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ABSTRACT Falls have always been one of the major threats to the health and well-being of elderly people,

particularly for those living alone. Both wearable and non-wearable fall detection systems have already been

developed. However, the fall detection systems using WiFi channel state information (CSI) have attracted

a significant interest from researchers due to their non-intrusive and low-cost nature. There are existing

machine learning (ML) based fall detection systems using WiFi CSI; however, most systems trained with

comprehensive datasets tend to achieve relatively lower accuracy compared to that of the systems trained

with less inclusive datasets. To address these issues, we propose a novel, deep learning based fall detection

technique. First, we implement different WiFi CSI collection tools and evaluate their potential for fall

detection. To develop a highly accurate fall detection technique, we construct a comprehensive dataset, which

consists of over 700 CSI samples including different types of falls and other daily activities, performed in

four different indoor environments on and off the dominant paths. With this dataset, we then develop a deep

learning based classifier using an image classification algorithm. The proposed technique, unlike the other

fall detection systems, only requires down sampling and reshaping in pre-processing. The proposed fall

detection system is evaluated with the constructed dataset, and it outperforms two other existing systems.

It achieves over 96% accuracy for CSI collected in all four environments and 99% accuracy for CSI collected

in certain combinations of the environments.

INDEX TERMS Fall detection, deep neural networks, WiFi sensing.

I. INTRODUCTION

According to the Office for National Statistics (ONS), the

UK population over 65s has been steadily growing and it is

estimated to rise by another two million by 2025 [1]. In this

age group, falls are themost common cause of hospitalisation,

and they sometimes even lead to death. Over half the falls are

critical to the mobility of the older adults and most victims

are immobilised for an hour or more after a fall and unable

to call for help [2]. In the US, about 40% of the old age

group living at home will fall at least once each year, and

about 2.5% of them will be hospitalised [3]. Falls are also

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

major causes of disability and reduced independence in older

people. In the UK, accidental falls have contributed 29%

of disability in people aged 65 years or older, and 32% in

those aged 75 years or older [4]. Fear of falling and a lack

of access to help after a fall are causes of distress, loss

of confidence, independence, and mortality in older adults.

Therefore, an efficient fall detection system is of paramount

importance to both the physical and mental health of older

adults.

Given the significance of fall detection, several technolo-

gies have already been developed. For wearable technologies,

a range of devices are used in the form of small gadgets such

as a watch and a sticky patch [5]. These devices, in general,

monitor the posture of the wearer by analysing the data from
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their sensors (e.g., gyroscope and accelerometer) and detect

fall events. In addition, there are fall detection systems devel-

oped for smartphones, given that most modern smartphones

have a wide range of sensors integrated [6].Wearable systems

are mostly effective and accurate; however, due to requiring

attachment to the body and frequent battery changes, they are

less popular with older adults. For the non-wearable tech-

nologies, vision-based methods play a key role in detecting

falls using data collected by sensors such as RGB cameras

and infrared cameras [7], [8], [9]. Vision-based systems offer

the highest accuracy. However, the coverage area is usually

limited by the field of view of the sensors and the invasive

nature of the vision-basedmonitoringmay not be comfortable

for all older adults, and the privacy issues come along with

this type of monitoring.

Based on the above challenges and our initial discussions

with older adults from Parkinson’s UK with a history of

falls, we concluded that the fall detection system should be

non-intrusive and accurate. To meet these requirements, fall

detection systems using wireless signals (e.g., WiFi signals)

are suitable candidates for the task given the non-intrusive,

ubiquitous, and low-cost advantages of the WiFi-based sys-

tems. WiFi-based human sensing applications emerged when

WiFi networks were just becoming commonly used across

the world. For example, the localisation application [10] uses

WiFi received signal strength indicator (RSSI) to track the

human presence. However, the performance of RSSI-based

systems is naturally limited due to single measurement of

the received signal power, which could be affected by many

external factors such as propagation distance and obstacles on

the path.

Orthogonal frequency division multiplexing (OFDM)

based IEEE 802.11a/g/n/ac devices use multiple subcarri-

ers and multiple antennas to compensate for the effect of

frequency selective fading [11]. The channel state informa-

tion (CSI) available at the WiFi receiver provides detailed

amplitude and phase information of individual subcarriers.

With this information, CSI offers a much better frequency

resolution than RSSI, therefore, becoming a more promising

tool for wireless sensing tasks [12].

A. RELATED WORKS

A number of studies [13], [14], [15], [16], [17] have already

investigated fall detection techniques using WiFi CSI. These

techniques usually involve 3-step operations to detect falls:

(1) CSI data pre-processing which involves operations such

as resampling, filtering, and principal component analysis

(PCA) [18]; (2) CSI feature extraction which highlights data

of interest by observing features such as CSI spectrogram,

normalised standard deviation, entropy, and power decline

ratio; (3) event classification which identifies whether the

collected CSI involves fall or non-fall events using clas-

sifiers based on support-vector machine (SVM), convolu-

tional neural network (CNN) or long short-term memory

(LSTM). However, the detection accuracy of these techniques

mostly depends on the dataset used for training. For exam-

ple, FallDeFi [14] provides a dataset with hundreds of falls

and daily activities in several environments and achieves a

maximum of 88.9% accuracy. The work in [15] reports 100%

accuracy with the dataset of only 80 falls performed in a

single-room environment.

ResFi performs indoor localisation with CSI data using

a ResNet based structure but replacing residual blocks with

stochastic residual blocks [19]. Chen et al. propose an atten-

tion based bidirectional LSTM [20] system which uses CSI

data to identify different types of daily human activities

including walking, running, sitting down and standing up.

Yousefi et al [16] propose a human behaviour recognition

system which uses LSTM and recurrent neural network

(RNN) to identify six different activities including falls.

Wang et al. [21] propose a 1-D ResNet classifier to detect six

different hand activities and to provide indoor localisation

with CSI data. E2EDLF [22] recognises activities involv-

ing interactions between two humans (such as handshaking,

hugging and high fiving) using CSI data with a CNN based

system. Li et al. [23] compare the capabilities of CSI and

WiFi radar-based sensing applications and discuss the per-

formance differences in LoS and NLoS conditions.

WiFall [24] and RT-Fall [17] are the early work which

build the steppingstones of fall detection using CSI data.

Both approaches use an SVM-based classifier to detect fall

events. FallDeFi [14] improves the performance of WiFall

and RT-Fall by extracting features by applying short-time

fourier transform (STFT) spectrogram and power burst curve

(PBC). FallDeFi has included several non-fall daily activi-

ties, which have similar features to falls (e.g., sitting down

and picking up objects) to reduce false alarms and achieve

a maximum of 88.9% accuracy under certain conditions.

