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ABSTRACT: Predictive screening of metal−organic framework (MOF) materials for their gas uptake properties has been
previously limited by using data from a range of simulated sources, meaning the final predictions are dependent on the performance
of these original models. In this work, experimental gas uptake data has been used to create a Gradient Boosted Tree model for the
prediction of H2, CH4, and CO2 uptake over a range of temperatures and pressures in MOF materials. The descriptors used in this
database were obtained from the literature, with no computational modeling needed. This model was repeated 10 times, showing an
average R2 of 0.86 and a mean absolute error (MAE) of ±2.88 wt % across the runs. This model will provide gas uptake predictions
for a range of gases, temperatures, and pressures as a one-stop solution, with the data provided being based on previous experimental
observations in the literature, rather than simulations, which may differ from their real-world results. The objective of this work is to
create a machine learning model for the inference of gas uptake in MOFs. The basis of model development is experimental as
opposed to simulated data to realize its applications by practitioners. The real-world nature of this research materializes in a focus on
the application of algorithms as opposed to the detailed assessment of the algorithms.

■ INTRODUCTION
Using porous materials in gas storage has become an
increasingly important topic, with effective storage and/or
release of gases such as H2, CH4, and CO2 being potentially key
in climate change mitigation.1−3 Porous materials, with large
surface areas and open spaces, allow for higher uptakes of gas at
lower pressures when compared to using traditional bottles.4

Metal−organic framework (MOF) materials have been shown
previously to be highly successful in gas absorption5 and in
particular are more suited to absorption than other porous
materials, such as zeolites, due to an absence of dead volume in
the structures, which leads to a higher efficiency.6 MOF
crystalline structures comprise repeating metals containing
secondary building units (SBUs) joined together by organic
linkers. The SBUs and linkers can potentially be combined in an
almost limitless number of ways, allowing for extensive design
for the application required.6 As a result of this, computational
screening for MOF materials becomes important to save time
and efficiently find a structure suited to the desired application,

such as gas uptake/storage. Previous work by Pardakhti et al.
created a random forest (RF) model to predict the methane
uptake in ∼130,000s simulated MOF structures,7 using
descriptors gained through Grand Canonical Monte Carlo
(GCMC) modeling, such as void fraction, surface area, and
density. This model had a high predictive performance, with a
coefficient of determination (R2) of 0.98 and a mean average
percentage error (MAPE) of 7.18. However, this model is
limited by only predicting for uptake at 35 bar and 298 K,
limiting its use for researchers. More recently, Fanourgakis et al.
made an RF-based model to predict CH4 and CO2 uptake in
∼78,000 structures and achieved an R2 of 0.96 for predictions on
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a test set.8 A key improvement on the previous work is the ability
to predict for two separate gases (CH4 and CO2) and at a range
of pressures (1−65 bar for CH4, 0.05−2.5 bar for CO2).

RF models are ensembles of decision trees (DTs), with the
combination of many DTs improving the model performance
and decreasing certain limitations found in DTs. Briefly, DTs are
a simple class of machine learning models that start with all of
the prediction data being held in a root node, which is then
sequentially split through binary decisions by internal nodes
until it reaches a terminal node, which will be the prediction.9

However, if each output for the training data has a
corresponding node, while the performance for the training
set is very high, it may struggle to predict new data. To counter
this, a “minimum leaf size” can be set, where the value for the
terminal node will be the average of several outputs rather than
just one, with the number of outputs being averaged
corresponding to the “minimum leaf size”. This will result in a
lack of performance on the training set but should give a model
that is more flexible toward new data.

