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Abstract: The aging of bone marrow (BM) remains a very imperative and alluring subject, with
an ever-increasing interest among fellow scientists. A considerable amount of progress has been
made in this field with the established ‘hallmarks of aging’ and continued efforts to investigate the
age-related changes observed within the BM. Inflammaging is considered as a low-grade state of
inflammation associated with aging, and whilst the possible mechanisms by which aging occurs are
now largely understood, the processes leading to the underlying changes within aged BM remain
elusive. The ability to identify these changes and detect such alterations at the genetic level are key
to broadening the knowledgebase of aging BM. Next-generation sequencing (NGS) is an important
molecular-level application presenting the ability to not only determine genomic base changes but
provide transcriptional profiling (RNA-seq), as well as a high-throughput analysis of DNA–protein
interactions (ChIP-seq). Utilising NGS to explore the genetic alterations occurring over the aging
process within alterative cell types facilitates the comprehension of the molecular and cellular changes
influencing the dynamics of aging BM. Thus, this review prospects the current landscape of BM
aging and explores how NGS technology is currently being applied within this ever-expanding field
of research.

Keywords: aging; bone marrow; stem cells; next-generation sequencing (NGS); genomics;
inflammaging

1. Introduction

Aging is a complex process impacting the lives of many people in their 60s and above
by means of reduced mobility, increased vulnerability to diseases and poor quality of
life (QOL). Biologically, this results from a wide range of cellular and molecular changes
over a prolonged period of time [1]. The global population of individuals over the age
of 65 was 524 million in 2010, and the number is projected to be 1.5 billion by 2050 [2].
Considering that advancing age is often associated with several diseases [3], the World
Health Organization (WHO) predicts that the economic and social burdens associated
with these diseases are rising sharply with older age [2] and, thus, are often referred to as
age-related diseases (ARDs).

As a field with immense growing interest, the last few decades have seen a rise
in exploring the theories and mechanisms that lead to age-related changes and ARDs.
Lopez-Otin et al. set the benchmark with their ‘The hallmarks of aging’ article discussing
the underlying factors and mechanisms that lead to changes in the elderly [4]. Damage
to the DNA or the DNA damage responses (DDR) are among the oldest mechanisms
accepted for age-related changes. This refers to the accumulation of damage to the DNA
or mitochondrial DNA (mtDNA) due to various factors over time that ultimately leads
to alterations in the chromosomes and overall genetic instability [5]. Another mechanism
observed frequently in aging tissues is the presence of reactive oxygen species (ROS), also
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known as the free radical theory [6], that have an unpaired electron in their outermost shell,
making them unstable. In both healthy and young individuals, antioxidants inherently
present within the body balance the presence of ROS. However, with advancing age, the
balance is reduced, causing the oxidation of nucleic acids and DNA damage [4]. The
shortening of the telomere length (or telomere attrition) with every cell division is an
additionally observed mechanism contributing to age-related changes [7]. Furthermore,
stem cell exhaustion or the changes deciphered in the number and functions of stem
cells also contribute to age-related changes and ARDs. Stem cell exhaustion has also
been linked to the other mechanisms of aging and is potentially caused by the previous
mechanisms mentioned above [8]. Whilst proteostasis (or protein homeostasis) serves
as the quality control for maintaining the proteome, this function is known to decline
with age [8]. The loss of proteostasis leads to the presence and accumulation of misfolded
proteins that have been linked to ARDS [4,9], making it another hallmark of aging. Finally,
changes in the DNA methylation patterns, post-translational histone modifications and
chromatin remodelling are epigenetic alterations that can additionally be held accountable
as mechanisms contributing to age-relate changes [10].

