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Any-to-Any Voice Conversion with Multi-layer
Speaker Adaptation and Content Supervision

Xuexin Xu, Liang Shi, Xunquan Chen, Pingyuan Lin, Jie Lian, Jinhui Chen,

Zhihong Zhang∗, Edwin R. Hancock, Fellow, IEEE

AbstractÐAny-to-any voice conversion can be performed
among arbitrary speakers, even with a single reference utterance.
Many related studies have demonstrated that it can be effectively
implemented by speech representation disentanglement. However,
most existing solutions fuse the speaker representations into the
content features globally without considering their distribution
difference. Additionally, in the any-to-any scenario, there is no
effective method ensuring the consistency of linguistic content
without text transcription or additional information extracted
from additional modules (e.g., automatic speech recognition).
Hence, to alleviate the above problems, this paper proposes
SACS-VC, a novel any-to-any voice conversion method that com-
bines two principal modules: Speaker Adaptation and Content
Supervision. Specifically, we rearrange the timbre representations
according to the content distribution using a temporal attention
mechanism to obtain finer-grained speaker timbre information
for each content feature. Meanwhile, we associate the converted
outputs and source utterances directly to supervise the consis-
tency of the semantic content in an unsupervised manner. This is
achieved using contrastive learning based on the corresponding
and non-corresponding locations of content features. It should be
noted that SACS-VC can be implemented using a non-parallel
speech corpus without any pertaining. The experimental results
demonstrate that the proposed method outperforms current state-
of-the-art any-to-any voice conversion systems in objective and
subjective evaluation settings.

Index TermsÐVoice conversion, attention mechanism, con-
trastive learning, feature disentanglement.

I. INTRODUCTION

VOICE conversion (VC) converts speaker identity from

a source utterance to that of a target speaker while

preserving the original linguistic content. This approach is

widely used in many applications, such as personalized speech

synthesis and human±computer interaction.

Early work [1]±[6] focused relied on aligned parallel data,

where any speech pairs from source and target speakers share

the same linguistic content and are aligned in the temporal

∗Corresponding author: Zhihong Zhang (E-mail: zhihong@xmu.edu.cn)
Xuexin Xu, Liang Shi, Pingyuan Lin, Jie Lian and Zhihong Zhang are with

the School of Informatics, Xiamen University, Xiamen, China.
Xunquan Chen is with the Graduate School of System Informatics, Kobe

University, Kobe, Japan.
Jinhui Chen is with the Faculty of Systems Engineering, Wakayama

University, Wakayama, Japan.
Edwin R. Hancock is with the Department of Computer Science, The

University of York, York, UK.
This work is supported by the National Natural Science Foundation of

China under Grant (62176227, U2066213), Fundamental Research Funds
for the Central Universities (20720210047), JSPS KAKENHI under Grant
(19H00597), and the Research Support Fund of Wakayama University.

Speaker 2

Speaker 1

Speaker 3

Training Speakers

Anyone

Anyone

(a) Many-to-many VC

Speaker 2

Speaker 1

Speaker 3

Training Speakers

Anyone

Anyone

(b) Any-to-any VC

Fig. 1. Comparison between many-to-many and any-to-any voice conversion.
The arrows represent voice conversion among different speakers.

dimension. However, it is challenging to collect such data and

time-consuming to align them. Besides, the restricted corpus

availability limits the performance and generalizability of

voice conversion. These limitations have motivated researchers

to explore non-parallel voice conversion approaches [7]±[10],

which led to a deep neural network that approximated a

mapping function from the source speaker domain to the

target speaker domain. For instance, CycleGAN-VC [9] and

StarGAN-VC [8] employ cycle consistency to ensure that the

invertible mapping results are identical to the source input.

Although these methods attain an appealing performance with-

out requiring a parallel corpus, they only involve a conversion

process for predefined multiple speaker sets. As depicted in

Fig. 1, when encountering arbitrary speakers, which may

be unseen during training (outside the set of speakers used

in training), the above VC methods have relatively limited

conversion capabilities. To overcome such limitations, several

any-to-any voice conversion methods have been explored [11]±

[13]. Most of the existing any-to-any VC approaches are based

on speech representation disentanglement. This effectively

addresses the any-to-any conversion problem by decomposing

speech into speaker timbre and linguistic content representa-

tions. Then, the speaker identity can be converted by only

replacing the speaker timbre representation from one speaker

to another. Fig. 2 illustrated this process. Many techniques

have been proposed to separate speaker timbre information

from linguistic content as much as possible. These include the

information constrained bottleneck layer [12], [14], phoneme

transcription guidance [15], vector quantization [13], [16],

[17], normalization techniques [11], [18] and self-supervised

speech representation [19]±[21].

However, most of these methods only embed the speaker

timbre without considering its relevance to content, which is an

average global speaker feature. Nevertheless, using averaged

timbre information sacrifices the timbre modeling capability

0000±0000/00$00.00 © 2021 IEEE
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of local phonemics and processes all local content features

using the same transformation function in voice conversion.

For example, the pioneering work reported in [11] proposed

a simple yet effective method that applies the global mean

together with the variance of the target speech to the source

utterance in a deep feature space. Since the required statistics

are calculated globally from a fixed-length speaker represen-

tation, the fine-grained details and phoneme-wise patterns are

largely discarded. Furthermore, silence segments affect the

speaker’s representation because they contain almost no useful

information. The same issue exists in AutoVC [12], which

applies a pre-trained speaker encoder to extract the global

speaker timbre representations. To obtain the fine-grained

speaker embedding for each content representation scale,

typically, more attention should be paid to the most similar

phonemic pronunciation of the target utterances, and then the

corresponding timbre representation should be extracted and

embedded for these temporal locations.

Unfortunately, once the network probes the local fine-

grained speaker information, unreliable information may con-

taminate the corresponding content due to incomplete de-

coupling of speech representations. The residual mutual in-

formation between them at the same locations will restrain

the original features. Therefore, the linguistic content of the

converted speech is usually distorted or ambiguous, which

is unacceptable for VC. In fact, existing state-of-art any-to-

any VC methods, such as AdaIN-VC [11] and AutoVC [12],

are devoted to achieving arbitrary timbre transfer without

a parallel aligned corpus. Hence, they all fail to achieve

effective supervision concerning the linguistic content without

any additional processing modules (e.g., text transcription

and automatic speech recognition). This unsupervised learning

framework only includes the main objective of reconstructing

input utterances (as shown in Fig. 2). Specifically, a pioneering

study proposed CVC [22] which preserves content information

by contrastive learning but can only perform VC with many-

to-one or any-to-one mapping, limiting the flexibility of VC

in the real world. Therefore, the ultimate goal of VC can be

defined in a more detailed manner as transforming the speaker

timbre as much as possible without losing semantic content.

