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Observation of many-body scarring in a Bose-Hubbard quantum simulator
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1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

2Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
3CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,

University of Science and Technology of China, Hefei, Anhui 230026, China
4School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

5Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
6Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

7INO-CNR BEC Center and Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy

(Received 27 June 2022; accepted 22 March 2023; published 5 April 2023)

The ongoing quest for understanding nonequilibrium dynamics of complex quantum systems underpins the
foundation of statistical physics as well as the development of quantum technology. Quantum many-body
scarring has recently opened a window into novel mechanisms for delaying the onset of thermalization by
preparing the system in special initial states, such as the Z2 state in a Rydberg atom system. Here we realize
many-body scarring in a Bose-Hubbard quantum simulator from previously unknown initial conditions such as
the unit-filling state. We develop a quantum-interference protocol for measuring the entanglement entropy and
demonstrate that scarring traps the many-body system in a low-entropy subspace. Our work makes the resource
of scarring accessible to a broad class of ultracold-atom experiments, and it allows one to explore the relation
of scarring to constrained dynamics in lattice gauge theories, Hilbert space fragmentation, and disorder-free
localization.
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I. INTRODUCTION

Coherent manipulation of quantum many-body systems far
from equilibrium is key to unlocking outstanding problems in
quantum sciences including strongly coupled quantum field
theories, exotic phases of matter, and development of en-
hanced metrology and computation schemes. These efforts,
however, are frequently plagued by the presence of interac-
tions in such systems, which lead to fast thermalization and
information scrambling: the behavior known as quantum er-
godicity [1–3]. A twist came with recent advances in synthetic
quantum matter, which enabled detailed experimental study
of thermalization dynamics in isolated quantum many-body
systems, leading to the observation of ergodicity-violating
phenomena in integrable [4] and many-body localized sys-
tems [5,6].

More recently, quantum many-body scarring has emerged
as another remarkable ergodicity-breaking phenomenon,
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where preparing the system in special initial states effectively
traps it in a “cold” subspace that does not mix with the ther-
malizing bulk of the spectrum [7,8]. Such behavior hinders
the scrambling of information encoded in the initial state and
suppresses the spreading of quantum entanglement, allowing
a many-body system to display persistent quantum revivals.
Many-body scarring was first observed in the Rydberg atom
experimental platform [9,10], and subsequent observations
of weak ergodicity breaking phenomena have attracted much
attention [11–13]. On the other hand, theoretical works have
unearthed universal scarring mechanisms [14–17], pointing to
the ubiquity of scarring phenomena in periodically driven sys-
tems [18–20] and in the presence of disorder [21,22]. Given
that many-body scarring in Rydberg atom systems has pre-
viously been reported in a single initial state, the Z2-ordered
state, many questions remain about the overall fragility of this
phenomenon and its sensitivity to the initial condition. It is
thus vital to extend the realm of scarring to a greater variety
of experimental platforms and more accessible initial condi-
tions, which would empower a fundamental understanding of
nonergodic dynamics in various research areas ranging from
lattice gauge theories to constrained glassy systems.

In this paper, we observe many-body scarring in a large-
scale Bose-Hubbard quantum simulator, where we employ a
tilted optical lattice to emulate the PXP model, a canonical
model of many-body scarring [23–26]. We demonstrate that
many-body scarring can result from a larger set of initial
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states, including the unit-filling state at finite detuning, hith-
erto believed to undergo fast thermalization [9]. Furthermore,
we demonstrate that periodic driving can be used to enhance
scarring behavior. Taking advantage of spin-dependent optical
superlattices, we measure the system’s entanglement entropy
by interfering identical copies in the double wells. We show
the average entropy of single-site subsystems to be a good
approximation of half-chain bipartite entropy, revealing a key
property of scarring: the “trapping” of the quantum system in
a low-entropy subspace, which prevents its relaxation into the
exponentially large Hilbert space.

The remainder of this paper is organized as follows. In
Sec. II we introduce our experimental setup and show how
it can realize the PXP model. In Sec. III we benchmark our
quantum simulation by observing many-body scarring from
the previously known Z2 initial state. We also demonstrate the
enhancement of scarring under periodic driving. In Sec. IV we
present our measurements of entanglement entropy, providing
deeper insight into the slow thermalization dynamics associ-
ated with scarred initial states. Finally, in Sec. V we extend
the scarring phenomenon to a regime at moderate detuning for
the unit-filling initial state. Our conclusions are presented in
Sec. VI, while Appendixes A–D contain the derivation of the
PXP mapping, further details on state preparation and mea-
surement techniques, and a numerical study of other scarred
initial conditions.

II. MAPPING THE PXP MODEL ONTO
THE BOSE-HUBBARD MODEL

The PXP model [27,28] describes a kinetically constrained
chain of spin-1/2 degrees of freedom. Each spin can exist in
two possible states, |◦〉 and |•〉, corresponding to the ground
state and excited state, respectively. An array of N such spins
is governed by the Hamiltonian

ĤPXP = �

N∑
j=1

P̂j−1X̂ j P̂j+1, (1)

where X̂ = |◦〉〈•| + |•〉〈◦| is the Pauli x matrix, describing lo-
cal spin precession with frequency �. The projectors onto the
ground state, P̂ = |◦〉 〈◦|, constrain the dynamics by allowing
a spin to flip only if both of its neighbors are in the ground
state.

A remarkable property of the PXP model is that it is quan-
tum chaotic and yet it exhibits persistent quantum revivals
from a highly out-of-equilibrium |Z2〉 ≡ |•◦•◦ · · ·〉 initial
state [23,29–31]. The presence of revivals from a special
initial state in an overall chaotic system was understood to
be a many-body analog of the phenomena associated with a
single particle inside a stadium billiard, where nonergodicity
arises as a “scar” imprinted by a particle’s classical periodic
orbit [16,32,33]. In many-body scarred systems, eigenstates
were shown to form tower structures [23]. These towers are
revealed by the anomalously high overlap of eigenstates with
special initial states, and their equal energy spacing is re-
sponsible for quantum revivals. While previous experiments
on Rydberg atoms [9,10] have primarily focused on the |Z2〉
initial state, we will demonstrate that the PXP model can
effectively emerge in the Bose-Hubbard model, allowing us to

identify scarred revivals from a larger set of initial conditions,
including the polarized state |0〉 ≡ |◦◦◦ · · ·〉.