Damodaran et al. propose a CSI-based fall detection sys-

tem [15] with a classifier combing both SVM and LSTM.

This system achieves 100% accuracy in fall detection how-

ever the dataset is collected in a single-room environment and

the sample size of fall events is relatively small (80 samples).

Nakamura et al. [25] propose a fall detection system using

spectrogram images generated from CSI data to recognise

fall events. The spectrogram images are used as input to a

ResNet based image classifier to identify falls. The proposed

work achieves a maximum of 96% accuracy in certain envi-

ronments. However, similar to the work in [15], the CSI data

is collected in a limited number of environments (two small

rooms with WiFi modules placed close to each other for LoS

propagation).

There are a number of works that achieve remark-

able accuracy but have similar limitations. For example,

Mattela et al. [26] report a maximum of 99% accuracy from

the proposed LSTM-based classifier but the dataset only

includes CSI collected in two environments and the recorded

non-fall activities only include walking and sitting up.

Hu [27] propose a method to detect falls by estimating the

speed and acceleration of moving objects using CSI. The

works achieves a maximum 95% detection rate with a dataset
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including three indoor environments. However, as pointed

out by the authors, the work focuses on hard falls and the

detection rate reduces with lower-speed falls.

From the above reviews, the existing work tends to report

a relatively lower accuracy while having a comprehensive

dataset (e.g., FallDeFi [14]) or a remarkable accuracy but

with a limited dataset (e.g., the work in [15]). Comparison of

the proposed datasets are provided in Table 1. These results

confirm that a fall detection system which remains accurate

across different environments and identifies falls from other

daily activities is needed. Therefore, in this paper, we con-

struct a comprehensiveWiFi CSI data set and propose a novel

deep learning based fall detection technique using the dataset.

B. CONTRIBUTIONS

With the comprehensiveWiFi CSI data set, we develop a deep

learning classifier based on a state-of-the-art image classifi-

cation algorithm [28] to accurately identify fall events and to

reduce the pre-processing. Our contributions are summarised

as below.

• We implement various existing WiFi CSI collection

methods to evaluate and compare their potentials for fall

detection applications. Although WiFi devices are well

standardised and widely used in homes, not all devices

are suitable for fall detection applications. Our experi-

ments show that the collected CSI has varying qualities

when different commercial off-the-shelf WiFi devices

were used. It is important to review the capability of

the hardware when developing the fall detection for real-

world applications.

• To develop a highly accurate WiFi sensing based fall

detection technique, we create a comprehensive WiFi

CSI dataset which includes falls and other daily activ-

ities performed in four different indoor environments.

Events that occurred on and off the dominant paths

are included in the dataset to improve the detection

performance in practical scenarios.We recruited twenty-

two volunteers (ages 24 to 43, 7 females and 15 males)

and performed over 700 controlled falls and other daily

activities in four different indoor environments to collect

CSI data with different propagation conditions including

Line-of-Sight (LoS), Non-Line-of-Sight (NLoS), on and

off dominant propagation path.

• We propose a novel deep learning based falls detection

technique, using WiFi CSI. The proposed technique

is evaluated against two other fall detection systems

([14] and [25]) and it outperforms both systems in all

experiment scenarios. In particular, it achieves over 96%

detection accuracy when using the collected CSI data

in all environments and 99% accuracy when using cer-

tain subsets of the collected CSI data. It also achieves

over 97% accuracy while testing with the dataset col-

lected in three different indoor environments with LoS

and remains over 92% when the propagation conditions

become more complex.

• The size and sample variety of the training dataset have

great impact to the performance of deep learning based

classification. Unlike image classification, preparing

and expanding large datasets for fall detection is much

more difficult and requires contribution of the research

community. Therefore, we made our work available in

the public domain1 so the readers interested in fur-

ther tuning or implementing the proposed fall detection

technique could easily expand or replace our dataset to

improve the detection performance.
The rest of the paper is organised as follows. The state-of-

the-art of CSI collectionmethods and the details of evaluation

and comparison across available CSI collection tools are

presented in Section II. The background of deep learning

based classification and workflow of the proposed fall detec-

tion are explained in Section III. The CSI data collection in

different environments and dataset construction are presented

in Section IV. The classification performance results are

presented in Section Vwith discussions on its advantages and

limitations. Section VI concludes the paper.

II. WIFI CSI COLLECTION TOOLS

Designing a WiFi CSI-based fall detection system not only

requires accurate classification but also reliable CSI collec-

tion with low-cost equipment. Although CSI plays a key role

in IEEE 802.11n (and beyond) WiFi systems [29], very few

commercially off-the-shelf WiFi devices allow the CSI to be

extracted. In this section, we review different CSI collection

tools and evaluate their potential for fall detection.

At the moment, commonly usedWiFi CSI extractionmeth-

ods include:
• Linux 802.11n CSI Tool [30] which extracts CSI from

the Intel 5300 NIC chipset with custom firmware

• Atheros CSI Tool [31] which extracts CSI from Atheros

9K WiFi chipsets with modified firmware

• ESP32 [32] based tools such as ESP32 CSI Toolkit [33]

and Wi-ESP [34] which use the lightweight ESP32

based WiFi transceiver modules to collect CSI

• Nexmon CSI extractor [35] which extracts CSI from

certain Broadcom WiFi chips
The Linux 802.11n CSI Tool [30] can extract CSI from the

Intel 5300 NIC chipset and the Atheros CSI Tool [31] can

extract CSI fromAtheros 9K chipsets. For a 20MHz channel,

Intel 5300 NIC chipset provides the in-phase and quadrature

(IQ) of 30 (out of 64) subcarriers with an 8-bit resolution and

Atheros 9K series chipsets provide the IQ of 56 subcarriers

with a 10-bit resolution. Both types of chipsets support CSI

extraction on 2.4 GHz and 5 GHz WiFi bands, 20 MHz and

40 MHz channels, and up to 3 antenna elements. The tools

for both chipsets allow frequent CSI packet transmission and

reception. For the Atheros CSI Tool, a maximum of 4K CSI

packets can be transmitted per second, and for the Linux

802.11n CSI Tool 1K CSI packets per second are commonly

used by researchers (maximum rate is not mentioned in

particular). To use these tools, a compatible computer with

1https://github.com/yc541/ENetFall
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TABLE 1. Comparison of the existing datasets.

at least one available Mini-PCIe slot is essential. One con-

straint of using these tools is sourcing a compatible computer

because both chipsets were initially released before 2010 and

it is unlikely for new computers to be compatible with these

chipsets.

