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Abstract—Any-to-any voice conversion can be performed
among arbitrary speakers, even with a single reference utterance.
Many related studies have demonstrated that it can be effectively
implemented by speech representation disentanglement. However,
most existing solutions fuse the speaker representations into the
content features globally without considering their distribution
difference. Additionally, in the any-to-any scenario, there is no
effective method ensuring the consistency of linguistic content
without text transcription or additional information extracted
from additional modules (e.g., automatic speech recognition).
Hence, to alleviate the above problems, this paper proposes
SACS-VC, a novel any-to-any voice conversion method that com-
bines two principal modules: Speaker Adaptation and Content
Supervision. Specifically, we rearrange the timbre representations
according to the content distribution using a temporal attention
mechanism to obtain finer-grained speaker timbre information
for each content feature. Meanwhile, we associate the converted
outputs and source utterances directly to supervise the consis-
tency of the semantic content in an unsupervised manner. This is
achieved using contrastive learning based on the corresponding
and non-corresponding locations of content features. It should be
noted that SACS-VC can be implemented using a non-parallel
speech corpus without any pertaining. The experimental results
demonstrate that the proposed method outperforms current state-
of-the-art any-to-any voice conversion systems in objective and
subjective evaluation settings.

Index Terms—Voice conversion, attention mechanism, con-
trastive learning, feature disentanglement.

I. INTRODUCTION

VOICE conversion (VC) converts speaker identity from
a source utterance to that of a target speaker while

preserving the original linguistic content. This approach is
widely used in many applications, such as personalized speech
synthesis and human–computer interaction.

Early work [1]–[6] focused relied on aligned parallel data,
where any speech pairs from source and target speakers share
the same linguistic content and are aligned in the temporal
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Fig. 1. Comparison between many-to-many and any-to-any voice conversion.
The arrows represent voice conversion among different speakers.

dimension. However, it is challenging to collect such data and
time-consuming to align them. Besides, the restricted corpus
availability limits the performance and generalizability of
voice conversion. These limitations have motivated researchers
to explore non-parallel voice conversion approaches [7]–[10],
which led to a deep neural network that approximated a
mapping function from the source speaker domain to the
target speaker domain. For instance, CycleGAN-VC [9] and
StarGAN-VC [8] employ cycle consistency to ensure that the
invertible mapping results are identical to the source input.
Although these methods attain an appealing performance with-
out requiring a parallel corpus, they only involve a conversion
process for predefined multiple speaker sets. As depicted in
Fig. 1, when encountering arbitrary speakers, which may
be unseen during training (outside the set of speakers used
in training), the above VC methods have relatively limited
conversion capabilities. To overcome such limitations, several
any-to-any voice conversion methods have been explored [11]–
[13]. Most of the existing any-to-any VC approaches are based
on speech representation disentanglement. This effectively
addresses the any-to-any conversion problem by decomposing
speech into speaker timbre and linguistic content representa-
tions. Then, the speaker identity can be converted by only
replacing the speaker timbre representation from one speaker
to another. Fig. 2 illustrated this process. Many techniques
have been proposed to separate speaker timbre information
from linguistic content as much as possible. These include the
information constrained bottleneck layer [12], [14], phoneme
transcription guidance [15], vector quantization [13], [16],
[17], normalization techniques [11], [18] and self-supervised
speech representation [19]–[21].

However, most of these methods only embed the speaker
timbre without considering its relevance to content, which is an
average global speaker feature. Nevertheless, using averaged
timbre information sacrifices the timbre modeling capability
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of local phonemics and processes all local content features
using the same transformation function in voice conversion.
For example, the pioneering work reported in [11] proposed
a simple yet effective method that applies the global mean
together with the variance of the target speech to the source
utterance in a deep feature space. Since the required statistics
are calculated globally from a fixed-length speaker represen-
tation, the fine-grained details and phoneme-wise patterns are
largely discarded. Furthermore, silence segments affect the
speaker’s representation because they contain almost no useful
information. The same issue exists in AutoVC [12], which
applies a pre-trained speaker encoder to extract the global
speaker timbre representations. To obtain the fine-grained
speaker embedding for each content representation scale,
typically, more attention should be paid to the most similar
phonemic pronunciation of the target utterances, and then the
corresponding timbre representation should be extracted and
embedded for these temporal locations.

Unfortunately, once the network probes the local fine-
grained speaker information, unreliable information may con-
taminate the corresponding content due to incomplete de-
coupling of speech representations. The residual mutual in-
formation between them at the same locations will restrain
the original features. Therefore, the linguistic content of the
converted speech is usually distorted or ambiguous, which
is unacceptable for VC. In fact, existing state-of-art any-to-
any VC methods, such as AdaIN-VC [11] and AutoVC [12],
are devoted to achieving arbitrary timbre transfer without
a parallel aligned corpus. Hence, they all fail to achieve
effective supervision concerning the linguistic content without
any additional processing modules (e.g., text transcription
and automatic speech recognition). This unsupervised learning
framework only includes the main objective of reconstructing
input utterances (as shown in Fig. 2). Specifically, a pioneering
study proposed CVC [22] which preserves content information
by contrastive learning but can only perform VC with many-
to-one or any-to-one mapping, limiting the flexibility of VC
in the real world. Therefore, the ultimate goal of VC can be
defined in a more detailed manner as transforming the speaker
timbre as much as possible without losing semantic content.

This paper addresses these problems and better balances
transferring speaker timbre and preserving semantic content.
Therefore, we propose a novel any-to-any VC framework
called SACS-VC, which introduces Speaker Adaptation and
Content Supervision to resolve the above problems. Speaker
adaptation can adaptively rearrange the speaker timbre repre-
sentations according to the content distribution using a tempo-
ral attention mechanism and then perform timbre transfer on
each content feature. Content supervision is self-supervised to
preserve semantic content directly.