This paper addresses these problems and better balances

transferring speaker timbre and preserving semantic content.

Therefore, we propose a novel any-to-any VC framework

called SACS-VC, which introduces Speaker Adaptation and

Content Supervision to resolve the above problems. Speaker

adaptation can adaptively rearrange the speaker timbre repre-

sentations according to the content distribution using a tempo-

ral attention mechanism and then perform timbre transfer on

each content feature. Content supervision is self-supervised to

preserve semantic content directly.

Specifically, in SACS-VC, the temporal attention map is

learned jointly from the content and speaker features by

implicitly aligning similar phonemic pronunciations. Subse-

quently, the speaker features are rearranged concerning this

map, and then the stylized features are generated by the

position-wise addition of rearranged speaker features to give

content features. Motivated by previous research [23], we

realize the content supervision by associating the converted

speech and source input directly using contrastive learning.

Specifically, we maximize the mutual information of the

semantic content between the converted and source speech

and consider the distance error of feature value space between

them. Following the guidance of mutual information and

feature space distance. Although we only consider a non-

parallel speech corpus in the training stage, we establish

the semantic correspondences between the source input and

converted output based on content features and ensure that

the semantic content is preserved as much as possible during

the entire conversion process. To some extent, preserving the

linguistic content helps to decouple the speech representa-

tions better. Meanwhile, we encapsulate the whole framework

in an adversarial training strategy to enhance the synthetic

speech quality using a U-Net-like [24] multi-scale architecture.

Considering the different temporal scales in audio features,

the above operations (i.e., speaker adaptation, and content

supervision) can consider different feature scales of the deep

embedding. Note that SACS-VC can achieve a more fine-

grained speaker timbre transformation for each phonemic and

preserve semantic content consistency as much as possible

during VC. Our main contributions can be summarized as

follows:

• We propose a speaker adaptation module to adaptively

rearrange the speaker timbre distribution according to the

content distribution using a temporal attention mecha-

nism. In this way, we generate the corresponding speaker

features for each content feature providing a more fine-

grained and appropriate timbre pattern that depends on

semantic content.

• A novel optimization objective referred to as content

supervision is proposed. These associates converted out-

puts and source utterances and helped the method to

preserve the semantic content during VC by maximizing

the mutual information between them.

• We consider both high and low-level deep features at

different temporal scales to achieve better convergence.

Additionally, an adversarial strategy and multi-scale ar-

chitecture are adopted to enhance the quality of the

audio signals generated. Both subjective and objective

experimental results demonstrate that our method is better

than or comparable to existing state-of-the-art any-to-any

VC methods on real-world VCTK [25] datasets.

The remainder of this paper is organized as follows. Sec. II

briefly surveys the related literature. Secs. III and IV present

our SACS-VC method and Sec. V reports our experimental

results. Finally, Sec. VI concludes this paper and suggests

future research directions.

II. RELATED WORK

Non-parallel VC is an unsupervised learning process, and

its learning difficulty lies in constructing a mapping rela-

tionship between non-parallel speech corpus. Cascade VC

models [26], [27] enable VC by extracting linguistic content

through an Automatic Speech Recognition (ASR) model and

then feeding it into a Text-To-Speech (TTS) model. Due to

the speaker-independent property of Phonetic PosterioGram
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(PPG), which can be extracted from a pre-trained ASR model,

it has succeeded in VC [28]. However, the ASR model’s

performance limits the conversion quality of these methods,

and a large amount of data is required to pre-train the ASR

system, restricting VC’s flexible application. Besides, deep

generative models bring new opportunities to VC, including

VAEs [29], GANs [30], and DPMs [31]. According to the

different frameworks, we divide non-parallel VC into direct

transformation- and feature disentanglement-based

1) Direct transformation-based VC: Many researchers have

developed feed-forward-based networks to achieve a direct

transformation from one speaker to another to remove the

requirement of a parallel corpus without additional data or

pre-trained models. Some work [9], [32]±[34] use non-parallel

VC networks, which can only achieve one-to-one conversion

by training an independent network. VC among multiple

speakers is a key enabling technology for various applica-

tions. Therefore, Kameoka et al. extended an image-to-image

translation method StarGAN [35] to develop StarGAN-VC

[8]. Chou et al. [7] employed a two-stage training strategy

and adversarial speaker classifier to remove further speaker-

dependent information from linguistic representations. Lee et

al. [36] overcame the drawbacks of CycleGAN-based methods

[9], [37] by conditioning the network on the speaker and

performed many-to-many VC using a single network. Fur-

thermore, CVC [22] adopts contrastive learning to replace the

cycle-consistency mapping and allows better preservation of

content information.

However, the above VC methods cannot efficiently transfer

the speakers that are not present in the training data, i.e., they

cannot model unseen data.

2) Feature disentanglement-based VC: Several studies

based on speech representation disentanglement have at-

tempted to decompose speech into speaker and content rep-

resentations. These methods can achieve any-to-any VC by

simply replacing the speaker representation. For instance,

Qian et al. proposed AutoVC [12], which uses a pre-trained

speaker encoder and imposes a restriction on the length of

the bottleneck layer. In their subsequent work [14], they

considered different properties of speech. Zhang et al. [15]

used the corresponding phoneme transcriptions to guide the

extraction of linguistic representations. Besides, Vector Quan-

tization (VQ) was employed in [16] and [13] to separate the

speaker-independent features. AdaIN-VC [11] demonstrated

that instance normalization could effectively remove speaker

style information and then applied adaptive instance nor-

malization [38] to adjust global statistics ( i.e., mean and

variance). Ishihara et al. [39] generated content-dependent

speaker information using an attention mechanism, while in

[40], the local and global timbre information was considered

simultaneously. Self-supervised speech representations have

also been employed for VC [19]±[21]. Indeed, Wang et al.

[17] used mutual information to measure the dependencies

between speech representations. Lei et al. [41] implemented

a unified framework to achieve zero-shot text-to-speech and

any-to-any VC simultaneously. Popov et al. [42] applied

a diffusion model to VC, where the converted speech is

synthesized by integrating the reference speaker information

𝑋𝑋1,𝐴𝐴 𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐 𝐷𝐷𝐷𝐷𝐶𝐶𝐴𝐴

𝑆𝑆1
Content Encoder

�𝑋𝑋1→1,𝐴𝐴
Speaker Encoder

Decoder

(a) Reconstruction

𝐸𝐸𝑠𝑠
𝐸𝐸𝑐𝑐 𝐷𝐷𝐷𝐷𝐶𝐶𝐴𝐴

𝑆𝑆2
𝑋𝑋1,𝐴𝐴

𝑋𝑋2,𝐵𝐵
�𝑋𝑋1→2,𝐴𝐴

Content Encoder

Speaker Encoder

Decoder

(b) Conversion

Fig. 2. Learning process of feature disentanglement-based VC.

into the averaged speaker-independent speech representation

in the reverse diffusion stage.

