{\prime}=h \circ F^{-1}: F(Z) \rightarrow M^{n}$. Define $\tau^{\prime}: F(Z) \rightarrow M^{n}$ as $\tau^{\prime}=\tau \circ F^{-1}$. We then have, for every $x^{\prime} \in \mathcal{J}^{\prime}$,

$$
f h^{\prime}\left(x^{\prime}\right)=f h^{\prime} F(x)=f h(x)=\tau(x)=\tau F^{-1}(x)=\tau^{\prime}(x),
$$

witnessing that f is fiber \mathcal{L}_{A}-definable with respect to $h^{\prime}\left(\mathcal{J}^{\prime}\right)$.
Therefore, we may replace h by h and \mathcal{J} by \mathcal{J}^{\prime}. Now, as in the proof of (1), we can write $h(\mathcal{J})$ as the union of a product cone $h(S \times J)$ and a set of large dimension $<k$. By the remarks following Definition $2.5, f$ is also fiber \mathcal{L}-definable with respect to $h(S \times J)$.

Remark 3.7 From the above proof it follows that in cases where we have disjoint unions in Fact 2.6 (as in [10, Theorem 5.12]), this is also the case in Theorem 3.6.

4 Refined supercones

In this section we answer [10, Question 5.14(1)] negatively. The question asked whether the Structure Theorem holds if we strengthen the notion of a supercone as follows.

Definition 4.1 A supercone \mathcal{J} in M^{k} is called refined if it is of the form

$$
\mathcal{J}=J_{1} \times \cdots \times J_{k}
$$

where each J_{i} is a supercone in M. Let us call a $(k$ - $)$ cone $C=h(\mathcal{J})$ a $(k$-)refined cone if \mathcal{J} is refined.
Our result is the following. ${ }^{1}$
Proposition 4.2 Assume \mathcal{M} expands a real closed field. Then there is a supercone in M^{2} which contains no 2-refined cone. In particular, it is not a finite union of refined cones.

Proof. The 'in particular' clause follows from [10, Corollaries $4.26 \& 4.27]$. Now, for every $a \in M$, let

$$
J_{a}=M \backslash(P+a P)
$$

and define $\mathcal{J}=\bigcup_{a \in M}\{a\} \times J_{a}$. Towards a contradiction, assume that \mathcal{J} contains a 2-refined cone. That is, there are supercones $J_{1}, J_{2} \subseteq M$, an open cell $U \subseteq M^{2}$ with $c l\left(J_{1} \times J_{2}\right)=c l(U)$, and an \mathcal{L}-definable continuous and injective map $f: U \rightarrow M^{2}$, such that $C=f\left(J_{1} \times J_{2}\right) \subseteq \mathcal{J}$. We write $X=f(U)$, and for each $a \in M, X_{a} \subseteq M$ for the fiber of X above a. Suppose C is A-definable.

By saturation, there is $a \in M$ which is dcl-independent over $A \cup P$, and further $g, h \in P$ which are dclindependent over a. So

$$
\operatorname{dim}(g, h, a)=3
$$

By assumption, there are $(p, q) \in U \backslash\left(J_{1} \times J_{2}\right)$, such that

$$
f(p, q)=(a, g+h a)
$$

Observe that $a \in \operatorname{dcl}(p, q)$. Also, one of p, q must be in $\operatorname{dcl}(A P)$. Indeed, we have $p \notin J_{1}$ or $q \notin J_{2}$. If, say, the former holds, then $p \in \pi(U) \backslash J_{1}$. Since the last set is A-definable and small, we obtain by [10, Lemma 3.11], that $p \in \operatorname{dcl}(A P)$.

We may now assume that $p \in \operatorname{dcl}(A P)$. If we write $f=\left(f_{1}, f_{2}\right)$, we obtain

$$
\begin{equation*}
f_{2}(p, q)=g+h f_{1}(p, q) \tag{2}
\end{equation*}
$$

Since a is dcl-independent over $A \cup P$, there must be an open interval $I \subseteq M$ of p, such that for every $x \in I$,

$$
f_{2}(x, q)=g+h f_{1}(x, q)
$$

[^1]Viewing both sides of the equation as functions in the variable $f_{1}(x, q)$, and taking their derivatives with respect to it, we obtain:

$$
\frac{\partial f_{2}(x, q)}{\partial f_{1}(x, q)}=f_{1}(x, q)+h
$$

Evaluated at p, the last equality gives $h \in \operatorname{dcl}(p, q)$. By (2), also $g \in \operatorname{dcl}(p, q)$. All together, we have proved that $g, h, a \in \operatorname{dcl}(p, q)$. It follows that

$$
\operatorname{dim}(g, h, a) \leq \operatorname{dim}(p, q) \leq 2
$$

a contradiction.

Acknowledgements I thank Philipp Hieronymi for several discussions on this topic, and the referee for a very careful reading of the paper. This research was partially supported by an EPSRC Early Career Fellowship (EP/V003291/1) and a Zukunftskolleg Research Fellowship (Konstanz).

References

[1] O. Belegradek and B. Zilber, The model theory of the field of reals with a subgroup of the unit circle, J. Lond. Math. Soc. 78, 563-579 (2008).
[2] A. Berenstein, C. Ealy, and A. Günaydin, Thorn independence in the field of real numbers with a small multiplicative group, Ann. Pure Appl. Log. 150, 1-18 (2007).
[3] G. Boxall, P. Hieronymi, Expansions which introduce no new open sets, J. Symb. Log. 77, 111-121 (2012).
[4] A. Dolich, C. Miller, and C. Steinhorn, Structures having o-minimal open core, Trans. Amer. Math. Soc. 362, 1371-1411 (2010).
[5] A. Dolich, C. Miller, and C. Steinhorn, Expansions of o-minimal structures by dense independent sets, Ann. Pure Appl. Log. 167, 684-706 (2016).
[6] L. van den Dries, Dense pairs of o-minimal structures, Fund. Math. 157, 61-78 (1988).
[7] L. van den Dries and A. Günaydın, The fields of real and complex numbers with a small multiplicative group, Proc. Lond. Math. Soc. 93, 43-81 (2006).
[8] M. Edmundo, Structure theorems for o-minimal expansions of groups, Ann. Pure Appl. Log. 102, 159-181 (2000).
[9] P. Eleftheriou, Local analysis for semi-bounded groups, Fund. Math. 216, 223-258 (2012).
[10] P. Eleftheriou, A. Günaydin, and P. Hieronymi, Structure theorems in tame expansions of o-minimal structures by dense sets, Israel J. Math. 239, 435-500 (2020).
[11] P. Eleftheriou and S. Starchenko, Groups definable in ordered vector spaces over ordered division rings, J. Symb. Log. 72, 1108-1140 (2007).
[12] A. Günaydın and P. Hieronymi, The real field with the rational points of an elliptic curve, Fund. Math. 215, 167-175 (2011).
[13] J. Loveys and Y. Peterzil, Linear o-minimal structures, Israel J. Math. 81, 1-30 (1993).
[14] C. Miller and P. Speissegger, Expansions of the real line by open sets: o-minimality and open cores, Fund. Math. 162, 193-208 (1999).
[15] Y. Peterzil, A structure theorem for semibounded sets in the reals, J. Symb. Log. 57, 779-794 (1992).

[^0]: * E-mail: p.eleftheriou@leeds.ac.uk

[^1]: 1 The proof is based on an idea suggested by Hieronymi.