Ensemble models, such as RFs of gradient boosted decision
trees (GBDTs), allow for a more flexible model while avoiding
loss of performance. RFs fit many trees (usually hundreds or
thousands), with the average prediction from the trees being
given.10 With the average being taken over many trees, it allows
for the individual trees to be weaker, to limit overfitting to the
training data, with the average prediction over many trees
increasing the performance. GBDT is also a technique that uses
many decision trees, but rather than have the trees be separate
from each other, the trees are built based on the previous
iteration to slowly approach a model with high performance.9,11

This is achieved by the model first taking the average of all of the
output data and then finding the difference of the output values
to this average, with these differences being pseudo-residuals.
The model will then form a tree to predict for these residuals and
not the actual outputs. From this tree, a prediction would be the
average output value plus/minus the predicted residual.
However, just from this first tree, there could be predictions
that are completely accurate, meaning the model is overfitting to
the training data and will have reduced performance with new
data. To avoid this, a learning gradient can be applied to the
model, which acts as a modifier to the predicted residuals. For
example, Predicted Output = Average Output + (Gradient ×
Predicted Residual). Following this first tree, residuals from
these predictions will be used to form the second tree and so on.
While this learning gradient does mean that the individual
decision trees are much weaker now, by gradually building the
model performance, overfitting can be reduced while giving a
model with more accurate predictions. Friedman, who
developed the gradient boosting model, showed that taking
lots of these small steps would lead to a better fitting model while
reducing any bias.12

These previous models, however, obtained initial gas uptake
values and several descriptors using GCMC modeling. This
limits the transferability of the data to real-world applications as
the gas uptake predictions determined through the machine
learning (ML) models may be imperfect due to any errors
present in the GCMC models, which, while they might be small,
means that the regression model will be starting from a point of
error. For researchers looking to predict the gas uptake on a not-
yet synthesized MOF, certain physical descriptors, such as pore
size and surface area, will only be available through GCMC
modeling of the theoretical structure. Since these gas uptake
models require these descriptors, researchers would first have to

perform these GCMC calculations before a gas uptake
prediction could be made.

This work details a predictive ML model for the uptake of
multiple gases (H2, CH4, CO2) at a range of temperatures (30−
333 K) and pressures (0.06−100 bar). For researchers to use
this model for unsynthesized materials, this model will need to
be of comparable performance to a previous work while only
using predictors that can be gained without the use of GCMC
modeling/having already performed a gas isotherm (such as
pore size/surface area). The gas uptakes will be obtained from
previously published results to remove the errors of GCMC
modeling, thus providing an easy-to-use predictive tool for new
researchers. The developed ML model shows a high predictive
performance while allowing for a range of different predictions
to be performed for a single MOF structure. Partial least-squares
(PLS) regression was performed to indicate what descriptors are
the most significant in the prediction of gas uptake.

■ METHODS AND MATERIALS
A database was formed using experimental gas uptake data from
previously published papers, with a full list of MOF materials
and their corresponding references provided in the Supple-
mentary Information. The data were collected by manually
searching and reading these papers, giving a total of 589
datapoints, with some datapoints being from the same MOF
material but with different gases, temperatures, or pressures
used. This data was selected from what was available at the time
while ensuring that the uptakes were not from papers where the
aim was to synthesize defective forms of these MOFs as the
model would not be able to account for this currently. The
datapoints are split into 205 for H2 uptake, 268 for CO2 uptake,
and 115 for CH4 uptake, corresponding to 304 unique MOFs.
The aim was to form a database that represented a wide range of
MOF structures while giving multiple datapoints to each MOF
structure where possible (with variation in the gas absorbed,
temperature, and pressure). The wt % values ranged from 1.5 to
74.2 wt %, the temperature ranged from 30 to 313 K, and the
pressure ranged from 0.1 to 100 bar. By only using gravimetric
uptake data, either through collection or calculation from the
literature, and avoiding papers where the MOF produced was
purposefully defective, the literature available was limited. This
meant that database formation was a time-consuming process
and a limiting factor in database size, alongside what literature
was available.