Nevertheless, existing disentanglement VC methods only

consider the reconstruction objective in the training procedure.

However, preserving the semantic content during the conver-

sion process is challenging, especially when using non-parallel

data. Meanwhile, many previous studies only embedded the

speaker representation into a predefined fixed-length vector,

which is unsuitable for variable phonemic content. These

methods fuse deep speaker features into the content features

without considering the differences between feature distribu-

tions. To alleviate these problems, this study explores a better

trade-off between transferring speaker timbre and preserving

semantic content. Specifically, we design a speaker adaptation

module to rearrange the speaker distribution by considering

the details of the content distribution. This ensures that the

embedded speaker representation is suited to the semantic

content. Moreover, we propose a novel learning objective that

uses contrastive learning to avoid semantic content changes

during the conversion stage.

III. MODEL FRAMEWORK OF SACS-VC

A. Preliminaries

As illustrated in Fig. 2, AdaIN-VC [11] and AutoVC [12]

disentangle content and speaker information from speech and

transfer the target timbre by replacing the speaker represen-

tation. Their simple autoencoder framework comprises three

modules: content encoder Ec(·), speaker encoder Es(·), and

decoder De(·, ·). In the training stage, the model only requires

self-reconstruction from an input utterance to disentangle

speech representations, which can be written as follows:

CA = Ec(X1,A), S1 = Es(X1,A), X̂1→1,A = De(CA, S1)
(1)

where X1,A denotes the utterance ªAº produced by speaker

ª1º, CA is the linguistic information relevant to content ªAº
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Fig. 3. Speaker Adaptation module. We rearrange the speaker distribution
according to the content information and then fuse the content-dependent
speaker features RS2,A into the content features CA through point-wise
addition to generate the stylized features CS2,A.

captured from Ec(·), and S1 indicates that speaker information

about identity ª1º is generated by the speaker encoder Es(·).
The Decoder De(·, ·) takes the content and speaker feature as

inputs to synthesize the reconstructed utterances X̂1→1,A.

To confine our attention to the non-parallel any-to-any VC

setting, we require another reference speech to perform VC.

Therefore, for a source speech X1,A ∈ R
C×TA and reference

speech X2,B ∈ R
C×TB , TA and TB denote the time lengths

of the respective speeches depending on the utterance. The

conversion process should transfer the speaker identity from

ª1º to ª2º while preserving the source content ªAº, which can

be written as

CA = Ec(X1,A), S2 = Es(X2,B), X̂1→2,A = De(CA, S2)
(2)

Based on the above process, we synthesize the converted

speech X̂1→2,A ∈ R
C×TA by replacing the speaker identity

information from S1 to S2. However, this unsupervised learn-

ing process will inevitably lead the converted speech to miss

some content information.

B. Speaker adaptation

According to Eq.(2), we generate the content features CA

and speaker representations S2 from the source and reference

speech, respectively. To overcome the negative effects of resid-

ual correlation information between CA and S2, the speaker

adaptation module (SA) rearranges S2 based on the content

representations CA and then generates content-dependent styl-

ized features RS2,A.

The SA module is illustrated in Figure 3. Initially, given

a content feature CA ∈ R
C×TA , we conduct mean-variance

channel-wise normalization to remove the timbre information

[11] and then transform it linearly to generate the normalized

feature CCA. We process the speaker features S2 ∈ R
C×TB

similarly to obtain the normalized speaker representation SS2.

Meanwhile, we feed the speaker features S2 into an additional

linear layer, denoted by SS2, but there is no normalization op-

eration in this case. Similarly to the cross-attention operation,

we first calculate the correlation matrix A ∈ RTA×TB , which

can be formulated as

A = SoftMax(CC
T

A ⊗ SS2) (3)

where the dot-product measures the similarity between the two

representations, and the position (i, j) of the correlation matrix

A is used to measure the relation between the ith content

feature and jth speaker feature. Then, we rearrange the speaker

features SS2 by taking the product of the correlation matrix

A and SS2 and appropriately generate the rearranged speaker

feature RS2,A ∈ R
C×TA , expressed as follows:

RS2,A = SS2 ⊗AT (4)

In simple terms, for each position of the content feature, we

automatically enumerate all positions of the speaker feature to

align with the most similar phonemic position. Finally, we fuse

the rearranged features into the content features to achieve VC

as follows:

CS2,A = RS2,A + CA (5)

Through the above SA process, according to the content

phonemic information, we generate a speaker feature consis-

tent with the same distribution as the content feature that can

easily be fused into the content features through feature addi-

tion to achieve fine-grained timbre construction of the target

speaker. This fine-grained speaker representation automatically

selects an appropriate speaking style for the semantic content

information and avoids the interference caused by semantic

inconsistencies to preserve the semantic content information

of the source speech and improve the quality of VC.

C. Network architecture

The developed framework is based on a GAN [30], which

typically comprises a generator and a discriminator. Given a

non-parallel speech corpus, we sample two different speech

instances X1,A ∈ RC×TA and X2,B ∈ RC×TB , which

come from two different speakers. The generator G is an

auto-encoder framework that generates the converted speech

X̂1→2,B = G(X1,A, X2,B), which has similar content to

X1,A and similar timbre to X2,B . The discriminator constructs

a weakly supervised learning strategy, distinguishing a real

speech sample from a synthetic one while encouraging the

generator to synthesize realistic speech of the target domain

X2,B . The network architectures are illustrated in Figs. 4 and

5.

1) Generator: The generator G can be divided into con-

tent encoder Ec, speaker encoder Es, and decoder De. The

generator comprises entirely convolution neural networks to

achieve non-autoregressive generation. As depicted in Fig. 4,

we capture the content speech features with different temporal

scales in the content encoder and then restore them gradually

in the decoder. This multi-scale architecture is very similar to

U-Net [24].