The Nexmon CSI extractor [35] uses modified firmware

to extract CSI from a range of Broadcom WiFi. This tool

supports both 2.4 GHz and 5 GHz frequency bands with

up to 80 MHz bandwidth and extracts the amplitude of up

to 256 subcarriers. Nexmon requires a rooted Nexus 5 or

6P smartphone, or a Raspberry Pi B3+/B4 or an Asus

RT-AC86U WiFi router to be used as the CSI extractor (with

WiFi monitor mode) to overhear CSI packets exchanged

between a commercial WiFi access point (AP) and a WiFi

client (e.g., a mini-PC or laptop). Compared to the Linux

802.11n and the Atheros CSI Tools, the hardware required

by Nexmon is easier to source. However, the amount of

preparation for the CSI extraction is similar.

The other widely used CSI collection hardware is the

ESP32-based Internet of Things (IoT) WiFi module. There

are many WiFi modules developed based on ESP32 with

assorted brands available in the market, and they all share

the same features of small size, lightweight and low power

consumption. For example, the TTGO T8 module [36] only

has the dimension of 6.5 × 2.5 cm, weighs 7 grams, and

can be powered by a 5 V USB. It also has a microSD card

slot which allows CSI data to be stored. The ESP32-based

modules support a 2.4 GHz WiFi band, 20 MHz and 40 MHz

channels, and one antenna. Unlike the PCIe WiFi chipsets,

the ESP32-based modules can be used independently from

computers (unless configuring the modules) which makes the

deployment significantly easier. However, due to the limita-

tions of the processing power of the board, the CSI acquisition

rate is less than 200 packets per second according to our tests.

The accuracy of a fall detection system is not only deter-

mined by the capability of the classifier but also relies on

the quality of the collected CSI. In the following subsections,

we review the details of three different CSI collection meth-

ods and compare their suitability for the fall detection tasks.

A. CSI COLLECTION USING ESP32 BASED IoT MODULES

The advantages of the ESP32 based CSI collection tools are

their small form factors and the capability to operate without

host computers. The issues which limit their applicability are

the WiFi bands (2.4 GHz only), low CSI sampling frequency

(less than 200 Hz) and a single antenna. According to the

measurements made by Kroonenberg, et al. [37], the typical

velocity of a falling adult (from standing) ranges from about

2 m/s to 3.5 m/s immediately before impact to the mattress.

The Doppler frequency of a falling adult can be calculated

using the Doppler frequency equation,

f =
2v

λ
, (1)

where f denotes the Doppler Frequency, v denotes the veloc-

ity of the falling adult and λ denotes the wavelength. For

the 2.4 GHz WiFi signals f ∈ [32, 56] Hz, and for the

5.2 GHz WiFi signals f ∈ [69, 121] Hz. Since the velocity

of the falling adult is less than the velocity before impact

during most of the fall interval, the Doppler Frequency of the

whole fall duration would result in a lower range. As pointed

out in [14], the strongest signal energy of high-frequency

activities is concentrated at the Doppler Frequency of below

30 Hz for the 5.2 GHz WiFi signals (or 14 Hz for 2.4 GHz

WiFi signals). The lower Doppler Frequency of the target

activities at 2.4 GHz makes it less distinguishable from the

noise floor, therefore increasing the difficulty for detection

and making 2.4 GHz less suitable for fall detection systems.

In this section, we demonstrate our experiments using two

different types of ESP32 based WiFi modules and review

their capability for fall detection.

We first use a pair of NodeMCU modules, with one set

to AP mode (transmitter) and the other set to client mode

(receiver). The two modules are placed about four metres

away with a LoS path, and the CSI packet rate is set to

200 packets/s. Fig. 1 shows a two-second section (400 CSI

packets) of the CSI collected while there is no activity in

the room. Fig. 1(a). shows the CSI collected for all sub-

carriers. It can be observed that there are frequent random

amplitude spikes and fluctuations that occur across all sub-

carriers. To extract useful features from this CSI some pre-

processing is required otherwise these fluctuations will result

in a significant amount of high frequency noise. Fig. 1(b).

shows the raw and pre-processed amplitude of subcarrier 10.

A sliding window of 200 CSI packets is implemented to

compute the average amplitude within one second. If a certain

amplitude exceeds 1.5 times the average amplitude, it is then
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FIGURE 1. CSI amplitude collected by NodeMCU modules. (a) CSI of all
subcarriers. (b) CSI of subcarrier 10.

replaced with the average amplitude. After the spike removal,

a wavelet filter (the same as FallDefi [14], symlet wavelet

function and 10 wavelet levels) is applied to remove the

residual noise. As seen in Fig. 1 (b), there are still some fluc-

tuations left after the wavelet filtering (a flat line is expected),

which causes low frequency noise.

We then use Short-Time Fourier Transform (STFT) to

observe the time-frequency features of the collected CSI in

spectrograms to verify its quality. The sampling frequency of

the spectrogram is set to 200 samples/s, the window size is set

to 128, the number of overlapped samples is set to 110 and the

Fast Fourier Transform (FFT) size is set to 128. This configu-

ration results in a frequency resolution of 1.56 Hz and a time

resolution of 90 ms. To generate the spectrograms, we use the

CSI collected for all 52WiFi data subcarriers (subcarriers 7 to

32, and 34 to 59). Fig. 2 presents the spectrograms generated

from the CSI of two ten-second sections. In Fig. 2 (a), we can

still observe residual low frequency noise at about 10 Hz

and below even after the spike removal and wavelet filtering,

where we should only see noise floor on the spectrogram

when there is no activity in the room. In Fig. 2 (b), there

is no activity in the room within the first nine seconds and

the spectrogram is relatively clean. Once the activity starts

(walking), we can observe signal energy above the noise floor.

However, due to the residual low frequency noise observed

in Fig. 2 (a), it is not straightforward to distinguish the signal

energy caused by the walking activity from the residual noise

FIGURE 2. Spectrograms for (a) No activity, and (b) Walking of CSI from
NodeMCU.

because the signal energy rarely exceeds 20 Hz (close to noise

frequency). There is also noticeable residual high frequency

noise, which could potentially be removed by a low pass

filter.

We also evaluate the CSI collection of a pair of TTGO T8

modules, in the same environment as theNodeMCUmodules.

Fig. 3 presents another four-second section of the collected

CSI. Compared with the CSI collected by the NodeMCU

modules, we observe few random spikes, however, amplitude

fluctuations still exist after spike removal and wavelet filter-

ing, resulting in residual low-frequency noise.

Fig. 4 depicts the spectrograms generated from the CSI of

two ten-second sections collected by the TTGO T8 modules.

Similar to Fig. 2, we can observe residual low frequency

noise mostly below 15 Hz when there is no activity in the

room. When there are activities in the room, we can observe

signal energy at below 20 Hz. However, the feature of the

activity is still not clearly distinguishable from the noise.

