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Abstract—Any-to-any voice conversion can perform among
arbitrary speakers with even just one single reference utterance.
Many related studies have demonstrated that it can be effectively
implemented by speech representation disentanglement. On the
one hand, most existing solutions fuse the style representations
into the content features in a global manner without considering
the difference of distributions between them. On the other hand,
in the any-to-any scenario, there is no effective method to ensure
the consistency of the linguistic content without text transcription
and additional information extracted from additional modules.
To alleviate the above problems, in this paper, we propose a
novel any-to-any voice conversion method, which we refer to
as SACS-VC. It combines two principal modules, which are
a) Style Adaptation and b) Content Supervision. Specifically,
we rearrange the style representations according to the content
distribution by using a temporal attention mechanism, to obtain
finer-grained style timbre information for each individual content
feature. Meanwhile, we associate the converted outputs and the
source utterances directly to supervise the consistency of semantic
content in an unsupervised manner. This can be achieved using
contrastive learning based on the corresponding and the non-
corresponding locations of content features. Additionally, our
method can implement by using a non-parallel speech corpus
without any pretraining. Experimental results demonstrate that
our method outperforms the current state-of-the-art any-to-
any voice conversion systems in both objective and subjective
evaluation settings.

Index Terms—Voice conversion, attention mechanism, con-
trastive learning, feature disentanglement.

I. INTRODUCTION

VOICE conversion (VC) aims to convert speaker identity
from a source utterance to that of a target speaker while

simultaneously preserving the original linguistic content. This
approach is widely used in many applications including per-
sonalized speech synthesis and human-computer interaction.
Early work [1]–[5] focused on using aligned parallel data,
i.e., any speech pairs from source and target speakers share the
same linguistic content and are aligned in the temporal dimen-
sion. However, these data were difficult to collect and time-
consuming to align. The restricted corpus availability limits the
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performance and generalizability of speech conversion. These
limitations have motivated research to explore non-parallel
voice conversion approaches [6]–[8]. They have resulted in
the construction of a deep neural network to approximate
a mapping function from the source speaker domain to the
target speaker domain. CycleGAN-VC [8] and StarGAN-VC
[9] have both employed cycle-consistency to ensure the invert-
ible mapping that results is identical with the source input.
Although these methods can generate subjectively pleasing
performance without the need for a parallel corpus, they
have only resulted in a conversion process for a predefined
multiple speakers set. When encountering arbitrary speakers
which maybe unseen during training (outside the set of of
speakers used in training), the above VC methods have only
rather limited conversion capabilities.

To overcome such limitation, several any-to-any voice con-
version methods have been explored [10]–[12]. In particular,
most existing any-to-any VC approaches are based on speech
representation disentanglement. This is an effective way to
address the any-to-any conversion problem by decomposing
the speech into speaker timbre and linguistic content rep-
resentations. Then the speaker identity can be converted by
only replacing the speaker timbre representation from one
speaker to another. Fig. 1 demonstrates this process. To
separate speaker timbre information from linguistic content as
far as possible, many techniques have been proposed. These
include the information constrained bottleneck layer [11],
[13], phoneme transcription guidance [14], vector quantization
[12], [15], [16], normalization techniques [10], [17] and self-
supervised speech representation [18], [19].

Nevertheless, most of these methods only embed the speaker
timbre without considering its relevance to content, which is
an average global style feature Such use of averaged style
sacrifices the local phonemic style modeling capability, and
processes all local content features using the same transforma-
tion function in voice conversion. For example, the pioneering
work reported in [10] proposed a simple yet effective method,
which applies the global mean together with the variance of
the target speech to the source utterance in a deep feature
space. Since required the statistics are calculated globally
from a fixed-length speaker representation, the fine-grained
style details and phoneme-wise patterns are largely discarded.
Furthermore, silence segments affect the style representation
because they contain almost no useful information. The same
issue exists in AutoVC [11], which applied a pretrained
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Fig. 1. An illustrative process of feature disentanglement based voice
conversion.

speaker encoder to extract the global speaker timbre repre-
sentations. To obtain the fine-grained style embedding for
each scale of the content representation, a frequnelty used
intuition is that more attention should be paid to the most
similar phonemic pronunciation of the target utterances, and
then extract and embed the corresponding style representation
for these temporal locations.

Unfortunately, once the network probes the local fine-
grained style, then unreliable style information may contami-
nate the corresponding content. The reason for this is that it
is not possible to completely decouple the content and style.
The residual mutual information between them at the same
locations will restrain the original features. Therefore, the
linguistic content of the converted speech is usually distorted
or ambiguous, and this is not acceptable in voice conversion. In
fact, existing state-of-art any-to-any voice conversion, such as
AdaIN-VC [10], AutoVC [11], are devoted to achieving arbi-
trary transfer without a parallel aligned corpus They all fail to
achieve effective supervision concerning the linguistic content
without any additional processing modules. The reason for this
is that they only include the main objective for reconstructing
input utterances (as shown in Fig. 1). Accordingly, the goal of
voice conversion can be defined in a more detailed way as that
of transforming the style timbre as much as possible without
losing semantic content.

We attempt to address these problems and obtain a better
balance between the style timbre transfer and preserving
semantic content. To this end we propose a novel any-to-any
voice conversion framework, which we refer to as SACS-VC,
which introduce Style Adaptation and Content Supervision to
resolve the above problems. The style adaptation module can
adaptively rearrange the style timbre representations according
to the content distribution using a temporal attention mecha-
nism, and then perform style transfer on each individual con-
tent feature. We implement forthright supervision for semantic
content in a self-supervised manner.