Our experiment begins with a 87Rb Bose-Einstein conden-
sate, which is compressed in the z direction and loaded into
a single layer of a pancake-shaped trap. We then perform
the superfluid-to-Mott-insulator phase transition with optical
lattices in the x-y plane. In both x and y directions, we have
a superlattice that is formed by superimposing the “short”
lattice, with as = 383.5 nm spacing, and the “long” lattice,
with al = 767 nm spacing [34,35], each of which can be indi-
vidually controlled. We realize independent one-dimensional
(1D) Bose-Hubbard systems in the y direction by ramping
up the short-lattice depth in the x direction over 40Er , with
Er = h2/8ma2

s being the short-lattice recoil energy, where h
is the Planck constant and m is the 87Rb atomic mass. The
short lattice in the y direction makes an approximately 4◦
angle with gravity, which results in a static linear tilt per
site of �g = 816 Hz; see Fig. 1(a). An external magnetic
field gradient �B may be further added to create a tunable
linear tilting potential �=�g+�B. The effective Hamiltonian
describing our simulator is

Ĥ = −J
L−1∑
i=1

(b̂†
i b̂i+1 + b̂†

i+1b̂i ) + Û + �̂, (2)

where J is the hopping amplitude, b̂ and b̂† are the standard
Bose annihilation and creation operators, the interaction en-
ergy is Û = (U/2)

∑L
i=1 n̂i(n̂i − 1), and the tilt potential is

�̂ = �
∑L

i=1 in̂i. L denotes the number of sites in the chain
with open boundary conditions, and we restrict ourselves to a
total filling equal to 1, i.e., with the same number of bosons as
lattice sites.

In order to realize the PXP model in the Bose-Hubbard
quantum simulator, we tune the parameters to the resonant
regime U ≈ � � J [36,37], which has been studied exten-
sively in the context of quantum Ising chains [38–40]. In
this regime, three-boson occupancy of any site is strongly
suppressed, and doublons can only be created by moving a
particle to the left, e.g., · · · 11 · · · → · · · 20 · · · , or destroyed
by moving a particle to the right. The states of the PXP model
are understood to live on the bonds of the Bose-Hubbard
model. An excitation in the PXP model • j, j+1, living on the
bond ( j, j + 1), corresponds to the creation of a doublon
2 j0 j+1 on site j in the Bose-Hubbard chain. We identify the
unit-filling state |111 · · ·〉 with the PXP polarized state, |0〉.
Any other configuration of the PXP model can be mapped to
a Fock state in the Bose-Hubbard model by starting from the
unit filling, identifying the bonds that carry PXP excitations
and replacing the corresponding sites in the Mott state with
11 → 20. Applying this rule across the chain allows us to
map any basis state of the PXP model to a corresponding Fock
state in the Bose-Hubbard model; for example, the |Z2〉 state
maps to the Fock state |· · · 2020 · · ·〉. Figure 1(b) illustrates
the profound change in the connectivity of the Fock space near
the resonance U ≈ � � J , with an emergent dynamical sub-
space isomorphic to the PXP model in the sector containing
the |Z2〉 state. For a detailed derivation of the mapping, see
Appendix A.
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(a)

(b)

FIG. 1. Realizing the PXP model in a Bose-Hubbard quantum
simulator. (a) A schematic of the optical lattice. Deep lattice po-
tential in the x direction forms isolated chains in the y direction,
where the linear tilting potential is applied. Spin-dependent super-
lattices consisting of two standing waves in each direction can be
individually controlled for state preparation and measurement. At
the resonance U ≈ � � J , the dominant hopping process is 11 ↔
20. The PXP excitations, •, live on the bonds between the lattice
sites. The doublon configuration 20 in the Bose-Hubbard model
maps to an excitation in the PXP model, while all other config-
urations are mapped to an empty site, ◦. For example, the given
state |· · · ◦•◦•◦◦◦• · · ·〉 maps to the Fock state |· · · 120201120 · · ·〉.
(b) Emergence of the PXP subspace in the Bose-Hubbard model at
the resonance U ≈ � � J . Dots represent Fock states of the tilted
Bose-Hubbard model with five bosons on five sites (restricting our-
selves to at most three bosons on any site). Lines denote the allowed
hopping processes. The color scale shows the sum of interaction and
tilt energies 〈Û + �̂〉 for each Fock state, and this value is conserved
by resonant processes. The PXP dynamical subspace and its Fock
states are explicitly labeled.

III. OBSERVATION OF Z2 QUANTUM MANY-BODY SCARS

To prepare the initial states, we first employ an entropy
redistribution cooling method [34] with the superlattice in
the y direction to prepare an n̄ = 2 Mott insulator in the left
(odd) sites, while removing all atoms on the right (even) sites
via site-dependent addressing [35]. This gives us the initial
state |ψ0〉 = |Z2〉 = |2020 · · ·〉 (see Appendix B). In the re-
gion of interest, we have prepared 50 copies of the initial

state |ψ0〉 isolated by the short lattice along the x direction.
Each copy extends over 50 short lattice sites along the y
direction.

We quench the system out of equilibrium by abruptly
dropping the y-lattice depth to 11.6Er , which corresponds to
switching J from 0 to 51(1) Hz. This is done while simul-
taneously adjusting the lattice depth in the x and z directions
accordingly, such that the interaction strength matches the lin-
ear tilt with U = � = �g ≈ 16J . After evolution time t , we
freeze the dynamics by ramping up the y-lattice depth rapidly
and read out the atomic density on the left (〈n̂Left〉) and right
(〈n̂Right〉) sites of the double wells formed by the y superlat-
tice successively [35,41]. This provides access to the density
imbalance, 〈M̂z〉 = (〈n̂Left〉 − 〈n̂Right〉)/(〈n̂Left〉 + 〈n̂Right〉), an
observable corresponding to the staggered magnetization in
the PXP model; see Fig. 2(a). Another observable is the
density of excitations in the PXP model, which is measured
by projecting out the even atomic number occupancy on
each site, then reading out the average odd particle density
〈P̂n̂∈odd〉(1) [41]. Due to highly suppressed multiboson occu-
pancy, we have 〈P̂|•〉〉 = 〈n̂doublon〉(1) ≈ (1 − 〈P̂n̂∈odd〉(1) )/2.

