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Weak Regression Enhanced Lifelong Learning for Improved
Performance and Reduced Training Data

ABSTRACT

As an emerging learning paradigm, lifelong learning intends to

solve multiple consecutive tasks over long-time scales upon pre-

viously accumulated knowledge. When facing with a new task,

existing lifelong learning approaches need first gather sufficient

training data to identify task relationships before knowledge trans-

fer can succeed. However, annotating large number of training data

persistently for every coming task is time-consuming, which can be

prohibitive for real-world lifelong regression problems. To reduce

this burden, we propose to incorporate weak regression into life-

long learning so as to enhance training data and improve predictive

performance. Specifically, the weak prediction is first produced

by single-task predictor, which is encoded as feature vectors that

contain essential prior output information. This weak regression

is further linked with task model via coupled dictionary learning.

The integration of weak regression and task model can facilitate

both cross-task and inter-task knowledge transfer, thus improving

the overall performance. More critically, the weak regression can

backup the task model especially when there is insufficient training

data to construct an accurate model. Three real-world datasets are

used to evaluate the effectiveness of our proposed method. Results

show that our method outperforms existing lifelong models and

single-task models even if training data is minimal.
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ing paradigms.
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1 INTRODUCTION

Most machine learning methods take a "single-shot" approach in

which knowledge is not retained between learning problems. How-

ever, we are easily encountered multiple consecutive learning tasks
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in real-life. This advances an emerging machine learning para-

digm called lifelong learning, in which a lifelong learner continually

learns to solve multiple tasks through knowledge transfer from pre-

viously learned models, and revision of stored source knowledge

from new upcoming task [2, 22, 23]. Due to its high efficiency in

handling massive tasks, lifelong learning has found wide-ranging

data modeling applications, including regression, classification and

clustering [3, 4, 6, 17, 21, 24, 26, 27]. For regression problem, exist-

ing lifelong learning approaches need sufficient training data to

modeling task relationships before knowledge transfer can succeed.

However, for most real-world regression applications, such as soft

sensing [7ś9, 34] and pervasive healthcare [12ś14], high-quality

annotations are difficult to obtain. Hence, it is practical prohibitive

to labeling large number of training data for every coming task for

a regression model to learn. This motivates our current work to

develop an effective lifelong regression model that combats this

limitation.

Among lifelong learning community, the efficient lifelong learn-

ing algorithm (ELLA) framework is one of the most popular ap-

proaches [20]. ELLA learns and maintains a knowledge reposi-

tory as a shared basis for all tasks, supporting knowledge transfer

among task models. When a new task arrives, it transfers knowl-

edge through the shared basis to learn the new model, and refines

the basis with knowledge learned from new task. By updating the

basis over time, newly acquired knowledge is integrated into the

knowledge repository, thereby improving previously learned model.

To further improve its scalability, curriculum learning strategy is

integrated into this framework, enabling the lifelong learner to ac-

tively select task order so as to maximize overall performance using

as few tasks as possible [19, 25]. However, the active task selection

requires the tasks candidate pool is known as a prior. This holds

not true for many practical situations where only one task comes

at each time step, and the learner requires to make quick response

as it comes. Another interesting work is to extend this framework

to reinforcement learning with policy gradient (PG-ELLA) method

[1, 11]. With the ability to knowledge transfer between multiple

sequential decision making tasks, PG-ELLA is capable of rapid

learning of control policies for new system.

One critical issue regarding the ELLA-like methods is that when

faced with a new task, the learner needs first gather sufficient train-

ing (labeled) data before bootstrapping a model via knowledge

transfer. This need for training data becomes problematic for life-

long regression application, as labeling large number of training

data persistently for every coming task is time-consuming, and

often the learner is expected to rapidly predict new task without

delay to wait for labeling task. To overcome this restriction, one

famous early work of [5] uses high-level task features or descrip-

tors to model the inter-task relationships in lifelong reinforcement

learning, namely task descriptor lifelong learning (TaDeLL). Unlike

the PG-ELLA that uses only one knowledge repository for task’s
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policy [1], TaDeLL employs a coupled repository to integrate high-

level task descriptors with task policies. Results show that using

task descriptors improves the performance of learned task policies,

and more importantly, it enables accurately predicting the new task

policy even without training data via zero-shot knowledge trans-

fer [5]. TaDeLL is further extended for regression problem in [18],

which eliminates the need to gather data for predicting new task.

This ’learning without data’ seems very appealing. But the fact is

that TaDeLL requires domain-specific task descriptors that must

characterize the underlying dynamics of data in individual tasks

well. For instance, the work [18] used the engineering system¡¯s

basic parameters, such as length, mass, damping constant, etc., as

task descriptors for the engineering system considered, because

these parameters define the system¡¯s underlying dynamics and

have a close relation to the data characteristics. However, for most

real-world tasks, seeking such appropriate and unified descriptors

to identify different tasks requires in-depth cross-domain knowl-

edge. Moreover, inaccurate task descriptors will lead to wrong task

model and degrade the achievable learning performance consider-

ably. Hence, TaDell is not generally applicable to many applications.

Consequently, to our best knowledge in lifelong learning commu-

nities, how to efficiently utilize both labeled and unlabeled data in

characterizing and learning each consecutive task with improved

performance is an important challenge. This motivates our cur-

rent work to develop an effective lifelong regression model that

enables to learn new task with reduced training set, thus reduc-

ing the burden for large number of annotations. We explore the

use of weak prediction to enhance knowledge transfer between

multiple regression tasks and improve the overall predictive perfor-

mance. Our approach to incorporate weak prediction into lifelong

regression learning is general, as it does not need domain-specific

task descriptor that requires human expert. Instead, we use weak

predictions that is easily provided by single-task predictors, encod-

ing them as feature vectors and treating these prior predictions

as side information to augment training data for individual tasks.

In order to obtain a conceivable and robust weak prediction, we

construct the single-task predictor by partial least square (PLS)

algorithm. The PLS model is capable of handing data with high di-

mensionality and multicollinearity [16], enabling providing higher

modeling accuracy than classic least squares regression used in

existing lifelong learning methods. The idea of using weak regres-

sion to enhance predictive model is previously explored in [10],

where weak prediction is incorporated into deep neural networks

to extract better output-relevant features, thus improving the final

predictive accuracy. In comparison, our method aims to learn a

mapping from weak prediction onto the task model, enabling the

leaner to achieve knowledge transfer with less training samples.

