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Abstract

Green-hyperbolic operators – partial differential operators on globally hyperbolic space-

times that (together with their formal duals) possess advanced and retarded Green operators –

play an important role in many areas of mathematical physics. Here, we study modifications

of Green-hyperbolic operators by the addition of a possibly nonlocal operator acting within a

compact subset K of spacetime, and seek corresponding ‘K-nonlocal’ generalised Green op-

erators. Assuming the modification depends holomorphically on a parameter, conditions are

given under which K-nonlocal Green operators exist for all parameter values, with the possible

exception of a discrete set. The exceptional points occur precisely where the modified opera-

tor admits nontrivial smooth homogeneous solutions that have past- or future-compact support.

Fredholm theory is used to relate the dimensions of these spaces to those corresponding to the

formal dual operator, switching the roles of future and past. The K-nonlocal Green operators

are shown to depend holomorphically on the parameter in the topology of bounded convergence

on maps between suitable Sobolev spaces, or between suitable spaces of smooth functions. An

application to the LU factorisation of systems of equations is described.

Dedicated to Christian Bär on the occasion of his sixtieth birthday.

1 Introduction

Linear partial differential operators are the workhorses of mathematical physics, providing the sim-

plest models of classical and quantum field theories from which more complicated interacting mod-

els may be built. In General Relativity or other nonlinear theories, linear operators appear whenever

the theory is linearised, for example, to study the stability of solutions, or the propagation of gravi-

tational waves.

A particularly useful general class of operators acting between spaces of smooth sections of

vector bundles over globally hyperbolic Lorentzian manifolds has been introduced by Bär [2] un-

der the name ‘Green-hyperbolic operators’. Green-hyperbolicity is a generalisation, rather than a

specialisation, of hyperbolicity: a Green-hyperbolic operator need not be hyperbolic, and there are

examples that are elliptic, or of indefinite type. The defining property of a Green hyperbolic op-

erator is that it should possess advanced and retarded Green operators, along with its formal dual,

and from this simple algebraic requirement many other properties flow, as described elegantly by

Bär. In particular, the Green operators are unique, continuous, and have extensions that are con-

tinuous inverses to (extensions of) the Green-hyperbolic operator on various spaces of smooth or

distributional sections.

*chris.fewster@york.ac.uk
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Examples of Green-hyperbolic operators include (a) normally hyperbolic operators, such as

the wave operator ✷ and its variants allowing for the inclusion of potentials and external vector

potentials, (b) first order symmetric hyperbolic systems on globally hyperbolic spacetimes [2];

(c) any operator whose square is Green-hyperbolic, thus incorporating Dirac type operators; (d)

operators whose solution theory may be related to one of the above, such as the (non-hyperbolic)

Proca operator −δd+m2, whose Green operators are obtained from those of −(δd+dδ )+m2 on

smooth 1-form fields. See [2] for these and other examples.

The purpose of this paper is to study modifications of Green-hyperbolic operators, that can

lead outside the class of partial differential operators. For simplicity, we mainly study the case

of scalar operators but there is no hindrance (beyond those of notation!) to extending our results

to the general bundle case. The operators we consider are of the form P+A, where P is Green-

hyperbolic and A is a continuous linear self-map of C∞(M) (not necessarily a differential operator)

whose range is contained in C∞
K (M), the smooth functions supported in a compact subset K ⊂ M.

Without loss of generality, we may always assume that K is topologically regular, that is, equal to

the closure of its interior. An operator of this type is potentially nonlocal, though the nonlocality

is, as it were, localised within K. By the kernel theorem, any such operator can be represented as

Aφ =

∫

M
T (x,y)φ(y)µy, (1.1)

where µ is a smooth density, and T ∈ D
′(M ×M) has support in K ×M and is semi-regular in

its first slot (i.e., T belongs to the nuclear tensor product C∞(M)⊗̂D′(M)). Operators of this type

include, but go beyond, differential and pseudodifferential operators, in which the singular support

of T is confined to the diagonal.

There are several applications for operators of this type. In perturbative algebraic quantum

field theory (pAQFT) they arise from the class of regular interactions, and the results proved here

establish the existence of suitable Green operators needed in [15], for example. Another application

is to noncommutative potential scattering [21], where equations such as

Pφ +w⋆φ = 0 (1.2)

appear as toy models for the dynamics of classical and quantum fields on a noncommutative space-

time. Here P is a Green hyperbolic operator, w is a fixed smooth function, and ⋆ is a noncommu-

tative deformation of multiplication, differing only from pointwise multiplication inside a compact

set K [22]. The application of the results obtained here to such models will be discussed else-

where [11].

One may in fact develop an entire theory of nonlocal Green-hyperbolic operators and this is

done in the companion paper [12]. The purpose of this paper is to investigate the technical issue

of the existence and properties of (a suitably generalised concept of) Green operators E±
P+A(λ )

for

P+A(λ ) under suitable conditions on P and A(λ ) for λ ∈ C. A particular focus will be on the

analytic dependence of the resulting Green operators on λ within suitable locally convex spaces

and on a suitable domain in C. These results are useful even in situations where the operators

P+A(λ ) are local Green-hyperbolic operators. For example, they have been applied in [10] in

the context of measurement schemes for observables in QFT. The Green operators we study have

properties similar to those of Green-hyperbolic operators, with the following generalised support

property:

suppE±
P+A(λ ) f ⊂

{
J±(supp f ) J±(supp f )∩K = /0

J±(supp f ∪K) otherwise,
(1.3)

for compactly supported f , where J+/−(S) are the causal future/past of a set S. This support

property characterises what we call K-nonlocal Green operators, set out precisely in Definition 2.4

below.
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The main result of this paper is Theorem 3.1, which sets out conditions on P and A(λ ) under

which suitable Green operators for P+A(λ ) exist. The principal hypothesis on P is that it is a

Green-hyperbolic operator whose Green operators have extensions to continuous maps between the

Sobolev spaces Hs
0(M) and H

s+β
loc (M) for all sufficiently large s and some fixed β . This hypothesis

is valid for second order normally hyperbolic operators with β = 1 (see [9, Thm 6.5.3]). The main

hypothesis on A(λ ) is that each A(λ ) is a continuous linear self-map of C∞(M) with continuous

extensions mapping between Sobolev spaces Hs
loc(M) to H

s+γ
K (M) for all sufficiently large s and

some fixed γ >−β . This implies that the compositions A(λ )E± are compact maps between Hs
0(M)

and Hs
K(M) and it is required that they depend holomorphically on λ in the topology of bounded

convergence on linear maps between these spaces. A brief summary of the various topological

spaces and topologies used in this work is provided in Appendix A.

Given the above assumptions, the analytic Fredholm theorem can be used to find inverses (I +
A(λ )E±)−1 on Hs

K(M) for all sufficiently large s ∈ R and all complex λ in an open neighbourhood

of zero, whose (possibly empty) complement is a discrete subset S of C. Exceptional values λ ∈ S

occur precisely when there exist nontrivial smooth solutions to (P+A(λ ))φ = 0, whose support is

either past- or future-compact, i.e., nontrivial solutions that vanish identically at early or late times,

representing spontaneously appearing or disappearing disturbances; they are clearly excluded if any

sort of energy estimate is available. For λ ∈C\S, one may use the inverses to construct K-nonlocal

Green operators for P+A(λ ). It is also proved that the resulting K-nonlocal Green operators are

holomorphic on C\S, with respect to the topology of bounded convergence on linear maps between

C∞
0 (M) and C∞(M). The power series expansion of the Green operators about λ = 0 corresponds

to a Born expansion of the Green operators.

In the situation where our main hypotheses are also satisfied for the formal duals of P and

A(λ ), we apply Fredholm index theory to show that the dimension of the space of spontaneously

appearing (resp., disappearing) solutions for P+A(λ ) is equal to the dimension of the space of

spontaneously disappearing (resp., appearing) solutions for its formal dual,

dimker(P+A(λ ))|C∞
pc/fc

= dimker(tP+ tA(λ ))|C∞
fc/pc

, (1.4)

for all λ ∈ C. Consequently, the spaces of appearing and disappearing solutions of a formally

self-dual operator have equal dimension.

The paper is structured as follows: in Section 2, we recall the definition and main properties

of Green-hyperbolic operators and develop the appropriate notion of K-nonlocal Green operators.

Section 3 contains the statement of our main result, Theorem 3.1 and illustrates it with examples of

how it may be used and of the necessity of some of its hypotheses. Section 4 provides an application

of our result to the LU factorisation and solution of certain systems of nonlocal equations. The

main result is proved in Section 5, by a sequence of results initially in Sobolev spaces and then

for smooth functions, while (1.4) is proved in Section 6 using Fredholm theory and the results

of Section 5. Appendix A collects some necessary background on the topological spaces and

topologies appearing in the text.

2 Green-hyperbolic operators

Preliminaries We begin by recalling the general setting of Green-hyperbolic operators [2]. Let

M be a smooth finite-dimensional manifold, allowing the possibility that M has finitely many con-

nected components with possibly different dimensions, and let g be a smooth Lorentzian metric

on M of signature +−−·· · . With these structures, M is automatically Hausdorff and paracom-

pact [13]. We assume that (M,g) is time-orientable and that a time-orientation has been chosen. To

minimise notation, we denote the Lorentzian spacetime formed by the manifold, metric and time

3



orientation with the single symbol M. The volume measure induced by the metric will be denoted

µ . On other points of notation, the symbol ⊂ will always allow for the possibility of equality, while

N0 and N denote the natural numbers with or without zero, respectively.

As usual, the causal future/past of a point x ∈ M is denoted J±(x) and comprises all points

(including x) that may be reached from x along smooth future/past-directed curves. (Throughout

this paper, we tacitly order alternatives labelled by ± or ∓ so that the alternative labelled by the

upper symbol comes first.) If S ⊂ M then one writes J±(S) = ∪x∈SJ±(x), and J(S) = J+(S)∪
J−(S). The spacetime is globally hyperbolic if it contains no causal curves and J+(K)∩ J−(K)
is compact for all compact sets K ⊂ M [6]. Globally hyperbolic spacetimes can be foliated into

smooth spacelike Cauchy surfaces [5]; it is also the case that J±(K) are closed whenever K is

compact. We adopt the following terminology: S ⊂ M is spacelike compact if S is closed and

S ⊂ J(K) for some compact K; S is future/past-compact if S∩ J±(x) is compact for all x ∈ M; S is

strictly future/past-compact if S ⊂ J∓(K) for some compact K.

If B is a vector bundle, then Γ∞(B) will denote the corresponding space of smooth sections

and Γ∞
0/pc/fc/spc/sfc/sc

(B) will be the spaces of smooth sections with compact/past-compact/future-

compact/strictly past-compact/strictly future-compact/spacelike-compact support. The space of

smooth sections with support contained in some a closed subset A ⊂ M is denoted Γ∞
A(M). Further

details on the topologies of these spaces are summarised in Appendix A. We will only consider

bundles with finite-dimensional fibres that are (without any real loss) vector spaces over C. The

bilinear (not sesquilinear!) pairing between sections of dual bundle B∗ and sections of B is denoted

with angle brackets 〈·, ·〉 : Γ∞(B∗)×Γ∞(B)→C∞(M).