In the encoders, we first employ the ConvBank layer [43],

which stacks convolution layers with different kernel sizes to

enlarge the receptive field and capture long-timescale informa-

tion. Subsequently, several convolution layers are applied to

generate high-level representations. The purely 1-dimensional

convolution layers are implemented with a kernel size of

5, and the stride size depends on whether downsampling of

the temporal scales is required. For the content encoder, we
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Fig. 5. Architecture diagram of the discriminator, composed of several 2d
convolution layers.

downsample 3 times to decrease the feature resolution and

adopt instance normalization after each convolution layer to

eliminate the speaking timbre information [11]. Note that we

do not downsample the temporal dimension in the speaker

encoder, but the original temporal dimension is the same as the

input acoustic features to preserve the overall information. To

mitigate the training difficulties, we also implement residual

connections [44] for each pair of convolution layers, except

for the ConvBank layer. We also use average pooling to

decrease the temporal resolution to match the feature shapes.

As mentioned above, the content encoder will decrease the

temporal scale gradually. Therefore, in addition to storing the

output feature of the content encoder, we also store the in-

termediate features before each downsampling operation, i.e.,

CA = {C
(0)
A , C

(1)
A , C

(2)
A , C

(3)
A }, and the shapes of these fea-

tures are {RC×TA ,RC×
TA
2 ,RC×

TA
4 ,RC×

TA
8 }. The speaker

encoder embeds X2,B to generate the speaker representation

S2 ∈ R
C×TB while preserving the temporal scale without any

downsampling.

In the decoder, given the content features CA and speaker

feature S2, there are two main basic operations: 1) restoring

the temporal scale from the smallest-scale feature C
(3)
A and

2) fusing the speaker feature S2 into the content distribution

using the speaker adaptation modules described in Sec. III-B.

Specifically, we first initialize the feature CS
(i)
2,A passed in the

decoder as C
(3)
A . A set of convolution layers with a kernel

size of 5 and stride of 1 are implemented in the decoder.

To increase the temporal resolution, a PixelShuffle1d layer

[45] is used for upsampling, and we use nearest neighbor

interpolation so that the residual connections match the feature

shape. We associate the feature map after upsampling and

the corresponding content representation C
(i)
A according to the

same scale i, a skip-connection is implemented between C
(i)
A

and CS
(i)
2,A. To achieve fine-grained timbre modeling, we feed

the restored and speaker features into the SA module, which

can automatically adapt and fuse the speaker information into

the converted feature according to the semantic correlation.

This can be expressed as follows:

CS
(i)
2,A = CS

(i)
2,A + SA(i)(CS

(i)
2,A, S2) (6)

To synthesize the converted speech, a pipeline is constructed

using several consecutive ª1)-2)º operations to restore the

temporal scale of the features and then gradually fuse the

speaker information. Then, we use a linear transformation to

modify the channel to match the acoustic features. Finally, the

post network [46] is appended but without batch normalization.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

𝑋𝑋1,𝐴𝐴

�𝑋𝑋1→2,𝐴𝐴

𝐸𝐸𝑐𝑐

𝐸𝐸𝑐𝑐
𝑞𝑞 𝑣𝑣+𝑣𝑣−

Feature Position-wise Contrastive Learning

Calculate similarities 
for query

N+1 way 
classification Cross-

Enrtopy

𝑪𝑪𝑨𝑨(𝒊𝒊)

�̂�𝐶𝐴𝐴(𝑖𝑖)

Feature Position-wise 
Mean Square Error

Learning Objective ①

Learning Objective ②

Content Supervision = 
Learning Objective (① + ②) 

�̂�𝐶𝐴𝐴(𝑖𝑖)

closerfarther

𝐸𝐸𝑐𝑐: Content Encoder𝐶𝐶𝐴𝐴(𝑖𝑖)、�̂�𝐶𝐴𝐴(𝑖𝑖): Content Features

𝑋𝑋1,𝐴𝐴: Source Speech�𝑋𝑋1→2,𝐴𝐴: Converted Speech

Fig. 6. Content supervision process flow. We establish the semantic content relationships between the source speech X1,A and converted speech X̂1→2,A.

Our content supervision has two learning objectives. First, we minimize the feature value errors between X1,A and X̂1→2,A at the same locations. Second,

we maximize the mutual information between X1,A, and X̂1→2,A using contrast learning while encouraging the content encoder Ec to distinguish the
phonemic content.

This predicts a residual, which is added to the prediction to

improve the overall reconstruction. The post network involves

five convolution layers that use a hyperbolic tangent activation

function in all but the final layer. The channel dimension is

set to 512 in the first four layers and is reduced to 80 in the

final layer. A dropout layer with a rate of 0.5 is placed after

each layer.

2) Discriminator: Unlike the generator, the discriminator

is constructed with 2D convolution layers similar to [7], [8] to

capture the acoustic texture better. Specifically, we first reshape

the input speech from RC×T to R1×C×T . Subsequently,

there are 5 convolution layers with a stride of 2 and a kernel

size of 5 × 5 to downsample the feature map gradually. The

corresponding number of filters are 64, 128, 256, 512, and

512. Additionally, a convolution layer with unit kernel size

and stride is appended to decrease the feature channel from

512 to 32. Finally, the output layer measures the degree of

verisimilitude of the speech in the target domain. Instance

normalization [47] and Leaky ReLu activation [48] with slope

0.01 are applied after each convolution layer, except for the

final output layer. The mean value of the final feature is the

output of the discriminator, which represents the confidence

value that the input speech is the real speech of the target

speaker.

IV. LEARNING STRATEGIES OF SACS-VC

A. Content supervision

VC should fully preserve the semantic content of the source

speech while transferring the target speaker’s timbre. However,

we cannot completely decouple the speech representations and

ensure that they are independent because incorporating speaker

information will somewhat distort the content distribution.

This distorts and enhances the ambiguity of the converted

speech. To alleviate this problem, we propose the content

supervision learning process, as illustrated in Fig. 6.

Given the source speech X1,A and target speech X2,B

originating from different speakers, we accomplish VC and

generate the converted speech X̂1→2,A based on Eq. (2). In

an ideal VC system, although X̂1→2,A and X1,A belong to

different speakers, the semantic content should be consistent

throughout the conversion process. Given that we train the con-

tent encoder Ec to capture the linguistic content information

of speech, the semantic content can be readily represented by

the content feature. According to our framework setting in Sec.

III-C, there are 4 different feature scales in the content feature

stack, where a smaller scale corresponds to a larger receptive

field. Therefore, the intuitive idea is to constrain the content

features to be the same at the corresponding positions, that is,

constraint the distances of content features between X̂1→2,A

and X1,A:

Lcontent =
1

L

L−1
∑

i=0

∥Ĉ
(i)
A − C

(i)
A ∥2 (7)

where L = 4, and i denotes the ith index of the content feature

stack. ĈA and CA are the content features extracted from

X̂1→2,A and X1,A, respectively. We use the mean squared

error (MSE) to define the perceptual content loss. Ideally, the

above approach alleviates the problem of content distortion

or obfuscation. However, the content encoder Ec may learn a

trivial function (such as loss of ability to distinguish phonemic

content) and output the approximate representation for differ-

ent semantic content. This is because we want to train the

whole VC system end-to-end, and we inevitably update the

parameters of Ec according to the above loss. To avoid Ec
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losing the ability to capture content diversity, it is necessary

to add one additional requirement to make the objective multi-

task.