We experience similar issues across multiple pairs of ESP32

based modules and the root causes are not clear. The issues

could be caused by the build quality of the low-cost WiFi

chips and (or) potential interference from other WiFi devices,

which is mostly unavoidable in modern indoor residential

environments. Therefore, we can conclude that the ESP32

based WiFi collection tools could potentially be viable for

detecting the existence of activities but not for distinguishing

of activities, including falls.
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FIGURE 3. CSI amplitude collected by TTGO T8 modules. (a) CSI of all
subcarriers. (b) CSI of subcarrier 10.

B. CSI COLLECTION USING INTEL 5300 NIC AND

A COMMERCIAL AP

Compared with the ESP32 based CSI tools, the Intel 5300

NIC based CSI tool records CSI streams from multiple TX

and RX antenna pairs, therefore improving the spatial diver-

sity of the received signal. However, a compatible host com-

puter is required to operate this CSI tool. In this paper, we use

a Lenovo ThinkPad R61 (which was announced in 2007) with

Ubuntu 14.04 LTS as the host computer. In Subsection II-A)

the requirement of the 5.2 GHz WiFi band for fall detection

tasks was established, therefore, in the rest of the paper,

we use 5.2 GHz for CSI collection by default if the hardware

supports it. Since this CSI tool supports a much larger sample

rate, we set the CSI packet rate to 1000 packets/s. For the

spectrogram observation, we set the sampling frequency to

1000 samples/s, the window size is set to 512, the number of

overlapped samples is set to 256 and the FFT size is set to

256. This configuration results in a frequency resolution of

3.91 Hz and a time resolution of 256 msec. The maximum

frequency of the spectrogram is set to 250 Hz since there is

barely any signal energy beyond this frequency.

We first test this CSI collection tool with a Netgear

WAC104 - AC1200 WiFi AP. Note that this CSI tool requires

the client (laptop) to join the AP’s WiFi network so the client

can request CSI packets from the AP. With this combina-

tion, the CSI tool collects three CSI streams from one TX

FIGURE 4. Spectrograms for (a) No activity, and (b) Walking of CSI from
TTGO T8.

antenna and three RX antennas. Fig. 5 (a) illustrates a ten-

second section of the wavelet filtered CSI amplitude when

there is no activity in the room. The AP and the laptop are

placed about four metres from each other with a LoS path.

By observing the filtered amplitude, we notice significant

periodical fluctuations which cause the signal energy to have

concentrated at the frequency of below 50 Hz in the spec-

trogram (Fig. 5 (b), all CSI streams are included) across the

duration of the fluctuations. The rest of the spectrogram is

clean even with noticeable residual noise after the wavelet

filtering. However, the periodical fluctuations make this CSI

collection method unsuitable for activity recognition tasks

because the frequency of the fluctuations overlaps with the

duration of most activity types.

To identify whether this is an AP specific issue, we test the

CSI tool with another commercial WiFi AP TPLink AC1200.

In Fig. 6 the periodic fluctuations do not appear; however,

a significant residual noise remains after the wavelet filtering.

In Fig. 6 (b), we can see a significant amount of signal energy

at the frequency of below about 70 Hz everywhere across this

ten-second section spectrogram, making this AP unsuitable

for activity recognition tasks.

It is obvious that there are AP-specific issues while using

this CSI collection tool, therefore we test it with another

Sagemcom Fast 5364 AC1200 WiFi router. In Fig. 7, we do

not observe any major issues that we experienced with the

83768 VOLUME 11, 2023
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FIGURE 5. (a) Wavelet filtered amplitude of one antenna pair, and
(b) Spectrogram, using CSI collected with Netgear WAC104 - AC1200
WiFi AP.

Netgear and TPLinkAPs, and the clean spectrogram indicates

that this method can be a potential option for the fall detection

task.

Fig. 8 presents the spectrograms generated from the CSI

collected by the Sagemcom router when there are activities

(performed on the LoS path between the laptop and the

router) in the room. In Fig. 8 (a), we can observe a consistent

signal energy below 50 Hz across the duration of the walking

activity and no signal energy outside the activity duration.

In Fig. 8 (b), we can see different features between standing

up from a chair and sitting down on a chair, as well as some

high frequency noise. In terms of the quality of the collected

CSI, the CSI tool with Sagemcom router outperforms other

APs and this could be suitable for the fall detection task.

However, we experience an issue of random WiFi network

disconnections during CSI collection which exists across all

APs that we tested. To make the laptop re-join the WiFi

network the custom firmware of the Intel 5300 NIC needs to

be loaded again otherwise the laptop will not join the WiFi

network successfully. This issue makes the CSI recording

inefficient.

C. CSI COLLECTION USING TWO HOST COMPUTERS

WITH INTEL 5300 NIC

The custom firmware for Intel 5300 NIC provided by the

Linux CSI tool allows two host computers with Intel 5300

FIGURE 6. (a) Wavelet filtered amplitude of one antenna pair, and
(b) Spectrogram, using CSI collected with TP - Link AC1200 WiFi AP.

NIC to operate with monitor and injection modes (rather

than the typical AP and client modes) specifically for the

CSI collection. The computer in injection mode broadcasts

CSI packets at a configurable rate on a configurable fre-

quency. The computer in monitor mode passively listens

to the CSI packets without having to join a certain WiFi

network, which makes this method more reliable than the

methods we tested in Subsection II-B) To evaluate this tool

we configure the ThinkPad R61 to monitor mode and an Intel

NUC D34010WYKH mini-PC to injection mode. With this

combination, the collected CSI has three streams from the

three RX antennas and one TX antenna.

Fig. 9 depicts the spectrograms of two activities generated

from the CSI collected using injection mode. We can clearly

observe different signatures of received CSI signal’s energy

in Fig. 9 (a) when the person bends down to pick up an object

on the floor and stands back up, and in Fig. 9 (b) when the

person walks in the room and falls onto a mattress. Similar to

the spectrograms in Fig. 8, we can see the envelope of the

signal energy when there are activities and unwanted low-

frequency noise barely exists. During our experiments, the

CSI collection experiencing any issues, therefore, in the rest

of the paper, we will use the Intel 5300 NIC with injection

mode to collect CSI for different activities.

III. DEEP LEARNING BASED FALL DETECTION

Artificial intelligence (AI) has been rapidly developed in

recent years and one of its major branches deep neural
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FIGURE 7. (a) Wavelet filtered amplitude of one antenna pair, and
(b) Spectrogram, using CSI collected by Sagemcom Fast 5364 AC1200 WiFi
router.

network (DNN) can be commonly found in many real-world

applications, such as object classification and detection,

speech recognition and language translation [38]. In this

section, we review the recent developments of deep learning

based classification and describe the details of the proposed

fall detection technique.