Green-hyperbolicity Now suppose that B1 and B2 are bundles over M and that P : Γ∞(B1) →
Γ∞(B2) is a linear partial differential operator. Then there is a formal dual. tP : Γ∞(B∗

2)→ Γ∞(B∗
1)

given by ∫

M
µ 〈tP f ,φ〉=

∫

M
µ 〈 f ,Pφ〉 (2.1)

for all φ ∈ Γ∞(B1) and f ∈ Γ∞(B∗
2) whose supports intersect compactly; tP is also a linear partial

differential operator. If they exist, linear maps E± : Γ∞
0 (B2)→ Γ∞(B1) obeying

G1 E±P f = f for all f ∈ Γ∞
0 (B1)

G2 PE± f = f for all f ∈ Γ∞
0 (B2)

G3 suppE± f ⊂ J±(supp f ) for all f ∈ Γ∞
0 (B2)

are called advanced (−) and retarded (+) Green operators for P.1

Definition 2.1. P is said to be Green-hyperbolic if both P and tP admit advanced and retarded

Green operators.

It is a remarkable fact that this purely algebraic definition – only requiring linearity of E± and

with no presumption of uniqueness – has the following consequence, which is a summary of results

in Sections 3 & 4 of [2] and deserves to be called the first main theorem of Green-hyperbolicity.

Theorem 2.2. Let P : Γ∞(B1)→ Γ∞(B2) be a Green-hyperbolic operator and consider:

(i). the restriction P : Γ∞
spc/sfc

(B1)→ Γ∞
spc/sfc

(B2),

(ii). the restriction P : Γ∞
pc/fc

(B1)→ Γ∞
pc/fc

(B2), or

1Bär reverses the usage of ‘advanced’ and ‘retarded’; we adopt the more standard convention.
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(iii). the extension P : D′
pc/ f c

(B1)→D′
pc/ f c

(B2) (see below).

Then, in each case, P has continuous inverses, denoted Ẽ±, E
±

and Ê± in cases (i), (ii), (iii) respec-

tively, and which are successive extensions of E±. Each of these inverses has the support property

G3, replacing Γ∞
0 (B2) by the appropriate domain. In particular, E± are uniquely determined by P

and are continuous.

In (iii) the space of distributional sections D′(B) of a bundle B over M is defined as the topo-

logical dual of Γ∞
0 (B

∗⊗Ω), where Ω is the bundle of weight-1 densities over M. As sections of

B and B∗⊗Ω can be paired to give a density, there is an obvious embedding of Γ∞(B) in D′(B),
with φ ∈ Γ∞(B) corresponding to the distribution f 7→

∫
M〈φ , f 〉 acting on f ∈ Γ∞

0 (B
∗⊗Ω). The

map P in (iii) is the restriction of the dual map (µ(tP)µ−1)′ to elements of D′(B1) with past- or

future-compact support. (Recall that the formal dual is defined relative to the specific density µ .)

In [2], Bär defines distributional sections of B as the topological dual of Γ∞
0 (B

∗), which would be

distribution densities in our terminology. The metric density provides an isomorphism between the

spaces and operators that he considers and those that we do. As we have in mind potential applica-

tions where more than one metric might be in use, we have elected not to make a fixed identification

between distributions and distribution densities.

The second main theorem of Green-hyperbolicity provides two exact sequences that are highly

useful in applications, combining (and very mildly extending)2 theorems 3.22 & 4.3 of [2].

Theorem 2.3. Let P : Γ∞(B1) → Γ∞(B2) be Green-hyperbolic and define the advanced-minus-

retarded operators E = E− −E+ : Γ∞
0 (B2) → Γ∞

sc(B1) and Ê = Ê− − Ê+, using the notation of

Theorem 2.2. Then there are two exact sequences

0 Γ∞
0 (B1) Γ∞

0 (B2) Γ∞
sc(B1) Γ∞

sc(B2) 0

0 D′
0(B1) D′

0(B2) D′
sc(B1) D′

sc(B2) 0,

P E P

P Ê P

(2.2)

in which the downward arrows are the natural embeddings of smooth into distributional sections.

A direct consequence is that the solution space Sol(P) = {φ ∈ Γ∞
sc(B) : Pφ = 0} is given by

Sol(P) = EΓ∞
0 (B). The special properties of Green-hyperbolic operators are not confined to the

statement of Theorems 2.2 and 2.3. As shown in [2], products and direct sums of Green-hyperbolic

operators are Green-hyperbolic, and indeed any operator whose square is Green-hyperbolic is

Green-hyperbolic. Turning to physical applications, suppose that a bundle B admits a nondegener-

ate bilinear form, or equivalently a base-point preserving vector bundle isomorphism I : B → B∗,

and an antilinear base-point preserving conjugation Γ : B → B. Then P : Γ(B) → Γ(B) is said to

be formally self-adjoint if P = I −1tPI , and real if P = ΓPΓ. If a formally self-adjoint operator

P admits advanced and retarded Green operators then P is Green hyperbolic and moreover Sol(P)
admits a symplectic form

σ(E f1,E f2) = 〈I f1,E f2〉 ( fi ∈ Γ∞
0 (B)). (2.3)

If P is also real then there is an associated bosonic QFT described by a unital ∗-algebra of observ-

ables, generated by symbols Φ( f ) ( f ∈ Γ∞
0 (B)) and subject to the relations:

• f 7→ Φ( f ) is complex linear (linearity)

2The extension is the right-most arrow, asserting surjectivity of P onto spacelike compact (distributional) sections.

But any such smooth section can be split as f = f+ + f− where f± has past/future-compact support, whereupon

f = P(E
+

f++E
−

f−); the argument is identical for distributions, replacing E
±

by Ê±.
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• Φ( f )∗ = Φ(Γ f ) (Hermiticity)

• Φ(P f ) = 0 (field equation)

• [Φ( f ),Φ(h)] = iσ(E f ,Eh)111 (canonical commutation relations)

for all f ,h ∈ Γ∞
0 (B). (If P is not real, then there is a quantisation as a bosonic complex field.)

This essentially functorial quantisation is one of the main applications for the theory of Green

hyperbolic operators. Under more restrictive circumstances first order Green-hyperbolic operators

can also admit fermionic quantisation [3].

Modified Green-hyperbolic operators Turning to the subject of this paper, suppose P : Γ∞(B1)→
Γ∞(B2) is Green-hyperbolic, with Green operators E±. Let A : Γ∞(B1) → Γ∞(B2) be linear, with

range contained in Γ∞
K(B2) for some compact, topologically regular K ⊂ M.

Although P+A is not necessarily a differential operator, we wish to state conditions analogous

to G1–3 that can characterise suitable Green operators. To gain some insight, let us assume for the

moment that for each h ∈ Γ∞
0 (B2), the equation (P+A)φ = h has unique solutions with past/future-

compact support given by φ = E±
P+Ah where E±

P+A : Γ∞
0 (B2)→ Γ∞(B1) are linear maps with ranges

necessarily contained in Γ∞
pc/ f c

(B1). Then we may write

PE±
P+A f = f −AE±

P+A f = PE±
P ( f −AE±

P+A f ) ( f ∈ Γ∞
0 (B2)), (2.4)

using our assumptions on P and A. As P is invertible on Γ∞
pc/fc

(B1) by Theorem 2.2(ii), we have

E±
P+A f = E±

P ( f −AE±
P+A f ) (2.5)

with support determined using condition G3 for P,

suppE±
P+A f ⊂ J±(supp( f −AE±

P+A f ))⊂ J±(supp f ∪K). (2.6)

By imposing further conditions on A we may refine the information available. Specifically, suppose

that φ |K ≡ 0 implies that Aφ ≡ 0. Observe that

(P+A)E±
P f = f +AE±

P f ∈ Γ∞
0 (B1) (2.7)

by G2 for E±
P and the definition of A; by assumption on E±

P+A we now have

E±
P f = E±

P+A( f +AE±
P f ) (2.8)

and deduce that E±
P+A f = E±

P f for all f ∈ Γ∞
0 (B2) such that J±(supp f )∩K is empty (because

AE±
P f vanishes). Together with our earlier observation, E±

P+A satisfy the modified support property

G3′ for all f ∈ Γ∞
0 (B2),

suppE±
P+A f ⊂

{
J±(supp f ) J±(supp f )∩K = /0

J±(supp f ∪K) otherwise.
(2.9)

With this intuition established, we can drop the assumption that (P+A)φ = h has unique solutions

with past/future-compact support. The standing assumptions are now

A1 P : Γ∞(B1)→ Γ∞(B2) is Green-hyperbolic

A2 A : Γ∞(B1)→ Γ∞(B2) is linear, with range contained in Γ∞
K(B2)

6



A3 For φ ∈ Γ∞(B1), φ |K ≡ 0 implies Aφ ≡ 0.

We now make the following definition.

Definition 2.4. Subject to assumptions A1–A3, linear maps E±
P+A : Γ∞

0 (B2)→ Γ∞(B1) are said to

be retarded/advanced K-nonlocal Green operators for P+A if they satisfy G1 and G2 (with P+A

replacing P and E±
P+A replacing E±) and G3′. If both P + A and tP + tA admit retarded and

advanced K-nonlocal Green operators then P+A is called K-nonlocally Green-hyperbolic.

As with Green-hyperbolic operators, the above definition implies considerably more and in-

deed the analogue of Theorem 2.2 holds with G3 replaced by G3′. These results will be proved

in [12]. Our main goal here will be to give sufficient conditions for the existence of K-nonlocal

Green operators. For simplicity of presentation, we restrict to operators acting on spaces of smooth

functions, rather than bundle sections. We will also establish some continuity results for the K-

nonlocal Green operators, both from C∞
0 (M) to C∞(M) and between various Sobolev spaces, and

address the holomorphicity of the K-nonlocal Green operators with respect to a parameter.

At a formal level it is straightforward to see what the Green operators of P+A should be, if

they exist: if φ ∈C∞
pc/ f c

(M) solves (P+A)φ = f ∈C∞
0 (M), then

φ = E±
P ( f −Aφ) = E±g, (2.10)

where g = f −Aφ = f −AE±
P g, so g = (I+AE±

P )−1 f . Formally, therefore, the Green operators for

P+A are

E±
P+A = E±

P (I +AE±)−1, (2.11)

and the technical task is to make this formula rigorous, where possible, and to establish that the

resulting operators E±
P+A are indeed K-nonlocal Green operators for P+A. Note that the inversion

of I +AE± must be performed in C∞
0 (M). We will accomplish this by first inverting in Sobolev

spaces, where Hilbert space techniques can be used, and then boosting the result up to C∞
0 (M).