Away from the resonance, the dynamics is ergodic, and
the staggered magnetization present in the initial |Z2〉 state
quickly decays with time; see Fig. 2(b). In contrast, by tuning
to the vicinity of the resonance, � = U , we observe distinct
signatures of scarring: The system approximately undergoes
persistent oscillations between the |Z2〉 ≡ |•◦•◦ · · ·〉 config-
uration and its partner shifted by one site, |Z̄2〉 ≡ |◦•◦• · · ·〉,
as can be seen in the staggered magnetization profile and the
density of excitations in Fig. 2(b). The density of excitations
does not distinguish between |Z2〉 and |Z̄2〉 states; hence
there is a trivial factor of 2 difference between the oscillation
frequencies of 〈P̂|•〉〉 and 〈M̂z〉.

The scarred oscillations in Fig. 2(b) are visibly damped
with a decay time τ = 49.6 ± 0.8 ms. Nevertheless, as shown
in Ref. [10], by periodically driving the system it is possible
to “refocus” the spreading of the many-body wave function in
the Hilbert space and thereby enhance the scarring effect, as
we demonstrate numerically in Fig. 2(c) and experimentally
in Fig. 2(d). Our driving protocol is based on modulating
the laser intensity of the z lattice, which translates into peri-
odic modulation of the interaction energy, U (t ) = � + U0 +
Um cos(ωt ), while � is kept fixed. This results in a modulation
of the density of doublons in the chain, acting as the analog of
the chemical potential in the PXP model.

Numerical simulations of the PXP model with the driven
chemical potential, shown in Fig. 2(c), demonstrate the dy-
namical stabilization of the Hilbert space trajectory. We
visualize the trajectory by plotting the average sublattice oc-
cupations, 〈n̂Left〉 and 〈n̂Right〉, normalized to the interval [0,1].
The |Z2〉 and |Z̄2〉 states are located at the coordinates (1,0)
and (0,1), which are the lower right and upper left corners
of this diagram, respectively. The polarized state |0〉 is at the
origin (0,0).

In the undriven case [left panel of Fig. 2(c)], the trajec-
tory at first oscillates between |Z2〉 and |Z̄2〉 states, while
passing through a region with a lower number of excitations.
However, as the time passes, the trajectory drifts, exploring
progressively larger parts of the Hilbert space. By contrast,
when the driving is turned on [right panel of Fig. 2(c)], the
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(a)

(b)

(c)

(d)

FIG. 2. Observation of Z2 quantum many-body scars in a Bose-Hubbard quantum simulator. (a) Starting from the state |ψ0〉 =
|· · · 2020 · · ·〉—the analog of the |Z2〉 state in the PXP model—we utilize gravity to provide linear tilt � = �g. We characterize quench
dynamics by measuring density imbalance and the number of doublons, corresponding to staggered magnetization 〈M̂z〉 and density of
excitations 〈P̂|•〉〉 in the PXP model. In the detuned regime � − U ≈ −2J , the dynamics is ergodic, and the system has no memory of the initial
state at late times. (b) Tuning to U ≈ �, we observe persistent oscillations in both 〈M̂z〉 and 〈P̂|•〉〉. This memory of the initial state is a signature
of weak ergodicity breaking due to quantum many-body scars. (c) and (d) Periodic modulation of the interaction U (t ) = � + U0 + Um cos(ωt )
with U0 = 1.85J , Um = 3.71J , and ω = 3.85J leads to an enhancement of scarring. (c) shows the numerically computed trajectory in the
sublattice occupation plane for the PXP model with N = 24 sites, with and without driving. The sublattice occupancies 〈n̂Left〉 and 〈n̂Right〉 are
normalized to the interval [0,1]. The driving is seen to strongly suppress the spreading of the trajectory. In (d), experimental measurements on
the driven Bose-Hubbard model show robust scarred oscillations at all accessible times. In both the static and driven cases, experimental data
for 〈M̂z〉 and 〈P̂|•〉〉 are in excellent agreement with TEBD numerical simulations shown by gray and red solid curves. The gray curve in the
lowest panel shows the modulation U (t ).

trajectory approximately repeats the first revival period of
the undriven case, even at late times. Thus the driving sta-
bilized the scarred revivals without significantly altering their
period.

Experimental measurements on the driven Bose-Hubbard
model in Fig. 2(d) find a strong enhancement of the amplitude
of the oscillations in staggered magnetization with the decay
time τ increasing to 208 ± 10 ms, while the period remains
nearly the same as in the static case. Optimal driving param-
eters were determined numerically using a combination of
simulated annealing and brute-force search; see Supplemental
Material [42].

We note that the experimental measurement of 〈M̂z〉 damps
slightly faster than the theory prediction, shown by a curve
in Fig. 2(b), at late times (t > 60 ms). We attribute this to
an inherent residual inhomogeneity across the lattice, which
results in dephasing between different parts of the system,
as well as possible decoherence induced by scattering of the
lattice lasers. To avoid the effect of these undesired dephasing
or decoherence effects, in the following we limit our investi-
gation to times up to 60 ms.

IV. UNRAVELING THE DETAILS OF SCARRED
DYNAMICS VIA QUANTUM INTERFERENCE

Entanglement entropy is key for characterizing scarring
behavior. Entropy provides a window into the evolution of
the system’s wave function and the spreading of quantum
entanglement. For a system trapped in a scarred subspace,
thermalization is inhibited, and the system exhibits suppressed
entropy growth and periodic fidelity revivals. Measuring these
observables usually requires brute-force state tomography, but
for our 50-site Bose-Hubbard system with a Hilbert space
dimension exceeding 1028, this approach is generally impos-
sible.