Specifically, in SACS-VC, the temporal attention map is
learned jointly from the content and speaker features by
implicitly aligning similar phonemic pronunciations. Subse-
quently, the speaker features are rearranged concerning this
map, and then the stylized features are generated by the
position-wise addition of rearranged speaker features to give
content features. Motivated by previous research [23], we
realize the content supervision by associating the converted

speech and source input directly using contrastive learning.
Specifically, we maximize the mutual information of the
semantic content between the converted and source speech
and consider the distance error of feature value space between
them. Following the guidance of mutual information and
feature space distance. Although we only consider a non-
parallel speech corpus in the training stage, we establish
the semantic correspondences between the source input and
converted output based on content features and ensure that
the semantic content is preserved as much as possible during
the entire conversion process. To some extent, preserving the
linguistic content helps to decouple the speech representa-
tions better. Meanwhile, we encapsulate the whole framework
in an adversarial training strategy to enhance the synthetic
speech quality using a U-Net-like [24] multi-scale architecture.
Considering the different temporal scales in audio features,
the above operations (i.e., speaker adaptation, and content
supervision) can consider different feature scales of the deep
embedding. Note that SACS-VC can achieve a more fine-
grained speaker timbre transformation for each phonemic and
preserve semantic content consistency as much as possible
during VC. Our main contributions can be summarized as
follows:

• We propose a speaker adaptation module to adaptively
rearrange the speaker timbre distribution according to the
content distribution using a temporal attention mecha-
nism. In this way, we generate the corresponding speaker
features for each content feature providing a more fine-
grained and appropriate timbre pattern that depends on
semantic content.

• A novel optimization objective referred to as content
supervision is proposed. These associates converted out-
puts and source utterances and helped the method to
preserve the semantic content during VC by maximizing
the mutual information between them.

• We consider both high and low-level deep features at
different temporal scales to achieve better convergence.
Additionally, an adversarial strategy and multi-scale ar-
chitecture are adopted to enhance the quality of the
audio signals generated. Both subjective and objective
experimental results demonstrate that our method is better
than or comparable to existing state-of-the-art any-to-any
VC methods on real-world VCTK [25] datasets.

The remainder of this paper is organized as follows. Sec. II
briefly surveys the related literature. Secs. III and IV present
our SACS-VC method and Sec. V reports our experimental
results. Finally, Sec. VI concludes this paper and suggests
future research directions.

II. RELATED WORK

Non-parallel VC is an unsupervised learning process, and
its learning difficulty lies in constructing a mapping rela-
tionship between non-parallel speech corpus. Cascade VC
models [26], [27] enable VC by extracting linguistic content
through an Automatic Speech Recognition (ASR) model and
then feeding it into a Text-To-Speech (TTS) model. Due to
the speaker-independent property of Phonetic PosterioGram
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(PPG), which can be extracted from a pre-trained ASR model,
it has succeeded in VC [28]. However, the ASR model’s
performance limits the conversion quality of these methods,
and a large amount of data is required to pre-train the ASR
system, restricting VC’s flexible application. Besides, deep
generative models bring new opportunities to VC, including
VAEs [29], GANs [30], and DPMs [31]. According to the
different frameworks, we divide non-parallel VC into direct
transformation- and feature disentanglement-based

1) Direct transformation-based VC: Many researchers have
developed feed-forward-based networks to achieve a direct
transformation from one speaker to another to remove the
requirement of a parallel corpus without additional data or
pre-trained models. Some work [9], [32]–[34] use non-parallel
VC networks, which can only achieve one-to-one conversion
by training an independent network. VC among multiple
speakers is a key enabling technology for various applica-
tions. Therefore, Kameoka et al. extended an image-to-image
translation method StarGAN [35] to develop StarGAN-VC
[8]. Chou et al. [7] employed a two-stage training strategy
and adversarial speaker classifier to remove further speaker-
dependent information from linguistic representations. Lee et
al. [36] overcame the drawbacks of CycleGAN-based methods
[9], [37] by conditioning the network on the speaker and
performed many-to-many VC using a single network. Fur-
thermore, CVC [22] adopts contrastive learning to replace the
cycle-consistency mapping and allows better preservation of
content information.

However, the above VC methods cannot efficiently transfer
the speakers that are not present in the training data, i.e., they
cannot model unseen data.

2) Feature disentanglement-based VC: Several studies
based on speech representation disentanglement have at-
tempted to decompose speech into speaker and content rep-
resentations. These methods can achieve any-to-any VC by
simply replacing the speaker representation. For instance,
Qian et al. proposed AutoVC [12], which uses a pre-trained
speaker encoder and imposes a restriction on the length of
the bottleneck layer. In their subsequent work [14], they
considered different properties of speech. Zhang et al. [15]
used the corresponding phoneme transcriptions to guide the
extraction of linguistic representations. Besides, Vector Quan-
tization (VQ) was employed in [16] and [13] to separate the
speaker-independent features. AdaIN-VC [11] demonstrated
that instance normalization could effectively remove speaker
style information and then applied adaptive instance nor-
malization [38] to adjust global statistics ( i.e., mean and
variance). Ishihara et al. [39] generated content-dependent
speaker information using an attention mechanism, while in
[40], the local and global timbre information was considered
simultaneously. Self-supervised speech representations have
also been employed for VC [19]–[21]. Indeed, Wang et al.
[17] used mutual information to measure the dependencies
between speech representations. Lei et al. [41] implemented
a unified framework to achieve zero-shot text-to-speech and
any-to-any VC simultaneously. Popov et al. [42] applied
a diffusion model to VC, where the converted speech is
synthesized by integrating the reference speaker information
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Fig. 2. Learning process of feature disentanglement-based VC.

into the averaged speaker-independent speech representation
in the reverse diffusion stage.

Nevertheless, existing disentanglement VC methods only
consider the reconstruction objective in the training procedure.
However, preserving the semantic content during the conver-
sion process is challenging, especially when using non-parallel
data. Meanwhile, many previous studies only embedded the
speaker representation into a predefined fixed-length vector,
which is unsuitable for variable phonemic content. These
methods fuse deep speaker features into the content features
without considering the differences between feature distribu-
tions. To alleviate these problems, this study explores a better
trade-off between transferring speaker timbre and preserving
semantic content. Specifically, we design a speaker adaptation
module to rearrange the speaker distribution by considering
the details of the content distribution. This ensures that the
embedded speaker representation is suited to the semantic
content. Moreover, we propose a novel learning objective that
uses contrastive learning to avoid semantic content changes
during the conversion stage.