3 Main result and remarks

Let M be a globally hyperbolic spacetime with at most finitely many connected components, and

let K be a fixed, topologically regular, compact subset of M. For brevity, we write C∞ for C∞(M)
and so on; for a closed set A, C∞

A denotes the space of smooth functions with support in A, and the

same convention is used for other spaces of distributions and Sobolev spaces. If X and Y are locally

convex topological spaces, Lb(X ,Y ) denotes the space of linear maps between them, equipped with

the topology of bounded convergence (see Appendix A); for linear maps between normed spaces,

this coincides with the usual operator norm topology. As usual, we write Lb(X) for Lb(X ,Y ).
The main result of this paper is the following.

Theorem 3.1. Let P be a Green-hyperbolic operator and suppose A(λ ) (λ ∈ C) is a family of

linear maps A(λ ) : C∞ →C∞ whose ranges are contained in C∞
K and with A(0) = 0. Suppose that,

for some β ,γ ∈ R with δ = β + γ > 0, and some s∗ ∈ R,

(a). the Green operators E± of P extend to linear maps E′ → D′ with continuous restrictions

mapping Hs
0 → H

s+β
loc for all s ≥ s∗;

(b). each map A(λ ) extends to a linear map D′ → D′
K with continuous restrictions mapping

Hs
loc → H

s+γ
K for all s ≥ s∗+ β (consequently, the continuous maps A(λ )E± : Hs

0 → Hs+δ
K

induce compact maps A(λ )E± : Hs
0 → Hs

K due to the Sobolev embedding theorems and δ >
0);

7



(c). for all s ≥ s∗, the compact map Hs
0 → Hs

K induced by the compositions A(λ )E± is holomor-

phic in λ ∈ C with respect to the topology of Lb(H
s
0,H

s
K);

(d). if f ∈C∞ vanishes identically on K then A f = 0.

Then

(A). ker(P+A(λ ))|C∞
pc/fc

has finite dimension for each λ ∈ C;

(B). the sets

S± = {λ ∈ C : ker(P+A(λ ))|C∞
pc/fc

6= 0} and S = S+∪S− (3.1)

are discrete subsets of C, whose complements are open neighbourhoods of zero;

(C). P+A(λ ) has advanced and retarded K-nonlocal Green operators for all λ ∈ C\S, that are

holomorphic in λ on this domain with respect to the topology of Lb(C
∞
0 ,C

∞);

(D). the Green operators possess continuous extensions mapping Hs
0 → H

s+β
loc for all s ≥ s∗ and

which are holomorphic in λ ∈ C\S with respect to the topology of Lb(H
s
0,H

s+β
loc );

(E). if (d) is replaced by

(d′). suppA(λ ) f ⊂ supp f for all f ∈C∞, and λ ∈ C

then P+A(λ ) has advanced and retarded Green operators in the usual sense for λ ∈ C\S.

Of course, in the situation where the hypotheses also apply to the formal duals of P and A(λ )
then the upshot is that P+A(λ ) and tP+ tA(λ ) both admit advanced and retarded K-nonlocal Green

operators for all λ ∈ C in an open 0-neighbourhood with discrete complement given by the union

of S with the corresponding set for tP. For the non-exceptional values, P+A(λ ) is K-nonlocally

Green-hyperbolic. The general theory of such operators and their properties is developed in detail

in [12]. We note in particular that when the ranges of both A(λ ) and tA(λ ) are contained in C∞
K

then assumption (d) holds automatically for both operators.

In many situations the holomorphicity assumption (c) is easily verified, e.g., where A(λ ) is a

polynomial in λ . Precomposing with the continuous embedding Hs
K → Hs

0, it follows that the re-

strictions of A(λ )E± to Hs
K (s ≥ s∗) are holomorphic with respect to the norm topology of L (Hs

K).
On the other hand, postcomposing with the embedding Hs

K → Hs
0, we also have holomorphicity of

A(λ )E± with respect to Lb(H
s
0) (e.g., see Lemma A.2).

An immediate application of Theorem 3.1 is:

Corollary 3.2. Let P be a second-order normally hyperbolic operator on M and let K ⊂ M be

compact. Let ρ : C→C∞(K ×K) be a polynomial and define A(λ ) : C∞(M)→C∞
K (M) by

(A(λ )φ)(x) =

∫

M
ρ(λ )(x,y)φ(y)µy, (φ ∈C∞(M)). (3.2)

Then P and A(λ ) satisfy the hypotheses of Theorem 3.1. In particular, P+ λAρ has advanced

and retarded K-nonlocal Green operators for all λ in an open 0-neighbourhood with a discrete

complement in C.

Proof. P is Green-hyperbolic, and its Green operators extend to maps E± : Hs
0 → Hs+1

loc , i.e., they

improve smoothness by one order, by [9, Thm 6.5.3] (see [19] for a bundle version). One easily

checks that the technical conditions on A(λ ) are certainly met by integral operators with kernels in

C∞
K×K(M×M).
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Theorem 3.1 is proved in the next section, after a number of further remarks and examples.

First, we note that Theorem 3.1 is far from the most general statement that could be made. For

instance, at the cost of more notation but no new ideas, it generalises immediately to operators

acting on sections in finite-dimensional vector bundles over M. This can also be shown by applying

Theorem 3.1 in its current form, using a method of LU factorisation described in Section 4.

Second, generalisations to multi-variable modifications P+∑r
j=1 A j(λ j) are possible. In this

case, the discrete exceptional sets are replaced by sets in C
r that, locally, are vanishing sets of

holomorphic functions in r variables. See [14] for the appropriate multi-variable Fredholm theorem

and [20] for an exposition.

Third, the significance of holomorphicity in the topology of bounded convergence is that com-

positions of such functions are also holomorphic in the topology of bounded convergence, with

derivatives given by the usual Leibniz rule. This is explained in more detail in Appendix A.3.

Fourth, Theorem 3.1 shows that the obstruction to the existence of K-nonlocal Green functions

for P + λA is provided by nontrivial smooth solutions to (P + λA)φ = 0 with past- or future-

compact support (which, if present, span finite dimensional spaces). Any sort of energy estimate

would be sufficient to exclude nontrivial solutions of this type, which indicate unphysical behaviour

in a closed system. Mathematical examples are easily constructed, however.

Example 3.3. Let P be Green-hyperbolic on M with Green operators E±. Fix any nontrivial

f ,h ∈C∞
K and define A : C∞ →C∞

0 by

Aφ =−

(∫
hφ µ

)
f , (3.3)

noting that the range of A is contained in C∞
K . If φ ∈ C∞

pc/ f c
obeys (P+ λA)φ = 0, then Pφ =

−(λ
∫

hφ µ) f and we deduce that φ is a constant multiple of E± f ; hence it must also be that

(P+λA)E± f = 0 or equivalently f = λν± f where ν± =
∫

hE± f µ . Thus a necessary condition

for the existence of nontrivial φ ∈ ker(P+λA)|C∞
pc/ f c

is that λν± = 1, and it is easily seen that this

condition is sufficient. Summarising,

ker(P+λA)|C∞
pc/fc

=

{
0 λν± 6= 1

CE± f λν± = 1.
(3.4)

Next, note that tA takes the same form as A but with f and h exchanged. Therefore ker
t(P +

λA)|C∞
pc/fc

is nontrivial if and only if λ tν± = 1, where tν± =
∫

f E±
t hµ and E±

t are the Green

operators of tP. But E±
t is the formal dual of E∓, so in fact tν± = ν∓ and

ker
t(P+λA)|C∞

pc/fc
=

{
0 ν∓λ 6= 1

CE±h ν∓λ = 1
(3.5)

and consequently

dimker(P+λA)|C∞
pc/fc

= dimker(tP+λ tA)|C∞
fc/pc

. (3.6)

Thus there are at most two values of λ for which P+λA can fail to be K-nonlocal Green-hyperbolic.

In the case where P obeys the hypothesis (a) of Theorem 3.1 (e.g., if P is the Klein–Gordon opera-

tor) then P+λA is K-nonlocally Green-hyperbolic for all λ ∈ C\{(ν±)−1}.

The example above illustrates a general result based on Fredholm index theory, which was

prompted by an insightful question posed to the author by Bär, and is proved in section 6.
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Theorem 3.4. Suppose that the hypotheses of Theorem 3.1 are met for both P and A(λ ), and tP

and tA(λ ), with β ≥ 0 and s∗ ≤−β < γ . Then, for all λ ∈ C,

N±(λ ) := dimker(P+A(λ ))|C∞
pc/fc

= dimker(tP+ tA(λ ))|C∞
fc/pc

. (3.7)

In particular, N+(λ ) = N−(λ ) in the case where P and A(λ ) are formally self-dual.

At first sight it is quite surprising that the spaces of spontaneously appearing and disappearing

solutions have equal dimension for the self-dual case. At its core is the fundamental fact about

Lorentzian causality that x ∈ J±(y) if and only if y ∈ J∓(x), and its consequence that the advanced

and retarded Green operators of a Green hyperbolic operator P are formal duals of the retarded and

advanced Green operators of the formal dual tP. This by itself is not enough for the result above,

which also makes essential use of the that A(λ )E± is compact, because it improves regularity.

The last remark prompts one to consider situations where A(λ )E± does not improve regularity.

Example 3.5. Consider the Green-hyperbolic operator P = ∂u∂v with respect to (u,v) coordinates

on R2, regarding vectors with nonnegative components in these coordinates as future-pointing and

causal. We may write P = ∂ ⊗∂ in an obvious tensor product notation. Let f , g and h be smooth

real-valued functions on R, so that f , g′ and h have support contained in [−2,2], suppg ⊂ [−2,∞),
f ≡ 1 on a neighbourhood of [−1,1] and 〈h | g〉 = 1 in the usual L2(R) inner product. Define

T =−|g′〉〈h | and note that

g′+T g = 0. (3.8)

Setting K = [−2,2]× [−2,2], the operator

A = ( f ∂ )⊗T (3.9)

maps C∞(R2) continuously to C∞
0 (K), vanishes on φ ∈ C∞(M) with φ |K ≡ 0, and extends to a

continuous map Hs
loc → Hs−1

K for any s ∈ R. Thus AE± : Hs
K → Hs

K . It is now easily seen that the

equation

Pϕ +Aϕ = 0 (3.10)

is solved by any distribution ϕ = υ ⊗g, where υ ∈D′(R) is supported in [−1,1]. Such ϕ have past

compact support, contained in [−1,1]× [−2,∞).
This example shows that the regularity-improving nature of AE± is responsible for both the

smoothness of past-/future-compact solutions to (P+A)φ = 0 and the finite-dimensionality of the

corresponding solution spaces.

In the light of this example it is clear that further conditions would be needed to deal with

modifications of first order derivative operators. For example, if D is a Dirac operator then there

is a companion operator D̃ so that P = DD̃ and P̃ = D̃D are second order Green-hyperbolic with

Green operators E± and Ẽ± respectively that improve regularity by one order. Then G± = D̃E± and

G̃± = DẼ± are Green operators for D and D̃ respectively. Similarly, G±
t =

t
D̃E±

t and G̃±
t = tDẼ±

t

are Green operators for tD and
t
D̃, where E±

t and Ẽ±
t denote the Green operators for tP and

t
P̃.