However, the superlattice in the x direction allows us to
probe entanglement entropy by interfering identical copies
in the double wells, analogous to the 50 : 50 beam splitter
(BS) interference employed in photonics experiments [43];
see Fig. 3(a). This is done by freezing the dynamics along
the chains in the y direction after evolution time t ; then we
interfere copies of |ψ (t )〉 in the double wells formed by
the x superlattice (see Appendix C). After the interference,
a parity projection helps read out the average odd particle
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(a)

(b)

FIG. 3. Probing many-body scarred dynamics via quantum in-
terference. (a) After evolution time t , we freeze the dynamics in
the y direction, and then by interfering two identical copies in the
double wells along the x direction, we obtain the second-order Rényi
entropy. (b) The entropy for a single site, S(1), is seen to have robust
oscillations with the same frequency as in Fig. 2(b), indicating a
lack of thermalization. The slow growth of entropy in the absence
of driving (upper panel) is strongly suppressed when we drive the
system using the same parameters as in Fig. 2(d) (lower panel). In
both cases, the single-site entropy is a good approximation to the
half-chain entropy, SL/2, evaluated numerically using TEBD (gray
curve).

density 〈P̂BS
n̂∈odd〉(1), which gives us access to the second-order

Rényi entropy [44]. We measure the entropy of single-site
subsystems S(1) = −ln(Tr(1)[ρ̂(t )2]) = −ln(1 − 2〈P̂BS

n̂∈odd〉(1) ),
where ρ̂(t ) = |ψ (t )〉 〈ψ (t )| is the density matrix. Entangle-
ment entropy S(1), shown in Fig. 3(b), grows much more
slowly than expected in a thermalizing system. The growth
is accompanied by oscillations with the same frequency as
〈P̂|•〉〉 in Fig. 2(b), implying that the system returns to the
neighborhood of product states |Z2〉 and |Z̄2〉. Furthermore,
the entropy growth becomes almost fully suppressed by peri-
odic driving, indicating that the scarred subspace disconnects
from the thermalizing bulk of the spectrum. Numerical time-
evolving block decimation (TEBD) simulations confirm that
this lack of thermalization at the single-site level provides a
good approximation for the behavior of larger subsystems, as
demonstrated by the half-chain bipartite entropy SL/2 plotted
in Fig. 3(b). This shows that scarring traps the system in a van-
ishingly small corner of an exponentially large Hilbert space.

V. EMERGENCE OF DETUNED SCARRING
IN THE POLARIZED STATE

Up to this point, we have provided extensive benchmarks
of our quantum simulator against the previously known case
of Z2 quantum many-body scars [9]. In this section we
demonstrate that our quantum simulator also hosts distinct
scarring regimes for initial states other than |Z2〉, which are
enabled by detuning and further stabilized by periodic drive.
We highlight this finding by observation of scarring behavior
in the polarized state |0〉, previously not associated with scars.

We first prepare the unit-filling state |1111 · · ·〉 by trans-
ferring |2, 0〉 to |1, 1〉 states in the superlattice [34], which
maps to the polarized state in the PXP model (see also Ap-
pendix B). In the absence of detuning or periodic drive, we
observe fast relaxation: Both the density of excitations and
single-site entropy rapidly relax, with no visible oscillations
beyond the timescale ∼1/J; see Fig. 4(a). Interestingly, when
we bias the system by a static detuning, U0 = −2.38J , we
observe the emergence of oscillations in all three observ-
ables, accompanied by a slight decay; see Fig. 4(b). Finally,
if we also periodically modulate the interaction with ampli-
tude Um = 1.54J and frequency ω = 4.9J × 2π , we find a
dramatic enhancement of scarring [Fig. 4(c)]. In particular,
entropy now shows pronounced oscillations, signaling robust
scar-induced coherence at all experimentally accessible times.

The intuitive picture behind our observations is summa-
rized as follows. In the absence of detuning or periodic drive,
the system initialized in the polarized state undergoes chaotic
dynamics and rapidly explores the entire Hilbert space. By
biasing the system via static detuning, thermalization can be
suppressed over moderate timescales. Finally, by periodically
driving the system it is possible to “refocus” the spreading of
the many-body wave function in the Hilbert space and thereby
enhance the scarring effect, similar to the findings of Ref. [10]
for the |Z2〉 state. In the remainder of this section, we present
our theoretical analysis of the experiment that supports this
interpretation of the dynamics.

Figure 5 shows the results of exact diagonalizations of
the PXP model in Eq. (1) in the presence of static detuning,
Ĥ (μ) = ĤPXP + μ0

∑
i n̂i, where n̂i takes a value equal to 1 if

site i contains an excitation and 0 otherwise. The static chemi-
cal potential μ0 is proportional to the Bose-Hubbard detuning
parameter U0 in Fig. 4. Figure 5(a) plots the overlap of all
energy eigenstates |E〉 of the pure PXP model (μ0 = 0) with
the polarized state |ψ0〉 = |0〉. As expected, we do not see any
hallmarks of scars, such as ergodicity-violating eigenstates
with anomalously enhanced projection on |0〉. Moreover, the
lowest-entropy eigenstates, denoted by squares in Fig. 5(b),
are the known Z2 scarred eigenstates [31] which are hidden
in the bulk of spectrum when the overlap is taken with the |0〉
state.

On the other hand, when we add the static chemical po-
tential μ0 = 1.68�, corresponding to the detuning value in
Fig. 4, a band of scarred eigenstates with anomalously large
overlap with |0〉 emerges; see Fig. 5(c). The band of scarred
eigenstates, highlighted by star symbols in Fig. 5(c), spans
the entire energy spectrum, but their support on |0〉 is biased
towards the ground state due to the breaking of particle-hole
symmetry by detuning. The detuned scarred states also have
anomalously low entanglement entropy, as seen in Fig. 5(d).

A few comments are in order. We note that exact di-
agonalization confirms that the PXP model remains chaotic
for the value of detuning used in Fig. 5(c), and this de-
tuning is not large enough to trivially fragment the entire
spectrum into disconnected sectors with the given numbers
of excitations [42]. Moreover, we confirmed that the scarred
eigenstates in Fig. 5(c) are distinct from the ones associated
with the |Z2〉 state in Fig. 5(a). Thus it remains to be under-
stood if these eigenstates can be described within the su(2)
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(a) (b) (c)

FIG. 4. Emergence of many-body scarring in the polarized state. (a) Fast thermalization from the unit-filling state in the Bose-Hubbard
chain at U = � resonance. (b) Emergence of scarred dynamics in the presence of static detuning. (c) Dynamical stabilization of scarred
dynamics in the presence of both detuning and periodic driving. The top and bottom rows show the experimental measurements of the density of
excitations and second Rényi entropy, respectively. The ergodic case shows fast growth of the half-chain entropy compared with the single-site
entropy, while for the scarred dynamics, the single-site entropy approximates well the half-chain entropy, with or without periodic driving.
The static detuning is U0 = −2.38J , and the modulation parameters are Um = 1.54J and ω = 4.9J × 2π . The curves are the results of TEBD
simulations.

spectrum-generating algebra framework developed for the
|Z2〉 state in Ref. [45].