III. MODEL FRAMEWORK OF SACS-VC

A. Preliminaries

As illustrated in Fig. 2, AdaIN-VC [11] and AutoVC [12]
disentangle content and speaker information from speech and
transfer the target timbre by replacing the speaker represen-
tation. Their simple autoencoder framework comprises three
modules: content encoder Ec(·), speaker encoder Es(·), and
decoder De(·, ·). In the training stage, the model only requires
self-reconstruction from an input utterance to disentangle
speech representations, which can be written as follows:

CA = Ec(X1,A), S1 = Es(X1,A), X̂1→1,A = De(CA, S1)
(1)

where X1,A denotes the utterance “A” produced by speaker
“1”, CA is the linguistic information relevant to content “A”
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Fig. 3. Speaker Adaptation module. We rearrange the speaker distribution
according to the content information and then fuse the content-dependent
speaker features RS2,A into the content features CA through point-wise
addition to generate the stylized features CS2,A.

captured from Ec(·), and S1 indicates that speaker information
about identity “1” is generated by the speaker encoder Es(·).
The Decoder De(·, ·) takes the content and speaker feature as
inputs to synthesize the reconstructed utterances X̂1→1,A.

To confine our attention to the non-parallel any-to-any VC
setting, we require another reference speech to perform VC.
Therefore, for a source speech X1,A ∈ RC×TA and reference
speech X2,B ∈ RC×TB , TA and TB denote the time lengths
of the respective speeches depending on the utterance. The
conversion process should transfer the speaker identity from
“1” to “2” while preserving the source content “A”, which can
be written as

CA = Ec(X1,A), S2 = Es(X2,B), X̂1→2,A = De(CA, S2)
(2)

Based on the above process, we synthesize the converted
speech X̂1→2,A ∈ RC×TA by replacing the speaker identity
information from S1 to S2. However, this unsupervised learn-
ing process will inevitably lead the converted speech to miss
some content information.

B. Speaker adaptation

According to Eq.(2), we generate the content features CA

and speaker representations S2 from the source and reference
speech, respectively. To overcome the negative effects of resid-
ual correlation information between CA and S2, the speaker
adaptation module (SA) rearranges S2 based on the content
representations CA and then generates content-dependent styl-
ized features RS2,A.

The SA module is illustrated in Figure 3. Initially, given
a content feature CA ∈ RC×TA , we conduct mean-variance
channel-wise normalization to remove the timbre information
[11] and then transform it linearly to generate the normalized
feature CCA. We process the speaker features S2 ∈ RC×TB

similarly to obtain the normalized speaker representation SS2.
Meanwhile, we feed the speaker features S2 into an additional
linear layer, denoted by SS2, but there is no normalization op-
eration in this case. Similarly to the cross-attention operation,
we first calculate the correlation matrix A ∈ RTA×TB , which
can be formulated as

A = SoftMax(CC
T

A ⊗ SS2) (3)

where the dot-product measures the similarity between the two
representations, and the position (i, j) of the correlation matrix
A is used to measure the relation between the ith content
feature and jth speaker feature. Then, we rearrange the speaker
features SS2 by taking the product of the correlation matrix
A and SS2 and appropriately generate the rearranged speaker
feature RS2,A ∈ RC×TA , expressed as follows:

RS2,A = SS2 ⊗AT (4)

In simple terms, for each position of the content feature, we
automatically enumerate all positions of the speaker feature to
align with the most similar phonemic position. Finally, we fuse
the rearranged features into the content features to achieve VC
as follows:

CS2,A = RS2,A + CA (5)

Through the above SA process, according to the content
phonemic information, we generate a speaker feature consis-
tent with the same distribution as the content feature that can
easily be fused into the content features through feature addi-
tion to achieve fine-grained timbre construction of the target
speaker. This fine-grained speaker representation automatically
selects an appropriate speaking style for the semantic content
information and avoids the interference caused by semantic
inconsistencies to preserve the semantic content information
of the source speech and improve the quality of VC.

C. Network architecture

The developed framework is based on a GAN [30], which
typically comprises a generator and a discriminator. Given a
non-parallel speech corpus, we sample two different speech
instances X1,A ∈ RC×TA and X2,B ∈ RC×TB , which
come from two different speakers. The generator G is an
auto-encoder framework that generates the converted speech
X̂1→2,B = G(X1,A, X2,B), which has similar content to
X1,A and similar timbre to X2,B . The discriminator constructs
a weakly supervised learning strategy, distinguishing a real
speech sample from a synthetic one while encouraging the
generator to synthesize realistic speech of the target domain
X2,B . The network architectures are illustrated in Figs. 4 and
5.

1) Generator: The generator G can be divided into con-
tent encoder Ec, speaker encoder Es, and decoder De. The
generator comprises entirely convolution neural networks to
achieve non-autoregressive generation. As depicted in Fig. 4,
we capture the content speech features with different temporal
scales in the content encoder and then restore them gradually
in the decoder. This multi-scale architecture is very similar to
U-Net [24].

In the encoders, we first employ the ConvBank layer [43],
which stacks convolution layers with different kernel sizes to
enlarge the receptive field and capture long-timescale informa-
tion. Subsequently, several convolution layers are applied to
generate high-level representations. The purely 1-dimensional
convolution layers are implemented with a kernel size of
5, and the stride size depends on whether downsampling of
the temporal scales is required. For the content encoder, we
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downsample 3 times to decrease the feature resolution and
adopt instance normalization after each convolution layer to
eliminate the speaking timbre information [11]. Note that we
do not downsample the temporal dimension in the speaker
encoder, but the original temporal dimension is the same as the
input acoustic features to preserve the overall information. To
mitigate the training difficulties, we also implement residual
connections [44] for each pair of convolution layers, except
for the ConvBank layer. We also use average pooling to
decrease the temporal resolution to match the feature shapes.
As mentioned above, the content encoder will decrease the
temporal scale gradually. Therefore, in addition to storing the
output feature of the content encoder, we also store the in-
termediate features before each downsampling operation, i.e.,
CA = {C(0)

A , C
(1)
A , C

(2)
A , C

(3)
A }, and the shapes of these fea-

tures are {RC×TA ,RC×TA
2 ,RC×TA

4 ,RC×TA
8 }. The speaker

encoder embeds X2,B to generate the speaker representation

S2 ∈ RC×TB while preserving the temporal scale without any
downsampling.