Thus D and D̃ are Green-hyperbolic, but we cannot assume that their Green operators improve

regularity.

Now consider a K-nonlocal modification D+A of D, suppressing λ -dependence in the follow-

ing. If A and tA have range in C∞
K and improve regularity, then Theorem 3.1 applies and shows

that D+A is K-nonlocally Green-hyperbolic provided that there are no nontrivial past-compact or

future-compact solutions to (D+A)φ = 0 or (tD+ tA)φ = 0. More generally, a natural strategy to

find Green operators for the modified operator is to seek a K-nonlocal operator Ã so that

PA = (D+A)(D̃− Ã) = DD̃+AD̃−DÃ−AÃ (3.11)
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and

P̃A = (D̃− Ã)(D+A) = D̃D+ D̃A− ÃD− ÃA (3.12)

are K-nonlocally Green-hyperbolic. If A is regularity-preserving and one may find a regularity-

preserving Ã such that AD̃−DÃ and D̃A− ÃD lose strictly less than one order of regularity (for all

λ ∈C), then Theorem 3.1 could be applied to PA and P̃A and their Green operators (when they exist)

may be used to construct Green operators for D+A and D̃+ Ã as before. Lacking such a choice,

one potentially falls victim to the behaviour in Example 3.5, unless Theorem 3.1 can be extended

to situations in which AE± does not improve regularity. As these questions are best pursued in the

context of specific models, we leave the discussion here and turn to the proof of Theorem 3.1.

4 Application: LU factorisation method for systems

LU factorisation is a standard technique in linear algebra for solving system of linear equations

Mx = y for x,y ∈ CN . In situations where an invertible matrix M = LU with L lower-triangular

and U upper-triangular, the solution is given by solving the triangular systems Lz = y, Ux = z. The

method can be generalised in many ways, see, e.g. [18]. Here, we discuss its use to solve systems

of Green-hyperbolic equations, or K-nonlocal generalisations thereof.

To see why this cannot be done straightforwardly, consider a system PΦ = F where P :

C∞(M;CN)→C∞(M;CN) is a N ×N matrix of linear self-maps of C∞(M), where M is a globally

hyperbolic spacetime as usual and N ≥ 2. We adopt a block form

P =

(
P R

S Q

)
, (4.1)

where Q is an (N − 1)× (N − 1) block, fixing the dimensions of the other blocks accordingly, so

P = P11 is a self-map of C∞(M). If P is a differential operator with retarded and advanced Green

operators E±
P and RC∞(M;CN−1)⊂C∞

0 (M;C), one may factorise P on C∞
0 (M;CN) as

P =

(
1 0

SE±
P 1

)(
P R

0 Q−SE±
P R

)
. (4.2)

This is the first step towards an LU factorisation: the first factor is indeed lower-triangular, but the

second is not generally upper-triangular. The problem is that even if all the individual matrix ele-

ments of P are differential operators, the factorised form involves the typically nonlocal operators

SE±
P and SE±

P R. Therefore to proceed with this strategy one should rather phrase the problem from

the start in terms of suitable nonlocal operators. (Modulo smoothing operators, one could employ

pseudodifferential operators if the leading diagonal operators were elliptic, but here we require

something more.)

We describe how an exact LU factorisation can be achieved using Theorem 3.1. Let K be a

fixed compact, topologically regular subset of M, and let s∗ ∈ R. Fix β ,γ ∈ R with β + γ > 0. Let

A be the space of maps A : C→ L (C∞(M)) so that, for all λ ∈ C,

• A(λ )C∞(M)⊂C∞
K (M);

• A(λ ) f ≡ 0 if f ∈C∞(M) vanishes identically on K;

• A(λ ) extends to a linear map D′(M)→D′
K(M) with continuous restrictions mapping Hs

loc →

H
s+γ
K for all s ≥ s∗+β ;
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and so that λ → A(λ ) is holomorphic with respect to the topology of Lb(H
s
loc,H

s+γ
K ). Consider a

system P depending on a parameter λ so that every off-diagonal component Pi j (i 6= j) of P is a

map in A, and the diagonal components take the form

Pii = Pi +Ai, (4.3)

where each Pi is a λ -independent Green-hyperbolic operator and each Ai is a map in A. Assume

finally that the Green operators of the Pi extend to maps Hs
0 → H

s+β
loc for all s ≥ s∗.

By Theorem 3.1, P(λ ) = P1 +A1(λ ) has retarded and advanced K-nonlocal Green operators

for all λ in an open 0-neighbourhood with discrete complement in C. We may therefore factorise

P as in (4.2). A key point is that the (N−1)× (N −1) dimensional systems

P
±(λ ) = Q(λ )−S(λ )E±

P(λ )R(λ ) (4.4)

obey the same assumptions as the original system, noting that the matrix components of SE±
P R

determine continuous maps Hs
0 →H

s+β+δ
K →֒H

s+β
K . Theorem 3.1 implies that the leading diagonal

component of P+(λ ) (resp., P−(λ )) has retarded (resp., advanced) K-nonlocal Green operators

for all λ outside a possibly enlarged exceptional set, so we may factor each of P±(λ ). Repeating

the process, this leads to two LU factorisations of P(λ ), which differ only in whether advanced or

retarded Green operators are used in their construction. At each stage in the process we may gain

more exceptional points, but the overall exceptional set is still discrete and excludes zero. From

now on, we suppress the parameter λ in the notation.

For non-exceptional λ , we may now use the LU factorisation to obtain retarded and advanced

Green operators for P . We proceed inductively in N. When N = 1 we are precisely in the situation

of Theorem 3.1. Now suppose that Green operators can be constructed for N − 1-dimensional

systems of the type considered, where N ≥ 2. To establish the inductive step we return to the

factorisation (4.2), in which we may now assume that Q− SE±
P R has retarded/advanced Green

operators and that P has both retarded and advanced Green operators. We claim that

E±
P

=

(
E±

P −E±
P RE±

Q−SE±
P R

0 E±
Q−SE±

P R

)(
1 0

−SE±
P 1

)
(4.5)

are retarded/advanced Green operators for P . To check this, we first observe that the lower-

triangular factor in (4.2), which we denote L, is invertible on C∞
0 (M;CN) with inverse

L−1 =

(
1 0

−SE±
P 1

)
. (4.6)

Then, we compute on the one hand, that

PE±
P

F =

(
P R

S Q

)(
E±

P −E±
P RE±

Q−SE±
P R

0 E±
Q−SE±

P R

)
L−1F =

(
1 0

SE±
P 1

)
L−1F = F (4.7)

and on the other, that

E±
P

PF =

(
E±

P −E±
P RE±

Q−SE±
P R

0 E±
Q−SE±

P R

)
L−1L

(
P R

0 Q−SE±
P R

)
F = F (4.8)

for any F ∈C∞
0 (M;CN) in each case. Finally, the support property G3′ is clear, provided one takes

a consistent choice of + or − in (4.5). Thus P has retarded and advanced K-nonlocal Green

operators, which is the inductive step, and shows that all finite-dimensional systems of the type

considered possess advanced and retarded K-nonlocal Green operators; furthermore, these will

vary holomorphically in λ , in the topology of Lb(C
∞
0 (M;CN),C∞(M;CN)) outside the exceptional

set. In particular, this justifies the treatment of such systems in a recent paper on measurement in

QFT [10], where interactions between a ‘system’ QFT and one or more ‘probe QFT’s are analysed.
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5 Proof of Theorem 3.1

The proof of Theorem 3.1 starts by establishing an inversion result that will later be applied to

I +A(λ )E±, where E± are the Green operators of P. This is proved first in Sobolev spaces Hs
K,

using the analytic Fredholm theorem, and then extended to C∞
K . The main part of the proof then

uses this information to define Green operators for P+A(λ ).

Theorem 5.1. Let K ⊂ M be a fixed topologically regular compact set. Suppose Y (λ ) (λ ∈ C) is

a family of linear maps Y (λ ) : D′
K →D

′
K , each restricting to continuous maps Ys(λ ) : Hs

K → Hs+δ
K

for all s ≥ s∗ ∈ R and some fixed δ > 0. Assume also that Y (0) = 0. Let Ŷs(λ ) ∈ L (Hs
K) denote

the compact maps obtained by composing Ys(λ ) with the embedding Hs+δ
K →֒ Hs

K . Suppose that

λ → Ŷs(λ ) is holomorphic on C in Lb(H
s
K) for all s ≥ s∗. Then:

(a). The set

S = {λ ∈ C : ker(I +Y (λ ))|C∞
K
6= 0} (5.1)

is a discrete subset of C, and C \ S is an open 0-neighbourhood. Furthermore, ker(I +
Y (λ ))|C∞

K
is finite-dimensional, and equal to ker(I + Ŷs(λ )) for each s ≥ s∗.

(b). For all λ ∈ C \ S and all s ≥ s∗, the map I + Ŷs(λ ) is continuously invertible for all s ≥ s∗,

and λ 7→ (I+ Ŷs(λ ))
−1 is holomorphic in C\S. Moreover, (I + Ŷs(λ ))

−1 is the restriction of

(I+ Ŷs∗(λ ))
−1 to Hs

K for each s ≥ s∗, λ ∈ C\S.

(c). (i) Suppose that f : C\S → H
s∗
K is holomorphic and there is a compact subset K f ⊂ K so that

supp(Ŷs∗(λ ))
r f (λ ) ⊂ K f for all r ∈ N0 and λ ∈ C \ S. Then supp(I + Ŷs∗(λ ))

−1 f (λ ) ⊂ K f

for all λ ∈ C\S.

(ii) If Y (λ )C∞
K ⊂ C∞

K′ for some compact K′ ⊂ K, then supp(I + Ŷs∗(λ ))
−1 f ⊂ K′ for all λ ∈

C\S and all f ∈C∞
K , and ker(I+Ŷs∗(λ )) is a finite-dimensional subspace of C∞

K′ for all λ ∈C.

NB In (c), ‘support’ is to be understood as distributional support.

Proof. (a) Compactness of Ŷs(λ ) follows from the Sobolev embedding theorems. The function

λ 7→ I + Ŷs∗(λ ) is an analytic function on C with values in the Fredholm operators on H
s∗
K , and

which is invertible for λ = 0 because Ŷs∗(0) = 0. By the analytic Fredholm theorem [24, Thm

VI.14], I + Ŷs∗(λ ) is invertible for all λ ∈ C with the exception of the (possibly empty) set Ss∗

of λ ∈ C for which ker(I + Ŷs∗(λ )) is nontrivial (and necessarily finite-dimensional by [24, Thm

VI.15]). Furthermore, Ss∗ is a discrete subset of C, whose complement is an open 0-neighbourhood,

and the inverse (I + Ŷs∗(λ ))
−1 is meromorphic on C and holomorphic on C\Ss∗ .