More recently, aging has been identified as a state of ‘chronic, low-grade, sterile
inflammation’ with poorly understood mechanisms. This state is known as ‘inflammaging’
and has been associated with multiple ARDs that contribute to morbidity and mortality
in the elderly [11]. Theoretically, inflammaging is an extension of the ‘theories of aging’
and essentially originates from the hypothesis that the complex process of aging and
deterioration of health in ARDs must have a common origin [11]. Considering that most
ARDs, if not all of them, share an inflammatory pathogenesis, inflammaging is a significant
risk factor to the health of the elderly [12].

The lack of ability to fight off infections, cognitive impairment, frailty and immunose-
nescence are some of the most debilitating impacts of advancing age, causing significant
challenges to the QOL within the elderly. Amongst these challenges faced by the elderly is
reduced mobility due to alterations in the musculoskeletal system, including symptoms
of pain in the joints, inflammation and increased vulnerability towards disorders like os-
teoarthritis and osteoporosis [13]. Loss of muscle or sarcopenia, decreasing muscle strength,
increased stiffness, pain in joints, thinning of cartilage and loss of bone density are widely
recognised signs associated with age-related changes and ARDs in the musculoskeletal
system [14].

The BM is a critical part of the musculoskeletal system that is known for its dy-
namic nature in the human body. It is the origin of blood formation or haematopoiesis,
serves as the reserve for the different stem cells, bone-forming cells, their progenitors,
macrophages and adipocytes, alongside various growth factors, cytokines and other solu-
ble factors [15]. Changes with advancing age in the BM include altered cellularity, increased
adipogenesis, myeloid skewing and decline in proliferation and regeneration potential [15].
These changes have frequently been associated with diseases of higher risk like cancer,
osteoarthritis and osteoporosis [13]. Evidence suggests that there are similarities between
haematopoietic alterations during inflammatory conditions (like infections) and during
aging. These include dominant myelopoiesis in relation to immune senescence and im-
paired B-lymphopoiesis. This is accompanied by increased adipogenesis in the BM and
the release of proinflammatory cytokines, including IL-6, TNF-α and IL-1α, and C-reactive
proteins. All of these observations provide evidence for the connections linking age-related
changes and inflammaging [16].

Considering that BM aging and the resulting changes may have life-altering effects,
numerous techniques have been utilised to understand these age-related changes at the
cellular level. The investigating parameters, including senescence, proliferation, telomere
length, gene expression and reactive oxygen species (ROS), have all aided in the under-
standing we have today regarding BM aging, including the probable causes behind these
mechanisms [4,17]. However, a technique that can provide us with a large amount of data
at the genetic level for the identification of new pathways would be ideal for evaluating
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age-related changes in the BM. Next-generation sequencing (NGS) provides us with exactly
that, making it among the most desirable techniques for studying changes with advancing
age [18,19].

NGS has emerged from the initial sequencing of genomes performed using traditional
Sanger sequencing and is thus referred to as second-generation sequencing technology [18].
Fundamentally, the process involves randomly fragmenting DNA/RNA into smaller sizes
(typically around 100–300 bp, depending on sequencing strategy), adaptor ligation and
immobilisation of the given fragments to construct the DNA or cDNA libraries [20,21]. The
latter are lastly amplified to generate multiple copies of each fragment and then subjected
to high-coverage sequencing using fluorescence or chemiluminescent-based methods (i.e.,
bridge amplification) [22]. The resulting reads are finally mapped to the given reference
genome of the species, and using assorted bioinformatics pipelines and computational
processes, the DNA–RNA, RNA–protein and DNA–protein networks can be evaluated,
providing an unparalleled ability to explore various molecular networks [18]. This is briefly
outlined in Figure 1. Whilst Illumina, short read and sequencing-by-synthesis remains the
‘current gold standards of clinical and research sequencing’, the scope of NGS has massively
broadened within the past five years [23]. The emergence of Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT) long-read sequencing technology (permitting
15 kb-30-kb uninterrupted reads) is a significant contrast from the shorter read lengths
provided by Illumina (i.e., 2 × 250 bp on Novaseq 6000™) [24]. Thus, in the context of
BM aging, both types of these highly accurate NGS platforms enhance our comprehension
of the mutational and evolutionary developments through the understanding of further
intricate forms of genetic variations [23].
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Figure 1. Basic next-generation sequencing (NGS) workflow adapted from Reference [25].