In more detail, the temporal attention map is learnt jointly
from the content features and style features by implicitly
aligning similar phonemic pronunciation. Subsequently, the
style features are rearranged with respect to this map, and then

the stylized features are generated by position-wise addition of
rearranged style features to give content features. Motivated by
previous research [20], for realising the content supervision,
we associate the converted speech and the source input directly
using contrastive learning. In other words, we maximize
the mutual information of the semantic content between the
converted speech and source speech. This ensures that the
semantic content is preserved during the entire conversion
process. Moreover, we also consider the value of the content
feature error between the two. Although we only consider a
non-parallel speech corpus in the training stage, we can estab-
lish the semantic correspondences between the source input
and the converted output based on content features. We then
maximise the correspondence in a self-supervised manner. To
some extent, preserving the linguistic content can help to better
decouple the speech representations. Considering the different
temporal scales present in audio signals, the above operations
(i.e., style adaptation and content supervision) take into ac-
count different layers of the deep embedding. Meanwhile, to
enhance the quality of the synthetic speech, we encapsulate the
whole framework into an adversarial training strategy using a
U-Net [21] like multi-scale architecture. SACS-VC, we can not
only achieve a more fine-grained style timbre transformation
for each individual phonemic content, but it can also preserve
the consistency of semantic content as much as possible during
voice conversion. Our main contributions can be summarized
as follows:

• We propose a style attention module to adaptively re-
arrange the style distribution according to the content
distribution using a temporal attention mechanism. In this
way, we can generate the corresponding style features for
each individual content feature. It is a more fine-grained
and appropriate style pattern that depends on semantic
content.

• A novel optimization objective referred to as content su-
pervision is proposed. It associates converted outputs and
source utterances, and helps the method to preserve the
semantic content during voice conversion by maximizing
the mutual information between them.

• We consider both high-level and low-level deep features
at different temporal scales to obtain better convergence.
Additionally, an adversarial strategy and a multi-scale
architecture are also adopted to enhance the quality of
the audio signals generated. Both subjective and objective
experimental results demonstrate that our method is better
than or comparable to alternative existing state-of-the-
art any-to-any voice conversion methods on real-world
VCTK datasets.

The remainder of this paper is organized as follows. Sec.
II briefly surveys the related literature. Sec. III presents
our SACS-VC method and Sec. IV reports our experimental
results. Finally, Sec. V concludes the paper and suggests
directions for future investigation.
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II. RELATED WORK

A. Direct transformation based voice conversion

To remove the requirement of a parallel corpus without any
additional data or pretrained models, many researchers have
developed methods based on using a feed-forward network to
achieve a direct transformation from one speaker to another.
Some work [8], [22]–[24] has proposed the use of non-parallel
voice conversion networks, which can only achieve one-to-
one conversion by training an independent network. Voice
conversion among multiple speakers is a pivotal eneabling
technology for a wide range of applications. Kameoka et al.
extended an image-to-image translation method StarGAN [9]
to develop StarGAN-VC [7]. Chou et al. [6] employed a two-
stage training strategy and an adversarial speaker classifier to
further remove speaker dependent information from linguistic
representations. Lee et al. [25] overcame the drawbacks of
CycleGAN-based methods [8], [26] by conditioning the net-
work on the speaker, and the resulting method can perform
many-to-many voice conversion using a single network.

However, the above voice conversion methods among mul-
tiple speakers cannot efficiently transfer those speakers not
present in the training data. The disadvantage of these methods
is the lack of ability to model unseen data.

B. Feature disentanglement based voice conversion

Recently, to address the limitations mentioned above, sev-
eral studies based on speech representation disentanglement
have attempted to decompose the speech into speaker and
content representations. These methods can easily achieve
any-to-any voice conversion by just replacing the speaker
representation. Qian et al. proposed AutoVC [11], which used
a pretrained speaker encoder and imposed a restriction on the
length of the bottleneck layer. In their subsequent work [13]
they considered different properties of speech. Zhang et al.
[14] use the corresponding phoneme transcriptions to guide the
extraction of linguistic representations. Vector Quantization
(VQ) is employed in [15] and [12] to separate the speaker-
independent features. AdaIN-VC [10] demonstrated that in-
stance normalization can effectively remove speaker style
information, and then applied adaptive instance normalization
[27] to adjust the global statistics ( i.e., mean and variance).
Ishihara et al. [28] generated content-dependent style infor-
mation using an attention mechanism. In [29] the local and
global style information are considered simultaneously. Self-
supervised speech representations are employed in [18] and
[19] for voice conversion. Wang et al. [16] used mutual
information to measure the dependencies between speech
representations.

Existing disentanglement voice conversion methods usually
only consider the reconstruction objective in the training pro-
cedure. However, it is difficult to preserve the semantic content
during the conversion process, especially when only using
non-parallel data. On the other hand, many previous studies
only embed the style representation into a predefined fixed-
length vector, which is not particularly suitable for variable
phonemic content. These methods fuse deep style features
into the content features without considering the differences

between the feature distributions. To alleviate these problems,
in this paper, we explore a better trade-off between style
timbre transfer and preserving semantic content. Specifically,
we design a style adaptation module to rearrange the style
distribution by considering the details of the content distribu-
tion. This ensures that the embedded style representation is
most suited to the semantic content. To avoid the semantic
content changing during the conversion stage, we propose a
novel learning objective which constrains it using contrastive
learning.

III. METHODOLOGY

Our proposed framework is based on the GAN [30]. Typ-
ically, a GAN is composed of a generator and a discrimi-
nator, and in our work, the generator is an encoder-decoder
architecture. Similar to AdaIN-VC [10] and AutoVC [11],
as illustrated in Fig. 1, the generator uses three modules to
achieve any-to-any voice conversion. The training process only
requires self-reconstruction from an input utterance, it can be
written as follows:

CA = Ec(X1,A), S1 = Es(X1,A), X̂1→1,A = De(CA, S1)
(1)

where X1,A denotes the utterance “A” produced by the speaker
“1”. CA is the linguistic information relevant to content “A”
captured from the content encoder Ec(·), S1 indicates speaker
information about identity “1” is generated by the speaker
encoder Es(·), and the Decoder De(·, ·) takes the content
and style feature maps as inputs to synthesize the utterances
X̂1→1,A.