If f ∈ ker(I + Ŷs∗(λ )) then f = −Ŷs∗(λ ) f ∈ H
s∗+δ
K obeys f ∈ ker(I + Ŷs∗+δ (λ )); iterating,

f ∈
⋂

s≥s∗
Hs

K = C∞
K and f ∈ ker(I +Y (λ ))|C∞

K
. As the converse inclusion is trivial, we deduce

that ker(I + Ŷs∗(λ )) = ker(I +Y (λ ))|C∞
K

for all λ ∈ C and hence that Ss∗ = S defined in (5.1). In

particular, for each fixed λ ∈ C, all the kernels ker(I + Ŷs(λ )) are equal for s ≥ s∗.

(b) The first statement is immediate by the Fredholm theorem and part (a); the second follows

because I + Ŷs(λ ) coincides with I + Ŷs∗(λ ) on Hs
K and both operators are invertible for λ ∈ C\S.

(c)(i) Let χ ∈ C∞
0 vanish on K f . Regarding each (Ŷs∗(λ ))

n f (λ ) as a distribution with sup-

port in K f , we see (e.g., by Theorem 2.3.3 in [16]) that (Ŷs∗(λ )
n f (λ ))(χ) = 0 for all n ∈ N0

and so the holomorphic function on C \ S defined by λ 7→ ((I + Ŷs∗(λ ))
−1 f (λ ))(χ) vanishes in

a neighbourhood of the origin on which the resolvent may be expanded as a convergent geomet-

ric series in powers of Ŷs∗(λ ), recalling that Ŷs∗(λ ) → 0 as λ → 0. By holomorphicity, it fol-

lows that ((I + Ŷs∗(λ ))
−1 f (λ ))(χ) = 0 for all λ ∈ C \ S. Allowing χ to vary, we conclude that

supp(I + Ŷs∗(λ ))
−1 f (λ )⊂ K f .
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(c)(ii) The assumption implies that of (c)(i) for all f ∈C∞
K (regarded as constant functions from

C\S to H
s∗
K ) with K f = K′, so supp(I+Ŷs∗(λ ))

−1 f ⊂ K′ for all λ ∈C\S and all f ∈C∞
K . Finally, if

g ∈ ker(I + Ŷs∗(λ )) = ker(I +Y (λ ))|C∞
K

(already known to be finite-dimensional) then g ∈C∞
K and

g =−Y (λ )g ∈C∞
K′ .

The hypotheses of Theorem 5.1 entail that each Y (λ ) restricts to a continuous endomorphism

of C∞
K . To see this, note that for any k ∈ N0 and any integer s > k+n/2, where n is the maximum

dimension of any component of M, there are continuous maps

Cs
K −→ Hs

K

Y (λ )
−→ Hs

K −→Ck
K, (5.2)

where the unlabelled arrows are Sobolev embeddings. Thus for all k ∈ N0 there is s ∈ N0 and a

constant C such that ‖Y (λ ) f‖K,k ≤C‖ f‖K,s for all f ∈C∞
K . This observation allows the following

conclusion to be drawn.

Corollary 5.2. In the notation of Theorem 5.1, and for λ ∈ C \ S, I +Y (λ ) restricts to a home-

omorphism of C∞
K , with inverse to be denoted R(λ ). The map λ 7→ R(λ ) is holomorphic on

C \ S in the topology of Lb(C
∞
K ). If, additionally, for some holomorphic function f : C \ S → C∞

K

there is a compact subset K f ⊂ K so that suppY (λ )r f (λ ) ⊂ K f for all r ∈ N0 and λ ∈ C \ S,

then suppR(λ ) f (λ ) ⊂ K f for all λ ∈ C \ S. If Y (λ )C∞
K ⊂ C∞

K′ for some compact K′ ⊂ K, then

ker(I +Y (λ ))|C∞
K

is a finite-dimensional subspace of C∞
K′ for all λ ∈ C.

Proof. Suppose f ∈ C∞
K and λ /∈ S. Then, for all s ≥ s∗, we have f ∈ Hs

K and (I + Ŷs(λ ))
−1 f =

(I+ Ŷs∗(λ ))
−1 f , and consequently

(I + Ŷs∗(λ ))
−1 f ∈

⋂

s≥s∗

Hs
K =C∞

K . (5.3)

Thus (I + Ŷs∗(λ ))
−1 restricts to linear self-map of C∞

K which (because Y (λ ) and Ŷs∗(λ ) agree on

C∞
K ) is a linear inverse to the restriction of I+Y (λ ). Accordingly, I+Y (λ ) restricts to a continuous

bijection of C∞
K , and since the latter is a Fréchet space the inverse mapping theorem implies that

the inverse R(λ ) is continuous. As every C∞
K semi-norm is dominated by a Sobolev norm and vice

versa, convergence in the operator norm of every Hs
K (s ≥ s∗) implies convergence in Lb(C

∞
K ), by

Corollary A.5 in the Appendix. It follows that λ 7→ R(λ ) is holomorphic on C \ S in the topology

of Lb(C
∞
K ). The remaining statements are immediate from parts (a,c) of Theorem 5.1 and the fact

that distributional support of a smooth function is exactly its usual support.

We need the following elementary observation, which will be used for F =C∞
K , G =C∞

0 .

Lemma 5.3. Let F and G be topological vector spaces and suppose that the diagram

F F

G G

S

ι ι

T

T̂ (5.4)

of continuous linear maps commutes. If idF +S is continuously invertible, then idG +T is continu-

ously invertible with inverse

(idG +T )−1 = idG −T + ιS(idF +S)−1T̂ . (5.5)

14



Proof. Assuming that idF +S is continuously invertible, we compute

(idG +T )(idG−T + ιS(idF +S)−1T̂ ) = idG −T 2 + ι(idF +S)S(idF +S)−1T̂ = idG

and

(idG −T + ιS(idF +S)−1T̂ )(idG +T ) = idG −T 2 + ιS(idF +S)−1(idF +S)T̂ = idG.

using in both cases the identities ιS = T ι and hence ιST̂ = T ιT̂ = T 2, and also T̂ T = T̂ ιT̂ = ST̂ .

Therefore idG +T has a linear inverse, given by a manifestly continuous expression.

We come to the proof of the main result.

Proof of Theorem 3.1. The proof involves several steps, and uses some technical lemmas from the

Appendix.

1. Preliminary observations Define Y±(λ ) ∈ L (C∞
0 ,C

∞) by

Y±(λ ) = A(λ )E±. (5.6)

Owing to assumptions (a) and (b), we may extend Y±(λ ) to linear maps E′ →D′
K with continuous

restrictions mapping Hs
0 → Hs+δ

K for all s ≥ s∗; hence there are also continuous restrictions Y±
s (λ ) :

Hs
K → Hs+δ

K for s ≥ s∗, and by the Sobolev embedding theorems, compact maps Ŷ±
s (λ ) : Hs

K → Hs
K

for s ≥ s∗ which are holomorphic with respect to the operator norm topology, as noted after the

statement of Theorem 3.1.

In fact, if K′ is any compact topologically regular set, the same argument shows that Y±(λ ) de-

fine compact maps depending holomorphically on λ in the topology of Lb(H
s
K∪K′) for all s≥ s∗. By

Corollary A.5, it follows that Y±(λ ) is holomorphic in λ with respect to the Lb(C
∞
K∪K′) topology.

As C∞
K and C∞

K′ are continuously embedded topological subspaces of C∞
K∪K′ , and RanY±(λ )⊂C∞

K ,

we may use Lemma A.2(a),(c) to deduce that the Y±(λ ) is holomorphic in λ with respect to the

topology of Lb(C
∞
K′,C∞

K ). By Lemma A.6 it follows that A(λ )E± are also holomorphic with re-

spect to Lb(C
∞
0 ,C

∞
K ) and Lb(C

∞
0 ); using Lemma A.2(a), we also have holomorphicity with respect

to Lb(C
∞
K ,C

∞
0 ).

2. Finite dimensionality of ker(P+A(λ ))|C∞
pc/fc

. Next, observe that P induces bijections between

ker(P+ A(λ ))|C∞
pc/fc

and ker(I +Y±(λ ))|C∞
K

, with inverses given by the restrictions of E±. For

if (P+A(λ ))φ = 0 with φ ∈ C∞
pc/fc

then Pφ = −A(λ )φ ∈ C∞
K and φ = E±Pφ , so Pφ ∈ ker(I +

A(λ )E±)|C∞
K

; conversely, if (I +A(λ )E±)h = 0 with h ∈ C∞
K , then PE±h = h = −A(λ )E±h, so

E±h ∈ ker(P+A(λ ))|C∞
pc/fc

. Thus

S± := {λ ∈ C : ker(P+A(λ ))|C∞
pc/fc

6= 0}= {λ ∈ C : ker(I+Y±(λ ))|C∞
K
6= 0}. (5.7)

In combination with Theorem 5.1(a), we also have

dimker(P+A(λ ))|C∞
pc/fc

= dimker(I+Y±
s (λ ))|C∞

K
= dimker(I + Ŷ±

s (λ ))< ∞ (5.8)

(the latter kernel taken in Hs
K) for all s ≥ s∗. Part (A) of the Theorem is thus proved.

3. Construction of holomorphic candidate K-nonlocal Green operators. Applying Theorem 5.1

and Corollary 5.2 to Y±(λ ), one finds that S± are discrete subsets of C, whose complements in C

are open 0-neighbourhoods, and the operators I +Y±(λ ) are continuously invertible on C∞
K for

λ ∈ C \ S±, with inverses that are holomorphic on C \ S± in the topology of Lb(C
∞
K ). All these

properties hold also for S = S+∪S−, so part (B) is proved.
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Fixing any λ ∈ C\S, the diagram of continuous maps

C∞
K C∞

K

C∞
0 C∞

0

TK

T0

T̂0 (5.9)

commutes, where the unlabelled arrows are the canonical inclusions, T0 and TK are the respec-

tive restrictions of Y±(λ ) to C∞
0 , and C∞

K and T̂0 exists because A(λ )C∞ ⊂ C∞
K . It follows from

Lemma 5.3 that I +Y±(λ ) are continuously invertible on C∞
0 . By abuse of notation we write the

inverses as (I +A(λ )E±)−1; Lemma 5.3 now gives the identity

(I+A(λ )E±)−1 = I −A(λ )E±+A(λ )E±(I +A(λ )E±)−1A(λ )E±, (5.10)

on C∞
0 (K), where we suppress notation for inclusions and restrictions. Note that the inverse on

the right-hand side is taken in L (C∞
K), while the left-hand side is an inverse in L (C∞

0 ). Because

the former inverse is holomorphic in Lb(C
∞
K ), the Leibniz rule (see Corollary A.3) implies that the

left-hand side is holomorphic in Lb(C
∞
0 ); here, we have also used the holomorphicity of A(λ )E±

in Lb(C
∞
0 ,C

∞
K ), Lb(C

∞
0 ) and Lb(C

∞
K ,C

∞
0 ) established in step 1 of the proof. It follows that the

operators

Ẽ±
λ
= E±(I +A(λ )E±)−1 ∈ L (C∞

0 ,C
∞), (5.11)

which are the candidate Green operators for P+A(λ ), are holomorphic in λ on C\S with respect

to the topology of Lb(C
∞
0 ,C

∞). To prove part (C) it is now enough to check that Ẽ±
λ

are indeed

K-nonlocal Green operators.