Similar to [5, 18], we use coupled dictionary learning to model the

inter-task relationships between weak prediction and task model,

enabling them to complement to each other. Therefore, when there

is insufficient training data to construct an accurate task model, the

weak regression acts as a backup to supplement this shortage, hence

to guarantee the achievable performance. Our novel contributions

can be summarized as follows:

(1) We construct single-task predictor by the PLS algorithm,

treating it as weak predictor to provide a rough prediction

of target value using only unlabeled data for each task. This

weak prediction provides essential and vital output-relevant

information for knowledge transfer.

(2) We integrate weak regression and task model by coupled

dictionary learning, so as to facilitate both cross-task and

inter-task knowledge transfer. First, dual knowledge transfer

from two spaces can better identify cross-task relationships,

thus improving the overall performance. More importantly,

the weak regression can make up for the inaccuracy of task

model caused by insufficient training data. This capacity is

very important in the online setting of lifelong regression

process, as it reduces the burden of labeling large number of

training data for consecutive tasks.

(3) We analysis the method theoretically, and use three real-

world datasets to validate its effectiveness. Results show that

our method outperforms existing lifelong learning models

even if training data is minimal.

2 PRELIMINARIES

2.1 Problem definition

For lifelong regression problem, the lifelong learner faces a series

of regression tasks
{

Z
(1) , Z(2) , . . . ,Z(𝑇max )

}

. Each regression task

Z
(𝑡 )

=

(

𝑓 (𝑡 ) ,𝑿 (𝑡 ) ,𝒚 (𝑡 )
)

is specific by a function mapping 𝑓 (𝑡 ) :

𝑿 (𝑡 ) ↦→ 𝒚 (𝑡 ) from input space 𝑿 (𝑡 ) ∈ R𝑑 to the output space

𝒚 (𝑡 ) ∈ R. To learn 𝑓 (𝑡 ) , the learner is given 𝑛𝑡 training input data

𝑿 (𝑡 ) ∈ R𝑛𝑡×𝑑 and output data 𝒚 (𝑡 ) ∈ R𝑛𝑡 . For brevity,
(

𝒙
(𝑡 )
𝑖 , 𝑦

(𝑡 )
𝑖

)

denotes the 𝑖th labeled training sample for task 𝑡 . The lifelong

learner does not know the total task number 𝑇max, task order or

task distribution in a prior.

At each time step, the lifelong learner receives a batch of training

data
(

𝒙
(𝑡 )
𝑖 , 𝑦

(𝑡 )
𝑖

)𝑛𝑡
𝑖=1 for task 𝑡 . Let 𝑇 denote the number of tasks the

learner has encountered so far. At anytime, the learner may be asked

to make predictions on data from any previous task. Its goal is to

consecutively construct a set of task models
{

𝑓 (1) , . . . , 𝑓 (𝑇 )
}

such

that each 𝑓 (𝑡 ) will approximate 𝑓 (𝑡 ) to make accurate prediction

on new unseen data, and new model 𝑓 (𝑡 ) can be added efficiently

when learner encountering new task. Ideally, knowledge learned

from previous tasks
{

Z
(1) , . . . ,Z(𝑇−1)

}

should accelerate training

and improve performance on each new task Z(𝑇 ) . Also, the lifelong

learner should scale effectively to large number of tasks, learning

new task rapidly with minimal data.

2.2 Efficient lifelong learning

The well-known ELLA is developed to operate in this lifelong learn-

ing setting. To be specific, ELLA learns and maintains a shared

knowledge repository 𝑳 ∈ R𝑑×𝑘 , which forms a basis for all task

models and facilitates knowledge transfer between tasks. For each

task 𝑡 , ELLA learns a model 𝑓 (𝑡 ) (𝑿 ) = 𝑓 (𝑿 ;𝜽 (𝑡 ) ) that is param-

eterized by a 𝑑-dimensional task-specific vector 𝜽 (𝑡 ) . This model

parameter is a linear combination of the columns of 𝑳 using the

sparse coefficients 𝒔 (𝑡 ) ∈ R𝑘 as 𝜽 (𝑡 )
= 𝑳𝒔 (𝑡 ) . The repository 𝑳

stores chunks of knowledge that are useful for multiple tasks, and
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the sparse code 𝒔 (𝑡 ) extracts relevant pieces of knowledge for a par-

ticular task. Hence, this model vector factorization enables effective

knowledge transfer among tasks.

Given the training data for each task, ELLA minimizes the pre-

dictive error of each task model while encouraging shared task

structure by optimizing this objective:

min
𝑳,𝑆

1

𝑇

𝑇
∑︁

𝑡=1

{

1

𝑛𝑡

𝑛𝑡
∑︁

𝑖=1

J
(

𝑓 (𝒙
(𝑡 )
𝑖 ; 𝑳𝒔 (𝑡 ) ), 𝑦

(𝑡 )
𝑖

)

+ 𝜇




𝒔 (𝑡 )






1

}

+ 𝜆 ∥𝑳∥2F ,

(1)

where 𝑺 = [𝒔 (1) , . . . , 𝒔 (𝑇 ) ] is the matrix of sparse vector, ∥•∥F is

the Frobenius norm, which regularizes the basis 𝑳 complexity. The

𝐿1 norm is used to control the sparsity of 𝒔 (𝑡 ) , and 𝜇 and 𝜆 are

regularization parameters.

To solve this objective in a lifelong learning setting, ELLA tasks a

second-order Taylor expansion to approximate the objective around

an estimate 𝜽 (𝑡 )
= arg min𝜽

1
𝑛𝑡

∑𝑛𝑡
𝑡=1 J

(

𝑓 (𝒙
(𝑡 )
𝑖 ; 𝑳𝒔 (𝑡 ) ), 𝑦

(𝑡 )
𝑖

)

of

the single-task model parameters for each task, and update only the

coefficients 𝒔 (𝑡 ) for the current task at each time step. This process

enables solving 𝑳 and 𝑺 efficiently in an online manner, which

yields the following recursive update equations that approximate

the result of Eq. (1):

𝒔 (𝑡 ) = arg min
𝒔





𝜽 (𝑡 ) − 𝑳𝒔 (𝑡 )






2

𝚼
(𝑡 )

+ 𝜇




𝒔 (𝑡 )






1
, (2)

𝑨𝐿 = 𝑨𝐿 +
(

𝒔 (𝑡 ) 𝒔 (𝑡 )T
)