Confining our attention to the non-parallel setting, the
speech pairs have different lengths. Therefore, given a source
speech X1,A ∈ RC×TA and a reference speech X2,B ∈
RC×TB , TA and TB denote the time length of the speech
depends on the utterance. The conversion process can be
written as:

CA = Ec(X1,A), S2 = Es(X2,B), X̂1→2,A = De(CA, S2)
(2)

Based on the above procedure, we can easily synthesize the
converted speech X̂1→2,A ∈ RC×TA by replacing the speaker
identity information from S1 to S2. It is worth noting that
we adopt a multi-scale architecture in the content encoder.
Thus CA is a representation array where each item is captured
by different layers. Additionally, to retain more information,
the speaker encoder generates the speaker style features but
without downsampling to preserve the original temporal scale,
i.e., S2 ∈ RC×TB .

The key idea is to decompose the speech into speaker and
content representations. Unfortunately, the residual content
information in style may lead to performance degradation.
To mitigate this problem, we rearrange the disentangled style
representation according to the content information. This is
done using the style adaptation process described later on
in Sec. III-A. The main learning objective of most any-
to-any voice conversion methods is reconstructing the input
utterances. There is no supervision for the converted speech
without introducing additional modules. Unfortunately it is
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Fig. 2. Style-Adaptation module. We rearrange the style distribution according
to the content information, then we fuse the content-dependent style features
RS2 into the content features CA by point-wise addition to generate the
stylized features CS2,A.

difficult to measure the quality of the converted speech in the
training stage, especially the linguistic content. To alleviate
the above problem, Sec. III-B describes a content supervision
approach to constrain the converted speech to be the same
as the source speech. We use three types of loss function to
train the entire model described in Sec. III-D, and the detailed
network architecture will be discussed in Sec. III-C.

A. Style adaptation

We generate the content feature maps CA and the style
representations S2 from source speech and reference speech
through the different encoders. To overcome the negative
effects of residual correlation information, the style adaptation
(SA) module rearranges the style features based on their
content representations, and then generates content-dependent
stylized features CS2,A.

The SA modules can automatically adapt the style distribu-
tion according to the content information. In this eraspect it
is akin to an implicit alignment at the phoneme level. This
adaptation can mitigate the negative effects of inconsistent
content, and, moreover, it can easily achieve arbitrary voice
conversion without dramatic performance degradation. The SA
module is illustrated in Figure 2. Initially, given a content fea-
ture CA ∈ RC×TA , we perform a mean-variance channel-wise
normalization to remove the style information [10], and then
transform it linearly to generate the normalized feature CCA.
We process the style features S2 ∈ RC×T2 in the same way
to obtain the normalized style representation SS2. Meanwhile,
we feed the style features S2 into an additional linear layer,
but in this case there is no normalization operation, denoted
by SS2. In a manner similar to the cross attention operation,
we first calculate the correlation matrix A ∈ RTA×TB , which
can formulated as:

A = SoftMax(CC
T

A ⊗ SS2) (3)

where the position (i, j) of the correlation matrix A is used to
measure the relation between the ith content feature and the
jth in style feature. In other words, for each position of the
content feature, we enumerate all position of the style feature
to automatically align it with the most similar phonemic

position. We then rearrange the style features SS2 by taking
the product the correlation matrix A and SS2, appropriately
generate the rearranged style feature RS2 ∈ RC×TA , we
express this as follows:

RS2 = SS2 ⊗AT (4)

Finally, we fuse the style features into the content features to
achieve voice style transfer by:

CS2,A = RS2 + CA (5)

Through the above SA process, we generate a stylized
feature according to the content phonemic information, and
fuse it into the content features. The generated results can
automatically select an appropriate speaking style for the
semantic content information that can better preserve it.

B. Content supervision

Voice conversion should fully preserve the semantic content
of the source speech while transferring the speaker style.
However, most existing voice conversion methods do not
guarantee that such constraints are enforced without additional
structures, especially in any-to-any voice conversion based
on feature disentanglement. Because we cannot completely
decouple the style and content from speech and ensure that
they are independent of each other, incorporating style infor-
mation will to some extend distort the content distribution.
The resulting semantic content of the converted speech may
be both distorted and ambiguous. Preserving the semantic
content consistency between the converted speech and the
source speech is therefore important for voice conversion. We
propose the content supervision process as illustrated in in Fig.
3 to overcome this problem.

Suppose we accomplish the voice conversion taks given
the source speech X1,A and the target speech X2,B coming
from different speakers. Then the converted speech X1→2,A ∈
RC×TA will be generated based on Eq. (2). The basic goal is to
constrain X1,A and X1→2,A to have the same phonemic con-
tent. Although they belong to different speakers, the semantic
content should be consistent during the whole conversion
process. Since we train the content encoder Ec to capture the
linguistic content information of speech, the content features
are readily computed from the Ec. Each layer of Ec and
its location within the feature stack represents a segment
or a patch of the input acoustic features (i.e., speech). The
deeper layers with larger receptive fields and correspond to
larger patches. An intuitive idea is thereforeew to constrain
the content features to be the same before and after the voice
conversion at the corresponding positions. This process can be
writen as :

Lcontent =
1

L

L∑
l=1

∥Ec(X1,A)− Ec(X1→2,A)∥2 (6)

where l denotes the lth layer of the content feature stack, and
we use the mean squared error (MSE) to define the content
perceptual loss. This loss is very similar to the content loss in
style transfer [27], but the feature extractor is not pretrained in
this case. Ideally, the above approach can reduce the problem



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

𝑋𝑋1,𝐴𝐴

𝑋𝑋1→2,𝐴𝐴

𝐸𝐸𝑐𝑐

𝐸𝐸𝑐𝑐

𝑞𝑞 𝑣𝑣+𝑣𝑣−

Feature Position-wise Contrastive Learning

Calculate similarities 
for query

N+1 way 
classification Cross-

Enrtopy

𝐶𝐶A𝑙𝑙 , 𝑙𝑙 𝑑𝑑𝑑𝑑otes different layers

�̂�𝐶A𝑙𝑙

Feature Position-wise 
Mean Square Error

Learning Objective – (1) 

Learning Objective – (2) 

Content Supervision = 
Learning Objective – (1 + 2) 

�̂�𝐶A𝑙𝑙

Fig. 3. The content supervision processing flow. We establish the semantic content relationships between the source speech X1,A and the converted speech
X1→2,A. There are two learning objectives in our content supervision. First, we minimize the feature value errors between X1,A and X1→2,A at the same
locations. Second, we minimize the corresponding content mutual information between X1,A and X1→2,A by using contrast learning, while encouraging the
content encoder Ec to distinguish the phonemic content. The semantic content is preserved based the above objectives during the conversion process.

of content distortion or obfuscation. Unfortunately, the content
encoder Ec may learn a trivial function (such as loss of
ability to distinguish between phonemic content), and output
the approximate representation for different semantic content.
The reason for this is that we update the parameters of Ec

according to the above loss without any pretraining. To avoid
Ec losing the ability to capture content diversity, it is necessary
to add one further requirement to make its objective multi-task.