4. Verification that Ẽ±
λ

are K-nonlocal Green operators. Given any f ∈C∞
0 ,

g = (I+A(λ )E±)−1 f (5.12)

is the unique element of C∞
0 obeying

g+A(λ )E±g = f , (5.13)

whereupon we deduce that suppg ⊂ supp f ∪K and that

ϕ = E±g = E±(I +A(λ )E±)−1 f = Ẽ±
λ f (5.14)

satisfies

Pϕ +A(λ )ϕ = g+A(λ )E±g = f , suppϕ ⊂ J±(suppg)⊂ J±(K∪ supp f ). (5.15)

In the special case f = (P+A(λ ))h, for h ∈C∞
0 , we have

f = (P+A(λ ))E±Ph = Ph+A(λ )E±Ph (5.16)

and the unique solution to (5.13) is clearly g = Ph. Thus

Ph = g = (I +A(λ )E±)−1 f = (I+A(λ )E±)−1(P+A(λ ))h; (5.17)

consequently E±(I+A(λ )E±)−1(P+A(λ ))h = h. In combination with (5.15), we have shown

(P+A(λ ))Ẽ±
λ f = f = Ẽ±

λ (P+A(λ )) f , and supp Ẽ±
λ f ⊂ J±(K∪ supp f ) (5.18)
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for all f ∈C∞
0 . Now suppose more specifically that J±(supp f )∩K = /0 for f ∈C∞

0 . Then A(λ )E± f =
0, due to assumption (d), and (5.13) is solved by g = f , so Ẽ±

λ
f = E± f has support contained in

J±(supp f ). Accordingly,

supp Ẽ±
λ

f ⊂

{
J±(supp f ) J±(supp f )∩K = /0

J±(K ∪ supp f ) otherwise,
(5.19)

so Ẽ±
λ

are K-nonlocal Green operators for P+A(λ ). Part (C) is complete.

5. Continuous extension. Due to (5.10), one has the formula

Ẽ±
λ
= E±−E±A(λ )E±+E±A(λ )E±(I +A(λ )E±)−1A(λ )E±, (5.20)

in which the three terms on the right-hand side have continuous extensions as maps from Hs
0 to

H
s+β
loc , H

s+β+δ
loc and H

s+β+2δ
loc respectively. Because δ > 0, we deduce that Ẽ±

λ
extends continuously

to a map Hs
0 →H

s+β
loc as required. By the Leibniz rule (Corollary A.3), this extension is holomorphic

in λ with respect to the topology of Lb(H
s
0,H

s+β
loc ). This proves part (D).

6. Support non-increasing modifications. Finally, suppose condition (d′) holds, so that one has

suppA(λ ) f ⊂ supp f as well as suppA(λ ) f ⊂ K for all f ∈ C∞. Then (d) also holds, either as

a consequence of Peetre’s theorem [23] or by the following direct argument: if f ∈ C∞ vanishes

identically on K, then the carrier of A(λ ) f ∈C∞
K satisfies both

carrA(λ ) f ⊂ int(K) (5.21)

and

carrA(λ ) f ⊂ suppA(λ ) f ⊂ supp f = carr f ⊂ M \K = M \ int(K) (5.22)

and we deduce that carrA(λ ) f is empty, i.e., A(λ ) f vanishes identically. Therefore all the conclu-

sions reached previously still hold.

It further follows that

suppY±(λ ) f = suppA(λ )E± f ⊂ K ∩ suppE± f ⊂ K∩ J±(supp f ) for all f ∈C∞
0 ; (5.23)

iterating, we have in particular that

supp(Y±(λ ))r f ⊂ K±
f := K ∩ J±(supp f ) for all r ∈ N, f ∈C∞

0 and λ ∈ C\S. (5.24)

Therefore (Y±(λ ))rY±(λ ) f ∈ C∞
K±

f

⊂ C∞
K for all r ∈ N0, f ∈ C∞

0 , λ ∈ C \ S. Using Corollary 5.2,

applied to the function λ 7→ Y±(λ ) f ∈C∞
K , it follows that both supp(I +Y±(λ ))−1Y±(λ ) f and

suppY±(λ )(I+Y±(λ ))−1Y±(λ ) f = supp(I − (I +Y±(λ ))−1)Y±(λ ) f (5.25)

are contained in K±
f for all λ ∈ C\S. Using the identity (5.10), it now follows that

supp(I+A(λ )E±)−1 f ⊂ supp f ∪
(
K ∩ J±(supp f )

)
⊂ J±(supp f ) (5.26)

and hence supp Ẽ±
λ

f ⊂ J±(J±(supp f )) = J±(supp f ), which is the support property G3 for stan-

dard Green operators, completing the proof of part (E) and therefore the whole theorem.
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6 Proof of Theorem 3.4

The aim of this section is to prove a relation between the spontaneously appearing and disappearing

solutions for the operators P+A(λ ) and tP+ tA(λ ) stated in Theorem 3.4.

Starting with some preliminaries, let E± and E±
t be the Green operators for P and tP. Be-

cause s∗ ≤−β ≤ 0, E± and E±
t have extensions from C∞

K to continuous maps in both L (H0
0 ,H

β
loc)

and L (H
γ
0 ,H

δ
loc), while A(λ ) and tA(λ ) have extensions from C∞ to continuous maps in both

L (L2
loc,H

γ
K) (and consequently L (L2

K,H
γ
K)) and L (H

β
loc,H

δ
K). We also write Y±(λ ) = A(λ )E±

and Y±
t = tA(λ )E±

t as compact operators on any Hs
K (the value of s will be clear from context, and

we suppress embedding maps between various Hs
K spaces).

We generally abuse notation by using the same notation for A(λ ) whether it operates on Hs
K or

Hs
loc and regardless of s, but our arguments will take proper account of the domains concerned. We

make use of two technical facts in the s = 0 case.

Lemma 6.1. Under the stated assumptions on A(λ ) and Y±(λ ): (a) the identity

A(λ ) f = A(λ )( f |K) (6.1)

holds for all f ∈ L2
loc, where we understand the map A(λ ) ∈ L (L2

loc,H
γ
K) on the left-hand side and

A(λ ) ∈ L (L2
K ,H

γ
K) on the right-hand side; (b) for the operators Y±

t (λ ) ∈ L (L2
K,L

2
K), we have

(Y±
t (λ ))∗ f = (ΓE∓A(λ )Γ f )|K, f ∈ L2

K , (6.2)

where Γ denotes complex conjugation.

Proof. We suppress the λ dependence in this proof. For part (a), first choose fn ∈C∞ with fn → f

in L2
loc. Then for any g ∈ C∞

0 the distributional action of A f on µg (recalling that µ is the volume

density) is given by

(A f )(µg) = lim
n→∞

∫

M
µg(A fn) = lim

n→∞

∫

M
µ(tAg) fn = 〈tAg | f |K〉, (6.3)

where the inner product 〈· | ·〉 is that of L2
K and we use the fact that tAg ∈C∞

K . Now choose a new

sequence fn ∈C∞
K with fn → f |K in L2

K . Then

(A f )(µg) = 〈tAg | f |K〉= lim
n→∞

∫

M
µ(tAg) fn = lim

n→∞

∫

M
µg(A fn) = (A f |K)(µg). (6.4)

As g was arbitrary, A f and A f |K define the same distribution and hence the same element of H
γ
K .

For part (b), we compute for f ,h ∈C∞
K that

〈(Y±
t )∗ f | h〉= 〈 f | Y±

t h〉=
∫

M
µ f (tA)E±

t h =
∫

M
µ(E∓A f )h = 〈(ΓE∓AΓ f )|K | h〉.

Thus we have (Y±
t (λ ))∗ f = (ΓE∓AΓ f )|K for all f ∈C∞

K and hence for all f ∈ L2
K by continuity.

Proof of Theorem 3.4. Let tN±(λ ) = dimker(P+A(λ ))|C∞
pc/fc

. By the remark (5.8) in the proof of

Theorem 3.1, applied to Y±
t in the case s = 0, we have tN±(λ ) = dimker(I +Y±

t (λ )) in L2
K . As

Y±
t are compact and holomorphic in the suppressed parameter λ , Fredholm theory implies that the

index

Index(Y±
t (λ )) = dimker(I +Y±

t (λ ))−dimker(I+(Y±
t (λ ))∗) (6.5)

is independent of λ and therefore vanishes on considering λ = 0 – see e.g., Theorem 4.3.12 in [7]

– so
tN±(λ ) = dimker(I+(Y±

t (λ ))∗). (6.6)
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Below, we will show that AΓ induces an antilinear injection between the kernels of I +(Y±
t (λ ))∗

and I +Y∓(λ ) in L2
K; swapping the roles of P, A(λ ) and tP, tA(λ ) we find that the spaces have

equal (finite) dimension. Consequently,

tN±(λ ) = dimker(I+Y∓(λ )) = N∓(λ ), (6.7)

again using remark (5.8) in the proof of Theorem 3.1, which is the desired result.

It remains to prove that AΓ provides the required antilinear injection. Suppose that there is

f ∈ L2
K \{0} with Γ f =−(Y±

t (λ ))∗Γ f for some fixed λ . Then by Lemma 6.1(b)

f =−(E∓A(λ ) f )|K (6.8)

and since f 6= 0 it also follows that A(λ ) f 6= 0 (otherwise f =−E∓A(λ ) f |K = 0). Furthermore,

A(λ ) f =−A(λ )(E∓A(λ ) f )|K =−A(λ )E∓A(λ ) f =−Y∓(λ )A(λ ) f (6.9)

holds in H
γ
K , so A(λ ) f ∈ ker(I +Y∓(λ )) in H

γ
K, and therefore also in L2

K (since γ > 0 ≥ s∗ the

kernels are equal by Theorem 5.1(a))) Accordingly, A(λ )Γ is an antilinear injection from the L2
K

kernel of I +(tY±(λ ))∗ to the L2
K kernel of I +Y∓(λ ).
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A Some topological vector spaces

We briefly rehearse the definition and main properties of the various Ck and Sobolev spaces en-

countered in the text, broadly following [2, 4], before turning to some properties of the topology of

bounded convergence that are also needed. No originality is claimed for the material given here.

A.1 Spaces of smooth and Ck functions

Let M be a smooth manifold and let Ck(M) (k ∈ N0 ∪{∞}) be the vector space of complex-valued

k-times continuously differentiable functions on M. For each k ∈ N0 and compact K ⊂ M, one has

a seminorm

‖ f‖K,k = max
0≤r≤k

max
x∈K

|(∇r f )(x)|r (A.1)

on Ck(M), where ∇ is an arbitrarily chosen connection on M and | · |r an arbitrarily chosen norm

making T ∗M⊗r a (finite dimensional) Banach bundle; different choices result in equivalent semi-

norms. The collection of seminorms ‖ · ‖K,k as K runs over compact subsets of M and k ∈ N0

provides a Fréchet topology on C∞(M); similarly, we obtain a Fréchet topology on Ck(M) (k ∈N0)

using the seminorms ‖ · ‖K,k.