⊗ 𝚼
(𝑡 ) , (3)

𝒃𝐿 = 𝒃𝐿 + vec
[

𝒔 (𝑡 )T ⊗
(

𝜽 (𝑡 )T
𝚼
(𝑡 ) )

]

, (4)

𝑳 = 𝑳 +mat
[ ( 1

𝑇
𝑨𝐿 + 𝜆𝑰𝑘𝑑

)−1 1

𝑇
𝒃𝐿

]

, (5)

where ∥𝒗∥2
𝑨
= 𝒗T𝑨𝒗, the symbol ⊗ denotes the Kronecker product,

𝚼
(𝑡 )

= 𝚼(𝜽 (𝑡 ) ) is the Hessian matrix of the loss J (𝜽 (𝑡 ) ), 𝑰𝑘𝑑 is

the 𝑘𝑑 × 𝑘𝑑 identity matrix, 𝑨𝐿 is initialized to be a 𝑘𝑑 × 𝑘𝑑 zero

matrix, and 𝒃𝐿 ∈ R𝑘𝑑 is initialized to zeros.

At each time step when encountering new task and receiving

corresponding training data, the ELLA performs two-step model

adaptation by updating 𝒔 (𝑡 ) and 𝑳. In order to compute 𝒔 (𝑡 ) , it first

computes an optimal model vector 𝜽 (𝑡 ) using training data from

task 𝑡 . The task model is normally constructed to avoid huge com-

putational complexity. The classic ELLA simply employs a linear

regression model and its optimal model parameter 𝜽 (𝑡 ) is solved

by the least squares (LS) estimator. However, data from real-world

tasks are typically high-dimensional with strong co-linearities. A

commonly used way of eliminating data co-linearity is to transform

the original data onto the latent subspace by means of PLS. The

following section will briefly introduce PLS as an alternative to LS

regression under the lifelong learning framework.

2.3 Partial least square

The PLS aims to predict output𝒚 using latent variables in𝑿 instead

of the original input. One major benefit of using PLS is to reduce

dimensions, avoid co-linearity in input data, and shrink the variance

of prediction. We use the same notations as in the previous section,

where 𝑿 (𝑡 ) ∈ R𝑛𝑡×𝑑 and 𝒚 (𝑡 ) ∈ R𝑛𝑡 are the input and output

data for task 𝑡 . Assuming that the modeling data have been mean-

centered and appropriate scaled, the PLS algorithm models the

mapping relationship between 𝑿 (𝑡 ) and 𝒚 (𝑡 ) as

𝒚 (𝑡 ) ≈ 𝑿 (𝑡 )𝜽 (𝑡 ) , (6)

where 𝜽 (𝑡 )
=

(

𝑿 (𝑡 )T𝑿 (𝑡 )
)†
𝑿 (𝑡 )T𝒚 (𝑡 ) ∈ R𝑑 is the regression coef-

ficients, and (•)† denotes the generalized inverse operator. In the

PLS algorithm, data matrices 𝑿 (𝑡 ) and 𝒚 (𝑡 ) are first decomposed

respectively as

𝑿 (𝑡 )
=

𝑎
∑︁

𝑖=1

𝒕𝑖𝒑
T
𝑖 + 𝑬𝑥 = 𝑻𝑷T + 𝑬𝑥 , (7)

𝒚 (𝑡 )
=

𝑎
∑︁

𝑖=1

𝒖𝑖𝑞
T
𝑖 + 𝑬𝑦 = 𝑼𝑸T + 𝑬𝑦, (8)

where 𝑎 denotes the number of latent variables, 𝑻 = [𝒕1, . . . , 𝒕𝑎]
T ∈

R
𝑛𝑡×𝑎 and 𝑼 = [𝒖1, . . . , 𝒖𝑎]

T ∈ R𝑛𝑡×𝑎 represent the score matri-

ces, and 𝑷 = [𝒑1, . . . ,𝒑𝑎]
T ∈ R𝑑×𝑎 and 𝑸 = [𝑞1, . . . , 𝑞𝑎]

T ∈ R𝑎

denote the loading matrices of 𝑿 (𝑡 ) and 𝒚 (𝑡 ) , respectively, while

𝑬𝑥 ∈ R𝑛𝑡×𝑑 and 𝑬𝑦 ∈ R𝑛𝑡 are the respective error matrices. The

algorithm details can be found in [15].

3 WEAK REGRESSION ENHANCED LIFELONG
LEARNING

Although the PLS-based task model can improve predictive ac-

curacy by eliminating co-linearities reside in task data, it is still

challenging when dealing with insufficient training data for con-

secutive tasks. In order to alleviate lifelong leaner’s dependence

on training data and improve the overall predictive accuracy, we

propose to incorporate weak regression into lifelong learning via

sparse coding with a coupled dictionary, thus enabling the weak re-

gression and learned task model to augment each other. Specifically,

the weak prediction is easily provided by the single-task predictor

or we say ’weak predictor’. The lifelong learner then encodes these

weak prediction results as feature vectors that identify each task,

treating weak prediction results as side information to augment

training data on individual tasks. In order to link weak regression’s

space with task model’s space, we employ two dictionaries that act

as knowledge repositories for two spaces, and they are coupled by

a joint sparse representation. Because of the learned coupling, the

weak regression can compensate the inaccuracy of task model due

to insufficient training data. This capacity greatly reduce the burden

of labeling large number of training samples for sequential tasks in

the lifelong learning setting. The framework of our proposed weak

regression enhanced lifelong learning can be seen in Fig. 1.