In the decoder, given the content features CA and speaker
feature S2, there are two main basic operations: 1) restoring
the temporal scale from the smallest-scale feature C

(3)
A and

2) fusing the speaker feature S2 into the content distribution
using the speaker adaptation modules described in Sec. III-B.
Specifically, we first initialize the feature CS

(i)
2,A passed in the

decoder as C
(3)
A . A set of convolution layers with a kernel

size of 5 and stride of 1 are implemented in the decoder.
To increase the temporal resolution, a PixelShuffle1d layer
[45] is used for upsampling, and we use nearest neighbor
interpolation so that the residual connections match the feature
shape. We associate the feature map after upsampling and
the corresponding content representation C

(i)
A according to the

same scale i, a skip-connection is implemented between C
(i)
A

and CS
(i)
2,A. To achieve fine-grained timbre modeling, we feed

the restored and speaker features into the SA module, which
can automatically adapt and fuse the speaker information into
the converted feature according to the semantic correlation.
This can be expressed as follows:

CS
(i)
2,A = CS

(i)
2,A + SA(i)(CS

(i)
2,A, S2) (6)

To synthesize the converted speech, a pipeline is constructed
using several consecutive “1)-2)” operations to restore the
temporal scale of the features and then gradually fuse the
speaker information. Then, we use a linear transformation to
modify the channel to match the acoustic features. Finally, the
post network [46] is appended but without batch normalization.
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phonemic content.

This predicts a residual, which is added to the prediction to
improve the overall reconstruction. The post network involves
five convolution layers that use a hyperbolic tangent activation
function in all but the final layer. The channel dimension is
set to 512 in the first four layers and is reduced to 80 in the
final layer. A dropout layer with a rate of 0.5 is placed after
each layer.

2) Discriminator: Unlike the generator, the discriminator
is constructed with 2D convolution layers similar to [7], [8] to
capture the acoustic texture better. Specifically, we first reshape
the input speech from RC×T to R1×C×T . Subsequently,
there are 5 convolution layers with a stride of 2 and a kernel
size of 5 × 5 to downsample the feature map gradually. The
corresponding number of filters are 64, 128, 256, 512, and
512. Additionally, a convolution layer with unit kernel size
and stride is appended to decrease the feature channel from
512 to 32. Finally, the output layer measures the degree of
verisimilitude of the speech in the target domain. Instance
normalization [47] and Leaky ReLu activation [48] with slope
0.01 are applied after each convolution layer, except for the
final output layer. The mean value of the final feature is the
output of the discriminator, which represents the confidence
value that the input speech is the real speech of the target
speaker.

IV. LEARNING STRATEGIES OF SACS-VC

A. Content supervision

VC should fully preserve the semantic content of the source
speech while transferring the target speaker’s timbre. However,
we cannot completely decouple the speech representations and
ensure that they are independent because incorporating speaker
information will somewhat distort the content distribution.

This distorts and enhances the ambiguity of the converted
speech. To alleviate this problem, we propose the content
supervision learning process, as illustrated in Fig. 6.

Given the source speech X1,A and target speech X2,B

originating from different speakers, we accomplish VC and
generate the converted speech X̂1→2,A based on Eq. (2). In
an ideal VC system, although X̂1→2,A and X1,A belong to
different speakers, the semantic content should be consistent
throughout the conversion process. Given that we train the con-
tent encoder Ec to capture the linguistic content information
of speech, the semantic content can be readily represented by
the content feature. According to our framework setting in Sec.
III-C, there are 4 different feature scales in the content feature
stack, where a smaller scale corresponds to a larger receptive
field. Therefore, the intuitive idea is to constrain the content
features to be the same at the corresponding positions, that is,
constraint the distances of content features between X̂1→2,A

and X1,A:

Lcontent =
1

L

L−1∑
i=0

∥Ĉ(i)
A − C

(i)
A ∥2 (7)

where L = 4, and i denotes the ith index of the content feature
stack. ĈA and CA are the content features extracted from
X̂1→2,A and X1,A, respectively. We use the mean squared
error (MSE) to define the perceptual content loss. Ideally, the
above approach alleviates the problem of content distortion
or obfuscation. However, the content encoder Ec may learn a
trivial function (such as loss of ability to distinguish phonemic
content) and output the approximate representation for differ-
ent semantic content. This is because we want to train the
whole VC system end-to-end, and we inevitably update the
parameters of Ec according to the above loss. To avoid Ec



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

losing the ability to capture content diversity, it is necessary
to add one additional requirement to make the objective multi-
task.

Motivated by the unpaired image translation method based
on contrastive learning in [23], we build another learning
strategy between ĈA and CA, based on the hypothesis that
the semantic labels are the same during the VC. This learning
strategy is based on contrastive learning, which maximizes the
mutual correspondence information based on the InfoNCE loss
[49]. This strategy further constrains the semantic content to
be similar to each other and forces the content feature to dis-
tinguish different phonemic content, thus avoiding degrading
the content encoder.

The key idea of contrastive learning is to construct three
different types of vectors: a) “query” vector q, b) “positive”
vector v+, and c) N “negative” samples v−. These are the
column vector sampled from CA and ĈA for all temporal
positions T of content features. There is one positive sample
and the remaining N negative samples (i.e., T = N + 1).
Thus, v, v+ ∈ RC×1 and v− ∈ RC×N . In our context, a
query refers to a certain column vector sampled from ĈA,
v+, which corresponds with the same position of q in CA, and
v− are the remaining elements of the feature set in CA. We
want q and v+ to be close and q and each item in v− to be far
away. This can enforce the content encoder to output a similar
embedding at the same temporal position and generate dis-
tinguishable representations at distinct locations. This multi-
objective optimization problem can be also viewed as a multi-
classification problem with N + 1 classes, maximizing the
probability of selecting a positive sample v+ over all negatives
v− to achieve contrastive learning indirectly. Specifically, the
cross-entropy loss will be calculated to maximize the mutual
information. This is achieved by maximizing the probability
of matching the positive sample with the query vector. Indeed,
we normalize each of these three vectors using the L2 norm,
which is mathematically formulated as follows:

ℓ(q, v+, v−) = − log

[
exp( q·v

+

τ )

exp( q·v
+

τ ) +
∑N

n=1 exp(
q·v−

n

τ )

]
(8)

where v−n denotes the nth negative sample and τ is a tem-
perature parameter used to scale the feature distances. We
maximize the mutual information between CA and ĈA by
minimizing the above learning objective.