Motivated by the unpaired image translation method based

on contrastive learning in [23], we build another learning

strategy between ĈA and CA, based on the hypothesis that

the semantic labels are the same during the VC. This learning

strategy is based on contrastive learning, which maximizes the

mutual correspondence information based on the InfoNCE loss

[49]. This strategy further constrains the semantic content to

be similar to each other and forces the content feature to dis-

tinguish different phonemic content, thus avoiding degrading

the content encoder.

The key idea of contrastive learning is to construct three

different types of vectors: a) ªqueryº vector q, b) ªpositiveº

vector v+, and c) N ªnegativeº samples v−. These are the

column vector sampled from CA and ĈA for all temporal

positions T of content features. There is one positive sample

and the remaining N negative samples (i.e., T = N + 1).

Thus, v, v+ ∈ RC×1 and v− ∈ RC×N . In our context, a

query refers to a certain column vector sampled from ĈA,

v+, which corresponds with the same position of q in CA, and

v− are the remaining elements of the feature set in CA. We

want q and v+ to be close and q and each item in v− to be far

away. This can enforce the content encoder to output a similar

embedding at the same temporal position and generate dis-

tinguishable representations at distinct locations. This multi-

objective optimization problem can be also viewed as a multi-

classification problem with N + 1 classes, maximizing the

probability of selecting a positive sample v+ over all negatives

v− to achieve contrastive learning indirectly. Specifically, the

cross-entropy loss will be calculated to maximize the mutual

information. This is achieved by maximizing the probability

of matching the positive sample with the query vector. Indeed,

we normalize each of these three vectors using the L2 norm,

which is mathematically formulated as follows:

ℓ(q, v+, v−) = − log

[

exp( q·v
+

τ
)

exp( q·v
+

τ
) +

∑N

n=1 exp(
q·v−

n

τ
)

]

(8)

where v−n denotes the nth negative sample and τ is a tem-

perature parameter used to scale the feature distances. We

maximize the mutual information between CA and ĈA by

minimizing the above learning objective.

Due to our multi-scale architecture, we expand Eq. (8) to

all scales of content features. For any scale i of the content

features, we first select the nth column vector of Ĉ
(i)
A ∈

RC×T
(i)
A as the query vector and create the corresponding

positive vector vni and negative vectors v
(N

(i)
A

+1)\n
i , where

T
(i)
A = N

(i)
A + 1. Subsequently, we build contrastive learning

by enumerating all locations of content features as query

vectors at each scale. As a result, the second objective can

be expressed as

Lcontrast =
1

L

L−1
∑

l=0

1

N
(i)
A + 1

N
(i)
A

+1
∑

n=1

ℓ

(

qni , v
n
i , v

(N
(i)
A

+1)\n
i

)

(9)

where L = 4 corresponds to the 4 items in the content feature

stack, and N
(i)
A depends on the temporal dimension of the

content features at different scales.

Note that our model solely relies on a self-supervised

learning strategy without additional modules, and by using the

above two types of constraints (mutual information and value

constraint), we ensure that the semantic content information is

preserved as much as possible during the entire VC process. In

this way, the content features of the converted output will be

similar to the source input and distinguish it from alternative

phonemic content.

B. Loss function

In a non-parallel VC scenario, the two arbitrary sampled

speech instances {X1,A, X2,B} ∼ X make up the inputs

of SACS-VC. To translate the source speech to sound like

the target speaker, our proposed network is optimized in

the training stage through three types of loss functions, as

illustrated in Fig. 7.

1) Reconstruction loss: The reconstruction loss assists the

generator in preserving the consistency of the spectrogram

when using the same speech sample for both the input content

speech and input reference speech:

Lrecon(X1,A, X̂1→1,A) = EX1,A∼X ∥X̂1→1,A −X1,A)∥1
(10)

where X̂1→1,A is the self-reconstruction procedure in Eq. (1),

and the L1 distance (norm) measures the differences between

the source and the corresponding reconstructed input. This

reconstruction loss ensures that the auto-encoder architecture

does discard much information and encourages the model

to synthesize clean and understandable speech. It is also an

essential part and main objective for feature disentanglement-

based any-to-any VC methods [11], [12], [20].

2) Content supervision loss: As discussed in Sec. IV-A,

we use two different learning objectives to preserve the

consistency of the semantic content during the VC process.

Thus, the content supervision loss depends on Eqs.(7) and (9)

in weighted combination:

LT
cs(X1,A, X̂1→2,A) = E{X1,A,X2,B}∼X c1·Lcontent+Lcontrast

(11)

where the coefficient c1 is set to 0.5 to determine the relative

weight of the two components, and the temperature parameter

τ in Eq.(9) is set to 0.09. Additionally, we use the same

loss for the reconstruction objective, i.e., LR
cs(X1,A, X̂1→1,A).

Therefore, our content supervision loss is calculated on both

the conversion and reconstruction patterns, and we simply add

them together to obtain the final content supervision loss:

Lcs(X1,A, X̂1→1,A, X̂1→2,A) =
1

2
· (LT

cs + LR
cs) (12)

We optimize the entire generator G by this loss function,

forcing the model to lose less semantic content information

during the VC process. To some extent, this also assists SACS-

VC in decoupling the speech representations by constraining

the semantic content structure.
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Fig. 7. Overview of the learning strategies.

3) Adversarial loss: Following [30], the adversarial loss is

adopted to synthesize realistic speech that sounds similar to

the target speech. This can be written as follows:

Ladv(X2,B , X̂1→2,A) = E{X1,A,X2,B}∼X logD(X2,B)

+ log(1−D(X̂1→2,A))
(13)

where G and D denote the generator and discriminator,

respectively, and X̂1→2,A = G(X1,A, X2,B). The variant

loss in WGAN-GP [50] is adopted to mitigate the training

instability issue.

4) Final objectives: We train the proposed method by

solving a min-max optimization problem according to the

weighted sum of individual loss functions described above:

min
G

max
D
Lrecon + λaLadv + λcsLcs (14)

where λa and λcs are the hyperparameters that control the

relative importance of the different losses. For the experiments,

we set λa = 0.02 and λcs = 1.