3.1 Weak regression by PLS

At each time step, the lifelong learner receives a batch of training

data {𝑿 (𝑡 ) ,𝒚 (𝑡 ) } for task 𝑡 . It constructs a single task predictor

𝑓 (𝑿 (𝑡 ) ;𝜽 (𝑡 ) ) = 𝑿 (𝑡 )𝜽 (𝑡 ) upon the training data using the PLS

algorithm, yielding the optimal model parameters:

𝜽 (𝑡 )
= 𝑿 (𝑡 )T𝑼 (𝑡 ) (𝑻 (𝑡 )T𝑿 (𝑡 )𝑿 (𝑡 )T𝑼 (𝑡 ) )−1𝑻 (𝑡 )T𝒚 (𝑡 ) , (9)

where 𝑼 (𝑡 ) and 𝑻 (𝑡 ) denote the score matrices required to be calcu-

lated in PLS for task 𝑡 . Given the squared-loss function of J (𝜽 (𝑡 ) ),
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Figure 1: Weak regression enhanced lifelong learning sys-

tem. Weak regression and task model are integrated to facili-

tate knowledge transfer in lifelong learning. Model parame-

ters 𝜽 (𝑡 ) are factored into 𝑳 and 𝒔 (𝑡 ) while weak predictions

𝜙 (�̂�
(𝑡 )
𝑡𝑒 ) are factored into 𝑲 and 𝒔 (𝑡 ) . Since both dictionaries

share the same sparse coding 𝒔 (𝑡 ) , the weak regression is nat-

urally coupled with the task model.

the Hessian 𝚼
(𝑡 ) of the corresponding loss function around the

single task solution 𝜽 (𝑡 ) is:

𝚼
(𝑡 )

=

1

2𝑛𝑡
𝑿 (𝑡 )𝑿 (𝑡 )T, (10)

Recalling that the capacity of lifelong learner is to make predictions

on newly observed data from any previously learned tasks. Given

the unlabeled newly observed input data 𝑿
(𝑡 )
𝑡𝑒 for task 𝑡 , the single

task predictor can provide a preliminary prediction of the target

value:

�̂�
(𝑡 )
𝑡𝑒 = 𝑿

(𝑡 )
𝑡𝑒 𝜽 (𝑡 ) , (11)

We call this ’weak’ prediction for the reason that its prediction �̂�
(𝑡 )
𝑡𝑒

is not our final prediction for the true output 𝒚
(𝑡 )
𝑡𝑒 . But this weak

prediction provides the essential and vital prior output information

for both cross-tasks and inter-task knowledge transfer. This prior

output information is particularly important especially when the

task model is less precision due to the shortage of training data, as it

can be treated as side information to augment training data as well

as taskmodel. The predicted value is then encoded as feature vectors

𝜙 (�̂�
(𝑡 )
𝑡𝑒 ) that is analogous to task model’s space, representing weak

regression’s space. Due to the fact that the sample size for each

task can be different, we use the minimal sample size of �̂�
(𝑡 )
𝑡𝑒 as the

unified size, so as to guarantee the dimension of weak regression’s

space is identical for all tasks. In this case, the operator𝜙 (•) denotes

tasking the shortest size of �̂�
(𝑡 )
𝑡𝑒 among all tasks. However, when the

sample size for each task varies significantly, using the minimal size

of �̂�
(𝑡 )
𝑡𝑒 as the feature vector can only provide limited and incomplete

information for task with large sample size, thus failing to fully

exploit the advantage of weak regression enhancement. To avoid

this, another way is to use statistic features of �̂�
(𝑡 )
𝑡𝑒 rather than

itself as the feature vector. In this case, the operator 𝜙 (•) is used

to transform original weak prediction �̂�
(𝑡 )
𝑡𝑒 into a set of statistic

features:

𝜙 (�̂�
(𝑡 )
𝑡𝑒 ) =

{

min(�̂�
(𝑡 )
𝑡𝑒 ), max(�̂�

(𝑡 )
𝑡𝑒 ), mean(�̂�

(𝑡 )
𝑡𝑒 ),

median(�̂�
(𝑡 )
𝑡𝑒 ), std(�̂�

(𝑡 )
𝑡𝑒 ), var(�̂�

(𝑡 )
𝑡𝑒 )

}

∈ R6

(12)

where min(•), max(•), mean(•), median(•), and std(•) denote the

operators of calculating minimum, maxmum, mean, median, and

standard deviation, respectively. Although using statistic features

can provide complete information about �̂�
(𝑡 )
𝑡𝑒 , a potential problem

is the dimension of statistic features’ space is quite small, and it

may have limited impact when the model parameter’s space is very

large. The choice of weak regression encoding is obviously problem

independent, and one can always choice an appropriate encoding

strategy according to task characteristics. We have thoroughly

analyze this in our experiments.

3.2 Coupled dictionary learning

Most lifelong learning approaches factorize model parameters 𝜽 (𝑡 )

for each task as a sparse linear combination over a shared basis

𝜽 (𝑡 )
= 𝑳𝒔 (𝑡 ) . Basically, each column of the shared basis 𝑳 serves

as a reusable model component representing a cohesive chunk of

knowledge. During online operation, the basis 𝑳 incrementally

update as it learns more tasks. The sparse coefficients 𝑺 encodes

the task model in this shared basis, providing a platform for tasks

to share knowledge.

Similar to this, the weak prediction’s feature vector 𝜙 (�̂�
(𝑡 )
𝑡𝑒 ) can

also be linearly factorized using a shared basis 𝑲 ∈ R𝑑𝑤×𝑘 over the

weak regression’s space. This basis captures relationships among

weak predictions for multiple tasks. In order to link two spaces

and make them complement to each other, the key is to find task

embeddings that are consistent for both spaces. We enforce this

by coupling two basis 𝑳 and 𝑲 , sharing the same sparse coding 𝑺

to reconstruct both the model parameters and weak predictions.

Hence, for task 𝑡 ,

𝜽 (𝑡 )
= 𝑳𝒔 (𝑡 ) , 𝜙 (�̂�

(𝑡 )
𝑡𝑒 ) = 𝑲𝒔 (𝑡 ) , (13)

Because we enforce both dictionaries for two spaces to share the

same sparse coding 𝒔 (𝑡 ) , the relevant pieces of information for a task

model become coupled with its corresponding weak predictions.

The idea of using coupled dictionary learning is originally to link

the high-level task descriptions with the learned model to achieve

zero-shot transfer for new tasks. Considering a very different aspect

of zero-shot knowledge transfer, we use coupled dictionaries to

seamlessly connect task model’s space with the associated weak

predictions’ space, so as to achieve training data augmentation as

well as improved modeling accuracy.

To optimize the coupled basis 𝑳 and 𝑲 , we first reformulate the

objective Eq. (1) for the coupled dictionaries as

min
𝑳,𝐾,𝑆

1

𝑇

𝑇
∑︁

𝑡=1

{

J
(

𝜽 (𝑡 ) ) + 𝛽




𝜙 (�̂�
(𝑡 )
𝑡𝑒 ) − 𝑲𝒔 (𝑡 )







2

2
+ 𝜇





𝒔 (𝑡 )






1

}

(14)

+ 𝜆
(

∥𝑳∥2F + ∥𝑲 ∥2F
)

,
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where J
(

𝜽 (𝑡 )
)

=
1
𝑛𝑡

∑𝑛𝑡
𝑡=1 J

(

𝑓 (𝒙
(𝑡 )
𝑖 ; 𝑳𝒔 (𝑡 ) ), 𝑦

(𝑡 )
𝑖

)

, parameter 𝛽

balances the task model’s fit to the weak regression’s fit.