Nevertheless, similar to the |Z2〉 case, the scarring from
the |0〉 state can be further enhanced by periodic modulation
of the PXP chemical potential, μ(t ) = μ0 + μm cos(ωt ). By
evaluating the corresponding Floquet operator, we find that
a single Floquet mode develops a very large overlap with
the |0〉 state [42]. The existence of a single Floquet mode,
whose mixing with other modes is strongly suppressed, gives
rise to robust oscillations in the dynamics well beyond the
experimentally accessible timescales.

To probe the ergodicity of the dynamics from the polar-
ized state, we compare the difference between the predictions
of the diagonal and canonical ensembles for an observable
such as the average number of excitations; see Fig. 6(a).
These two ensembles are expected to give the same re-
sult if the strong eigenstate thermalization hypothesis (ETH)
holds [46] and all eigenstates at a similar energy den-
sity yield the same expectation value for local observables.
Figure 6(a) shows that the discrepancy between the two
ensembles is the strongest around μ0 ≈ 1.68�, where we ob-
serve strong scarring. For μ0/� close to 0, the polarized state

(a) (c)

(b) (d)

FIG. 5. Eigenstate properties of the detuned PXP model. (a) Overlaps of all eigenstates of the PXP model with the polarized state |ψ0〉 =
|0〉. (b) Bipartite entanglement entropy of the eigenstates in (a). The squares mark the previously known Z2 scarred eigenstates. (c) and (d) Same
as (a) and (b) but for the PXP model with the static chemical potential μ0 = 1.68�, approximately corresponding to the experimental value
of detuning in Fig. 4. The stars denote the detuned scar eigenstates, which have high overlap with the |0〉 state as well as low entropy. All data
are obtained by exact diagonalization of the PXP model on a ring with N = 32 sites in the zero-momentum and inversion-symmetric sector.
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FIG. 6. Nonergodic dynamics from the polarized state in the
detuned PXP model. (a) Difference between the expectation values
of the diagonal and canonical ensembles for the average number
of excitations. The discrepancy is maximized around μ0/� ≈ 1.68.
(b) The average number of excitations at μ0/� = 1.68 following the
quench from the |0〉 state shows good agreement between the exact
quantum dynamics and TDVP approximation. The exact dynamics is
for system size N = 32 spins. (c) Trajectory in the TDVP manifold
for different values of μ0/�. The color scale denotes quantum leak-
age γ , defined in the text, which bounds the accuracy of the TDVP
approximation. The markers are spaced in time by �t = 0.15/�.
For the optimal value μ0 = 1.68�, identified in (a) and also used
in experiment, the trajectory avoids the high-leakage region and
approximates well the quantum dynamics, while it is not limited to a
small corner of the many-body Hilbert space.

thermalizes quickly towards the thermal value expected for a
state whose expectation value of the energy is near the middle
of the many-body spectrum. For very large μ0/�, we enter a
trivial regime where the polarized state is close to the ground
state and only a few eigenstates at low energies are relevant
for the dynamics. Hence, in this regime, quenching from the
polarized state is similar to quenching from a thermal state at
a very low temperature, and the agreement between the two
ensembles is again very good. However, in this regime, only a
very small part of the many-body Hilbert space is explored by
the dynamics. This is not the case in the scarred regime that
we investigate experimentally, and this can be demonstrated
by studying the relevant classical limit, as shown next.

In the single-particle case, scarred quantum dynamics
originates from an unstable periodic orbit in the classical
limit h̄ → 0 [47]. In a many-body system, one approach to
establishing a quantum-classical correspondence is to project
the Schrödinger dynamics into a variational manifold, e.g.,

spanned by matrix product states [48], a method known as the
“time-dependent variational principle” (TDVP). It was shown
that the scarred dynamics of the |Z2〉 state in the PXP model is
well captured by the TDVP approach, allowing one to identify
a classical orbit [16]. In Figs. 6(b) and 6(c) we utilize the
TDVP approach to gain a semiclassical understanding of the
detuned scarred dynamics from the |0〉 state. We parametrize
the TDVP manifold using translation-invariant, spin-coherent
states compatible with the Rydberg blockade constraint [49].
The states are defined by the Bloch sphere angles θ and φ,
where sin(θ ) is proportional to the density of excitations,
while φ describes the phase. In the thermodynamic limit, we
can obtain classical equations of motion for θ and φ (see
Ref. [50] for a detailed derivation). Figure 6(b) demonstrates
that this classical dynamical system provides an excellent
approximation of the quantum trajectory for sufficiently large
values of μ0, including μ0 = 1.68�.

To quantify the accuracy of the TDVP approach in cap-
turing the quantum dynamics, we use “quantum leakage”: the
instantaneous norm of a component of the state vector that lies
outside the TDVP manifold, γ 2 ≡ (1/N )|| |ψ̇〉 − iĤ |ψ〉 ||2
[16]. For the initial state |0〉, the leakage has a simple analytic
expression γ 2 = �2 sin6 θ/(1 + sin2 θ ) [50]. The leakage is
higher as θ is increased, corresponding to a larger density
of excitations. In this regime, i.e., for small values of μ0/�,
the PXP constraint has a strong effect, and the spin-coherent
state ansatz does not faithfully capture the dynamics. On the
other hand, for large values of μ0/�, the leakage is low, but
θ is confined to values near zero; thus the trajectory does
not explore much of the Hilbert space. This corresponds to
the trivial case where the dynamics is confined to very low
densities of excitations, rendering the constraint unimportant.
Finally, in the intermediate regime of μ0/� where we observe
the scarring, the TDVP dynamics is able to “avoid” the high-
leakage area, as seen in Fig. 6(c), while at the same time θ

is not pinned to zero and the dynamics is not confined to one
corner of the Hilbert space.

VI. DISCUSSION AND OUTLOOK

We performed a quantum simulation of the paradigmatic
PXP model of many-body scarring using a tilted Bose-
Hubbard optical lattice. We demonstrated the existence of
persistent quantum revivals from the |Z2〉 initial state and their
dynamical stabilization, opening up a route for the investiga-
tion of scarring beyond Rydberg atom arrays. By harnessing
the effect of detuning, we observed a scarring regime as-
sociated with the polarized initial state. As the latter state
is spatially homogeneous, its preparation does not require a
superlattice, which makes further investigations of scarring
phenomena accessible to a large class of ultracold-atom ex-
periments.