C. Implementation details

Since our method’s output is a mel-spectrogram, we im-

plement a vocoder to achieve the transformation from the

acoustic features to the speech signals. Specifically, we em-

ployed a pre-trained MelGAN vocoder [51], which is a non-

autoregressive approach that performs similarly to other au-

toregressive vocoders. Initially, we generate the corresponding

acoustic features in the required format for the MelGAN

input. More precisely, we resample the audio at 22,050 HZ

and perform a short-time Fourier transform (STFT) with a

window size of 1024. Then, we transform the magnitude of

the spectrograms into an 80-bin mel-scale and calculate its

logarithm. Subsequently, these acoustic features are fed into

our model to optimize its parameters. Finally, we generate the

converted speech through the optimized model and vocoder.

We trained the proposed method (i.e., generator and dis-

criminator) using the ADAM optimizer (with learning rate

Algorithm 1: Training Strategy

Input: Multi-speaker non-parallel dataset X , Learning

rate η = 0.0001, m = 32, λa = 0.02, λcs = 1
Initialize generator G = {Ec, Es, De} and

discriminator D,

for number of training iterations do

for j in 1, ..., m do

Sample source speech X
(j)
1,A ∼ X .

Sample reference speech X
(j)
2,B ∼ X .

Create m-sized minibatch {X1,A, X2,B}.
X̂1→2,A = De(Ec(X1,A), Es(X2,B))
X̂1→1,A = De(Ec(X1,A), Es(X1,A))
Calculate Lrecon(X1,A, X̂1→1,A),

Lcs(X1,A, X̂1→1,A, X̂1→2,A),
Ladv(X2,B , X̂1→2,A)

θD ← θD + η∇θDλaLadv

θG ← θG − η∇θG(Lrecon + λaLadv + λcsLcs)

= 10−4, β1 = 0.9, β2 = 0.999, and weight decay = 10−4)

for 20k iterations. The batch size is 32, and each mini-batch

consists of 32 source and 32 reference utterances, which are

in one-to-one correspondence. The generator and discrimina-

tor are optimized alternately in each iteration. Algorithm 1

summarizes the entire training strategy. The base code can be

found on: https://github.com/XXxin1/SACS-VC.

TABLE I
NUMBER OF UTTERANCES AND SPEAKERS IN THE EXPERIMENTAL

SETTING.

Training Validation Testing

Speakers 99 99 10
Utterances 23595 2573 2515
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TABLE II
OBJECTIVE EVALUATION RESULTS.

(a) Many-to-many setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.932 3.69 12.06

AdaIN-VC 0.749 5.97 40.68
AutoVC 0.747 6.10 23.17
VQVC+ 0.766 5.91 53.39
AGAIN-VC 0.723 6.05 34.01

SACS-VC (Ours) 0.781 5.70 22.70

(b) Any-to-any setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.933 3.66 12.86

AdaIN-VC 0.752 6.12 43.63
AutoVC 0.694 6.24 26.25
VQVC+ 0.735 5.98 57.75
AGAIN-VC 0.725 6.11 36.10

SACS-VC (Ours) 0.776 5.86 23.92

V. EXPERIMENTS

A. Experimental settings

The entire CSTR VCTK Corpus [25], which includes ap-

proximately 44 hours of audio from 109 different speakers

and different sets of utterances, was used to train the proposed

method. We randomly sampled 5 female and 5 male speakers

as our unseen test speakers 1. For each of the remaining 99

speakers, we used 90% of the utterances for training and

the remainder for validation. We first trimmed the audio and

transformed it into acoustic features. We randomly cropped

the acoustic features with a segment window length of 128

to create batches for training. In the inference stage, VC can

still easily handle variable-length inputs by virtue of our fully-

convolutional architecture. The dataset details are listed in

Table I.

Any-to-any VC requires that we process any speaker utter-

ances when they are not present in the training data. Following

[19], we consider two VC settings in our experiments: (1)

many-to-many (m2m), which implements VC between speak-

ers in the VCTK training data. These test pairs originate from

the validation set described above. (2) any-to-any (a2a), which

considers the VC between speakers that are not present in

the training data. These test pairs come from the testing set

described above. In both cases above, the test pairs are sampled

fairly and randomly in four dimensions (intra/inter-gender).

We ensure that each test pair included only 1 reference utter-

ance. In this more challenging experimental environment, we

can easily generalize the proposed method to unseen speakers

without retraining or finetuning to improve the generalization

ability.

Next, we compared our method against four state-of-the-

art any-to-any VC methods. Indeed, We identified a com-

prehensive set of alternative methods and selected some of

the most representative ones. These include AdaIN-VC [11],

AutoVC [12], VQVC+ [13], and AGAIN-VC [18]. For a

fair comparison, we reproduced their performance using the

available open-source implementations with the same training

data. For each method, we used the same acoustic features for

training and adopted the MelGAN vocoder [51] to reconstruct

the acoustic feature to waveforms.

1The unseen speakers are composed of female: p239, p257, p266, p295,
p303 and male: p245, p251, p255, p271, p345.

B. Evaluation metrics

1) Subjective metrics: Following previous analyses [52],

we also evaluated the naturalness of the generated speech and

the similarity of the converted speech to the reference utterance

(vocoder-reconstructed) in speaker timbre. The different mea-

surements of the converted speech form our subjective met-

rics, i.e., speech naturalness and speaker similarity. the Mean

Opinion Score (MOS) was used to evaluate both perceptual

qualities of the converted speech. To evaluate the speech’s

naturalness, the annotators in the perceptual study were asked

to score the generated samples from 1 to 5 according to how

natural the converted speech sounded to them. To measure

speaker similarity, each annotator was presented with two au-

dios (converted speech and corresponding reference utterance)

and asked to rate them from 1 (poorest) to 5 (best) according

to their confidence that the two audios originated from the

same speaker. These subjective evaluations were conducted

anonymously and randomly, and we ensured that there were

no less than 10 annotators for each sample evaluation.

We randomly sampled 80 pairs from both the m2m and

a2a sets considering all potential VC situations (intra/inter-

gender) fairly. For each pair, we obtained VC using alternative

methods. It is worth noting that these test pairs originated from

different speakers with different transcriptions, and all methods

used the same vocoder to reconstruct the audio waveforms.

2) Objective metrics: To objectively measure the quality

of the generated speech, we use the similarity, Mel-Cepstral

Distortion (MCD) [53], and Word Error Rate (WER) metrics.

The authentic utterances are synthesized with ground-truth

mel-spectrograms using MelGAN. The metrics employed are

introduced below.

Similarity. The measurement of the speaker’s similarity is

similar to the subjective evaluation methods mentioned above.