To solve (14) in a lifelong setting, we approximate J
(

𝜽 (𝑡 )
)

by a

second-order Taylor expansion around 𝜽 (𝑡 ) . The optimal parameter

𝜽 (𝑡 ) is easily obtained by the single task predictor in (9). Then we

expand J
(

𝜽 (𝑡 )
)

for each task around 𝜽 (𝑡 ) as:

J
(

𝜽 (𝑡 ) ) ≈ J
(

𝜽 (𝑡 ) ) + ▽J
(

𝜽 (𝑡 ) ) (𝜽 (𝑡 ) − 𝜽 (𝑡 ) ) +
1

2





𝜽 (𝑡 ) − 𝜽 (𝑡 )






2

𝚼
(𝑡 )

(15)

where ▽ denotes the gradient operator. The first constant term

J
(

𝜽 (𝑡 )
)

can be suppressed for the purpose of optimization. Also

note that 𝜽 (𝑡 ) is the minimizer of the function J
(

𝜽 (𝑡 )
)

, ▽J
(

𝜽 (𝑡 )
)

should be zero, and hence the second term can be removed. Consid-

ering that 𝜽 (𝑡 )
= 𝑳𝒔 (𝑡 ) , the last term of J

(

𝜽 (𝑡 )
)

can be rewritten

as




𝜽 (𝑡 ) − 𝑳𝒔 (𝑡 )






2

𝚼
(𝑡 )
.

Approximating J
(

𝜽 (𝑡 )
)

leads to a simplified from of (14) as

min
𝑳,𝐾,𝑆

1

𝑇

𝑇
∑︁

𝑡=1

{





𝜽 (𝑡 ) − 𝑳𝒔 (𝑡 )






2

𝚼
(𝑡 )

+ 𝛽




𝜙 (�̂�
(𝑡 )
𝑡𝑒 ) − 𝑲𝒔 (𝑡 )







2

2
(16)

+ 𝜇




𝒔 (𝑡 )






1

}

+ 𝜆
(

∥𝑳∥2F + ∥𝑲 ∥2F
)

,

we can merge pairs of terms in (16) by defining:

𝚯
(𝑡 )

=

[

𝜽 (𝑡 )

𝜙 (�̂�
(𝑡 )
𝑡𝑒 )

]

, 𝑯 =

[

𝑳

𝑲

]

, 𝚿(𝑡 )
=

[

𝚼
(𝑡 )

0

0 𝛽𝑰𝑑𝑤

]

(17)

where 0 is the zero matrix, 𝑑𝑤 is the dimension of weak prediction

𝜙 (�̂�
(𝑡 )
𝑡𝑒 ). Hence, the objective (16) can be rewritten in a concise form

as

min
𝑯 ,𝑆

1

𝑇

𝑇
∑︁

𝑡=1

{





𝚯
(𝑡 ) − 𝑯𝒔 (𝑡 )







2

𝚿
(𝑡 )

+ 𝜇




𝒔 (𝑡 )






1

}

+ 𝜆 ∥𝑯 ∥2F , (18)

This objective function has an identical form with the classic life-

long learning method, and it can be solved efficiently in an online

manner. Note that the objective (18) can be decoupled into two

optimization problems with a similar form on 𝑳 and 𝑲 , hence two

dictionaries can be updated independently.

When a task arrives, we perform three steps to update our model:

compute 𝒔 (𝑡 ) and update 𝑳 and 𝑲 . Specifically, it first computes

sparse vector 𝒔 (𝑡 ) using the current basis 𝑯 by solving an 𝐿1-

regularized regression problem (an instance of the Lasso):

𝒔 (𝑡 ) = arg min
𝒔





𝚯
(𝑡 ) − 𝑯𝒔 (𝑡 )







2

𝚿
(𝑡 )

+ 𝜇




𝒔 (𝑡 )






1
, (19)

After 𝒔 (𝑡 ) is obtained, two dictionaries 𝑳 and𝑲 are updated indepen-

dently. Taking updating 𝑲 as an example, the decoupled objective

for weak regression can be written as:

min
𝑲 ,𝑆

1

𝑇

𝑇
∑︁

𝑡=1

{





𝜙 (�̂�
(𝑡 )
𝑡𝑒 ) − 𝑲𝒔 (𝑡 )







2

𝛽𝑰𝑑𝑤
+ 𝜇





𝒔 (𝑡 )






1

}

+ 𝜆 ∥𝑲 ∥2F , (20)

To update 𝑲 , we null the gradient of Eq. (20) and solve for 𝑲 . This

procedure yields the updated column-wise vectorization of 𝑲 as

𝑨𝐾
−1𝒃𝐾 , and we update 𝑨𝐾 , 𝒃𝐾 and 𝑲 incrementally as

𝑨𝐾 = 𝑨𝐾 +
(

𝒔 (𝑡 ) 𝒔 (𝑡 )T
)

⊗ 𝛽𝑰𝑑𝑤 , (21)

𝒃𝐾 = 𝒃𝐾 + vec
[

𝒔 (𝑡 )T ⊗
(

𝜙 (�̂�
(𝑡 )
𝑡𝑒 )T𝛽𝑰𝑑𝑤

) ]

, (22)

𝑲 = 𝑲 +mat
[ ( 1

𝑇
𝑨𝐾 + 𝜆𝑰𝑘𝑑𝑤

)−1 1

𝑇
𝒃𝐾

]

, (23)

𝑨𝐾 is initialized to be a 𝑘𝑑𝑤 × 𝑘𝑑𝑤 zero matrix, and 𝒃𝐾 ∈ R𝑘𝑑𝑤 is

initialized to zeros.

3.3 Algorithm summary

The proposed weak regression enhanced lifelong learning is sum-

marized in Algorithm 1.

Algorithm 1 Weak regression enhanced lifelong learning

1: Parameters: Number of latent basis 𝑘 , regularization parame-

ters 𝜇 and 𝜆, coefficient 𝛽 .

2: Initialize: Randomly initialize 𝑳 and 𝑲 . Set 𝑇 = 0.