Due to our multi-scale architecture, we expand Eq. (8) to
all scales of content features. For any scale i of the content
features, we first select the nth column vector of Ĉ

(i)
A ∈

RC×T
(i)
A as the query vector and create the corresponding

positive vector vni and negative vectors v
(N

(i)
A +1)\n

i , where
T

(i)
A = N

(i)
A + 1. Subsequently, we build contrastive learning

by enumerating all locations of content features as query
vectors at each scale. As a result, the second objective can
be expressed as

Lcontrast =
1

L

L−1∑
l=0

1

N
(i)
A + 1

N
(i)
A +1∑
n=1

ℓ

(
qni , v

n
i , v

(N
(i)
A +1)\n

i

)
(9)

where L = 4 corresponds to the 4 items in the content feature
stack, and N

(i)
A depends on the temporal dimension of the

content features at different scales.
Note that our model solely relies on a self-supervised

learning strategy without additional modules, and by using the
above two types of constraints (mutual information and value
constraint), we ensure that the semantic content information is
preserved as much as possible during the entire VC process. In
this way, the content features of the converted output will be
similar to the source input and distinguish it from alternative
phonemic content.

B. Loss function

In a non-parallel VC scenario, the two arbitrary sampled
speech instances {X1,A, X2,B} ∼ X make up the inputs
of SACS-VC. To translate the source speech to sound like
the target speaker, our proposed network is optimized in
the training stage through three types of loss functions, as
illustrated in Fig. 7.

1) Reconstruction loss: The reconstruction loss assists the
generator in preserving the consistency of the spectrogram
when using the same speech sample for both the input content
speech and input reference speech:

Lrecon(X1,A, X̂1→1,A) = EX1,A∼X ∥X̂1→1,A −X1,A)∥1
(10)

where X̂1→1,A is the self-reconstruction procedure in Eq. (1),
and the L1 distance (norm) measures the differences between
the source and the corresponding reconstructed input. This
reconstruction loss ensures that the auto-encoder architecture
does discard much information and encourages the model
to synthesize clean and understandable speech. It is also an
essential part and main objective for feature disentanglement-
based any-to-any VC methods [11], [12], [20].

2) Content supervision loss: As discussed in Sec. IV-A,
we use two different learning objectives to preserve the
consistency of the semantic content during the VC process.
Thus, the content supervision loss depends on Eqs.(7) and (9)
in weighted combination:

LT
cs(X1,A, X̂1→2,A) = E{X1,A,X2,B}∼X c1·Lcontent+Lcontrast

(11)
where the coefficient c1 is set to 0.5 to determine the relative
weight of the two components, and the temperature parameter
τ in Eq.(9) is set to 0.09. Additionally, we use the same
loss for the reconstruction objective, i.e., LR

cs(X1,A, X̂1→1,A).
Therefore, our content supervision loss is calculated on both
the conversion and reconstruction patterns, and we simply add
them together to obtain the final content supervision loss:

Lcs(X1,A, X̂1→1,A, X̂1→2,A) =
1

2
· (LT

cs + LR
cs) (12)

We optimize the entire generator G by this loss function,
forcing the model to lose less semantic content information
during the VC process. To some extent, this also assists SACS-
VC in decoupling the speech representations by constraining
the semantic content structure.
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Fig. 7. Overview of the learning strategies.

3) Adversarial loss: Following [30], the adversarial loss is
adopted to synthesize realistic speech that sounds similar to
the target speech. This can be written as follows:

Ladv(X2,B , X̂1→2,A) = E{X1,A,X2,B}∼X logD(X2,B)

+ log(1−D(X̂1→2,A))
(13)

where G and D denote the generator and discriminator,
respectively, and X̂1→2,A = G(X1,A, X2,B). The variant
loss in WGAN-GP [50] is adopted to mitigate the training
instability issue.

4) Final objectives: We train the proposed method by
solving a min-max optimization problem according to the
weighted sum of individual loss functions described above:

min
G

max
D
Lrecon + λaLadv + λcsLcs (14)

where λa and λcs are the hyperparameters that control the
relative importance of the different losses. For the experiments,
we set λa = 0.02 and λcs = 1.

C. Implementation details

Since our method’s output is a mel-spectrogram, we im-
plement a vocoder to achieve the transformation from the
acoustic features to the speech signals. Specifically, we em-
ployed a pre-trained MelGAN vocoder [51], which is a non-
autoregressive approach that performs similarly to other au-
toregressive vocoders. Initially, we generate the corresponding
acoustic features in the required format for the MelGAN
input. More precisely, we resample the audio at 22,050 HZ
and perform a short-time Fourier transform (STFT) with a
window size of 1024. Then, we transform the magnitude of
the spectrograms into an 80-bin mel-scale and calculate its
logarithm. Subsequently, these acoustic features are fed into
our model to optimize its parameters. Finally, we generate the
converted speech through the optimized model and vocoder.

We trained the proposed method (i.e., generator and dis-
criminator) using the ADAM optimizer (with learning rate

Algorithm 1: Training Strategy
Input: Multi-speaker non-parallel dataset X , Learning

rate η = 0.0001, m = 32, λa = 0.02, λcs = 1
Initialize generator G = {Ec, Es, De} and

discriminator D,
for number of training iterations do

for j in 1, ..., m do
Sample source speech X

(j)
1,A ∼ X .

Sample reference speech X
(j)
2,B ∼ X .