This review aims at outlining the challenges of the BM with advancing age and
how NGS plays a crucial role in helping comprehend these alterations more effectively.
We critically review the literature that has been presented until now on BM aging, the
application of NGS on BM and discuss the challenges of the field and future perspectives.
This review is the first of its kind to focus on BM aging through the lens of NGS.

2. Aging in the Bone Marrow

The BM serves as the integration between the skeleton and the marrow, providing a
niche microenvironment for the cells and growth factors residing here. The BM is home
to haematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and lymphoid and
myeloid progenitors, as well as endothelial cells [26]. Stem cells give rise to different
lineages (Figure 2) and are known for their ability to regenerate. However, this ability
declines with advancing age, which is now known as stem cell exhaustion, identified as
one of the key hallmarks of aging [4,17]. Whilst the different stem cells and immune cells
all coexist within the BM niche, how their functions are altered with advancing age have
been investigated separately [19]. This section summarises the changes associated with
aging amongst the various cell types and the BM in general.



Int. J. Mol. Sci. 2021, 22, 12225 4 of 14
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. An overview of the lineages arising from the HSC and MSC populations. 

The bone marrow gives rise to both self-renewing HSCs and MSCs. HSCs further 
turn into multipotent progenitors that form common lymphoid progenitors (CLPs) and 
common myeloid progenitors (CMPs). CLPs finally form B cells, T cells and natural killer 
(NK) cells, while CMPs give rise to myeloid cell types that include the different types of 
granulocytes/macrophage progenitors and megakaryocyte/erythroid progenitors. MSCs 
differentiate into chondrocytes, osteoblasts and adipocytes, which eventually form the 
cartilage, bone and fat in the human body, as summarised in Figure 2, which has been 
recreated and adapted from Wang et al. [27]. 

2.1. The Aging Bone Marrow (BM) Niche 
The BM niche is the unique microenvironment that is provided by the distinctive 

architecture of the bone, the cellular components and the growth factors and proteins 
within it. The two major types of stem cells, i.e., haematopoietic stem cells (HSCs) and 
mesenchymal stem cells (MSCs), give rise to different lineages and, thus, form an essential 
part of this niche [28]. Being heterogenous in nature, the BM undergoes several alterations 
with advancing age, including changes in cellularity of the stem cells [29] and loss of the 
‘bone–fat balance’ within the BM [30]. Age-related bone loss and decline in bone strength 
and density, followed by an increased vulnerability to BM and/or bone-related diseases 
like osteoarthritis, myelodysplastic syndrome and haematological malignancies, are also 
well-documented [16]. The underlying causative factors for these changes have been pro-
posed to be a combination of several of the ‘hallmarks of aging’, including oxidative stress 
due to ROS, DNA damage, mitochondrial dysfunction and cellular senescence (Figure 3) 
[4,17]. 

Figure 2. An overview of the lineages arising from the HSC and MSC populations.

The bone marrow gives rise to both self-renewing HSCs and MSCs. HSCs further
turn into multipotent progenitors that form common lymphoid progenitors (CLPs) and
common myeloid progenitors (CMPs). CLPs finally form B cells, T cells and natural killer
(NK) cells, while CMPs give rise to myeloid cell types that include the different types of
granulocytes/macrophage progenitors and megakaryocyte/erythroid progenitors. MSCs
differentiate into chondrocytes, osteoblasts and adipocytes, which eventually form the
cartilage, bone and fat in the human body, as summarised in Figure 2, which has been
recreated and adapted from Wang et al. [27].