Motivated by the unpaired image translation method based
on contrastive learning in [20], we select L layers from
Ec, to give a multi-layer convolution network that extracts
feature stacks from the input speech spectrogram. The stack
of features produced in this way can be represented as Cl

A

and Ĉl
A, where l ∈ {1, ..., L}, CA and ĈA denote the content

features generated by Ec(X1,A) and Ec(X1→2,A) respectively.
Unlike the pixels in an image, the number of fragments of
speech is much smaller. Thus, all temporal locations of the
content features in each layer will be used.

To encourage the semantic content of converted speech
to be similar to the source speech, we maximize the mu-
tual correspondence information between them based on the
InfoNCE loss [31]. Based on Eq.(6), we add a new learn-
ing objective to avoid the content encoder degrading. This
objective distinguishes the different features having different
temporal positions (i.e.,.iIt associates corresponding features
to one another, while disassociating them from the remainder)
by contrastive learning. The idea of contrastive learning is to
construct three different types of vectors, namely a) a “query”
vector q, b) a “positive” vector v+, and c) N “negative”
samples v−. These vectors are all sampled from the content
features Cl

A and Ĉl
A, thus v, v+ ∈ RC and v− ∈ RN×C .

For all temporal positions T , there is one positive sample and

the remaining N negative samples (i.e., T = N + 1). In our
context, query refers to an output content patch, positive and
negatives are the corresponding and noncorresponding input.
We maximize the probability of selecting positive sample
v+ over negatives. Even conducting voice conversion, it can
enforce the content encoder to output a similar embedding at
the same temporal position, and generate the distinguishable
representations at distinct locations. This can be also viewed as
a multi-classification problem with N + 1 classes. Therefore,
the cross-entropy loss will be calculated so as to maximize the
mutual information and this is achieved in turn by maximizing
the probability of matching the positive sample with the query
vector. We normalize each of these vectors using the L2 norm.
The mathematical formulation can be written as follows:

ℓ(q, v+, v−) = −log

(
exp( q·v

+

T )

exp( q·v
+

T +
∑N

n=1 exp(
q·v−

n

T )

)
(7)

where v−n denotes the nth negative samples and T is a
temperature parameter used to scale the feature distances. Our
goal is to associate the semantic content of the source input
and the converted output. The query vector is sampled from the
content features of the converted output, The positive sample
and the negative samples are the corresponding and the non-
corresponding source input at the different temporal locations.
As a result the second objectives can be expressed as:

Lcontrast =
1

L
· 1

N + 1

L∑
l=1

N+1∑
n=1

ℓ(qnl , v
n
l , v

(N+1)\n
l ) (8)

where l denotes the index of the content feature stacks and N
depends on l due to the different temporal scales.
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Using the above two types of constraints, we locate the
mutual correspondences between the semantic content of the
source speech and converted speech. We then optimize our
method according to the directions of constraints. At all
temporal locations, the content features of the converted output
will not only be similar to the source input, but also distinguish
it from alternative phonemic content. As a consequence of this
content supervision, we can ensure that the semantic content
information is preserved as much as possible during the entire
voice conversion process.

C. Network architecture

Our framework is based on a GAN [30], which is typi-
cally composed of a generator and a discriminator. Given a
non-parallel speech corpus, we sample two different speech
instances X1,A ∈ RC×TA and X2,B ∈ RC×TB with dif-
ferent speakers. The generator G can sequentially generate
the converted speech X1→2,B = G(X1,A, X2,B), which has

similar content to X1,A and a similar timbre to X2,B . The
discriminator distinguishes a real sample of speech from a
synthetic one while encouraging the generator to synthesize
realistic speech of the target domain X2,B . The network
architecture is illustrated in Fig. 4 and Fig. 5.

1) The Generator: The generator G can be divided into
three components, a) a content encoder Ec, b) a speaker
encoder Es, and c) a decoder D. We first obtain the high-
level representations from Ec and Es respectively, and then
reconstruct the speech information through D. The generator
is composed entirely of convolution neural networks to achieve
non-autoregressive generation. As shown in Fig. 4, we capture
the content speech features with different temporal scales in
the content encoder, and then restore them gradually in the
decoder. This multi-scale architecture is very similar to the
U-Net [21].

In the encoders, we first employ the ConvBank layer
[32] which stacks convolution layers with different kernel
sizes to enlarge the receptive field and capture long-time
scale information. Subsequently, several convolution layers
are applied to generate the high-level representations. The
purely 1-dimensional convolution layers are implemented with
a kernel size set to 5, and the stride size depends on whether
downsampling of the temporal scales is required. We adapt
instance normalization after each convolution layer of the
content encoder to eliminate the speaking style information
[10]. It is important to note that we do not downsample the
temporal dimension in the speaker encoder. Instead, we keep
the original temporal dimension the same as the input acoustic
features to preserve the overall information. To mitigate the
training difficulties, we also implement residual connections
[33] for each pair of convolution layers with the exception
of the ConvBank layer. We also use average pooling to
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decrease the temporal resolution to match the feature shapes.
As mentioned above, the content encoder will decrease the
temporal scales gradually. Therefore, in addition to storing
the output feature of the content encoder, we also store the
intermediate features before each downsampling operation,
i.e., CA = {C0

A, C
1
A, ..., C

L
A}, where L denotes the numbers of

downsampling operation, and the shapes of these features are
{RC×TA ,RC×TA

2 , ...,RC×TA
2L }. The speaker encoder embeds

X2,B to generate the speaking style representation S2 ∈
RC×TB , while preserving the temporal scale without any
downsampling. As illustrated in Fig. 4, we set the number
of downsamplings L is 3.