Moreover, we have demonstrated that periodic driving can
lead to a striking decoupling of the scarred subspace from the
rest of the thermalizing bulk of the spectrum, as revealed by
the arrested growth of entanglement entropy. The mechanism
of this enhancement is a subject of ongoing investigations. On
the one hand, Ref. [51] used a kicked toy model to argue that
the scarring enhancement originates from a discrete time crys-
talline order. On the other hand, Ref. [52] studied the cosine
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drive employed in experiment, finding two distinct regimes
with long-lived scarred revivals. In the regime corresponding
to the parameter values in Fig. 2 above, the driving parameters
need to be fine-tuned to match the intrinsic revival frequency
of the undriven scarred system. Moreover, the stabilization
was no longer possible when the system was perturbed by
terms which destroy scarring in the undriven case. This sug-
gests that driving indeed acts as an enhancement mechanism,
preventing dynamics from “leaking” into the thermalizing
bulk.

Our demonstration of scarring in the |0〉 state highlights the
importance of energy density. While the |Z2〉 has predominant
support on the eigenstates in the middle of the spectrum, i.e.,
it constitutes an “infinite temperature” ensemble, the support
of the |0〉 state is biased towards one end of the spectrum as
a result of particle-hole symmetry breaking via the detuning
potential. This suggests that, depending on the effective tem-
perature, one can realize scarring from a much larger class of
initial states with a suitable choice of detuning and periodic
driving protocols. We illustrate this in Appendix D by simu-
lating the quench of the chemical potential in the PXP model
(see also Ref. [50]).

The versatility of optical lattice platforms allows one to
directly probe the link between many-body scarring and other
forms of ergodicity-breaking phenomena, such as Hilbert
space fragmentation and disorder-free localization, as the lat-
ter can be conveniently studied in our setup by varying the
tilt. In this context, we note that Ref. [12] has recently used
the tilt potential to demonstrate Hilbert space fragmentation
in the Fermi-Hubbard optical lattice. By contrast, in this pa-
per we explored ergodicity breaking due to many-body scars
occurring within a single fragment of the Hilbert space. While
many-body scarring can be induced in the Fermi-Hubbard
model by tuning to a similar resonance condition [53], the
underlying mechanism is an approximate dimerization of the
chain, which is conceptually different from the PXP-type scar-
ring considered here.

In future work, it would be interesting to explore realiza-
tions of new scarring models by tuning to other resonance
conditions and other types of lattices, including ladders and
two-dimensional arrays. Indeed, it is known that the U(1)
quantum link model (QLM) [54,55] can be exactly mapped to
the PXP model [56]. As such, recent large-scale experiments
realizing the U(1) QLM [57,58] can in principle also probe
our results. A proposal has recently been introduced to extend
these setups to (2 + 1)D [59], where a mapping between the
U(1) QLM and PXP model does not hold, which would allow
one to probe how the scarring regimes discovered in this
paper would behave in higher spatial dimensions. Finally, the
observation of long-lived quantum coherence due to scarring
and its controllable enhancement via periodic modulation lays
the foundation for applications such as quantum memories
and quantum sensing [60,61].

ACKNOWLEDGMENTS

We thank P. Hauke, B. Mukherjee, C. Turner, and
A. Michailidis for useful discussions. The experiment is
supported by NNSFC Award No. 12125409, the Anhui Initia-
tive in Quantum Information Technologies, and the Chinese
Academy of Sciences. A.H., J.-Y.D., and Z.P. acknowledge

support from EPSRC Grant No. EP/R513258/1 and from
Leverhulme Trust Research Leadership Award No. RL-2019-
015. A.H. acknowledges funding provided by the Institute
of Physics Belgrade, through a grant from the Ministry of
Education, Science, and Technological Development of the
Republic of Serbia. Part of the numerical simulations were
performed at the Scientific Computing Laboratory, National
Center of Excellence for the Study of Complex Systems,
Institute of Physics Belgrade. J.C.H. acknowledges support
from Provincia Autonoma di Trento, the ERC starting grant
StrEnQTh (Project No. 804305), the Google Research Scholar
award ProGauge, and Q@TN–Quantum Science and Technol-
ogy in Trento. B.Y. acknowledges support from National Key
R&D Program of China (Grant No. 2022YFA1405800) and
NNSFC (Grant No. 12274199).

APPENDIX A: MAPPING THE TILTED 1D
BOSE-HUBBARD ONTO THE PXP MODEL AT � ≈ U

RESONANCE

The Hamiltonian describing our 1D Bose-Hubbard model
is given in Eq. (2) of the main text, with J denoting the hop-
ping amplitude, ĤU denoting the corresponding interaction
term, and Ĥ� denoting the tilt potential. We denote by L the
number of lattice sites and assume open boundary conditions
(OBCs). Unless specified otherwise, we fix the filling factor
to ν = 1, i.e., the number of bosons is equal to the number of
sites in the chain.

In the U,� � J limit, the energy spectrum of the Hamil-
tonian in Eq. (2) splits into bands with approximately constant
expectation value of the diagonal terms, 〈ĤU + Ĥ�〉 ≈ const,
and the Hilbert space becomes fragmented. At the U ≈ � �
J resonance, the only process which conserves 〈ĤU + Ĥ�〉 is
11 ↔ 20, i.e., doublons can only be created by moving a parti-
cle to the left and destroyed by moving a particle to the right.
In the connected component of the Fock state |111 · · · 111〉,
the system in the resonant regime is described by an effective
Hamiltonian

Ĥeff = −J
L−1∑
i=1

(b̂†
i b̂i+1n̂i(2−n̂i )n̂i+1(2−n̂i+1)+H.c.), (A1)

which results from the first-order Schrieffer-Wolff transforma-
tion applied to Eq. (2) [62]. In the Supplemental Material [42]
we discuss the effect of higher-order terms in the Schrieffer-
Wolff transformation.

In the remainder of this Appendix, we show that the Hamil-
tonian (A1) is equivalent to the PXP Hamiltonian [27,28] (see
also Ref. [36] for the original derivation of the mapping and a
recent review [37]). The connected component of the Hilbert
space contains only certain types of two-site configurations
(20, 11, 12, 02, 01), while all other two-site configurations are
forbidden (22, 21, 10, 00). If we consider the configuration 20
to be an excitation, all allowed configurations can be mapped
to those of the PXP model as follows:

· · · 20 · · · ↔ ◦ • ◦,
· · · 11 · · · ↔ ◦ ◦ ◦,
· · · 12 · · · ↔ ◦ ◦ •, (A2)

· · · 02 · · · ↔ • ◦ •,
· · · 01 · · · ↔ • ◦ ◦.