2.1. The Aging Bone Marrow (BM) Niche

The BM niche is the unique microenvironment that is provided by the distinctive
architecture of the bone, the cellular components and the growth factors and proteins
within it. The two major types of stem cells, i.e., haematopoietic stem cells (HSCs) and
mesenchymal stem cells (MSCs), give rise to different lineages and, thus, form an essential
part of this niche [28]. Being heterogenous in nature, the BM undergoes several alterations
with advancing age, including changes in cellularity of the stem cells [29] and loss of the
‘bone–fat balance’ within the BM [30]. Age-related bone loss and decline in bone strength
and density, followed by an increased vulnerability to BM and/or bone-related diseases like
osteoarthritis, myelodysplastic syndrome and haematological malignancies, are also well-
documented [16]. The underlying causative factors for these changes have been proposed
to be a combination of several of the ‘hallmarks of aging’, including oxidative stress due to
ROS, DNA damage, mitochondrial dysfunction and cellular senescence (Figure 3) [4,17].
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More recently, Guidi et al. established that the aged BM niche ‘restrains rejuvenated
HSC’. They found that using rejuvenated old HSCs upon transplanting into the BM of
young mice was able to partly sustain youthful functions and suggested that age-related
changes in stem cells potentially result from both cell intrinsic factors and extrinsic factors
(niche) of the BM [32]. Metabolically, an accumulation of free fatty acids (FFA) combined
with the decline in the levels of nucleic acids and the amino acid pool has been documented,
potentially due to the signature oxidative stress revealed in their transcriptome data
associated with mitochondrial dysfunction [33]. Apart from these, the process of myeloid
skewing, a process where the lymphoid cells become more myeloid-oriented in the elderly,
is also a key indicator of BM aging [34].

Whether it is the altered microenvironment (cell extrinsic factors) leading to the
reduced functionality of the cells within the BM with advancing age or the intrinsic
properties of the cells or a combination of both these factors influencing this age-related
change, investigating changes in the BM cells are key to elucidating the mechanisms of these
age-related changes. The fact that the stem cells residing within the BM are self-renewing,
being used for various cell therapy applications and are also the progenitors of cells of
different lineages and functions makes them the ideal candidates for these investigations
and for exploring age-related changes at the single-cell and genetic levels.

2.2. Age-Related Changes in Haematopoietic Stem Cells (HSCs)

HSCs were the first identified stem cells and, to this date, remain the stem cells
that have been explored extensively for their self-renewal abilities throughout the entire
lifetime of an individual. However, they lose their ability to regenerate and replenish the
other cell types rising from them with advancing age [35]. While studies have indicated
that their numbers increase in the elderly, it has been debated that this increase is a
compensatory mechanism for their loss of functionality in the BM. Reports have also
suggested that larger fractions of HSCs in the aged are less quiescent and undergo cell
division as compared to those in the young, potentially due to the accumulation of higher
levels of ROS over time [36]. This, in turn, affects the repopulating capacity of HSCs
in the elderly. Strzelecka and Damm discussed in depth the changes observed in aging
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haematopoietic cells, outlining that the readout of the transcriptome is a good indicator of
the cellular state [37].

Along with an increase in the number of cells with decreased functionality, the regen-
erative and homing capacities of aged HSCs are also shown to be lower in the BM. They
suffer metabolic changes [38], impaired autophagy and disrupted protein homeostasis,
which altogether impact the regeneration potential of BM HSCs [39]. Furthermore, the
myeloid bias is enhanced during both inflammation, as well as during advancing age,
leading to myeloid skewing in HSCs, indicating further responses towards the concept
of inflammaging [16]. In young individuals, haematopoiesis is normally supported via
various HSC clones with similar potential. However, in the elderly, in spite of an overall
increase in the number of HSCs, only a smaller proportion of the clones contribute to
blood formation [40]. This condition is known as clonal haematopoiesis of indeterminate
potential or CHIP, which has increasingly been observed in people between the ages of 55
and 60 and has been linked with haematopoietic malignancies [41].