In the decoder, given the content features CA and the style
feature S2, there are two main basic operations?: 1) Restoring
the temporal scale from the smallest scale feature CL

A, and
2) Fusing the style feature S2 into the content distribution by
using the style adaptation modules mentioned in III-A. A set
of convolution layers with kernel size 5 and stride 1 are imple-
mented in the decoder. For increasing the temporal resolution,a
PixelShuffle1d layer [34] is used for upsampling, and local
interpolation in order that the residual connections match the
feature shape. A multi-scale architecture is applied to preserve
increased amounts of content information. We associate the
feature map after upsampling and the corresponding content
representation Cl

A according to the same scale. We feed the
restored feature and the style feature into the style adaptation
module. Due to the speaker encoder being trained without any
constraints and downsampling, we can automatically adapt and
fuse the style into the converted feature gradually according
to the semantic correlation. In other words, to synthesize
the stylized features, a pipeline is constructed using several
consecutive “1)-2)” operations to restore the temporal scale
of the features and then gradually fuse the style information.
Then we use a linear transformation to modify the channel
to match the acoustic features. Finally, the post network [35]
is appended but in this case without the batch normalization.
This predicts a residual to add to the prediction to improve
the overall reconstruction. The post network contains five
convolution layers, where we use hyperbolic tangent activation
function in all but the final layer. The channel dimension is set
to 512 in the first four layers, and reduces to 80 in the final
layer. We add a dropout layer with the rate set to 0.5 after
each layer in the post network.

2) The Discriminator: Unlike the generator, the discrimi-
nator is constructed with 2D convolution layers in a manner
similar to [6], [7] in order to better capture the acoustic texture.
We first reshape the input speech from RC×A to R1×C×A.
Subsequently, there are 5 convolution layers with stride 2 and
kernel size 5×5 to gradually, downsample the feature map. The
number of filters for these convolution layers are respectively
64, 128, 256, 512 and 512. To decrease the feature channel
from 512 to 32, a convolution layer with unit kernel size and
stride is appended. Finally, an output layer follows and is
used to obtain a measure of the degree of verisimilitude of
the speech in the target domain. Instance normalization [36]
and Leaky ReLu activation [37] with slope 0.01 are applied
after each convolution layer with the exception of the final

output layer.

D. Loss function

To translate the source speech to sound like the target
speaker, our proposed network is optimized through three
types of loss functions in the training stage. According to
Eq. (2), for given two arbitrary sampled speech instances
{X1,A, X2,B} from a non-parallel dataset X , we can achieve
any-to-any voice conversion based feature disentanglement.

1) Adversarial loss: Following [30], an adversarial loss is
adapted to synthesize realistic speech which sounds similar to
the target speech. We can write this as follows:

Ladv(X2,B , X1→2,A) = E{X1,A,X2,B}∼X logD(X2,B)

+ log(1−D(X1→2,A))
(9)

where G and D denote the generator and discriminator re-
spectively, and X1→2,A = G(X1,A, X2,B). The variant loss in
WGAN-GP [38] is adopted to mitigate the training instability
issue.

2) Content supervision loss: As discussed in Sec. III-B,
we use two different learning objectives to preserve the con-
sistency of the semantic content during the speech conversion
process. Thus, the content supervision loss depends on Eq.(6)
and Eq.(8) in weighted combination i.e.,

LT
cs(X1,A, X1→2,A) = E{X1,A,X2,B}∼X c1·Lcontent+Lcontrast

(10)
where the coefficient c1 is set to 0.5 to determine the relative
weight of the two components, and the temperature parameter
T in Eq.(8) is set to 0.09. Additionally, we also use the same
loss for the reconstruction objective, i.e., LR

cs(X1,A, X1→1,A).
Therefore, our content supervision loss is calculated on both
the translation and reconstruction patterns, and we simply add
them together to obtain the final content supervision loss:

Lcs(X1,A, X1→1,A, X1→2,A) =
1

2
· (LT

cs + LR
cs) (11)

We optimize the entire generator G according to this loss
function. This can also to some extent assist the generator
to decouple the speech representations by constraining the
semantic content structure.

3) Reconstruction loss: The reconstruction loss assists the
generator to preserve the consistency of the spectrogram when
using the same speech sample for both the input content speech
and the input reference speech:

Lrecon(X1,A, X1→1,A) = EX1,A∼X ∥X1→1,A −X1,A)∥1
(12)

where X1→1,A is the self-reconstruction procedure in Eq. (1),
and we use the L1 distance (norm) to measure the differences
between the source input and the correspond reconstructed
one. This reconstruction loss encourages well defined output
spectrograms and ensures that the auto-encoder architecture
does not loose too much information. It is also an essential
part and a main objective for feature disentanglement-based
any-to-any voice conversion methods [10], [11], [19].
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4) Final objectives: We train the proposed method by
solving a minmax optimization problem according for the
weighted sum of individual loss functions described above,

min
G

max
D
Lrecon + λaLadv + λcsLcs (13)

where λa and λcs are the hyperparameters which control the
relative importance of the different losses. We set λa to 0.02
and λcs to 1 during the experiments.

E. Implementation details

The output of our proposed method is a mel-spectrogram.
To this end we need to implement a vocoder to achieve the
transformation from acoustic features to speech signals. We
employed a pretrained MelGAN vocoder [39], which is a non-
autoregressive approach but has a comparable performance
with other autoregressive vocoders. Initially, we generate the
corresponding acoustic features in the required format for the
MelGAN input. More precisely, we resample the audio at
22,050 HZ and perform the STFT (short-time Fourier trans-
form) with STFT window size 1024. We then transform the
magnitude of the spectrograms into an 80-bin mel-scale and
then take its logarithm. Subsequently, these acoustic features
will be fed into our model to optimize its parameters. Finally,
we generate the converted speech through the optimized model
and the vocoder.