3: While some task Z(𝑡 ) is available do

4: Set 𝑇 = 𝑇 + 1.

5: Collect training input-output data
{

𝑿 (𝑡 ) ,𝒚 (𝑡 )
}

and unlabeled

input data 𝑿
(𝑡 )
𝑡𝑒 from task Z(𝑡 ) .

6: Construct a single-task predictor upon training data
{

𝑿 (𝑡 ) ,𝒚 (𝑡 )
}

using the PLS algorithm.

7: Compute the optimal model parameter 𝜽 (𝑡 ) and Hessian matrix

𝚼
(𝑡 ) by Eq. (9) and (10), respectively.

8: Given the unlabeled input data𝑿
(𝑡 )
𝑡𝑒 , compute weak predictions

�̂�
(𝑡 )
𝑡𝑒 based on learned task model by Eq. (11).

9: Encode weak predictions into feature vector 𝜙 (�̂�
(𝑡 )
𝑡𝑒 ).

10: Construct matrices 𝚯(𝑡 ) , 𝑯 , and 𝚿
(𝑡 ) by Eq. (17).

11: Solve sparse coding 𝒔 (𝑡 ) by objective function Eq. (19).

12: Update 𝑨𝐿 , 𝒃𝐿 , dictionary 𝑳 by Eqs. (3)-(5), respectively.

13: Update 𝑨𝐾 , 𝒃𝐾 , dictionary 𝑲 by Eqs. (21)-(23), respectively.

14: For: 𝑡 ∈ {1, . . . ,𝑇 } do: 𝜽 (𝑡 )
= 𝑳𝒔 (𝑡 )

15: End while

Convergence analysis: In order to prove the convergence of our

proposed method, we use theoretical results in [20]. These results

can directly apply to our coupled dictionary learning with weak

regression enhancement. The work [20] has proved that the learned

dictionary 𝑳 becomes increasingly stable as it learns more tasks.

The result is based on two assumptions: 1) The tuples
(

𝚼
(𝑡 ) , 𝜽 (𝑡 )

)

are drawn 𝑖, 𝑖, 𝑑 . from a distribution with compact support. 2) For all

task 𝑡 , let 𝑳𝑘 be the subset of the current dictionary 𝑳𝑡 , where only

columns corresponding to non-zero element of 𝒔 (𝑡 ) are included.

Then, all eigenvalues of the matrix 𝑳T
𝑘
𝚼
(𝑡 )𝑳𝑘 need to be strictly

positive.

We incorporate weak regression into lifelong learning frame-

work by changing 𝜽 (𝑡 ) into 𝚯
(𝑡 ) , 𝑳 into 𝑯 , and 𝚼

(𝑡 ) into 𝚿
(𝑡 ) .

Clearly, 𝚯(𝑡 ) and 𝚿
(𝑡 ) are constructed by adding deterministic en-

tries as shown in Eq. (17), and they should be drawn 𝑖, 𝑖, 𝑑 .. Hence,

Condition 1 holds for our method. For Condition 2, we can easily

analogously form 𝑯𝑘 . The eigenvalues of 𝑯𝑘 are either eigenvalues

of 𝑳 or the parameter 𝛽 by definition, so they should also be strictly

positive. Therefore, both two conditions are met for our proposed

method and it should follow the same result as in [20].
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Computational complexity: We further analysis the online

computational complexity of our method for learning new task.

First, the construction of single-task predictor has a cost ofO(𝜉 (𝑑, 𝑛𝑡 )),

where 𝜉 (·) depends on the computation involved in PLS model-

ing. The PLS model can be computed by either nonlinear iterative

PLS algorithm or recursive PLS algorithm, which has proved to

be computationally efficiency for online monitoring purpose. The

adaptation of single dictionary 𝑳 ∈ R𝑑×𝑘 and sparse coefficient

𝒔 (𝑡 ) ∈ R𝑘 is O(𝑘2𝑑3). We incorporate weak regression into lifelong

learning by altering 𝑳 ∈ R𝑑×𝑘 into 𝑯 ∈ R(𝑑+𝑑𝑊 )×𝑘 , hence the

coupled dictionary adaptation costs O(𝑘2 (𝑑 +𝑑𝑤)
3). This yields an

overall cost of adaptation per task O(𝜉 (𝑑, 𝑛𝑡 ) + 𝑘
2 (𝑑 + 𝑑𝑤)

3). This

is clearly efficiency for online operation, as it is independent of task

number and the computation per-task is identical.

4 EXPERIMENTS

In this section, we conduct extensive experiments, including School,

Parkinson and Alzheimer datasets, to verify the effectiveness of

our proposed lifelong regression model.

4.1 Dataset description

The details of three real-world datasets are as follow:

(1) School dataset: the London school dataset has been widely

used in lifelong learning of regression problem [20, 25]. It

contains examination scores of 15362 students from 139 sec-

ondary schools and each school is considered as one re-

gression task. The goal is to predict the scores for students

according to their input features. Each student has 27 binary

features (e.g., student-specific features, school-specific fea-

tures), plus 1 basis feature, and the corresponding response

is the examination score.

(2) Parkinson dataset: the Parkinson dataset consists of Parkin-

son disease symptom score of 5875 observations for 42 pa-

tients. The goal is to predict the symptom score for each

patient according to their 16 biomedical features [22, 25].

Hence, the symptom score prediction for a patient is con-

sidered as one regression task and we have 42 tasks in total.

The output of this dataset is a score consisting of Motor and

Total, we establish two regression datasets in our experiment:

Parkinson-Motor and Parkinson-Total.

(3) Alzheimer dataset: the Alzheimer disease progression pre-

diction is a very popular multi-task learning problem [30,

31, 33]. The aim is to develop multiple regression models

between the magnetic resonance imaging (MRI) features and

the cognitive scores (e.g., ADAS-Cog) at consecutive time

points (6-month or 1-year interval) [28, 29, 32]. Therefore,

the ADAS-Cog score prediction upon MRI features at spe-

cific time point is considered as one regression task. In this

study, we have 341 MRI features at multiple time points from

baseline (M00) to 120-th month (M120), which stands for 12

tasks. To the first time, we consider the Alzheimer disease

progression prediction as a lifelong regression problem and

use it to evaluate our algorithm.

The statistics details of three datasets are summarised in Table. 1.

For each dataset, we split 50% as training set and the rest 50% for

testing. Before experiment, all the dataset has been normalized.