A. BACKGROUND OF DEEP LEARNING

BASED CLASSIFICATION

The capability of convolutional neural network (CNN) in

vision-based applications has outperformed conventional

computer vision methods, particularly for object classifica-

tion, detection and segmentation. The existing open-source

large image datasets such as PASCAL VOC [39], Microsoft

COCO [40] and ImageNet [38] allow the CNNs to be trained

with millions of images containing daily objects to improve

the accuracy of detection. Users can fine-tune the pre-

trained state-of-the-art CNN models such as AlexNet [41],

ResNet [42], GoogleNet [43], VGG [44] and Efficient-

Net [28]. For example, CNNs with pre-trained ResNet back-

bones are used in plant counting from aerial images [45]

and industrial chimney identification from remote sensing

images [46]. ResNet [47] and VGG [48] backbones are used

in the diagnosis of COVID-19 from X-ray images. Efficient-

Net is selected as the backbone of the proposed fall detection

due to its advanced features in number of parameters, conver-

gence speed and accuracy.

FIGURE 8. Spectrograms of (a) Walking, and (b) Sitting down and
standing up.

B. FALL DETECTION WORKFLOW

The proposed fall detection continuously monitors the col-

lected CSI and detects the fall events when they occur. Fig. 10

shows the workflow. The left-column tasks are CSI collection

and pre-processing, and the right-column tasks are activity

classification. The pre-processing tasks include:

• CSI collection: as described in Subsection II-C), the

CSI collection is conducted by a pair of host computers

with Intel 5300 NIC using injection mode at the rate of

1000 samples/sec.

• Segmentation: a sliding window is used to capture five-

second segments (5 K samples) of the collected CSI

samples and the overlap between two consecutive win-

dows can vary depending on the amount of processing

power available. According to our observations, one fall

event typically lasts for two to four seconds, therefore

we choose the five-second sliding window to make sure

the fall event is fully covered.

• Denoising: there is an optional denoising step following

the sliding window segmentation which uses the same

wavelet filter in FallDeFi to reduce the noise of the CSI.

The effect of the denoising step will be investigated in

Section V.

• Down sampling: the sample segment is down sampled

by a factor of 8 to reduce the size of the segment to

625 samples. Given the original 1 kHz sampling rate,
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FIGURE 9. Spectrograms of (a) Picking up and object on the floor, and
(b) Walking and falling.

the down-sampled segment has an equivalent 125 Hz

sampling rate which preserves features below 62.5 Hz.

As pointed out in [14], the strongest signal energy of

high-frequency activities is concentrated at the Doppler

Frequency of below 30 Hz for the 5.2 GHzWiFi signals.

Based on our observations even the falls performed on

the LoS path between two closely placed host computers

(which is the activity containing themost high frequency

signal energy), it is unlikely for strong signal energy to

appear at the frequency of above 60 Hz. Therefore, the

equivalent 125 Hz sampling rate is sufficient to capture

features of the target activities. This results in a much

smaller sample segment size (625 down from 5 K),

which benefits the training and inference time.

• Reshaping and normalisation: the segment is reshaped

from a 2-D ‘‘image’’ to a 3-D ‘‘image’’. The segment

before reshaping has the size of 625 × 90, which

includes 625 CSI samples and 90 CSI streams (one TX

antenna and three RX antennas). It is reshaped to the size

of 3 × 625 × 30, where the first dimension represents

the three channels of RGB images ( [38]). Each channel

contains the CSI samples collected by the same TX and

RX antenna pair. Before the segment is sent to the classi-

fier, the data of three channels is normalised with mean

values equal to 0.485, 0.456, and 0.406, and standard

deviation equal to 0.229, 0.224, and 0.225 according to

the input requirements of EfficientNet. The normalised

segment is then sent to the classifier for binary classifi-

cation to identify whether it contains a fall event or not.

FIGURE 10. Fall detection workflow.

The original EfficientNet is designed to classify the images

in the ImageNet dataset, which has 1000 classes. In this

paper, we develop a classifier for binary classification based

on EfficientNet. Fig. 11 shows the stages of the original

EfficientNetB0 [28] with the detailed layers of Stage 9 (which

is shared across EfficientNetB0 to B6). We replace the layers

after global pooling with three fully connected (FC) layers

with SiLU activation function and two dropout layers to

make the network suitable for binary classification (rather

than the original 1000 classes) and to reduce overfitting.

Transfer learning is used for training the modified network by

initialising the network with ImageNet pretrained weights.

FIGURE 11. Modified EfficientNet B0 [28].

IV. CSI COLLECTION AND DATASET CONSTRUCTION

A comprehensive dataset, which covers various daily activ-

ities and assorted WiFi propagation environments, is of

paramount importance to develop a reliable fall detection

system, which can correctly identify fall events in different

environments. In this section, we provide the details of our

CSI data collection and dataset construction.
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FIGURE 12. Examples of falls during CSI collection.

A. CSI COLLECTION

In order to construct a comprehensive CSI dataset of fall

events of different people, we recruited twenty-two volun-

teers (aged from 24 to 43, 7 females and 15 males) to perform

falls and other daily activities. The falls each volunteer per-

formed included falling in to four different directions (front,

back, left, and right) onto a mattress. Other than the general

fall directions, we asked the volunteers to perform random

activities immediately before falls such as standing still,

walking forwards, and slowly moving backwards/sideways.

For health and safety reasons there were no specific require-

ments to the velocity or posture of the falls, and the volunteers

performed falls with their own comfortable speed. The pref-

erences of the volunteers resulted in various types of falls

such as hard falls with limbs and torso touching the mattress

almost simultaneously, and less intensive two-step falls with

knees/hip first touching the mattress. Fig. 12 shows examples

of falls performed by volunteers during the CSI collection.

The other daily activities performed included bending down

to pick up an object on the ground and standing straight

up, sitting down on a mattress (from standing) and standing

up from a mattress, walking, and waving both arms while

standing and walking. The CSI collected while no activities

in the room are also included in the dataset. Fig. 13 compares

the spectrograms generated from the CSI collected in the

same room while different activities occur. Note that the

spectrograms are generated using the original CSI collected

at 1 KHz (before the down sampling step) and the maximum

frequency of the spectrograms is set to 100 Hz to improve the

readability.

Fig. 14 illustrates the floor plans of four different indoor

rooms we used to collect CSI. Locations of the WiFi TXs and

RXs are marked on the floor plans as well as the locations

where the activities are performed. Note that the falls are

not performed at all locations for health and safety reasons.

Room A (Fig. 14 (a)) is the living room in a residential

property. The TX is placed at the top-left corner. About half of

the activities are performed while the RX is placed at the RX1

location, and the other half of the activities are performed

while the RX is placed at the RX2 location. The RX1 location

has NLoS to the TX and the RX2 location has LoS. The RX

is about 1 m above the ground at both locations. Falls are

performed on the sofa as well as a mattress placed near the

sofa. This room has the shortest WiFi propagation distance.