We train the proposed method (i.e., generator and discrim-
inator) using the ADAM optimizer (with learning rate =
10−4, β1 = 0.9, β2 = 0.999, and weight decay = 10−4)
for 20k iterations. The batch size is 32 and each mini-batch
consists of 32 source utterances and 32 reference utterances,
which are in one-to-one correspondence. The generator and
discriminator are optimized alternately in each iteration. Al-
gorithm 1 summarizes the entire training strategy.

Algorithm 1: Training Strategy
Input: Multi-speaker non-parallel dataset X ,

η = 0.0001, m = 32, λa = 0.02, λcs = 1
Initialize generator G = {Ec, Es, De} and

discriminator D,
for number of training iterations do

for j in 1, ..., m do
Sample source speech X

(j)
1,A ∼ X .

Sample reference speech X
(j)
2,B ∼ X .

Create a m-size minibatch {X1,A, X2,B}.
X1→2,A = De(Ex(X1,A), Es(X2,B))
X1→1,A = De(Ex(X1,A), Es(X1,A))
Calculate Ladv(X2,B , X1→2,A),
Lrecon(X1,A, X1→1,A),
Lcs(X1,A, X1→1,A, X1→2,A)
θD ← θD + η∇θDLadv

θG ← θG − η∇θG(Ladv + λaLrecon + λcsLcs)

TABLE I
NUMBER OF UTTERANCES AND SPEAKERS IN EXPERIMENTAL SETTING.

Training Validation Testing

Speakers 99 99 10
Utterances 23595 2573 2515

IV. EXPERIMENTS

A. Experiments setting

The entire CSTR VCTK Corpus [40], which includes about
44 hours of audio from 109 different speakers and different
sets of utterances, was used to train the proposed method.
We randomly sampled 5 female speakers and 5 male speakers
as our unseen test speakers. For each of the remaining 89
speakers, we used 90% of the utterances for training, and
the remainder for validation. We first trimmed the audio and
transformed it into acoustic features. For parallel training,
we randomly cropped the acoustic features with a segment
window length of 128. The details are shown in Table. I. In the
inference stage, voice conversion can be easily implemented
with variable-length inputs by virtue of our fully-convolutional
architecture. For non-parallel voice conversion, each training
pair consists of two different utterances with different content
from different speakers.

Any-to-any voice conversion requires that we process any
speaker utterances when they are not present in the training
data. Following [18], we consider two voice conversion set-
tings in our experiments: (1) many-to-many (m2m), which
implements voice conversion between speakers in the VCTK
training data; these test pairs came from the validation set
mentioned above. Although the speakers are seen in the
training stage, these utterances are not present in the training
data. (2) any-to-any (a2a), considers the voice conversion
between speakers which are not present in the training data;
these test pairs came from the testing set mentioned above. In
both the above cases, the test pairs were sampled fairly and
randomly in four dimensions (intra/inter-gender). We ensured
each test pair includes only 1 reference utterance. We can
easily generalize the proposed method to unseen speakers
without retraining or finetuning to improve the generalization
ability.

Four comparative methods which represent state-of-the-art
in any-to-any voice conversion were adopted for performance
comparisons. We have identified a comprehensive set of alter-
native methods and selected some of the most representative
ones. These include AdaIN-VC [10], AutoVC [11], VQVC+
[12], and AGAIN-VC [17]. To make fair comparison, we
reproduced their performance using the available open source
implementations and with the same training data. For each
method, we used the same acoustic features for training, and
adopted the MelGAN [39] vocoder to reconstruct the acoustic
feature to waveforms.

B. Evaluation metrics

1) Subjective metrics: Following previous analyses [41],
we also conducted evaluations on the naturalness of the
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TABLE II
OBJECTIVE EVALUATION RESULTS.

(a) Many-to-many setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.932 3.69 15.21

AdaIN-VC 0.749 5.97 44.42
AutoVC 0.747 6.10 26.04
VQVC+ 0.766 5.91 56.16
AGAIN-VC 0.723 6.05 38.10

SACS-VC (Ours) 0.781 5.70 25.91

(b) Any-to-any setting

Methods Similarity ↑ MCD ↓ WER ↓

MelGAN (Vocoder) 0.933 3.66 15.04

AdaIN-VC 0.752 6.12 46.15
AutoVC 0.694 6.24 29.27
VQVC+ 0.735 5.98 59.12
AGAIN-VC 0.725 6.11 39.51

SACS-VC (Ours) 0.776 5.86 26.46

Proposed Adain-VC AutoVC VQVC+
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Fig. 6. MOS results on speech naturalness (left) and speaker similarity (right)
for both many-to-many VC and any-to-any VC, where the bars denotes 95%
confidence interval.

generated speech, and the similarity of the converted speech to
the reference utterance (vocoder-reconstructed) in style timbre.
The different measurements of converted speech form our sub-
jective metrics, i.e., speech naturalness and speaker similarity.
The Mean Opinion Score (MOS) was used to evaluate both
perceptual qualities of the converted speech. To evaluate the
speech naturalness, the annotators in the perceptual study were
asked to score the generated samples from 1 to 5 according
to how natural the converted speech sounded to them. For
measuring speaker similarity, each annotator was presented
with two audios (the converted speech and the corresponding
reference utterance), and asked to rate them from 1 (poorest)
to 5 (best) according to their confidence that the two audios
originated from the same speaker. These subjective evaluations
were conducted anonymously and randomly, and we ensured
that there were no less than 10 annotators for each sample
evaluation.

We randomly sampled 80 pairs from both the m2m set
and the a2a set considering all potential speech transfer
situations (intra/inter-gender) fairly. For each individual pair,
we obtained voice conversion using the alternative different
methods. These test pairs came from different speakers with
different transcriptions. All methods studied used the same
vocoder to reconstruct the audio waveforms.