The goal is to measure whether the converted voice belongs

to the target speaker of the reference utterance. For a fair

and objective comparison, we employed a third-party pre-

trained speaker verification system Resemblyzer2 to embed

the speaker timbre characteristics into a fixed-dimensional fea-

ture. The evaluation scores were generated by calculating the

feature similarity between the speaker representations of the

reference (vocoder-reconstructed) and generated utterances.

The maximum similarity score is 1, and the higher the score,

2https://github.com/resemble-ai/Resemblyzer
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Fig. 8. MOS results on speech naturalness and speaker similarity for both many-to-many VC (left) and any-to-any VC (right), where the error bars denote a
95% confidence interval.

the more confident we are the sound came from the same

speaker.

In the many-to-many and even any-to-any VC cases, 2000

testing pairs with different transcriptions and speakers were

sampled from the m2m and a2a sets.

MCD. MCD measures the differences between two se-

quences of mel-cepstra. It requires a temporal alignment for

the two input sequences. To reasonably compare the gener-

ated and ground-truth speech, we applied the Dynamic Time

Warping (DTW) algorithm to align the speech audio signals

[54] before calculating MCD. Here, we extracted mel-cepstrals

features (MECP) from the waveform of utterances to describe

the speech signals instead of the mel-spectrogram originally

used. The smaller the distance, the better the conversion

quality.

As the MCD calculation requires a temporal alignment

between the converted and authentic reference utterances, we

sampled another 2000 speech pairs from both the a2a and m2m

sets, where each pair was provided with the same content but

different speakers.

WER. To measure the degree the generated speech main-

tains the semantic content of the original during VC, we

evaluate the WER of the converted utterances. This is achieved

by utilizing a pre-trained automatic speech recognition (ASR)

system. Here, we adopted the pre-trained WeNet [55] ASR

model. Since the ASR system predicts the transcriptions,

the WER can be calculated by comparing the predicted and

ground-truth utterances. A lower WER value indicates that the

conversion preserves more linguistic content in VC. Here, it

provides evidence of the conversion quality.

Opposing similarity, WER can measure the completeness

of the semantic content, which is an important VC attribute.

The 2000 conversion test pairs were sampled from the same

speakers but with different linguistic content. This is a simple

but effective way to measure the extent to which content is

retained and the degree of disentanglement between different

speech representations.

C. Experimental results

1) Subjective performance: As depicted in Fig. 8, the two

MOS scores are determined with 95% confidence intervals

in both the m2m and a2a settings. ªVocoderº means that

the audio is synthesized from the MelGAN vocoder with the

real mel-spectrogram to be considered as the upper bound

of these comparative methods. The results infer that the pro-

posed SAVS-VC performs better than the competitor baseline

methods on both speech naturalness and speaker similarity,

indicating better subjective conversion quality according to

human perceptual evaluations. Meanwhile, the MOS results

imply that our model can easily extend to conversions between

unseen speakers without significant performance degradation.

We also conducted related experiments without content super-

vision, revealing that content supervision is important to obtain

more naturally converted utterances at the price of slightly

degrading speaker similarity. In summary, our approach can

transfer the speaker timbre well while retaining as much

content information as possible. The generated audio samples

are available at our demo page3.

2) Objective performance: Table II reports the results based

on the objective assessment described above. Specifically, our

method achieved the best results on Similarity, MCD, and

WER scores in both the m2m and a2a settings compared with

the alternative any-to-any VC approaches. This is because our

speaker adaptation module can automatically explore acousti-

cally similar speech fragments, and the generated speaker rep-

resentations are more compatible with the content information

than alternative global speaker embeddings. Despite the slight

performance degradation, SACS-VC remains more efficient

than the alternative methods for the any-to-any setting. AdaIN-

VC and AGAIN-VC are robust to unseen speakers regarding

speaker similarity, but AutoVC and VQVC+ have significantly

reduced performance when encountering unseen speakers.

When disentangling the content and speaker representations

to achieve VC, AdaIN-VC, AGAIN-VC, and VQVC+ lose

significant amounts of content information with a higher WER

score. This is because these methods lack supervision con-

3https://xxxin1.github.io/DEMOS-SACS-VC/
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Fig. 9. Attention visualization results of two example pairs: (a) utterances with same content and different speakers and (b) utterances with different content
and different speakers.

cerning content consistency during the conversion process. In

contrast, our method can effectively preserve semantic content

information due to the additional use of content supervision.

Although AutoVC achieves competitive performance in WER,

our method significantly outperforms it in the remaining

metrics.
In conclusion, our method affords a better trade-off between

speaking timbre transference and semantic content preser-

vation. Thus, the converted utterances have better quality

regarding both speech naturalness and speaker similarity.

D. Attention analysis

To present meaningful insights into the performance of the

speaker adaptation module, we visualized the attention map to

analyze its efficacy. However, to display an explainable visu-

alization and focus purely on the speaker adaptation module,

we eliminated the content supervision and retrained the whole

method. Indeed, the final speaker adaptation module in the

decoder was selected, and we sampled two example pairs from

the test set considering two scenarios: a) different speakers

with the same utterance and b) different utterances.
In Fig. 9 (a), for source and target utterances with the same

content but spoken by different speakers, an approximately

diagonal attention pattern (besides the silence part) can be

seen. This is because they have a chronologically similar

phonetic structure. In Fig. 9 (b), we selected a different

pair with different content and different speakers. Again, the

speaker adaptation module forces on the acoustically similar

speech fragments (e.g., /EY1 S/ and /IY1 S/ in the yellow box,

/IY0/ and /IY0/ in the green box, and /EH1 Z IH0/ and /AE1 Z

AH0/ in the red box). These visualization results indicate that

our speaker adaptation module can explore more fine-grained

voice fragments and be used to fuse more suitable speaker

representations.

E. Ablation studies

We conducted ablation studies to demonstrate the effective-

ness of our method’s components by dropping each of them

(i.e., content supervision, speaker adaptation, and U-Net-like

architecture design). Note that all of the presented results were

generated using the same metrics and any-to-any VC setting.

Table III reports the corresponding evaluation results.

TABLE III
ABLATION RESULTS FOR THE ANY-TO-ANY VC SETTING.