BM adipocytes cover about 50–70% of the inside of the BM volume in adults and
are known to increase with conditions like obesity and diabetes, as well as aging. BM
adipocytes have been shown to interact with HSCs and bone cells locally via the secretion
of factors like the stem cells factor (SCF), leptin and adiponectin. This potentially impacts
HSCs in the BM [42]. While haematopoiesis has been reported to be inhibited by the
increase of adipocyte formation in bone, thus altering the rate of formation of HSCs [43],
more recently, it has also been reported that BM adipocyte-derived SCF mediates the
metabolic regulation of the process of haematopoiesis [44]. This suggests that BM adipocyte-
derived SCF and, thus, BM adipocytes are essential to haematopoiesis but may inhibit the
process if there is an increase if adipocyte formation within the BM.

2.3. Age-Related Changes in Mesenchymal Stem Cells (MSCs)

MSCs (also referred to as skeletal stem cells or SSCs) within the BM are the cells that
can form into at least three types of tissues—the bone, fat and cartilage (property often
referred to as trilineage differentiation). They are also known for their trophic factors
and immunomodulating properties, making them very desirable for extensive use in cell
therapy applications [45]. These cells are usually identified in vitro by plastic adherence;
trilineage differentiation and by the expression of CD73, CD105 and CD90 as per the
International Society of Cell Therapy (ISCT) [46]. However, other markers like SSEA4 and
phenotypes CD45low and CD271+ are also used for the identification of uncultured BM
MSCs [47].

These cells are well-known for regenerative properties, which are reported to decline
with advancing age. Studies have reported a decline in their number [48,49], decline in
their proliferative potential [50,51], increased bias towards adipogenesis at the expense
of osteoblast formation, resulting in decline in bone formation, and enhanced fat forma-
tion [52] and decrease in migratory properties [53]. More recently, potential links have
been made between the intrinsic type 1 interferon profile within MSCs and their ability
to respond to DNA damage [54]. The work by Josephson et al. established the effect of
age-related inflammation in MSCs by demonstrating a decline in the number of MSCs
and impaired bone regeneration capacity in mice models. They also found that ‘circulat-
ing systemic factors’ in the BM of the aged contributed to MSC aging, confirmed by the
presence of higher levels of TNF-α, IFN-γ and IL-6 [51], which are also classical indicators
of inflammaging.

The probable cause behind these age-related changes in MSCs can also be credited
to the hallmarks of aging, including DNA damage, the impact of ROS, telomere attrition
and cellular senescence [4]. Even though most of these age-related changes in all the
cell types within the BM were initially attributed to cell-intrinsic characteristics, more
recently, there has been an increase in acknowledging the effects of the aging BM niche or
microenvironment on the exhaustion of stem cells [39]. These usually include the secretion
of inflammatory cytokines, presence of a senescence-associated secretory phenotype (SASP)
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and proinflammatory factors that lead to the formation of a microenvironment that no
longer supports the functioning of the cells within it [39].

2.4. Age-Related Changes in B Cells and T Cells: Immune Aging and Immunosenescence

The immune system plays a significant role in maintaining the immunity and provid-
ing us with protection against infections. The evidence in the literature indicates a decline
in the immunological parameters, which has now been termed as immunosenescence [55].
Immunosenescence is shown to cause an accumulation of proinflammatory factors and
inflammaging as a result of alterations in the immune cells. The features of immunosenes-
cence include a reduced ability to respond to new antigens, a decrease in the peripheral
blood naïve cells and an increase in the frequency of memory cells. These elements, along
with inflammaging, are considered to be the hallmarks of immunosenescence [56]. Taking
the aforementioned into account, at the cellular level, cells residing within the innate and
adaptive divisions become senescent with age. Whilst the exact mechanism pertaining
to this phenomenon remains elusive, it is suspected that this may be the consequence of
‘sustained activation in the absence of a specific challenge’ [57].