Create m-sized minibatch {X1,A, X2,B}.
X̂1→2,A = De(Ec(X1,A), Es(X2,B))
X̂1→1,A = De(Ec(X1,A), Es(X1,A))
Calculate Lrecon(X1,A, X̂1→1,A),

Lcs(X1,A, X̂1→1,A, X̂1→2,A),
Ladv(X2,B , X̂1→2,A)

θD ← θD + η∇θDλaLadv

θG ← θG − η∇θG(Lrecon + λaLadv + λcsLcs)

= 10−4, β1 = 0.9, β2 = 0.999, and weight decay = 10−4)
for 20k iterations. The batch size is 32, and each mini-batch
consists of 32 source and 32 reference utterances, which are
in one-to-one correspondence. The generator and discrimina-
tor are optimized alternately in each iteration. Algorithm 1
summarizes the entire training strategy. The base code can be
found on: https://github.com/XXxin1/SACS-VC.

TABLE I
NUMBER OF UTTERANCES AND SPEAKERS IN THE EXPERIMENTAL

SETTING.

Training Validation Testing

Speakers 99 99 10
Utterances 23595 2573 2515
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TABLE II
OBJECTIVE EVALUATION RESULTS.

(a) Many-to-many setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.932 3.69 12.06

AdaIN-VC 0.749 5.97 40.68
AutoVC 0.747 6.10 23.17
VQVC+ 0.766 5.91 53.39
AGAIN-VC 0.723 6.05 34.01

SACS-VC (Ours) 0.781 5.70 22.70

(b) Any-to-any setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.933 3.66 12.86

AdaIN-VC 0.752 6.12 43.63
AutoVC 0.694 6.24 26.25
VQVC+ 0.735 5.98 57.75
AGAIN-VC 0.725 6.11 36.10

SACS-VC (Ours) 0.776 5.86 23.92

V. EXPERIMENTS

A. Experimental settings

The entire CSTR VCTK Corpus [25], which includes ap-
proximately 44 hours of audio from 109 different speakers
and different sets of utterances, was used to train the proposed
method. We randomly sampled 5 female and 5 male speakers
as our unseen test speakers 1. For each of the remaining 99
speakers, we used 90% of the utterances for training and
the remainder for validation. We first trimmed the audio and
transformed it into acoustic features. We randomly cropped
the acoustic features with a segment window length of 128
to create batches for training. In the inference stage, VC can
still easily handle variable-length inputs by virtue of our fully-
convolutional architecture. The dataset details are listed in
Table I.

Any-to-any VC requires that we process any speaker utter-
ances when they are not present in the training data. Following
[19], we consider two VC settings in our experiments: (1)
many-to-many (m2m), which implements VC between speak-
ers in the VCTK training data. These test pairs originate from
the validation set described above. (2) any-to-any (a2a), which
considers the VC between speakers that are not present in
the training data. These test pairs come from the testing set
described above. In both cases above, the test pairs are sampled
fairly and randomly in four dimensions (intra/inter-gender).
We ensure that each test pair included only 1 reference utter-
ance. In this more challenging experimental environment, we
can easily generalize the proposed method to unseen speakers
without retraining or finetuning to improve the generalization
ability.

Next, we compared our method against four state-of-the-
art any-to-any VC methods. Indeed, We identified a com-
prehensive set of alternative methods and selected some of
the most representative ones. These include AdaIN-VC [11],
AutoVC [12], VQVC+ [13], and AGAIN-VC [18]. For a
fair comparison, we reproduced their performance using the
available open-source implementations with the same training
data. For each method, we used the same acoustic features for
training and adopted the MelGAN vocoder [51] to reconstruct
the acoustic feature to waveforms.

1The unseen speakers are composed of female: p239, p257, p266, p295,
p303 and male: p245, p251, p255, p271, p345.

B. Evaluation metrics

1) Subjective metrics: Following previous analyses [52],
we also evaluated the naturalness of the generated speech and
the similarity of the converted speech to the reference utterance
(vocoder-reconstructed) in speaker timbre. The different mea-
surements of the converted speech form our subjective met-
rics, i.e., speech naturalness and speaker similarity. the Mean
Opinion Score (MOS) was used to evaluate both perceptual
qualities of the converted speech. To evaluate the speech’s
naturalness, the annotators in the perceptual study were asked
to score the generated samples from 1 to 5 according to how
natural the converted speech sounded to them. To measure
speaker similarity, each annotator was presented with two au-
dios (converted speech and corresponding reference utterance)
and asked to rate them from 1 (poorest) to 5 (best) according
to their confidence that the two audios originated from the
same speaker. These subjective evaluations were conducted
anonymously and randomly, and we ensured that there were
no less than 10 annotators for each sample evaluation.

We randomly sampled 80 pairs from both the m2m and
a2a sets considering all potential VC situations (intra/inter-
gender) fairly. For each pair, we obtained VC using alternative
methods. It is worth noting that these test pairs originated from
different speakers with different transcriptions, and all methods
used the same vocoder to reconstruct the audio waveforms.

2) Objective metrics: To objectively measure the quality
of the generated speech, we use the similarity, Mel-Cepstral
Distortion (MCD) [53], and Word Error Rate (WER) metrics.
The authentic utterances are synthesized with ground-truth
mel-spectrograms using MelGAN. The metrics employed are
introduced below.

Similarity. The measurement of the speaker’s similarity is
similar to the subjective evaluation methods mentioned above.
The goal is to measure whether the converted voice belongs
to the target speaker of the reference utterance. For a fair
and objective comparison, we employed a third-party pre-
trained speaker verification system Resemblyzer2 to embed
the speaker timbre characteristics into a fixed-dimensional fea-
ture. The evaluation scores were generated by calculating the
feature similarity between the speaker representations of the
reference (vocoder-reconstructed) and generated utterances.
The maximum similarity score is 1, and the higher the score,

2https://github.com/resemble-ai/Resemblyzer
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Fig. 8. MOS results on speech naturalness and speaker similarity for both many-to-many VC (left) and any-to-any VC (right), where the error bars denote a
95% confidence interval.

the more confident we are the sound came from the same
speaker.

In the many-to-many and even any-to-any VC cases, 2000
testing pairs with different transcriptions and speakers were
sampled from the m2m and a2a sets.