Room B (Fig. 14 (b)) is a medium-size meeting room with

office desks and chairs. WiFi TX and RX are placed on

office desks (about 90 cm in height) at the bottom-left and

top-right corners respectively. There is LoS between the two

WiFi devices and the activities are performed in the centre

area of the room. Environment C (Fig. 14 (c)) is part of the

Home Lab (Computer Science, University of York, 2022).

The Home Lab includes two living rooms, a kitchen, and an

entrance room. The kitchen (not shown on the floor plan) is

not used for CSI collection for health and safety concerns.

The TX is placed on a chair in the entrance room at a height

of about 50 cm above the ground, the RX is placed on a

coffee table at a similar height in the left-hand-side living

room. Activities are performed in both living rooms as well

as some non-fall activities in the entrance room (such as

walking). The activities in the left-hand-side living room and

the entrance room are on the LoS path but the activities in

the right-hand-side living room are off the LoS path. Room D

(Fig. 14 (d)) is a large lecture room with office desks and

chairs. The TX andRX are placed on two office desks at about

80 cm height. LoS generally exists between the TX and RX,

however, there are a few desks and chairs (with metal frames)

on the path. Most activities are performed near the TX with

some non-fall activities performed in the centre of the room.

The positions of some small furniture (such as desks, chairs,

and tea tables) are moved across sessions to create a slightly

different propagation environment.

B. DATASET PREPARATION

During the CSI data collection, timestamps are included in

the CSI files and the activities in the room are recorded

with a GoPro camera with timestamp overlay enabled. These

timestamps allow the CSI data to be annotated with the

correct activities. Every raw CSI file typically contains the

CSI collected with a duration of one to two minutes, where

the volunteer performs the same activity multiple times.

To prepare the dataset, we select the CSI data of five-second

duration (which only contains one activity) and label it to fall

or non-fall event while comparing the timestamps on the CSI

file and the recorded video. Across all CSI data collected

in the four environments mentioned in Subsection IV-A,

we label 321 fall events and 436 non-fall events. Note that

the number of volunteers, who attended the data collection in

four rooms are different, therefore the number of CSI samples

collected are different. Table 2 shows the numbers of fall and

non-fall events collected in five different rooms.

Fig. 15 compares the spectrograms of the same fall to the

front activity performed in five rooms. The signal energy

in the top three figures is concentrated at the frequency of

below 50 Hz. This is due to that the activities are performed

on the LoS path or the dominant path (e.g., RX1 in living

room A) and the moving human body mass is making a
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FIGURE 13. Example spectrograms of activities (a) Fall to the back, (b) Fall to the front, (c) Fall to the left, (d) Fall to the right, (e) Bending and picking
up an object from the floor and standing straight up, (f) Sitting down and standing up from a mattress, (g) Walking, (h) Waving the arms while standing
and walking.

FIGURE 14. Floor plans of the CSI collection environments (a) Living
room A, (b) Meeting room B, (c) Home lab C, (d) Lecture room D.

TABLE 2. Number of events collected.

significant impact to the WiFi signal propagation. However,

when the activities are performed on the NLoS path or the

non-dominant path (e.g., activities in the right living room

in environment C), the high-frequency components of the

signal energy are significantly reduced (Fig. 15 (d)), therefore

resulting in different features on the spectrograms. Similarly,

the signal energy in Fig. 15 (e) has fewer high-frequency

components, potentially because of the large propagation

distance and the signal path partially obstructed by desks

and chairs with metal frames. The high-frequency noise in

Fig. 15 (e) appears consistently in the CSI collected in lecture

roomD and we are unsure of the source of the high frequency

noise. There are two CSI collection sessions in this room a

week apart and the high frequency noise appears commonly

in CSI collected both days regardless of the activities in the

room.

The WiFi signal propagation in the four environments

mentioned above can all be considered as Rician fading envi-

ronments where the received signal consists of the signal from

a dominant path (mostly a LoS path) and the signals from

scattered paths. The Rician faded signal can be expressed as

([49] and [50]):

s (t) = kdcos (ωct + ωd t) +

∑N

i=1
ksicos

(

ωct + ωdi t + ϕi
)

(2)

where ωc is the carrier frequency, kd is the amplitude of

the dominant path component, ωd is the Doppler shift of

the dominant path component, and ksi, ωdi and ϕi are the

amplitude, Doppler Shift and phase of the ith scatter com-

ponent, respectively. The amplitude of s (t) follows Rician

distribution with the probability density function (PDF) given

by in the following expression [51]:

f (x) =
x

σ 2
exp

(

−
x2 + k2d

2σ 2

)

I0
xkd

σ 2
, (3)

where σ 2 is the variance of the signal amplitude x and I0 is

the 0th order modified Bessel function of the first kind. The

ratio between the power of the dominant path and the power
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FIGURE 15. Spectrograms of the fall to the front activity in (a) Living room A, (b) Meeting room B, (c) The left-hand-side
living room of environment C, (d) The right-hand-side living room of environment C, (e) Lecture room D.

of the scattered paths is described by the K factor, which is

given by:

K =
k2d

2σ 2
. (4)

For typical indoor environments the values of the K factor

range roughly between 4 dB and 10 dB [52], which means

that the dominant component contributes significantly more

to the received signal strength. In the case of Fig. 15 (d),

the activities only affect a proportion of the scattered compo-

nents, which are less impactful to the overall received signal,

therefore resulting in signal energy at lower frequencies on

the spectrogram. The differences across the spectrograms

of the same activity performed in different rooms also indi-

cate the importance of the diversity of the environments that

the dataset includes. For ML based classifiers, the CSI data in

Fig. 15 (d) and (e) could easily result in false negatives if the

features are not included in the training dataset. On the other

hand, if the classifiers are only trained with the CSI data in

Fig. 15 (d) and (e), the inference could result in false positives,

while predicting the falls in the other three rooms.

V. PERFORMANCE RESULTS AND DISCUSSIONS

In this section, we evaluate performance of the proposed

fall detection technique by drawing a performance compar-

ison with the existing two fall detection techniques while

including different sets of CSI data collected in the four

environments mentioned in Section IV during training. The

performance is compared with FallDeFi [14], which uses an

SVM-based classifier and the work in [25], which uses a

ResNet-based classifier.

A. PERFORMANCE METRICS

The metrics that are used to evaluate the fall detec-

tion performance include accuracy, precision and recall.

Accuracy indicates the percentage of correctly classified fall

and non-fall events among all events. The accuracy of a fall

detection system can be defined as follows:

Accuracy

=
TP (True Positive) +TN(True Negative)

TP + TN + FP (False Positive) + FN(False Negative)
.