Methods Similarity ↑ MCD ↓ WER ↓

w/o Lcs 0.845 5.33 91.12
- w/o Lcontrast 0.833 5.34 78.58
- w/o Lcontent 0.812 5.53 57.85

w/o SA 0.728 6.09 22.78
w/o U-Net 0.836 5.39 81.10

SACS-VC (Ours) 0.776 5.86 23.92

Once we removed content supervision, the WER score

significantly increased from 23.92% to 91.12%, indicating that

the Lcs loss is indispensable in enforcing that the converted

speech maintains the same semantic content as the source

speech. Without content supervision, the content and style

become unbalanced, and the model is free to excessively trans-

form the speaker timbre without considering content consis-

tency. This improvement in the Similarity score coincides with

our intuitions. The MCD score also improves when the content

supervision loss is removed. Since the MCD metric requires

parallel data, all phonemes are present in the reference speech.

Based on our SA module, the method can also easily achieve

a diagonal attention pattern, and the related experiments are

described in Sec. V-D. We argue that content supervision is

essential to ensure that our method prevents over-styling and

loss of semantic content. Moreover, it helps locate a better

trade-off between preserving content and transferring timbre.

We also conducted ablation studies of the different objec-

tives regarding content supervision learning. When Lcontrast

was removed, we only considered the value error at the

corresponding feature position. We observed a slight decrease

in the WER score, but the converted speech was still blurred

and distorted. By removing Lcontent, we only used contrast

learning to associate the converted speech and source speech.

Although the converted speech has similar pronunciations

to the source speech, the experimental results in a more

sophisticated testing environment (Neural-ASR) were poor.

Only if we consider both learning objectives simultaneously

can we maintain more semantic content information and thus

achieve a lower WER score.

Additionally, we performed ablation analysis on the SA
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(a) Proposed (b) w/o cs (c) w/o contrast (d) w/o content

Fig. 10. Visualization of embedding given by the content encoder. We split the final content features according to the temporal locations and visualize them.
Each red point represents the content embedding from one source utterance. Each × symbol represents the content embedding of the converted speech, and
different colors indicate the different utterances used as the reference for VC.

module and the U-Net [24] multi-scale architecture to demon-

strate their effectiveness. To remove the speaker adaptation

module, we first took the mean of the speaker features among

the temporal axis, and then, we broadcasted and concatenated

this averaged feature according to the length of each immediate

feature in the decoder. Since this is a global and averaging

speaker information modeling strategy, we trained this model

as the alternative to removing the SA module. The biggest

change is that both Similarity and MCD have deteriorated.

Although WER is slightly increased, the more fine-grained

speaker representations extracted by SA make the converted

speech sound more similar to the target speaker. To remove the

U-Net architecture design, we removed the intermediate fea-

tures of the content encoder so that the corresponding skip con-

nection in the decoder is canceled, allowing the degenerated

content supervision to be calculated by only the final output

of the content encoder. This inevitably increases the learning

difficulties for preserving the semantic information, leading

to a higher WER. Besides, the Similarity and MCD metrics

improve because the model is more inclined to transform the

target timbre than preserve the source content. Nevertheless,

the too-high WER still makes the model unacceptable.

F. Visualization of content representations

To further demonstrate that our content supervision method

ensures the consistency of semantic content during VC, the

content representations extracted using the content encoder

were visualized using t-SNE [56]. Specifically, we tested 10

unseen speakers, where we randomly sampled one utterance

from different speakers, selected one sample as source speech,

and used the remainder as a reference to perform VC. Ulti-

mately, we extracted the content representations of one source

speech and nine converted speech samples from the content

encoder. Subsequently, we split these representations along

their time axis to obtain a single concatenated embedding

vector representing a speech patch. Finally, we projected all

the individual concatenated embeddings into a 2-dimensional

space using the t-SNE algorithm.

Fig. 10 illustrates the visualization results, where each red

point represents the embedding vectors of source speech, and

each × symbol indicates the representation of the converted

speech. The different colors represent the converted results

obtained from different reference utterances. It is clear that

the content embedding vectors of the converted speech are

almost completely overlapped with the corresponding source

speech, as each cluster was independent of the others, with low

similarity in the projected feature space. This result indicates

that the content supervision method effectively preserves the

consistency of semantic structure and enforces the model to

create distinguishable embeddings. Moreover, it can lead the

content encoder to decompose clean and accurate represen-

tations. After removing the loss Lcs, the embedding vectors

were found to be cluttered and overlapped in the embedding

space. Specifically, the content representations of the converted

speech were distant from the corresponding source speech,

implying significant content distortion when Lcs is removed.

This finding corresponds to the ablation results presented in

Sec. V-E.
When removing only the loss Lcontrast, the distances within

the clusters decreased compared with those obtained when

Lcs was removed. Some speech clusters have closer inter-

cluster distances, but this may indicate that the content encoder

cannot distinguish some phonemic content. When only the

loss Lcontent is removed, we can still maximize the mutual

information between the content embedding vectors of the

converted speech and source speech by using Lcontrast. The

visualization results are very similar to those obtained with our

the full version of the proposed model (without ablation of the

individual losses). This implies that Lcontrast plays the most

important role in preserving the semantic content. However,

without the error values between the corresponding embedding

vectors, the intra-cluster distances increased compared with

the full model. These subtle differences will lead to phoneme

recognition errors, especially in the Neural-ASR system. To

summarize, these visualization results demonstrated the im-

portance and effectiveness of content supervision.

VI. CONCLUSIONS

This paper proposed a novel method for any-to-any VC,

SACS-VC, which attempted to solve two major problems

existing voice transfer systems suffer from. Specifically, first,

we adjusted the speaker distribution according to the content

distribution by considering their local similarity. Second, we

preserved the consistency of the semantic content in a self-

supervised manner. The developed method can generate a
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high-quality voice by achieving a trade-off between semantic

content preservation and speaker timbre transference. Exper-

imental results verified that our proposed method achieved

comparable or better performances than current state-of-the-art

any-to-any VC approaches.
1) Strengths: In any-to-any VC, very few methods have

explicitly ensured the consistency of semantic content before

and after conversion. However, we rearranged the speaker

distribution by considering the local similarities between the

source and reference utterances. Higher audio quality can be

attributed to the use of the proposed framework.
2) Weaknesses: In our method, the speaker adaptation mod-

ules need to capture the local semantic similarities between

the source and reference utterances. However, noise inevitably

occurs when the reference utterance is too short or its linguistic

content is very far from the source utterance. This is because

the reference utterance contains insufficient relevant informa-

tion (phonetic elements). Such noise may degrade speaker

information from fine-grained features to global information,

impairing conversion performance.
3) Future Work: To further improve our method, future

research should focus on obtaining more suitable speaker in-

formation and producing more perceptually satisfying results.

Additionally, we will explore more highly customizable VC

based on multiple facets of speech, including timbre, pitch,

and rhythm. Building a VC system using language models

and discrete tokens [57], [58] is also an interesting direction

we wish to explore.
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