If A is closed, we define C∞
A (M) = { f ∈C∞(M) : supp f ⊂ A} with the relative topology. Thus

the topology is defined by the seminorms ‖·‖K,k as K runs over compact subsets K ⊂ A and k ∈N0;

if A is compact, it is sufficient to use the seminorms ‖ · ‖A,k (k ∈ N0). As C∞
A (M) is closed subspace

of a Fréchet space, it is also Fréchet. Defining Ck
A(M) as the analogous subspace of Ck(M), the

topology is generated by seminorms ‖ · ‖K,k for compact K ⊂ A, or just the single seminorm ‖ · ‖A,k

(which is a norm on Ck
A(M)) in the case that A is compact.
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A support system [2] is a subset A of the set of all closed subsets on M, which is closed under

finite unions and has the property that for each A ∈A it holds that (i) A ⊂ int(A′) for some A′ ∈A

and (ii) if A′ is a closed subset of M with A′ ⊂ A then A′ ∈ A. Any support system is a directed

system with respect to inclusion and we write

C∞
A(M) =

⋃

A∈A

C∞
A (M) (A.2)

with the locally convex inductive limit topology, so that a convex set U ⊂ C∞
A
(M) is a neighbour-

hood of 0 if and only if U ∩C∞
A (M) is a neighbourhood of 0 in C∞

A (M) for every A ∈A; because A

is directed, one also has that a convex set O is open if and only if O∩A is open in each C∞
A (M).

Examples of support systems include the set of compact sets, leading to the space of compactly

supported functions C∞
0 (M), and the sets of (strictly) future/past/spatially-compact sets, giving rise

to C∞
sfc/spc/fc/pc/sc

(M).

A linear map T from C∞
A
(M) to a locally convex topological vector space Y is continuous if and

only if all its restrictions TA : C∞
A (M)→ Y are continuous (A ∈ A). In particular, for a linear map

T : C∞
A
(M) → C∞

B
(M) to be continuous, it suffices that each restriction TA has range contained in

some C∞
B (M) for some B∈B (depending on A) and determines a continuous map C∞

A (M)→C∞
B (M),

thus implying that TA : C∞
A (M)→C∞

B
(M) is continuous. We record the following application:

Lemma A.1. If T is a continuous linear self-map of C∞(M) such that suppT f ⊂ K ∪ supp f for

all f ∈C∞(M), where K is a fixed compact set, then T restricts to any of C∞
0/sfc/spc/fc/pc/sc

(M) as a

continuous map.

Proof. If A is one of the relevant support systems then A∪K ∈A for each A ∈A. As the restriction

TA of T to C∞
A (M) has its range in C∞

A∪K(M), and both these function spaces are subspaces of C∞(M)
with the relative topology, continuity of TA : C∞

A (M)→C∞
A∪K(M) follows from that of T . Letting A

vary in A, the result is proved.

Letting Ωα be the bundle of densities of weight α , we can define spaces Γ∞(Ωα), Γ∞
A (Ωα)

and Γ∞
0 (Ωα) of smooth sections of Ωα in a similar way; any smooth nowhere vanishing density

µ on M provides topological isomorphisms between these spaces and their zero-weight analogues,

simply by multiplication by appropriate powers of µ . The space of distributions on M, D′(M)
is the topological dual of Γ∞

0 (Ω1), equipped with the weak-∗ topology. In particular, C∞(M) is

canonically embedded as a subspace of D′(M). More generally, D′(M,Ωα) is defined as the dual

of Γ∞
0 (Ω1−α). We also write E′(M) for the topological dual of Γ∞(Ω1), i.e., the distributions of

compact support.

A.2 Sobolev spaces

A.2.1 Compact manifolds

The spaces Hs(M) On a compact manifold M, choose an auxiliary Riemannian metric and de-

fine L2(M) in the usual way, using the volume element induced by the metric and writing the inner

product as 〈· | ·〉 (linear in the second slot). Let T = (−△+ I)1/2, where △ is the Laplace-Beltrami

operator, initially defined on C∞(M) and then extended (uniquely) to a self-adjoint negative operator

on L2(M). Its complex powers T s (as defined by functional calculus) are classical pseudodifferen-

tial operators of order s, T s ∈ Ψs(M) [25] (see [1] for an axiomatically based proof) and T s is

compact for Re s < 0 (most easily seen using the spectral properties of −△ on compact manifolds).

The domain of T s contains C∞(M) for all s.

For s ∈ R, the Sobolev space Hs(M) is defined as the completion of C∞(M) with respect to the

norm

‖ f‖Hs(M) = ‖T s f‖L2(M) (A.3)
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and, as a topological vector space, is independent of the choice of auxiliary Riemannian metric

involved in its construction (of course, the specific norm ‖ ·‖Hs(M) and its compatible Hilbert space

inner product are metric-dependent). Indeed, any positive second-order elliptic operator that is es-

sentially self-adjoint on C∞(M) could be used in place of −△. Evidently T s extends to an isometry

from Hs(M) to L2(M), which may be used to embed Hs(M) in D′(M) so that u ∈ Hs(M) corre-

sponds to the distribution f 7→ 〈T−s f/ν | T su〉 ( f ∈ Γ∞
0 (Ω1)), where ν is the density corresponding

to the volume element of the auxiliary metric used to define L2(M). Restricted to u ∈C∞(M), this

embedding is consistent with the embedding of C∞(M) in D′(M) already mentioned. As T q is

compact on L2(M) for q < 0, it follows that Hs(M)⊂ Ht(M) for all s > t, with a compact inclusion

map. More generally. P : Hs+m(M)→ Hs(M) is continuous for any partial differential operator of

order m with smooth coefficients (or indeed any pseudodifferential operator P ∈ Ψm(M)), because

T−mP ∈ Ψ0(M) extends to a bounded operator on L2(M).

Duality For any s∈R, suppose that ℓ∈Hs(M)′, so there is a constant c so that |ℓ(u)| ≤ c‖u‖Hs(M)

for all u∈Hs(M). Then |ℓ(T−s f )| ≤ c‖ f‖L2(M) for f ∈ L2(M) and consequently there is w∈ L2(M)

so that ℓ(u) = 〈w | T su〉L2(M) for all u ∈ Hs(M). Choose a sequence wn → w in L2(M) with wn ∈

C∞(M) and note that T swn ∈ C∞(M) is a Cauchy sequence with respect to the H−s(M) norm,

converging to some v ∈ H−s(M) for which T−sv = limn wn = w. Thus ℓ(u) = 〈T−sv | T su〉 for all

u ∈ Hs(M) and |ℓ(u)| ≤ ‖v‖H−s(M)‖u‖Hs(M). Noting that

ℓ(T−swn)

‖T−swn‖Hs(M)
=

〈w | wn〉L2(M)

‖wn‖L2(M)

→‖w‖L2(M) = ‖v‖H−s(M), (A.4)

we see that ‖ℓ‖ = ‖v‖H−s(M), and we have established that the space H−s(M) is anti-isomorphic

to Hs(M)′ with the operator norm topology (i.e., the strong dual) with respect to the sesquilinear

pairing 〈v,u〉= 〈T−sv | T su〉 (v ∈H−s(M), u ∈ Hs(M)). To be precise: every choice of Riemannian

metric on M induces an anti-isomorphism of this type, and the pairing depends on the choice made.

Embedding theorems The relationship between Ck and Sobolev spaces is given as follows. In

one direction, the formula −△= δd (on 0-forms) gives the estimates

0 ≤ 〈 f | (−△)2r f 〉= ‖(−△)r f‖2
L2(M) ≤C‖ f‖2

M,2r (A.5)

and

0 ≤ 〈 f | (−△)2r+1 f 〉= ‖d(−△)r f‖2
Λ1(M) ≤C‖ f‖2

M,2r+1, (A.6)

where Λ1(M) is the Hilbert space of square-integrable 1-forms (with respect to the auxiliary Rie-

mannian metric) and f ∈C∞(M). From this we find

‖ f‖2
Hk(M) = 〈 f | (−△+ I)k f 〉=

k

∑
j=0

(
k

j

)
〈 f | (−△) j f 〉 ≤C‖ f‖2

M,k (A.7)

for all k ∈ N0. Thus Ck(M) is continuously embedded in Hs(M) for all s ≥ k.

On the other hand, now let n be the maximum dimension of any component of M. For Re s >
n/2, the integral kernel Zs(p,q) of the operator (−△+ I)−s = T−2s on L2(M) is continuous, Zs ∈
C(M×M) and can also be written in terms of the spectral decomposition of (−△+ I) as

Zs(p,q) = ∑
r

er(p)er(q)

λ s
r

, (A.8)
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where er ∈ L2(M) are a basis of smooth orthonormal eigenfunctions for −△+I with corresponding

eigenvalues λr – see [25]. In particular,

vp = ∑
r

er(p)er

λ
s/2
r

(A.9)

belongs to L2(M) with ‖vp‖
2 = Zs(p, p) by the Pythagoras theorem. For Re s > n/2, it follows that

‖er‖∞ ≤Cs|λ
s/2
r |, where Cs = supp∈M |Zs(p, p)|1/2. Moreover, if f ∈C∞(M),

|〈er | f 〉|= λ−k
r |〈er | T k f 〉| ≤ λ−k

r ‖ f‖Hk(M) (k ∈ N) (A.10)

so 〈er | f 〉 decays faster than any inverse power of λr and 〈vp | T s f 〉 = ∑r er(p)〈er | f 〉 = f (p) for

all (not merely almost all) p ∈ M. Consequently,

‖ f‖∞ = sup
p∈M

|〈vp | f 〉| ≤Cs‖ f‖Hs(M) ( f ∈C∞(M)). (A.11)

By density of C∞(M) in Hs(M) it follows that there is a continuous embedding Hs(M)→C(M) if

s > n/2; considering ‖P f‖∞ in a similar way for differential operators P, one sees that Hs(M) is

continuously embedded in Ck(M) for all s > k+n/2. It follows that ∩s∈RHs(M) =C∞(M).
If u ∈ D′(M) = Γ∞

0 (Ω1)
′ is a distribution then, owing to compactness of M, there is a partial

differential operator P so that |u(ν f )| ≤ ‖P f‖∞ ≤Cs‖P f‖Hs(M) for any s > n/2 and all f ∈C∞(M).