Gravimetric uptake data was used rather than volumetric data
for ease of comparison. The unit used in this work was weight
percentage (wt %) uptake, with some values calculated from cm3

g−1 using the density of the gas. The wt % was calculated using eq
1:

=
+

×
m

m m
wt % 100%

gas

gas absorbent (1)

where mgas is the mass of gas absorbed and mabsorbent is the mass
of the absorbent. It was found that different published results for
wt % were calculated in two possible ways, with either eq 1 or by
simply dividing the absorbed gas by the weight of the absorbent.
At low uptakes (such as those for H2 absorption), the difference
between these two values is small, but at larger uptakes (such as
those found for CO2 and CH4), the difference between the two
values is considerable. These values were converted to the same
measure, using eq 1, to ensure they are comparable and reduce
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the data range entering the predictive model, which should lead
to easier fitting of the data.13

The descriptors used can be divided into three categories: (1)
the type and number of bonds present in the linker unit, (2) the
metal present in the SBU, and (3) other physical/chemical
conditions for the gas absorption (type of gas, temperature,
pressure, electronegativity difference between the MOF and the
gas). Textural features, such as surface area and pore size, were
purposefully not included here to ensure future users would not
need to perform other computational modeling before using this
model. Overall, 51 descriptor variables (Table 1) were used,
with the output being the natural log of the gas uptake wt %. This
natural log was used to account for unequal spacing between
datapoints.

Several machine learning methods, linear regression, quad-
ratic support vector machine (SVM), DT, and gradient boosted
decision trees (GBDTs), were fitted and tested. In lieu of using
an external test set, 10-fold cross-validation was used, with the
low amount of data available making it impossible to choose a
test set without bias. Machine learning research, performed in
relation to materials engineering, has utilized cross-validation as
opposed to an external test set for validation due to a relative lack
of data available.14−17 The GBDT model had several hyper-
parameters (number of trees, minimum leaf size, and learning
rate) manually optimized to give the lowest mean squared error
(MSE) on each fold when used as a validation set. This
optimization led to a GBDT model with 600 trees, a learning
rate of 0.05, and a minimum leaf size of 3. During optimization,
increasing the minimum leaf size from 1 to 2 to 3 did not
improve the R2 significantly as anticipated, with the value
decreasing marginally as the leaf size was increased (0.8709 to
0.8669 to 0.8643). However, while it has the lowest R2 value, a
leaf size of 3 was utilized to ensure that if new data is included in
the future, this added flexibility should reduce potential
overfitting. The linear regression, DT, and quadratic SVM
models had their hyperparameters optimized using the
“OptimiseHyperparameters″ function in MATLAB 2020. The
full list of hyperparameters is provided in the Supporting
Information.

Each model was run 10 times to give a varied split of the
different folds, ensuring that each model was repeatable even
when the folds changed. These models were then evaluated by
their average R2 values, the average validation fold MSE (KFold
Loss), and the average mean absolute error (MAE) for when the
predicted data was converted back from being a logged value and
compared with the original value. This MAE was done for each
gas as well, to give a more accurate scale of error. Alongside the
MAE, the mean absolute percentage error (MAPE) was also
calculated to give a relative measure of error.

■ RESULTS AND DISCUSSION
The average R2, KFold Loss, MAE, and MAPE from the four ML
methods while predicting for all gases are listed in Table 2, with
the regression plots for each model shown in Figure 1. The

regression plots were made by converting the prediction and
target wt % values back from natural logs and then taking the
average of the prediction values for each datapoint over 10 runs.

The GBDT model shows the highest level of performance
across the board (R2 = 0.86, average KFold loss = 0.117, average
MAE = 2.882 wt %, average MAPE = 26.54%), which is to be
expected from a more complex machine learning model. The
KFold loss being the lowest shows this model to be the best at
predicting new data, with the lowest MSE for the held-out folds,
which is key for a new researcher to use this model. In relation to
previous literature examples by Pardakhti et al. and Fanourgakis
et al.,7,8 this does show a slightly lower level of performance (R2

= 0.86 compared to 0.98 or 0.96 respectively), but with the
added flexibility available for this model in which multiple gases
and conditions can be predicted, making it a success. The GBDT
performed consistently across the 10 runs, with the relative
standard deviation for each error shown in Table 3.