(5)

Precision which shows the percentage of correctly detected

fall events among all detected fall events:

Precision =
TP

TP + FP
. (6)

And Recall which indicates the percentage of correctly

detected fall events among all fall events in the dataset, can

be defined as follows:

Recall =
TP

TP + FN
. (7)

B. PERFORMANCE EVALUATION

During every training, we randomly split 80% of the dataset

for training and 20% for validation. Dataset shuffle is enabled

for the training set and disabled for the validation set. The

training and testing are implemented with Pytorch [53] on

a computer with an Nvidia RTX 2070 GPU. We use the

Adam optimiser with 0.0001 weight decay. Step learning rate

scheduler is used to reduce the learning rate across epochs

with the step size set to 10, and gamma set to 0.1. The initial

learning rate is set to 0.001, the batch size is set to 50 and

the number of epochs is set to 40. With the CSI collected in

all the environments, we train a few different configurations

of classifiers with variations of EfficientNet (B0 and B1),

including the original networks and our proposed networks

(with and without denoising).
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Table 3 provides the performance metrics of the validation

set across different configurations of the classifier. It is also

clear from Table 3 that the denoising has minimal impact

on the performance of the classifier. Therefore, we will not

include denoising in the workflow for the evaluations later.

We can also see significant improvements between the orig-

inal EfficientNet variants and the proposed networks. The

data in Table 3 also shows that the modified B0 performs

slightly better than the modified B1. We also implemented

FallDeFi [14] using the Matlab code2 shared by the authors

and the work proposed in [25] with Pytorch for comparison.

The best performance metrics are marked with bold font.

TABLE 3. Performance comparison of classifiers trained and tested with
entire dataset.

Table 4 compares the performance of the classifiers trained

with the entire dataset but evaluated with datasets including

combinations of CSI collected in different rooms. From the

examples in Fig. 15, we can see similar features from the

top three spectrograms, therefore we group the datasets from

these three rooms together (living room A, meeting room B

and left living room C) for testing. During the CSI collection

in these three rooms, the activities are mostly performed on

the LoS or dominant path. From the performance metrics in

Table 4, we can realise our modified classifiers outperform

others in every scenario with the modified B1 slightly outper-

forms the modified B0. Reduced performance can be clearly

observed while testing with the dataset collected in the right

living room of environment C. FallDeFi [14] and the work

proposed in [25] experience significant reductions with the

accuracy dropped to below 76% while our Modified B1 has

the accuracy remained over 92%. This could be caused by the

relatively small dataset (85 events out of the total 757 events)

and the similar features between the falls in this room and

some non-fall events in other rooms.

Table 5 presents the effect of different sets of volunteers

performing the activities. The activities in the rooms in

Fig. 14 (b) and (c) are performed by the same set of seven

volunteers. This set of volunteers is the subset of the volun-

teers (seven out of sixteen), who performed the activities in

the room in Fig. 14 (d). The six volunteers that join the CSI

collection sessions in the room in Fig. 14 (a) are completely

different from the other rooms. Therefore, we group up the

CSI collected in the rooms in Fig. 14 (b) and (c) for training

2https://github.com/dmsp123/FallDeFi

then evaluate the performance with the training dataset as

well as the datasets collected in two other rooms. We can see

that all four classifiers have better performance than Table 3

while testing with the training dataset. A large proportion of

false positives (FPs, false alarms) can be observed across all

four classifiers while testing with CSI collected in the living

room A. This could be caused by the combined effect of

different environments and different sets of volunteers. The

performance improves while testing with CSI collected in the

lecture room D.

Table 6 demonstrates the effect of different environments

while the activities are performed by a similar set of vol-

unteers. We combine the CSI collected in meeting room B

and lecturer room D as the training dataset (339 samples)

and test the performance with the training dataset as well as

the datasets collected in the two living rooms of the environ-

ment C. In this case the set of volunteers performing activities

in the two living rooms of environment C is the subset of

the volunteers performing activities in the training dataset.

Compared to the results in Table 3, almost all performance

metrics of four classifiers are increased when testing with the

training dataset. Performance drop across all four classifiers

can be observed while testing with the datasets collected

in environment C, particularly in the right-hand-side living

room. We can see the Accuracy of our modified B1 still

remains above 80%while the other classifiers have the Accu-

racy significantly dropped. We can also see an increasing

number of false alarms while testing with the dataset of the

right-hand-side living room. This is consistent with the results

in Table 4 because the features of the falls performed in this

room (off the dominant path, e.g. Fig. 15 (d)) are similar to the

features of some non-fall activities performed in other rooms

on the dominant paths.

Table 7 compares the complexity and computation time

across the proposed work and the works in [14] and [25].

The computation time includes the processing time of a single

CSI sample of a 5-second period. The pre-processing time

indicates the time consumption for preparing (on CPU) the

raw CSI samples for input to the classifier. The inference of

the proposed work and the work in [25] was conducted on an

Nvidia RTX 2070 GPU, and FallDeFi [14] was conducted on

an Intel i7-10750H CPU. The proposed work has negligible

pre-processing time because of the minimum pre-processing

required before classification (only down sampling). The

other two works have significantly longer pre-processing

time due to the generation of spectrograms and wavelet

denoising. The proposed work also has faster inference time

compared to the work in [25], benefiting from less parameters

and smaller input size (3× 625× 30 against 3× 227× 227).

The lower complexity and computation time of the proposed

work allow the potential of conducting multiple tasks in

parallel with the same hardware.

C. LIMATATIONS AND CHALLENGES

From the performance results presented in Subsection V-B,

we can see that the proposed fall detection technique
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TABLE 4. Performance comparison of classifiers trained with the entire dataset and tested with combinations of datasets.

TABLE 5. Performance comparison of classifiers trained with the rooms in Fig. 14 (b) and (c) and tested with combinations of datasets.

TABLE 6. Performance comparison of classifiers trained with the rooms in Fig. 14 (b) and (e) and tested with different datasets.

TABLE 7. Complexity and computation time comparison.

outperforms two other state-of-the-art fall detection systems

in all test scenarios. This technique achieves the accuracy

of over 97% with LoS and remains over 92% without

LoS (results in Table 4). Although the proposed technique

advances the state-of-the-art, there are still limitations to be

further investigated.

• Activities performed off the dominant or LoS path have

significantly different features (much lower frequencies

for the same activities) and result in many FPs if not

included in the training dataset. As we mentioned in

Subsection IV-B, most indoor WiFi propagations follow

Rician fading where a large proportion of the received

signal contributed by the dominant or LoS path and the

activities occur off these paths naturally have reduced

impact to the CSI. This is unavoidable in a practical sce-

nario since the falls could happen anywhere in the rooms

where the location is accessible, and it is impractical

to place many WiFi TXs and RXs to make dominant

paths to cover all fall locations. To mitigate this issue,

enough samples collected off the dominant paths should

be included in the training dataset so the classifiers could

recognise the corresponding features.