Thus, with t = s+ ord (P), u(ν f ) = 〈 f ,w〉 = 〈T t f | T−tw〉L2(M) for some w ∈ H−t(M), which is

evidently compatible with the embedding of H−t(M) in D
′(M) described earlier. In this sense,

D
′(M) =

⋃

s∈R

Hs(M). (A.12)

A.2.2 General manifolds

For a general (not-necessarily compact) smooth manifold M with at most finitely many components,

we proceed as follows. If K ⊂ M is compact and topologically regular,3 we may diffeomorphically

identify K with a compact subset K̂ of a compact manifold N (for example, by ‘doubling’ a compact

set that contains K in its interior and has a smooth boundary [4]; for K contained in a coordinate

chart one could take N to be a torus). Then the Sobolev space Hs
K(M) is defined as the completion

of C∞
K (M) with respect to the pull back of (some choice of) the Hs(N) norm. The space Hs

K(M)
can be identified with a subspace of D′

K(M), the distributions with support contained in K. As

a topological vector space, it is independent of the choices used in its construction. However,

by making such a choice one may endow Hs
K(M) with a norm, denoted ‖ · ‖Hs

K(M), and indeed a

compatible Hilbert space structure. Estimates of the form ‖ f‖Hk
K(M) ≤C‖ f‖K,k ( f ∈C∞

K (M)), and

hence continuity of the embedding Ck
K → Hk

K , carry over from the compact case for each fixed

k ∈ N0, as does compactness of the embedding Hs
K(M) → Ht

K(M) for s > t and the continuous

embedding of Hs
K(M) in Ck

K(M) for s > k+n/2, where again n is the maximum dimension of any

component of M. Consequently one has ∩s∈RHs
K(M) =C∞

K (M).
Next, we define (abbreviating ‘compact and topologically regular’ by c.t.r.)

Hs
0(M) =

⋃

c.t.r. K ⊂ M

Hs
K(M), (A.13)

with the locally convex inductive limit topology. As M admits countable compact exhaustions (and

consequently, countable c.t.r. exhaustions), Hs
0(M) may be realised as a countable strict inductive

3Note that if K is any compact subset, then the closure of the interior of K is compact and topologically regular.
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limit – i.e., it is a LF space. A fact to be used later is that, by [26, Prop. 14.6] (see also Prop. 4

in [8]) a subset B of Hs
0(M) is bounded if and only if B is a bounded subset of Hs

K(M) for some

compact K. It is easily shown that

E
′(M) =

⋃

s∈R

Hs
0(M). (A.14)

Finally, the local Sobolev space Hs
loc(M) is defined as

Hs
loc(M) = {u ∈D

′(M) : χu ∈ Hs
0(M) for all χ ∈C∞

0 (M)}, (A.15)

and is equipped with the Fréchet topology induced by the seminorms ‖χ · ‖Hs
K(M) as K runs over

compact topologically regular subsets of M and χ runs over C∞
K (M). The inclusion Hs

0(M) →֒
Hs

loc(M) is continuous for all s and indeed we have

Hs
0(M) = Hs

loc(M)∩E
′(M). (A.16)

Thus, if M is compact, Hs
loc(M) and Hs

0(M) coincide as topological vector spaces. The construction

above produces the same spaces as the chart-based approach taken in [17].

The Sobolev embedding theorems already mentioned entail the existence of continuous embed-

dings of Ck(M) in Hk
loc(M) for all k ∈ N0 and of Hs

loc(M) in Ck(M) for all s > k+n/2, where n is

the maximum dimension of any component of M. Consequently, ∩s∈RHs
loc(M) =C∞(M).

A.3 The topology of bounded convergence

A general reference for the following is Trèves [26, Ch. 32].

If E and F are Hausdorff locally convex topological spaces then the topology of bounded con-

vergence on L (E,F), the space of all continuous linear maps E → F , is defined by the neighbour-

hood base of zero, consisting of sets

U(B;V ) = {T ∈ L (E,F) : T (B)⊂V} (A.17)

as B runs over the bounded subsets of E and V runs over any neighbourhood base of zero in the

topology of F . The notation Lb(E,F) denotes L (E,F) equipped with the topology of bounded

convergence. Thus a net Tα converges to 0 in Lb(E,F) if and only if, for every bounded B ⊂ E and

neighbourhood base set V , Tα eventually maps B into V . This topology makes L (E,F) Hausdorff

and locally convex (inherited from F [26, p.336]). We record some basic facts.

Lemma A.2. Let E,F,G be Hausdorff locally convex topological spaces. (a) If T ∈ L (E,F) and

the net Sα → S in Lb(F,G) then SαT → ST in Lb(E,G); (b) if the net Tα → T in Lb(E,F) and

S ∈L (F,G) then STα → ST in Lb(E,G); (c) if Tα → T in Lb(E,F) and RanTα ⊂ F̂, where F̂ is a

topological subspace of F, then Tα → T in Lb(E, F̂); (d) if F is barrelled and Tn → T and Sn → S

are convergent sequences in Lb(E,F) and Lb(F,G), then SnTn → ST in Lb(E,G).

Note that Hilbert, Banach, Fréchet and LF spaces are all barrelled [26, Ch. 33].

Proof. (a) It is enough to prove this in the case S = 0; taking any bounded B in E with 0 ∈ B, and

any 0-neighbourhood V in G, note that T (B) is bounded in F and deduce that SαT (B) is eventually

contained in V . Thus SαT → 0 in Lb(E,G). (b) Without loss, suppose T = 0 and with B and V as

before, we note that S−1(V ) is a 0-neighbourhood in F and again deduce that STα(B) is eventually

contained in V , so STα → 0.

(c) Again, it is enough to treat T = 0. Take any bounded B ⊂ E and 0-neighbourhood V̂ in F̂ .

Then V̂ = F̂ ∩V for an 0-neighbourhood V in F because F̂ carries the subspace topology. We know
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that, eventually, Tα(B)⊂V , and as RanTα ⊂ F̂ , we have, eventually, that Tα(B)⊂V ∩ F̂ = V̂ . Thus

Tα → 0 in Lb(E, F̂).
(d) Suppose first that T = 0 and let 0∈B be any bounded subset of E and V any 0-neighbourhood

in G. Then the Sn, together with S, form a bounded subset in Lb(F,G) (which, we recall, is Haus-

dorff). As F is barrelled, they form an equicontinuous set of maps by the Banach–Steinhaus theo-

rem [26, Thm 33.1]. Thus there exists a 0-neighbourhood W in F such that Sn(W )⊂V for all n. As

Tn(B)⊂W for all sufficiently large n, we have SnTn(B)⊂W for such n. Thus SnTn → 0 in this case.

If T 6= 0, we now know that Sn(Tn−T )→ 0, and as SnT → ST we find SnTn → ST as required.

Typical applications of Lemma A.2(a,b) are to show, for instance, that a holomorphic function

from a domain in C to Lb(H
s
0(M),Hs

K(M)) is also holomorphic as a function to Lb(H
s
K) and

Lb(H
s
0(M)) due to continuous embedding of Hs

K(M) in Hs
0(M). Part (d) has the following use.

Corollary A.3. Let E,F,G be Hausdorff locally convex topological spaces, with F being barrelled.

If λ 7→ T (λ ) and λ 7→ S(λ ) are functions from a domain in C to L (E,F) and L (F,G) respectively,

then (a) if T and S are both continuous in the topology of bounded convergence (at µ), so is

(ST )(λ ) = S(λ )T (λ ) (at µ); (b) if T and S are differentiable at µ in the topology of bounded

convergence then so is ST , with a derivative given by the Leibniz rule (ST )′(µ) = S′(µ)T (µ) +
S(µ)T ′(µ).

Proof. As C is first-countable, questions of continuity and differentiability may be reduced to se-

quential considerations, and the result follows using Lemma A.2(d) and the standard proof of the

Leibniz formula.

It is also useful to have some sufficient conditions for convergence in Lb(E,F) topology where

E and F are Fréchet or countable strict inductive limits thereof (LF spaces). If F is Fréchet, then

the bounded subsets are precisely the subsets B so that sup f∈B ρ j( f ) < ∞ for every seminorm ρ j

defining the topology of F , while sets Vj,ε = { f ∈ F : ρ j( f )< ε}, for arbitrary ε > 0 and defining

seminorm ρ j, provide a basis of neighbourhoods of zero. On the other hand, if E is an LF space

with defining sequence En of Fréchet spaces, then the bounded subsets B of E comprise precisely

those subsets that are bounded subsets of some En [26, Prop. 14.6], while a neighbourhood base is

provided by convex sets V ⊂ E so that each V ∩En is an open neighbourhood of zero in En. We

recall that continuous linear maps between topological vector spaces preserve boundedness [26,

Prop. 14.2]. The following results are used in the text.

Lemma A.4. Suppose Tα ∈ Lb(F) is a net of operators on a Fréchet space F with defining

seminorms ρ j. If, for each j, there exists k( j), such that for all ε > 0, it is eventually true that

ρ j(Tα f )< ερk( j)( f ) for all f ∈ F, then Tα → 0 in Lb(F).

Proof. Given any bounded set B and neighbourhood Vj,ε , we set C = sup f∈B ρk( j)( f ) and apply the

given property to ε/C to find that, eventually,

ρ j(Tα f )< εC−1ρk( j)( f )≤ ε ∀ f ∈ B. (A.18)

We have shown that, eventually, Tα ∈ U(B;Vj,ε); as j and ε were arbitrary, Tα → 0 in Lb(F).

Corollary A.5. Consider a net Tα ∈ L (C∞
K ) such that each Tα extends to an operator in L (Hs

K)
(which we also denote Tα ) for all s ≥ s∗. Suppose also that Tα → 0 in every L (Hs

K), s ≥ s∗. Then

Tα → 0 in Lb(C
∞
K).

Proof. any C∞
K seminorm is bounded by an Hs

K norm and vice versa, so, for any C∞
K -seminorm

‖ · ‖K, j we may estimate

‖Tα f‖K, j ≤ c‖Tα f‖
H

s( j)
K

≤ c‖Tα‖
L (H

s( j)
K )

‖ f‖
H

s( j)
K

≤ c′‖Tα‖
L (H

s( j)
K )

‖ f‖K,k(s( j)) (A.19)
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for suitable choices of s( j) and k(s( j)), uniformly in f ∈ C∞
K and α . As Tα → 0 in L (H

s( j)
K ),

for any ε > 0 it is eventually true that ‖Tα f‖K, j ≤ ε‖ f‖K,k(s( j)) for all f ∈ C∞
K . Hence Tα → 0 in

Lb(C
∞
K ) by Lemma A.4.

Lemma A.6. Suppose Tα is a net of operators on the LF space E =
⋃

n∈NEn. If for some fixed n,

one has Ran (Tα)⊂ En and Tα |Em
→ 0 in Lb(Em,En) for all m, then Tα → 0 in both Lb(E,En) and

Lb(E).

Proof. Consider any neighbourhood V of zero in the standard neighbourhood base of En and any

bounded set B ⊂ E, necessarily obeying B ⊂ Em for some m. Then Tα eventually maps B into V ; as

B and V were arbitrary, Tα → 0 in Lb(E,En). Post-composing with the continuous embedding of

En in E, Tα → 0 in Lb(E) as well.
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