2.4.1. B Cells

B and T cells function differently during the aging process. Their ability to counteract
incoming foreign threats is significantly reduced, thus increasing the risk of infection
(56,57). The number of B cells decrease with increasing age, in turn causing a reduced
production of high-affinity antibodies. Although this could be attributed to insufficient
T-cell assistance, the T-cell-independent responses are also decreased [57]. Notably, Keren
et al. demonstrated that the removal of ‘older’ B cells reversed the senescence seen within B
cells through the occurrence of lymphopoiesis in the BM [58]. This research not only formed
the foundation with which ‘reverse aging’ experiments are based on but reemphasised
senescence as a marker of inflammaging. Further exploration of the changes in B cells with
advancing age will contribute further to our understanding of aging BM.

2.4.2. T Cells

One of the most prominent features of immunosenescence is the alterations in the
T-cell compartment. Naïve T cells are abundant in youth; however, their numbers have
been shown to reduce with advancing age. Their lower numbers are often attributed to
the process of thymic involution, which also leads to an increase in T-memory cells [59].
Within the T-cell subsets, CD8+ circulating T cells are known to be impacted more than
other subpopulations with advancing age and are deemed to be the most prominent
and consistent markers of immune aging [59]. Recent evidence suggests that changes
in CD4+ T cells contribute to age-related chronic inflammation and can cause sufficient
aging phenotypes in an entire organism [60]. Mittelbrunn and Kroemer also outlined the
primary hallmarks of T-cell aging to be defined by the parameters of thymic involution,
mitochondrial dysfunction, genetic and epigenetic alterations and, finally, the loss of
proteostasis [60].

3. NGS and Its Applications in Aging Studies

Previously, there have been studies that explored NGS for a better understanding of
age-related changes. It has been used for genome-wide analyses of the networks involved
in changes in the retina [61] and human-induced pluripotent stem cell (iPSCS)-derived
neurons [62], as well as in HSCs in the BM [63]. As discussed in the former sections,
the infamous landmark ‘hallmarks of aging’ paper initially denoted the landmarks of
aging, with one of these being the accumulation of DNA damage [17]. In resonance with
this and commonly seen with aging is the clonal expansion of mutated stem cells within
the BM, leading to an increased risk of haematological malignancy development [64,65].
For example, each decade, an average of 1.3 ± 0.2 somatic mutations are developed
per HSC, and age-related haematopoietic clones in individuals over the age of 55 is a
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relatively common finding [66]. Whilst most of these mutations may not render any
functional effects, it has been observed that some of these genome aberrations render cells
independent of specific external growth factors or develop a resistance to certain external
growth factors, thus facilitating uncontrolled clonal expansion [67]. In the context of BM
aging, NGS has thus paved the way to allow scientists to probe the genome, exome and
transcriptomic profiles of cells residing within the BM in an attempt to understand the
underlying molecular mechanisms.

3.1. Targeted Sequencing Approaches
3.1.1. DNA Panels

Aberrant stem cell functions are not just limited to aging but possibly impact au-
toinflammatory, immunodeficiency and haematopoietic malignancies. Such single-cell
transcriptomic approaches, targeted cell sequencing and/or targeted gene panel DNA
sequencing can be employed to further study the genetic factors contributing to, or even
causing, the disease itself and/or its progression. Single-nucleotide polymorphisms (SNPs)
and variations [68] and copy number variations are those parameters most examined when
investigating DNA [69].

We recently demonstrated that clonal haematopoiesis was not associated with Schnit-
zler Syndrome (SchS) patients—an autoinflammatory disease postulated to be associated
with a restricted pool of clones within the BM. We studied a panel of 28 genes associated
with the development of clonal haematopoiesis and myelodysplastic syndrome, another
BM disorder. Solely, one SchS patient demonstrated a nonsense mutation in STAG2 with a
low variant allele fraction, and independently, this could represent a CHIP mutation [70].