4.2 Experimental setup

Our proposed method has two forms, namely weak prediction (WP)

and weak prediction features (WPF) enhanced-lifelong regression

model. The former uses minimal size of raw prediction results as

feature vectors while the latter uses statistical features of whole

prediction results as in Eq. (12). We compare our method with two

single-task predictors, including single-task learning with LS (STL-

LS) base model and PLS (STL-PLS) base model [16]. Additionally,

the classic ELLA [20] and ELLA with PLS (ELLA-PLS) base model

are utilized as lifelong models for comparison. Note that the classic

ELLA only employs LS model as its base predictor, and we sim-

ply replace the LS with PLS model to observe how performance

changes. More importantly, introducing ELLA-PLS as a comparative

method can demonstrate the superiority of our proposed learning

framework over traditional lifelong learning framework regardless

of replacing the base model. It should be noted that the TaDell [18]

cannot be used for comparison, because it needs domain-specific

task descriptor, which is not available for most real-world datasets.

Basically, our method can be regarded as a generalized version

of TaDell using task input data rather than domain-specific task

descriptor. For all lifelong models, each task is presented sequen-

tially to the agent, following the online learning setting. For a fair

comparison, the task order is fixed during all experiments.

The mean squared error (MSE) is used to evaluate the overall

test performance on the whole tasks, while the averaged MSE per

task (MSEpT) is used to evaluate the average performance for each

task. In the lifelong learning setting, we are also interested in the

online computational complexity for learning each task. Hence, the

averaged computation time per task (ACTpT) is utilized to quantify

the online computational complexity of lifelong model. The per-

formance of each method are presented by its mean and standard

deviation (STD) of the test MSE and ACTpT over 10 independent

realizations.

For all lifelong models, we chose dictionary size 𝑘 and regulariza-

tion parameters independently for each dataset using a grid search

over ranges {10−𝑛, 𝑛 = 0, . . . , 8} for regularization parameters and

{1, . . . , 8} for 𝑘 , respectively. For proposed method, the parameter

𝜌 is used to balance the model’s fit to the weak prediction’s fit, and

we empirically set 𝜌 to either 1 or 0.1 and find it works well for

all datasets. Another parameter for all PLS-based methods is the

latent variable number, we simply set it to 2 that is suitable for all

datasets.

4.3 Results and analysis

Comparison on prediction accuracy: The mean and STD of test

MSE for various models on three datasets are reported in Table. 2. It

can be seen that our proposed method achieves best prediction per-

formance among all models, as evidenced by its smallest MSE and

MSEpT for three datasets. Not surprisingly, the STL-LS is the worst

Table 1: Statistics details of the School, Parkinson and

Alzheimer datasets.

Dataset Total tasks Total samples Samples for each task Dimension

School 139 15362 25 to 251 28

Parkinson-Motor 42 5875 101 to 168 16

Parkinson-Total 42 5875 101 to 168 16

Alzheimer 12 6339 69 to 1074 314
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Table 2: Test performance comparison of STL-LS, STL-PLS, ELLA, ELLA-PLS and proposed methods for School, Parkinson and

Alzheimer dataset in terms of test MSE. Methods with the best and runner-up performances are colored with red and blue,

respectively.

Proposed
Dataset Metric STL-LS STL-PLS ELLA ELLA-PLS

WP WPF

MSE 134.44 117.01 112.40±0.48 115.49±1.07 111.46±0.05 109.40±0.08
School

MSEpT 134.81 118.89 111.20±0.53 114.34±1.14 109.63±0.05 108.24±0.10

MSE 8.96 6.86 6.31±0.01 6.26±0.02 5.75±0.15 5.66±0.05
Parkinson-Motor

MSEpT 9.42 7.19 6.51±0.01 6.46±0.02 6.01±0.16 5.90±0.06

MSE 11.72 9.37 9.46±0.02 9.23±0.13 7.83±0.01 7.99±0.08
Parkinson-Total

MSEpT 12.16 9.68 9.63±0.02 9.39±0.14 8.04±0.01 8.22±0.08

MSE 336.63 88.72 103.06±0.22 88.51±0.99 84.39±0.10 85.83±0.30
Alzheimer

MSEpT 360.10 114.55 128.54±0.54 113.59±2.37 103.85±0.09 105.87±1.18

model, as it neither modeling relationships among multiple tasks

nor has a powerful predictive capacity of its base predictor. The

STL-LS model’s shortcoming is magnified in the Alzheimer dataset,

as each task is with high dimensions and strong co-linearities,

and a simple LS model is difficult to handle such complex dataset.

Compared to STL-LS, the STL-PLS achieves much better perfor-

mance. This is because the PLS enables analyzing original features

in a reduced-dimensional latent subspace and well addressing the

data co-linearity problem. Its advantage is prominent, especially

when the feature dimension is very high, as demonstrated in the

Alzheimer dataset. Undoubtedly, the ELLA attains much smaller

MSE than the STL-LS, as it can learn relationships among multi-

ple tasks. However, its performance improvement for Alzheimer

dataset is less prominent than the STL-PLS. This may indicate that

the importance of establishing a highly accurate base learner for

each task is not worse than learning the relationships among mul-

tiple tasks. Hence, the ELLA-PLS is adopted here to combine the

advantages of both PLS model and lifelong learning framework. As

can be seen that despite the school data, the ELLA-PLS achieves

better MSE than both STL-PLS and traditional ELLA. Beyond the

ELLA-PLS, our proposed method can further improve its perfor-

mance with weak regression enhancement.

We further compare the test MSE on each task for three datasets

(Parkinson Motor and Total have similar results, and we only plot

Parkinson-Total here). For a clear presentation, we select three

compared models, including baseline STL-LS, classic ELLA and our

proposed method with best performance, the result is shown in

Fig. 2. Clearly observe that the result is consistent with Table. 2

and our proposed method attains the smallest MSE on the most of

tasks.

Analysis of weak regression strategy: We further analysis

the difference between two strategies (WP and WPF) for proposed

method. Specifically, for school data, the WPF strategy attains

smaller MSE than the WP. The reason for this is that each task’s

sample size for this dataset varies dramatically, and there is a big

gap between the minimal (25) and maximal (251) sample size for

specific task. Hence, using the prediction features that contain com-

plete task information could be more robust and informative than

using a small-size incomplete prediction output (minimal sample

size over whole tasks). For Alzheimer dataset, on the contrary, the

WP strategy is superior to the WPF strategy. This is because for

this dataset, the model space or we say feature dimension is dra-

matically high. If we use the WPF strategy, the weak regression

space is too low (only 6) compared with the model space, and its

effect of weak prediction enhancement is likely to be ignored. For

Parkinson dataset, the WP strategy and WPF strategy have a com-

parable performance, as the sample size for each task is close and

both strategies provide similar information. It can be seen that the

chose of two strategies is problem independent, and we can always

chose an appropriate strategy according to the task characteristics

and above-mentioned criterion.