MCD. MCD measures the differences between two se-
quences of mel-cepstra. It requires a temporal alignment for
the two input sequences. To reasonably compare the gener-
ated and ground-truth speech, we applied the Dynamic Time
Warping (DTW) algorithm to align the speech audio signals
[54] before calculating MCD. Here, we extracted mel-cepstrals
features (MECP) from the waveform of utterances to describe
the speech signals instead of the mel-spectrogram originally
used. The smaller the distance, the better the conversion
quality.

As the MCD calculation requires a temporal alignment
between the converted and authentic reference utterances, we
sampled another 2000 speech pairs from both the a2a and m2m
sets, where each pair was provided with the same content but
different speakers.

WER. To measure the degree the generated speech main-
tains the semantic content of the original during VC, we
evaluate the WER of the converted utterances. This is achieved
by utilizing a pre-trained automatic speech recognition (ASR)
system. Here, we adopted the pre-trained WeNet [55] ASR
model. Since the ASR system predicts the transcriptions,
the WER can be calculated by comparing the predicted and
ground-truth utterances. A lower WER value indicates that the
conversion preserves more linguistic content in VC. Here, it
provides evidence of the conversion quality.

Opposing similarity, WER can measure the completeness
of the semantic content, which is an important VC attribute.
The 2000 conversion test pairs were sampled from the same
speakers but with different linguistic content. This is a simple
but effective way to measure the extent to which content is
retained and the degree of disentanglement between different
speech representations.

C. Experimental results

1) Subjective performance: As depicted in Fig. 8, the two
MOS scores are determined with 95% confidence intervals
in both the m2m and a2a settings. “Vocoder” means that
the audio is synthesized from the MelGAN vocoder with the
real mel-spectrogram to be considered as the upper bound
of these comparative methods. The results infer that the pro-
posed SAVS-VC performs better than the competitor baseline
methods on both speech naturalness and speaker similarity,
indicating better subjective conversion quality according to
human perceptual evaluations. Meanwhile, the MOS results
imply that our model can easily extend to conversions between
unseen speakers without significant performance degradation.
We also conducted related experiments without content super-
vision, revealing that content supervision is important to obtain
more naturally converted utterances at the price of slightly
degrading speaker similarity. In summary, our approach can
transfer the speaker timbre well while retaining as much
content information as possible. The generated audio samples
are available at our demo page3.

2) Objective performance: Table II reports the results based
on the objective assessment described above. Specifically, our
method achieved the best results on Similarity, MCD, and
WER scores in both the m2m and a2a settings compared with
the alternative any-to-any VC approaches. This is because our
speaker adaptation module can automatically explore acousti-
cally similar speech fragments, and the generated speaker rep-
resentations are more compatible with the content information
than alternative global speaker embeddings. Despite the slight
performance degradation, SACS-VC remains more efficient
than the alternative methods for the any-to-any setting. AdaIN-
VC and AGAIN-VC are robust to unseen speakers regarding
speaker similarity, but AutoVC and VQVC+ have significantly
reduced performance when encountering unseen speakers.
When disentangling the content and speaker representations
to achieve VC, AdaIN-VC, AGAIN-VC, and VQVC+ lose
significant amounts of content information with a higher WER
score. This is because these methods lack supervision con-

3https://xxxin1.github.io/DEMOS-SACS-VC/
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Fig. 9. Attention visualization results of two example pairs: (a) utterances with same content and different speakers and (b) utterances with different content
and different speakers.

cerning content consistency during the conversion process. In
contrast, our method can effectively preserve semantic content
information due to the additional use of content supervision.
Although AutoVC achieves competitive performance in WER,
our method significantly outperforms it in the remaining
metrics.

In conclusion, our method affords a better trade-off between
speaking timbre transference and semantic content preser-
vation. Thus, the converted utterances have better quality
regarding both speech naturalness and speaker similarity.

D. Attention analysis

To present meaningful insights into the performance of the
speaker adaptation module, we visualized the attention map to
analyze its efficacy. However, to display an explainable visu-
alization and focus purely on the speaker adaptation module,
we eliminated the content supervision and retrained the whole
method. Indeed, the final speaker adaptation module in the
decoder was selected, and we sampled two example pairs from
the test set considering two scenarios: a) different speakers
with the same utterance and b) different utterances.

In Fig. 9 (a), for source and target utterances with the same
content but spoken by different speakers, an approximately
diagonal attention pattern (besides the silence part) can be
seen. This is because they have a chronologically similar
phonetic structure. In Fig. 9 (b), we selected a different
pair with different content and different speakers. Again, the
speaker adaptation module forces on the acoustically similar
speech fragments (e.g., /EY1 S/ and /IY1 S/ in the yellow box,
/IY0/ and /IY0/ in the green box, and /EH1 Z IH0/ and /AE1 Z
AH0/ in the red box). These visualization results indicate that
our speaker adaptation module can explore more fine-grained
voice fragments and be used to fuse more suitable speaker
representations.

E. Ablation studies

We conducted ablation studies to demonstrate the effective-
ness of our method’s components by dropping each of them
(i.e., content supervision, speaker adaptation, and U-Net-like
architecture design). Note that all of the presented results were
generated using the same metrics and any-to-any VC setting.
Table III reports the corresponding evaluation results.

TABLE III
ABLATION RESULTS FOR THE ANY-TO-ANY VC SETTING.

Methods Similarity ↑ MCD ↓ WER ↓

w/o Lcs 0.845 5.33 91.12
- w/o Lcontrast 0.833 5.34 78.58
- w/o Lcontent 0.812 5.53 57.85

w/o SA 0.728 6.09 22.78
w/o U-Net 0.836 5.39 81.10

SACS-VC (Ours) 0.776 5.86 23.92

Once we removed content supervision, the WER score
significantly increased from 23.92% to 91.12%, indicating that
the Lcs loss is indispensable in enforcing that the converted
speech maintains the same semantic content as the source
speech. Without content supervision, the content and style
become unbalanced, and the model is free to excessively trans-
form the speaker timbre without considering content consis-
tency. This improvement in the Similarity score coincides with
our intuitions. The MCD score also improves when the content
supervision loss is removed. Since the MCD metric requires
parallel data, all phonemes are present in the reference speech.
Based on our SA module, the method can also easily achieve
a diagonal attention pattern, and the related experiments are
described in Sec. V-D. We argue that content supervision is
essential to ensure that our method prevents over-styling and
loss of semantic content. Moreover, it helps locate a better
trade-off between preserving content and transferring timbre.