3.1.2. ScRNA and Bulk RNA-Seq

Single-cell RNA sequencing (scRNA-seq) has evolved into an effective tool for the
identification and classification of cellular populations through examining the transcrip-
tional signature. In the context of the aging BM and associated conditions, several studies
have been performed to characterise cellular subtypes and unearth cell-intrinsic differences.
We describe two key examples of such studies below.

In 2018, Hennrich et al. sorted HSC populations into six subsets: CD34+, lymphocytes,
monocytes/macrophages, granulocytic precursors, erythroid precursors and MSCs, using
flow cytometry [71]. In accordance with their protein studies, both single-cell RNA-seq on
the CD34+ subset, as well as bulk RNA sequencing on the sorted populations, revealed that
the mRNA transcripts of age-increased glycolytic enzymes were markedly higher in the
myeloid compartments as compared to the lymphoid counterpart. This sequencing was
conducted using the Switch Mechanism at the 5’ end of the RNA templates (SMART-seq);
a single-cell protocol developed to enable a complete genome coverage, thereby permit-
ting the detection of alternative transcript isoforms and single-nucleotide polymorphisms
(SNPs) [72]. With the multi-experimental approach, the aforementioned study highlighted
that aging triggers changes within the BM niche, specifically reducing the pathway func-
tions involved in human haematopoietic stem and progenitor cell homing [71].

Parallel to the work by Hennrich et al. [71], one group of researchers set out to create
a set of reference data for a subset of cells with the healthy human BM to ‘facilitate and
validate the analysis of large databases of scRNA-seq’ [73]. Twenty healthy individuals
between the ages of 24 and 84 years were recruited to donate BM aspirates, which notably
is a challenging task with regards to both ethical perspectives and given the invasive
procedure [74]. Firstly, the scRNA sequencing was performed on BM mononuclear cells
(BMMCs) at a read depth of 50,000 reads per cell, detecting an average of 880 genes per in-
dividual cell. Notably, this section of the study employed the widely used and increasingly
popular 10X methodology—a droplet-based system permitting the genome-wide expres-
sion profiling of thousands of cells at the same time. The quantification of unique molecular
identifiers (UMIs) directly corresponds to the levels of gene expression [75]. Application
of the single-cell trajectory analysis combined with the statistical method: t-distributed
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stochastic neighbour embedding (t-SNE) permitted the detection of the lymphoid, myeloid
and erythroid lineages with their developmental stages, in concordance with the flow
cytometry performed on the matched samples [73]. As an additional resource, the authors
performed whole-transcriptome sequencing on eight donors as a further prediction of the
proportion of cellular subsets. This second body of bulk RNA sequencing work utilised the
Tru-seq library preparation method, widely known for the resulting high-quality libraries
from lower amounts of starting RNA material [76]. Whilst the initial aim of this research
was to provide a reference dataset for future studies to compare their data to the obtained
data, their work revealed an increased expression of chromatin markers in both the HSC
progenitor cell populations and the differentiated immune cells, consistent with studies
using alternative methodologies [77]. This helped in further affirming the validity of the
data obtained.

4. The Future of NGS in Aging Studies—Potential, Perspectives and Limitations
4.1. Potential and Perspectives of NGS in Aging Studies

With all of the above information, we propose the use of NGS for BM aging in
progenitor cells and immune cells from human donors of a wide age range (18–90 years old).
This will help to understand the changes with ‘healthy aging’ and potentially underpin
the early markers of inflammaging in older adults (40–60 years old), considering skeletal
aging has been suggested to begin from the fifth decade of human life [78]. Comparative
investigations of transcriptome reads from healthy older adults and from donors with
ARDs will help in narrowing down the common genes/genetic profiles that are present in
healthy older adults but are potentially further exacerbated in ARDs.