Comparison on the number of learned tasks: We further

explore how the number of learned tasks influence the overall pre-

diction accuracy of various models. Based on the fixed 50%-50%

training-testing set for each task, the learned task number can be

reconstructed from 1 to 𝑇𝑚𝑎𝑥 . From the performance curves pre-

sented in Fig. 3 (only Parkinson-Total is presented here), we can see

that among the increase of learned task number, the decline in test

MSE of proposed method is more significant compared with other

models. This is because through the incremental update of two

dictionaries 𝑳 and 𝑲 over time, our method becomes more knowl-

edgeable than the classic ELLA learning framework that employs

only one dictionary. This clearly demonstrates the effectiveness of

cross-task relationship learning in two spaces.

Comparison on the number of training samples: In order to

demonstrate the effectiveness of inter-task relationship learning in

our method, we further compare the influence of training set pro-

portion on the prediction accuracy for various models over whole

tasks. The result is shown in Fig. 4. Clearly observe that our method

consistently outperforms other models over the whole training set

proportion for both school and Parkinson datasets. For Alzheimer

dataset, our method achieves much better performance than the

classic ELLA while it has a comparable performance with the PLS-

based models (STL-PLS and ELLA-PLS). This is because on the one

hand, we incorporate weak regression with a coupled dictionary

to alleviate the model’s dependence on training data; on the other

hand, we employ PLS as the base predictor to effectively handle

tasks with high dimensionality and multicollinearity. Hence, our

method take advantages of both part and is proven to be effective

for different scenarios.

Comparison on the online computational complexity: We

compares the ACTpT (ms) of various models on three datasets. The

computer for carrying out the experiments has the following con-

figuration: Windows 10, 16GB of RAM, CPU i7-9750 (2.60GHz).

As can be seen from Table. 3 that all lifelong models attain higher
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Figure 2: Comparison of test MSE on each learned task of the STL-LS, ELLA and proposed method for: (a) School, (b) Parkinson,

and (b) Alzheimer datasets.

40 60 80 100 120

Learned Task Number

110

115

120

125

130

135

140

M
S

E

STL-LS

STL-PLS

ELLA

ELLA-PLS

Proposed

10 15 20 25 30 35 40

Learned Task Number

7

8

9

10

11

12

13

14
M

S
E

STL-LS

STL-PLS

ELLA

ELLA-PLS

Proposed

2 4 6 8 10 12

Learned Task Number

50

100

150

200

250

300

350

M
S

E

STL-LS

STL-PLS

ELLA

ELLA-PLS

Proposed

8 9 10 11 12

80

90

100

(a) (b) (c)

Figure 3: Comparison of test MSE among the increase of learned task number for: (a) School, (b) Parkinson, and (b) Alzheimer

datasets.
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Figure 4: Impact of training sample proportion on the prediction accuracy for: (a) School, (b) Parkinson-Motor, (c) Parkinson-

Total, and (b) Alzheimer datasets.

Table 3: Test performance comparison of STL-LS, STL-PLS, ELLA, ELLA-PLS and proposed methods for School, Parkinson and

Alzheimer dataset in terms of computation time. Methods with the best and runner-up performances are colored with red and

blue, respectively.

Dataset Metric STL-LS STL-PLS ELLA ELLA-PLS
Proposed

WP WPF

School ACTpT (ms) 0.21±0.05 0.29±0.25 0.76±0.23 0.84±0.43 1.00±0.43 1.00±0.41

Parkinson-Motor ACTpT (ms) 0.21±0.05 0.58±0.90 1.19±0.49 1.48±0.90 6.21±0.49 3.42±0.56

Parkinson-Total ACTpT (ms) 0.21±0.12 0.87±1.38 1.25±0.57 1.80±1.53 4.23±1.51 3.32±1.23

Alzheimer ACTpT (ms) 12.46±1.05 2.05±2.11 39.74±2.48 32.17±2.91 32.46±3.32 46.37±6.72

ACTpT than single task learners, as the former needs to model-

ing relationships among tasks while the latter not. Additionally,

the PLS-based models (STL-PLS, ELLA-PLS and proposed method)

have higher running time than the corresponding LS-based models

(STL-LS and ELLA), and this phenomenon is opposite for Alzheimer

dataset. This is reasonable because although PLS itself has higher

computation, it enables modeling data in a lower subspace, and this

capacity of PLS makes it particularly efficiency for handling high-

dimensional tasks. Although our method attains slightly higher

ACTpT than the second-best model, its online computational com-

plexity is still acceptable, as it enables learning each tasks within a

fraction of second.
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5 CONCLUSION AND FUTUREWORKS

This paper proposes an effective lifelong regression model that

integrates weak regression and task model via coupled dictionary

learning. Specifically, at each time step we first construct single-

task predictor by PLS algorithm that is capable of eliminating data

co-linearities and providing higher modeling accuracy. The single-

task predictor is used to generate a prior prediction of target value,

which is called weak prediction. We further encode these weak

prediction results as feature vectors, linking them with task model

by two dictionaries that share a joint sparse representation. Since

both weak prediction and model provide information about the task,

each can augment the learning of the other, thus facilitating both

cross-task and inter-task knowledge transfer. The superiority of our

method is prominent especially when there is insufficient training

data to build an accurate task model, as this weak regression can

act as a substitute to fill a vacancy of task model. Finally, extensive

experiments have demonstrated the effectiveness of our proposed

method.

The proposed weak regression enhanced lifelong learning still

requires a small amount of labeled training samples to supervised

learning of new task models. In practical lifelong learning setting,

tasks can arrive rapidly and often the learner is expected to learn

new task model without delay to wait for labeling task. Therefore,

unsupervised features, provided solely by task input data, can be

incorporated into the lifelong learning framework to achieve learn-

ing new task model without output information. This could be

promising future improvement for our proposed scheme. Another

potential improvement is the extension to nonlinear modeling by re-

placing the PLS-based task model with some nonlinear base models,

such as neural networks.
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