2) Objective metrics: To objectively measure the quality
of the generated speech, we use three different metrics, i.e.,
a) Similarity, b) Mel-Cepstral Distortion (MCD) [42], and c)
Word Error Rate (WER). The authentic utterances are synthe-
sized with ground-truth mel-spectrograms using MelGAN. In
more detail, the metrics were evaluated as follows:

Similarity. The measurement of speaker similarity is similar
to the subjective evaluation methods mentioned above. The
goal is to measure whether the converted voice belongs to the

target speaker of the reference utterance. For a fair and objec-
tive comparison, we employed a third-party pretrained speaker
verification system Resemblyzer1 to embed the speaker timbre
characteristics into a fixed-dimensional feature. The evaluation
scores were generated by calculating the similarity between the
speaker representations of the reference utterance (vocoder-
reconstructed) and the generated utterance. The maximum
similarity score is 1, and the higher the score the higher the
speaker confidence.

In many-to-many voice conversion, even any-to-any setting,
2000 testing pairs with different transcriptions and speakers
were sampled from both m2m set and a2a set.

MCD. The Mel-Cepstral Distortion (MCD) is a measure
the differences of two sequences of mel-cepstra. It requires
a temporal alignment for the two input sequences. To make
reasonable comparisons between the generated and ground-
truth speech, we applied the Dynamic Time Warping (DTW)
algorithm to align the speech audio signals [43] before
calculating MCD. Here, we extracted mel-cepstrals features
(MECP) from the waveform of utterances to describe the
speech signals instead of the mel-spectrogram originally used.
The smaller the distance the better the conversion quality.

Since the MCD calculation requires a temporal alignment
between the converted utterance and the authentic reference
utterance, we sampled another 2000 speech pairs from both
a2a and m2m sets, where each individual pair is provided with
the same content but different speakers.

WER. To measure the degree to which the generated
speech maintains the semantic content of the original during
voice conversion, we evaluate the WER of the converted
utterances. This is done by drawing support from a pretrained
automatic speech recognition (ASR) system. Here, we adopted
a pretrained ASR model, WeNet [44]. The ASR system can
predict the transcriptions, thus the WER can be calculated by
comparing the predicted and the ground-truth utterances. A
lower WER value indicates that the conversion preserves more
linguistic content in voice conversion. It can to some extent
provide evidence of the conversion quality.

In contrast to similarity, WER can measure the completeness
of the semantic content. This is an important attribute of voice
conversion. The 2000 conversion test pairs are sampled from
the same speakers but with different linguistic content. This
is a simple but effective way to measure the extent to which

1https://github.com/resemble-ai/Resemblyzer
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Fig. 7. Attention visualization results of two example pairs. (a) is the utterances with same content and different speakers. (b) is the utterances with different
content and different speakers.

content is retained, and the degree of disentanglement between
different speech representations.

C. Experimental results

1) Subjective performance: As shown in Fig. 6, the two
MOS scores are determined with 95% confidence intervals in
both m2m and a2a settings. Our proposed SAVS-VC performs
better than other baseline methods on both speech naturalness
and speaker similarity, thus indicating better subjective con-
version quality according to human perceptual evaluations.
Meanwhile, the MOS results imply that our model can be
easily extended to conversions between unseen speakers with-
out drastic performance degradation. Here, we also conducted
related experiments for the proposed SACS-VC but without
content supervision. The results indicate that content supervi-
sion is important to obtain more natural converted utterances,
although at the price of slightly degrading the speaker sim-
ilarity. To summarize, our approach can transfer the speaker
timbre well while retaining as much content information as
possible. The generated audio samples are available on our
demo page2.

2) Objective performance: Based on the objective assess-
ment described above, the results given in Table. II were
obtained. From this table when compared with the alter-
native any-to-any voice conversion approaches studied, our
proposed method achieved the best results on Similarity,
MCD, and WER scores in both the m2m and a2a settings.
This may be attributed to the fact that our style adaptation
module can automatically explore acoustically similar speech
fragments, and the generated style representations are more
compatible with the content information than alternative global
style embeddings. For the any-to-any setting, despite a little
performance degradation, SACS-VC remains more efficient
than the alternative methods. AdaIN-VC and AGAIN-VC are
robust to unseen speaker in terms of speaker similarity, but
AutoVC and VQVC+ have significant reduced performance
when encountering unseen speakers. When disentangling the
content and style representations to achieve voice conver-
sion, AdaIN-VC, AGAIN-VC, and VQVC+ loose significant
amounts of content information with a higher WER score. This

2https://www.

is because these methods lack supervision concerning content
consistency during the conversion process. By contrast, our
method can effectively preserve semantic content information
due to the additional use of content supervision. Even though,
AutoVC achieves competitive performance in terms of WER,
our method significantly outperforms in terms of the remaining
metrics.

In conclusion, our method gives a better trade-off between
style timbre transference and semantic content preservation,
thus the converted utterances have better quality in terms of
both speech naturalness and speaker similarity.

D. Attention analysis

To present meaningful insights into for the performance of
the style adaptation module, we visualized the attention map
to analyze its efficacy. However, to display an explainable
visualization and focus purely on the style adaptation module,
we eliminated the content supervision loss, and retrained
the whole method. The final style adaptation module in the
decoder was selected, and we sampled two example pairs
from the test set considering two scenarios, namely a) different
speakers with the same utterance and b) different utterances.

In Fig. 7 (a), the source and target utterances with the
same content but spoken by different speakers show an ap-
proximately diagonal attention pattern (besides the silence
part). This is because they have a chronologically similar
phonetic structure. In Fig. 7 (b) we selected a different pair
with different content and different speakers. Again, the style
adaptation module is able to focus on the acoustically similar
speech fragments (e.g., /EY1 S/ and /IY1 S/ in the yellow box,
/IY0/ and /IY0/ in the green box, and /EH1 Z IH0/ and /AE1
Z AH0/ in the red box). These visualization results indicate
that our style adaptation module can explore more fine-grained
voice fragments. Moreover, it can be used to effectively fuse
more suitable style representation.