We predict that approaching the ever-dynamic BM and its aging cells will not only
help us understand the differences in the genome with healthy aging but will also help with
the early diagnosis of various age-related conditions that are commonly observed in the BM.
These results could aid in slowing the progression of debilitating diseases like cancer and
enhance the QOL of patients through more personalised therapies. Nevertheless, despite
the rapid development in the field of NGS within the past few years, several challenges
remain, both within the workflow and also with the data output and downstream analysis.

4.2. Limitations of NGS in Aging Studies

Within the workflow, technical challenges like poor cellularity, the low quality of the
extracted genetic materials and the heterogeneity of the tissue sources are often discussed in
detail before the experimental design of these experiments. Considering that the number of
several cell populations (MSCs [13] and B cells [79]) and functionality of others (HSCs [80]
and naïve T cells [81]) decline with advancing age, extracting sufficient quantities of
genetic material from samples of older donors will pose challenges during the library
preparation for sequencing. Apart from the extraction of a sample for the genetic material,
another predominant challenge lies within the vast amount of data generated, raising
storage concerns (e.g., one alignment file (BAM file)); accounting for 30× the coverage
of the human genome would approximately generate 90–95 Gb of data. Applying this
to simply 10 samples would thus generate nearly 1 Tb of data itself. Whilst such files
can be converted into smaller, compressed files, the retention of all raw data is largely
necessary for reprocessing purposes. Thus, researchers need to account for the computing
expertise, power and space required to accommodate the resulting data. In these lines, one
would also encourage the sharing and deposition of such NGS data in public domains. The
National Center for Biotechnology Information (NCBI) has an ever-growing bank of data
deposited by researchers.

5. Conclusions

The last two decades have experienced accumulating evidence in the field of aging,
inflammaging and ARDs to enhance our understanding in the field and potentially treat
the conditions for a better QOL for the elderly. Currently, the presence of TNF-α, IFN-γ
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and IL-6, followed by change in the number of cells, distorted functions and skewed
differentiation outlines the aging BM for us. However, to find new genes and potential
targets that may be associated with aging in the BM, a unique technique like NGS will help
underpin pathways that are yet to be discovered.

Focussing on gene panels aimed at the proliferation, differentiation, migration and
homing of these cells with advancing age (Table 1) will also add to our knowledgebase of
aging BM. We also predict that investigations following the hallmarks of ‘DNA damage’,
‘mitochondrial damage’, ‘cellular senescence’, ‘effect of ROS’ and ‘epigenetic alterations in
the human transcriptome’ will provide us with further evidence about the existing path-
ways and novel factors that may lead to potential targets for therapies in geriatric science.

Table 1. List of key studies performed using NGS in aging BM investigations.

Cells Explored DNA/RNA Key Findings Reference

SSCs RNA

a. RNA-seq data linked the functional loss of SSCs to diminished
transcriptomic diversity of SSCs, transforming the BM in
aged mice.

b. Aged SSCs promoted osteoclast activity and myeloid skewing
in HSCs

[82]

Non-HSCs (MSCs) RNA

a. Provided insights into the BM cellular components of
non-HSCs and their transcriptional intermediates along
differentiation paths

b. Explored non-HSC subpopulations and differentiation
hierarchies for maturing stromal cells

[83]

MSC lineage cells RNA

a. Confirmed age-related changes established in MSCs (decline
in number and differentiation potential)

b. Identified a new subset of marrow adipocyte lineage
precursors (MALPs) within the aging BM

[84]

HSCs and MSCs RNA

a. Enhanced central carbon metabolism in the elderly indicating
higher anabolic activity in them reminiscent of the Warburg
effect

b. Decrease in factors responsible for homing, egress and
differentiation (CXCL12, VCAM and integrins) decreased in
the elderly

[71]

BM cells with focus on T cells RNA

a. T-cell population increased with advancing age
b. Provided compatibility between mass cytometry, RNA-seq

and flow cytometry across donors aged between 24 and
84 years old

[73]
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