023010-8



OBSERVATION OF MANY-BODY SCARRING IN A … PHYSICAL REVIEW RESEARCH 5, 023010 (2023)

Note that excitations live on the bonds between sites and this
mapping also includes links to the two surrounding sites. For
example, the configuration · · · 2020 · · · maps to ◦ • ◦ • ◦ and
not to ◦ • ◦ ◦ •◦. On the other hand, the configuration 2020
with OBCs on both sides maps to • ◦ •, as there are no bonds
across the boundaries.

The effective Hamiltonian (A1) can be rewritten as

Ĥeff = −J
L−1∑
i=1

⎛
⎜⎜⎝b̂†

i b̂i+1δn̂i,1δn̂i+1,1︸ ︷︷ ︸√
2P̂j−1σ̂

+
j P̂j+1

+ b̂†
i+1b̂iδn̂i,2δn̂i+1,0︸ ︷︷ ︸√

2P̂j−1 ˆ̂σ−
j P̂j+1

⎞
⎟⎟⎠. (A3)

In this equation, the index i labels the sites, while j labels
the bonds between sites. The Kronecker delta functions have
been expressed in terms of projectors, P̂j = |◦ j〉〈◦ j |, and the
bosonic hopping terms correspond to the spin raising and
lowering operators, σ̂±

j , on the bond j. We can use delta
functions because there are no configurations with more than
two particles per site in this connected component and the
only possible values of n̂i(2 − n̂i ) are 0 and 1. Moving a
particle to the neighboring site on the left corresponds to
creating an excitation, and moving to the right corresponds
to annihilating, while delta functions act as constraints.

Finally, the effective Hamiltonian is equivalent to the PXP
Hamiltonian

ĤPXP = �

N∑
j=1

(P̂j−1σ̂
+
j P̂j+1 + P̂j−1σ̂

−
j P̂j+1)

= �

N∑
j=1

P̂j−1X̂ j P̂j+1, (A4)

when we set � = −√
2J and N = L − 1, with X̂ j ≡

|◦ j〉〈• j | + |• j〉〈◦ j | denoting the usual Pauli x matrix. In the
case of OBCs, the two boundary terms become X̂1P̂2 and
P̂N−1X̂N . Note that the effective bosonic model in Eq. (A3)
for a system size L is equivalent to the PXP model for size
N = L − 1 since the number of bonds is the number of sites
minus 1.

In the PXP model, the initial states which lead to pro-
nounced quantum revivals are the two states with the maximal
number of excitations: the Néel states, |•◦•◦· · ·•◦〉 and
|◦•◦•· · ·◦•〉 [23,31]. The equivalent states in the tilted Bose-
Hubbard model are |2020 · · · 201〉 and |12020 · · · 20〉, for odd
system sizes, and |2020 · · · 20〉 and |120 · · · 201〉 for even
sizes. In our experimental setup, it is not possible to exactly
prepare the |2020 · · · 201〉 state due to the inability to inde-
pendently control single sites. Instead, our experiment realizes
the |2020 · · · 20〉 state, which corresponds to the Néel state
|•◦•◦· · ·•◦•〉 in the PXP model with an odd number of sites
and OBCs.

Figure 7 numerically demonstrates the mapping between
the tilted Bose-Hubbard model in Eq. (2) and the PXP model
in Eq. (1) in a lattice size L = 9. The figure shows the
overlap of eigenstates with the Néel state as a function of
energy, for the choice of parameters U = � = 12 and J = 1.
The energy spectrum is split into bands with approximately
constant expectation value of the sum of interaction and tilt

FIG. 7. Numerical demonstration of the mapping between the
PXP and tilted Bose-Hubbard models. The overlap of the state
|202020201〉 with the eigenstates of the tilted Bose-Hubbard model
in Eq. (2) for J = 1 and U = � = 12 (in units of h̄ = 1) is shown.
The color indicates the expectation value of the diagonal part of
the Hamiltonian, 〈ĤU + Ĥ�〉, for each eigenstate. The black crosses
correspond to the effective model in Eq. (A3), shifted by the en-
ergy E = 〈202020201|Ĥ |202020201〉 = 432. The inset shows the
top part of the band with the highest overlap, where a band of
scarred eigenstates analogous to that in the PXP model can be
seen.

terms 〈ĤU + Ĥ�〉, as indicated by different colors. The inset
shows the top part of the highest-overlap band, around the
energy E = 〈202020201|Ĥ |202020201〉 = 432. This band is
described by the effective Hamiltonian (A1), which preserves
the expectation value 〈ĤU + Ĥ�〉 and is equivalent to the PXP
Hamiltonian. A band of scarred eigenstates is magnified in the
inset, and indeed resembles similar plots for the PXP model
[31]. As the two Néel states have the maximal number of dou-
blons at filling factor ν = 1, this type of dynamics also leads
to oscillations in doublon number, which was experimentally
measured in Fig. 2.

APPENDIX B: STATE PREPARATION AND DETECTION

Our experiment starts out with a two-dimensional Bose-
Einstein condensate of 87Rb atoms prepared in the hyperfine
state |↓〉 = 5S1/2 |F = 1, mF = −1〉. By applying a mi-
crowave pulse, atoms can be adiabatically transferred to the
state |↑〉 = 5S1/2 |F = 2, mF = −2〉, which is resonant with
the imaging laser and thus can be detected. The atoms are ini-
tially confined to a single layer of a pancake-shaped trap with
3 µm period. In both x and y directions, we have an optical su-
perlattice that can be controlled separately. Each superlattice
potential is generated by superimposing two standing waves
with laser frequency λs = 767 nm and λl = 1534 nm, which
can be described by

V (x) = V x
s cos2(kx) − V x

l cos2(kx/2 + θx ),

V (y) = V y
s cos2(ky) − V y

l cos2(ky/2 + θy), (B1)
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(a)

(b)

FIG. 8. Quantum interference. (a) Interfering |1, 1〉 product
states in the double wells. (b) Interfering |2, 0〉 product states in the
double wells. Solid curves are TEBD simulations. Experimental data
are shifted forward at earliest times due to the 50 µs ramping time of
the lattice potential.

where V x(y)
s(l ) is the depth of the short (long) lattice in the x

(y) direction, k = 2π/λs is the short-lattice wave number, and
θx(y) is the relative phase between the short and long lattices
in the x (y) direction.