E. Ablation studies

In this section, we conduct ablation studies to demonstrate
the effectiveness of our proposed content supervision approach
by individually dropping each of the above loss functions.
This provides insights into the role of each loss function in
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(a) Proposed (b) w/o cs (c) w/o contrast (d) w/o content

Fig. 8. Visualization of embedding given by content encoder. We split the final content features according the temporal locations and visualize them. Each red
point represents the content embedding from one source utterances. Each × symbol represents the content embedding of the converted speech, the different
colors indicates that the different utterances are used as reference for voice conversion.

TABLE III
ABLATION STUDIES ON ANY-TO-ANY VOICE CONVERSION SETTING.

Methods Similarity ↑ MCD ↓ WER ↓

w/o Lcs 0.845 5.33 91.80
- w/o Lcontrast 0.833 5.34 80.74
- w/o Lcontent 0.812 5.53 58.46

SACS-VC (Ours) 0.776 5.86 26.46

the training stage. Note that, all of the presented results are
generated using the same metrics and the same any-to-any
voice conversion setting. The corresponding evaluation results
are given in Table III.

Once we remove the content supervision, the WER score
dramatically increased from 26.46% to 91.80%. This result
indicates that the Lcs loss is indispensible in enforcing that
the converted speech maintains the same semantic content as
the source speech. Meanwhile the Similarity score improves.
Without content supervision, the content and style become out
of balance, the model is free to excessively transform the style
timbre without considering the consistency of content. This
improvement in Similarity score coincides with our intuitions.
The MCD score also improves when the content supervision
loss is removed. Since the MCD metric requires parallel data,
all phonemes are present in the reference speech. The method
can also easily achieve a diagonal attention pattern based on
our style adaptation module, and the related experiments can
be found in Sec. IV-D. We argue that content supervision is
essential to ensure that our method prevents over-styling and
loss of semantic content. Moreover, it helps to locate a better
trade-off between the content and style.

We also conducted ablation studies of the different ob-
jectives for content supervision learning. When Lcontrast is
removed we only considered the error at the corresponding
position of the feature. We observe a slight decrease in
the WER score, but the converted speech was still blurred
and distorted. In removing Lcontent, we only associated the
converted speech and source speech using contrast learning.
The converted speech has similar pronunciation to the source
speech. However, in a more sophisticated testing environment
(Neural-ASR), the results were not so good. Only if we

consider both of those learning objectives simultaneously,
can we maintain more semantic content information and thus
achieve a lower WER score.

F. Visualization of content representations
In order to further demonstrate that our content supervision

method can ensure the consistency of semantic content during
voice conversion, the content representations extracted using
the content encoder were visualized using t-SNE [45]. We
tested 10 unseen speakers. We first randomly sampled one
utterance from different speakers. We selected one sample as
source speech and used the remainder as reference speech to
perform voice conversion. We extracted the content representa-
tions of one source speech and nine converted speech samples
from the content encoder, and then we split these represen-
tations along their time axis to obtain a single concatenated
embedding vector which can be used to represent a patch in
speech. Finally, we projected all of the individual concatenated
embedding vectors so obtained into a 2-dimensional space
using the t-SNE algorithm.

Fig. 8 presents the visualization results. Each red point
represents the embedding vectors of source speech, and each
× symbol indicates the representation of the converted speech.
The different colors represent the converted results obtained
from different reference utterances. It is clear that the con-
tent embedding vectors of the converted speech are almost
completely overlapped with the source speech. Each cluster
indicated a certain speech patch, they were independent of
each other with low similarity in projected feature space.
This result indicates that the content supervision method
employed can effectively preserve the consistency of semantic
structure. Moreover, it can lead the content encoder to de-
compose representations which are both clean and accurate.
After removing the loss Lcs, the embedding vectors were
found to be cluttered and overlapped in the embedding space.
In particular, the content representations of the converted
speech were distant from the corresponding source speech.
This implies significant distortion of the content when Lcs is
removed in the ablation study. When removing only the loss
Lcontrast, the distances among the corresponding clusters in-
creased compared with those obtained when Lcs was removed.
However, some speech clusters are close to each other in the
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embedding, and this may indicate that the content encoder
looses the ability to distinguish some phonemic content. When
only the loss Lcontent is removed, because we maximize the
mutual information between the content embedding vectors
of the converted speech and source speech by using this
loss, the results were very similar to those obtained with
our full proposed model (without ablation of the individual
losses). This implies that Lcontrast plays an important role
in preserving the semantic content. However, without the
error values between the corresponding embedding vectors,
the intra-cluster distances increased compared with the full
proposed model. These subtle differences will lead to phoneme
recognition errors, especially in the Neural-ASR system. To
summarize, these visualization results demonstrated the im-
portance and effectiveness of content supervision.

V. CONCLUSIONS

In this paper, we have proposed a novel method to achieve
any-to-any voice conversion, which we refer to as SACS-
VC. It attempted to solve two major problems with existing
voice transfer systems. Firstly, we adjust the style distribution
according to the content distribution by considering the local
similarity between them. Secondly, we preserve the consis-
tency of the semantic content in a self-supervised manner. Our
proposed method can generate high-quality voice by achieving
a trade-off between semantic content preservation and style
timbre transfer. Experiments verified that our proposed method
achieved comparable or even better performances than other
SOTA any-to-any voice conversion approaches.

1) Strengths: In any-to-any voice conversion, there are very
few methods that have explicitly ensured the consistency of
semantic content before and after conversion. We, on the
other hand, rearrange the style distribution by considering the
local similarities between the source and reference utterances.
Higher audio quality can be attributed to the use of the
proposed framework.

2) Weaknesses: In our method, the style adaptation mod-
ules needs to capture the local semantic similarities between
the source and reference utterances. However, noise inevitably
occurs when the reference utterance is too short or its linguistic
content is very far from that of the source utterance. Such noise
may impair the conversion performance. The reason for this
is that there is insufficient relevant information contained in
the reference utterance.

3) Future Work: To further improve our method, further
investigation should be made into obtaining more suitable style
information and producing more perceptually satisfying re-
sults. Additionally, we will explore more highly customizable
voice conversion based on multiple facets of speech including
timbre, pitch and rhythm.
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