We also conducted ablation studies of the different objec-
tives regarding content supervision learning. When Lcontrast

was removed, we only considered the value error at the
corresponding feature position. We observed a slight decrease
in the WER score, but the converted speech was still blurred
and distorted. By removing Lcontent, we only used contrast
learning to associate the converted speech and source speech.
Although the converted speech has similar pronunciations
to the source speech, the experimental results in a more
sophisticated testing environment (Neural-ASR) were poor.
Only if we consider both learning objectives simultaneously
can we maintain more semantic content information and thus
achieve a lower WER score.

Additionally, we performed ablation analysis on the SA
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(a) Proposed (b) w/o cs (c) w/o contrast (d) w/o content

Fig. 10. Visualization of embedding given by the content encoder. We split the final content features according to the temporal locations and visualize them.
Each red point represents the content embedding from one source utterance. Each × symbol represents the content embedding of the converted speech, and
different colors indicate the different utterances used as the reference for VC.

module and the U-Net [24] multi-scale architecture to demon-
strate their effectiveness. To remove the speaker adaptation
module, we first took the mean of the speaker features among
the temporal axis, and then, we broadcasted and concatenated
this averaged feature according to the length of each immediate
feature in the decoder. Since this is a global and averaging
speaker information modeling strategy, we trained this model
as the alternative to removing the SA module. The biggest
change is that both Similarity and MCD have deteriorated.
Although WER is slightly increased, the more fine-grained
speaker representations extracted by SA make the converted
speech sound more similar to the target speaker. To remove the
U-Net architecture design, we removed the intermediate fea-
tures of the content encoder so that the corresponding skip con-
nection in the decoder is canceled, allowing the degenerated
content supervision to be calculated by only the final output
of the content encoder. This inevitably increases the learning
difficulties for preserving the semantic information, leading
to a higher WER. Besides, the Similarity and MCD metrics
improve because the model is more inclined to transform the
target timbre than preserve the source content. Nevertheless,
the too-high WER still makes the model unacceptable.

F. Visualization of content representations

To further demonstrate that our content supervision method
ensures the consistency of semantic content during VC, the
content representations extracted using the content encoder
were visualized using t-SNE [56]. Specifically, we tested 10
unseen speakers, where we randomly sampled one utterance
from different speakers, selected one sample as source speech,
and used the remainder as a reference to perform VC. Ulti-
mately, we extracted the content representations of one source
speech and nine converted speech samples from the content
encoder. Subsequently, we split these representations along
their time axis to obtain a single concatenated embedding
vector representing a speech patch. Finally, we projected all
the individual concatenated embeddings into a 2-dimensional
space using the t-SNE algorithm.

Fig. 10 illustrates the visualization results, where each red
point represents the embedding vectors of source speech, and
each × symbol indicates the representation of the converted
speech. The different colors represent the converted results

obtained from different reference utterances. It is clear that
the content embedding vectors of the converted speech are
almost completely overlapped with the corresponding source
speech, as each cluster was independent of the others, with low
similarity in the projected feature space. This result indicates
that the content supervision method effectively preserves the
consistency of semantic structure and enforces the model to
create distinguishable embeddings. Moreover, it can lead the
content encoder to decompose clean and accurate represen-
tations. After removing the loss Lcs, the embedding vectors
were found to be cluttered and overlapped in the embedding
space. Specifically, the content representations of the converted
speech were distant from the corresponding source speech,
implying significant content distortion when Lcs is removed.
This finding corresponds to the ablation results presented in
Sec. V-E.

When removing only the loss Lcontrast, the distances within
the clusters decreased compared with those obtained when
Lcs was removed. Some speech clusters have closer inter-
cluster distances, but this may indicate that the content encoder
cannot distinguish some phonemic content. When only the
loss Lcontent is removed, we can still maximize the mutual
information between the content embedding vectors of the
converted speech and source speech by using Lcontrast. The
visualization results are very similar to those obtained with our
the full version of the proposed model (without ablation of the
individual losses). This implies that Lcontrast plays the most
important role in preserving the semantic content. However,
without the error values between the corresponding embedding
vectors, the intra-cluster distances increased compared with
the full model. These subtle differences will lead to phoneme
recognition errors, especially in the Neural-ASR system. To
summarize, these visualization results demonstrated the im-
portance and effectiveness of content supervision.

VI. CONCLUSIONS

This paper proposed a novel method for any-to-any VC,
SACS-VC, which attempted to solve two major problems
existing voice transfer systems suffer from. Specifically, first,
we adjusted the speaker distribution according to the content
distribution by considering their local similarity. Second, we
preserved the consistency of the semantic content in a self-
supervised manner. The developed method can generate a
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high-quality voice by achieving a trade-off between semantic
content preservation and speaker timbre transference. Exper-
imental results verified that our proposed method achieved
comparable or better performances than current state-of-the-art
any-to-any VC approaches.

1) Strengths: In any-to-any VC, very few methods have
explicitly ensured the consistency of semantic content before
and after conversion. However, we rearranged the speaker
distribution by considering the local similarities between the
source and reference utterances. Higher audio quality can be
attributed to the use of the proposed framework.

2) Weaknesses: In our method, the speaker adaptation mod-
ules need to capture the local semantic similarities between
the source and reference utterances. However, noise inevitably
occurs when the reference utterance is too short or its linguistic
content is very far from the source utterance. This is because
the reference utterance contains insufficient relevant informa-
tion (phonetic elements). Such noise may degrade speaker
information from fine-grained features to global information,
impairing conversion performance.

3) Future Work: To further improve our method, future
research should focus on obtaining more suitable speaker in-
formation and producing more perceptually satisfying results.
Additionally, we will explore more highly customizable VC
based on multiple facets of speech, including timbre, pitch,
and rhythm. Building a VC system using language models
and discrete tokens [57], [58] is also an interesting direction
we wish to explore.
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