• Not only the changes in the environment affect the

detection accuracy, but also the volunteers who per-

form the activities. The volunteers contributed to the

data collection include both males and females with age

from 24 to 43. For health and safety concerns, we do not

have specific requirements for the velocity or posture

of the falls, and the volunteers performed falls with

their own comfortable speed. This results in variants

of the same activity across multiple volunteers. The

impact of different sets of volunteers can be observed

by comparing the data in Tables 4 and 5. The detection

accuracy reduction is significant when the environment

and volunteer set are both changed. However, the reduc-

tion is much less if the activities (collected in different

environments) of the volunteers are included in the train-

ing dataset. For example, in Table 5, our modified B1

classifier achieves 80% accuracy (right living room of

environment C) even when the activities performed off

the LoS path are not included in the training dataset,

because the activities performed by the same set of

volunteers in other environments have been included in

the training dataset.

• For health and safety concerns we recruited relatively

young volunteers to perform the required activities
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which indicates that the activities performed by older

people are missing from the dataset. As described by

the previous point the activities performed by different

people could have significant impact to the detection

accuracy, a fall detection system trained based on the

dataset including activities performed by younger peo-

ple may not be as accurate while testing with activities

performed by older people. Including activities in differ-

ent environments performed by different people always

help with the applicability of the fall detection system

in real world scenarios. Due to the scale of our work,

we could only conduct our experiments in a certain

number of indoor environments with the support of a

reasonable number of volunteers. However, given that

our work is available in the public domain, the readers

interested in similar applications could easily expand our

work to achieve better performance and use our dataset

to enhance existing works.

• As mentioned by the previous point, health and safety

are one of the major concerns while conducting research

involving human subjects. The university has strict

requirements on assessing health and safety risks as

well as the risk mitigation methods. The activities with

moderate to high risks of any injuries are either prohib-

ited or require specific measures to reduce the level of

risks. This brings limitations to some activities that are

important to real-world applications. For example, the

activities are performed by young to middle aged volun-

teers because the people with older age will have much

high risks of injury when performing falls. The falls are

cushioned by a large mattress so that the volunteers are

unlikely to land outside the mattress even when they fall

towards unintended angles. This requires the room to

have large enough space to place the mattress without

nearby obstacles. In this case some realistic environ-

ments (such as bathroom and kitchen) are not included

in the data collection because of the lack of space

and higher risks of colliding with surrounded obstacles,

where these environments are important for the fall

detection. The falls from height above the ground level

(e.g., on stairs, chairs and beds) are also not included in

the data collection due to the higher risks of injury.

D. FUTURE DIRECTIONS

As discussed in subsection V-C, there are still limitations of

our work that need to be addressed to make the work appli-

cable in real-world scenarios and to improve the detection

performance against real fall events. Below we discuss the

future directions for research and the potential of real-world

applications.
• The quality and quantity of the training dataset has

significant impact to the performance of deep learning

based classifications. Samples collected with different

variables always contribute to the performance and gen-

erality of the model. In the future, we plan to conduct

further CSI data collection with different environments

(such as bedrooms, kitchens and bathrooms), different

volunteer sets, varyingWiFi signal propagations (on and

off dominant path in particular) and more types of activ-

ities. We will also explore the possibility of exploiting

both amplitude and phase of the collected CSI data.

• Other than improving the dataset, in the future we will

continue explore state-of-the-art deep learning models

to improve the detection accuracy. For example, the

recently announced deep learning model CoCa [54] has

outperformed others on the ImageNet image classifica-

tion accuracy and CoCa can potentially be adapted to the

fall detection tasks. We will also explore fall detection

methods beyondWiFi sensing. For example, millimeter-

wave radar based fall detection systems [55], [56] which

generally offer better LoS detection accuracy than WiFi

based fall detection systems due to the natural advan-

tages of higher frequency, with the tradeoff of fall detec-

tion capability under NLoS conditions.

• As mentioned in subsection V-C, health and safety

requirements have realistic impact to the activities that

can be performed as well as the volunteers that can be

involved in the data collection. In the future, we plan

to further engage with the health and safety experts to

assess and mitigate the risks, therefore enhancing the

dataset with samples collected from practical scenarios.

The detailed activities could involve risk assessment and

mitigation when the falls are performed in more chal-

lenging environments such as bathrooms and kitchens,

the data collection involving volunteers with older age

groups, and more challenging types of falls from a non-

standing posture (such as falls from a chair while sitting

and from a bed while laying down).

• Multiple issues need to be addressed for the WiFi CSI

based fall detection to be used in real-world applications.

At the moment, although WiFi devices are widely used

in homes, the regularWiFi hardware may not be suitable

for fall detection. Our experiments in section II show that

WiFi devices from different manufacturers have their

own features in the collected CSI and not all hardware

is suitable for fall detection. The WiFi CSI is not only

affected by the propagation environments but also the

interference from other sources on the same frequency.

How the fall detection coexists with different types of

interference needs to be investigated to ensure the accu-

racy of the detection. In a real-world deployment, any

FN or FP should be prevented because of the losses and

risks comewith them.A second system should present in

parallel and external intervention could be implemented

(such as activating vision-based monitoring) when the

results from two systems differ, and this also minimises

the potential interrupt to privacy of the vision-based sys-

tems (because they do not need to be always activated).

For ease of use in real-world applications, the designed

fall detection system needs to be low cost and have the
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plug-and-play feature. The system should consist of low-

cost hardware and a balanced functional split between

distributed and centralised nodes. For example, the CSI

collection and pre-processing can be conducted by the

distributed nodes in homes and the final inference can be

uploaded on centralised computing nodes with GPUs.

VI. CONCLUSION

In this paper, we proposed a deep learning based fall detection

system using WiFi CSI. In particular, we developed a deep

learning classifier based on a state-of-art image classification

tool. The CSI of falls and other daily activities were collected

in four different indoor environments performed by twenty-

two volunteers to create the comprehensive dataset. The

dataset also included activities performed on and off the dom-

inant path to improve the applicability of the fall detection

system in different occurrences. The proposed fall detection

technique outperforms two other fall detection systems and

achieves 99% accuracy with certain combinations of the

datasets and remains over 96% accuracy when all collected

CSI in different environments is included in the training

dataset. Although the proposed fall detection technique is

effective with our dataset, it still has several constraints and

limitations. We summarised the impacts of wireless propa-

gation environments and the people performing the activities

and discussed the potential future directions of this work.
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