We first perform a cooling technique by loading the atoms
into a staggered superlattice in the y direction at θy = π/4,
meanwhile ramping up only the short lattice in the x direction.
We tune the y-superlattice potential to create a Mott insulator
with n̄ = 2 filling in odd sites, while even sites form a n̄ = 1.5
superfluid, serving as a reservoir for carrying away the thermal
entropy [34].

Atoms at even sites are removed by performing site-
selective addressing. This is done by first setting θy = 0 to
form double wells and then tuning the polarization of the
short-lattice laser along the y direction to create an energy
splitting between even and odd sites for the |↓〉-to-|↑〉 tran-
sition. We transfer the atoms at even sites to |↑〉 and remove
them with the imaging laser [35]. In this way we have pre-
pared the initial |Z2〉 state |2020 · · ·〉. The same site-selective
addressing procedure is also utilized to read out atomic
density on even and odd sites separately in experiment. Inside
each isolated double-well unit, we can perform state engineer-
ing that transfers the state |2, 0〉 to |1, 1〉 [34]. This results
in the unit-filling state |1111 · · ·〉 which corresponds to the
polarized state |0〉 in the PXP model.

APPENDIX C: QUANTUM INTERFERENCE
IN THE DOUBLE WELLS

The beam splitter (BS) interference is realized in the
balanced double wells formed by the superlattices in the x
direction, expressed in Eq. (B1) by setting θx = 0. In the
noninteracting limit, indistinguishable bosonic particles com-
ing into the interference at t = 0 interfere according to the
bosonic bunching. Therefore having equal numbers of atoms
coming into the two ports at t = 0 results in 〈P̂BS

n̂∈odd〉 = 0
at tBS, while having different numbers of atoms interfering
results in 〈P̂BS

n̂∈odd〉 = 0.5. Each copy of atoms coming into
the interference is prepared individually, and hence there is
no global phase between them, resulting in the equivalence
between the two output ports [44].

To implement the quantum-interference protocol, we
quench the x-lattice potentials to V x

s = 6Er and V x
l = 5Er ,

resulting in the intra-double-well tunneling at J ≈ 740 Hz
and inter-double-well tunneling J ′ ≈ 35 Hz. Simultaneously,
we lower the lattice depth in the x direction to 25Er and
trapping frequency in the z direction to 1.4 kHz, achieving
an interaction of U ≈ 360 Hz. Two examples are shown here
in Fig. 8, where we interfere product states |1, 1〉 [Fig. 8(a)]
or |2, 0〉 [Fig. 8(b)] in the double wells and read out the
average odd particle density. At tBS = 0.14 ms we identify
the beam splitter operation, where |1, 1〉 gives 〈P̂BS

n̂∈odd〉(1) =
0.01(3), while |2, 0〉 gives 〈P̂BS

n̂∈odd〉(1) = 0.48(3). We simulate
the interference dynamics with a 20-site chain consisting of
ten double-well units. We find good agreement at later times,

FIG. 9. Emergence of many-body scarring by quenching the
chemical potential in the PXP model from μi = −0.76� to μf =
1.6�. (a) The dynamics of quantum fidelity (blue solid curve) is sim-
ilar to that of the polarized state for the same value of μf (red dashed
curve). The overlap between the time-evolved state and |0〉 (black
dash-dotted curve) shows that a significant state transfer occurs be-
tween them. (b) The overlap of the prequench ground state with the
eigenstates of Ĥ (μf ) displays characteristic scar tower structures.
Red crosses denote the highest overlaps with the |0〉 state in each
scarred tower. The overlap of the prequench ground state with |0〉 and
|Z2〉 states is given in the inset. All data are for N = 32 spins in the
zero-momentum, inversion-symmetric sector of the Hilbert space.
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while the earlier times are affected by the finite time in the
lowering and raising of lattice potentials, which takes 50 µs.
The finite interaction strength and inter-double-well tunneling
together result in about 1% error in the beam splitter operation
in the simulation, but this is beyond the precision of our
absorption imaging.

APPENDIX D: OTHER SCARRED STATES

In addition to the |Z2〉 and |0〉 states, we find other re-
viving states in the PXP model with static detuning, Ĥ (μ),
introduced in Sec. V. These initial states are the ground states
of Ĥ (μi ), and they exhibit revivals when the detuning is
quenched to a different value, Ĥ (μi ) → Ĥ (μf ). This setup
generalizes the quench protocols studied in the main text. For
example, setting μi→−∞, the prequench ground state is sim-
ply the |Z2〉 state, and then quenching to μf = 0 (pure PXP
model) gives rise to scarred many-body revivals. Conversely,
if we set μi→∞, the ground state is |0〉, and quenching to
μf = 1.68� also leads to scarring, as this value corresponds
to the Bose-Hubbard detuning value in Fig. 4.

We numerically identify similar scarring phenomenology
in a larger set of initial conditions by varying the parameters

μi and μf . In Fig. 9 we present an illustrative example for
μi = −0.76� and μf = 1.6�. Unlike the |Z2〉 and |0〉 states,
the ground state of Ĥ (μi ), for general values of |μi| < 2, is
not a product state. Nevertheless, such ground states have low
entanglement entropy and can be prepared experimentally,
while at the same time they are nearly orthogonal to the |Z2〉
and |0〉 states (the overlap with the latter is on the order 10−5).
We emphasize that this does not require fine-tuning: We find
large regions of μi and μf leading to scarring.

The dynamics in Fig. 9 is similar to that of the polarized
state evolved with Ĥ (μ = 1.68�). During the evolution, the
state periodically transfers to the polarized state and then
returns to itself. The frequency of revivals is approximately
the same as that for the polarized state evolved with the same
static detuning μf , but the revivals are more prominent. The
overlap of the Ĥ (μi ) ground state with all the eigenstates of
Ĥ (μf ) is shown in Fig. 9(b). These overlaps exhibit a similar
pattern to the overlap of eigenstates with the polarized states
(red crosses). Furthermore, the atypical eigenstates appear to
be the same in the two cases, up to a difference in phase.
This is similar to what we find for the |Z2〉 and |Z̄2〉 states
at μf = 0: Both states have the same magnitude of overlap
with each eigenstate, while the phases are different.
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