In terms of MAPE, there is a deviation from the model by
Pardakhti et al., with 26.544% compared to 7.18%. Again,
however, with the limited data used and the flexibility of the
model formed for a new user, it is still a success. The predictions
for this work being based on previous literature results should
also give predictions that are more applicable in a real-world
setting. An average MAE of ±2.882 wt % is given for all of the
datapoints, but there is variation depending on the gas being
predicted (Table 4), which new researchers can apply to their
predictions. Note here that these errors are for the specific

Table 1. List of Descriptors Used in Machine Learning Models

type of descriptor list of descriptors

primary building units (PBUs) C−C, C−C (ring), (ring) C−C (ring), C�C, C−O, C�O, C−N, C�N (ring), N−N (ring), N�N (ring), N�N (ring), (ring)
C−O, (ring) C�O, (ring) C−S (ring), (ring) N−S (ring), (ring) C−N, C−N (ring), (ring) C�C (ring), (ring) N−C (ring),
(ring) N�C (ring), C�C, C�N, N−O, N�O, O−R, C−R, (ring) C−R

secondary building units (SBUs) Al, Cd, Co, Cu, Mg, Mn, Ni, Zr, Zr4O, Sc, Ti, Be, Pd, Y, Er, In, Cr, Fe, Mo, Zn
physical conditions (PHYS) largest electronegativity difference, temperature (k), pressure (bar), gas molecular weight (g/mol)

Table 2. R2, Validation MSE (KFold Loss), MAE, and MAPE
for Each of the Machine Learning Models Useda

method average R2 average KFold loss average MAE average MAPE

linear 0.330 0.605 7.251 87.822
SVM 0.650 0.305 5.309 51.381
DT 0.777 0.195 3.790 35.853
GBDT 0.864 0.117 2.882 26.544
aMAE and MAPE were calculated once the data was converted back
from a log value.

Table 3. Relative Standard Deviation (%) for R2, KFold Loss,
MAE, and MAPE across the 10 Runs

R2 KFold loss MAE MAPE

relative standard deviation (%) 0.6 3.6 1.4 1.9

Table 4. Average MAE and Average MAPE when Fitting Data
for Each Gas in the GBDT Model, over 10 Runs

gas type average MAE average MAPE

H2 0.759 20.70%
CO2 4.598 32.26%
CH4 2.667 23.64%
all gases 2.882 26.54%
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datapoints for different gases when predictions are being
performed on the full data set, not for separate models for
each gas. Being able to perform calculations for any of the gases
while not changing the training database is a key aspect of the
model’s flexibility.

GBDT is the most accurate model, and fitting was repeated
while limiting the descriptors used to examine how each
category contributed to the fitting. For each of these, the
adjusted R2 was also collected to observe if overfitting through
the number of descriptors was occurring (Table 5). Adjusted R2

is calculated using eq 2 and is used to measure R2 in relation to
the number of descriptors used, only increasing if the increase in
R2 is significant in relation to the increase in descriptors.18

=R
R N

N d
adjusted 1

(1 )( 1)
( 1)

2
2

(2)

As can be seen in Table 5, the physical uptake conditions
(PHYS; pressure, temperature, type of gas, electronegativity
difference) play the biggest role in the prediction for the overall
uptake, which is understandable as the way a gas behaves is
affected drastically by the environment, as seen in the ideal gas
equation for example. Following this, predicting using just the
primary building unit (PBU) descriptors gives the next most
accurate predictions (when using one category of predictors at a
time), with the SBU descriptors being the least accurate. When
combining these descriptors, the model with the highest

predictive performance is formed, with the highest adjusted
R2, indicating that overfitting through too many descriptors is
not occurring. If this database is expanded, leading to an increase
in runtimes, then limiting to the physical conditions and the

Figure 1.Regression plots for the developed ML models: (a) linear model; (b) SVM; (c) DT model; and (d) GBDT model. Each plot uses the average
prediction for each datapoint (over 10 runs) versus the real experimental wt % values found in the literature. The black line is y = x, with the R2 around
this line calculated and shown in black text. The red line is a fitted line of the best fit, with the R2 for this shown in red text.

Table 5. Comparison of R2, Adjusted R2, Kfold Loss, Average
MAE, and Average MAPE when Different Combinations of
Primary Building Unit (PBU), Secondary Building Unit
(SBU), and Physical Conditions (PHYS) Were Used in the
Fitting of the GBDT Modela

average
R2

average
adjusted R2

average
Kfold loss

average
MAE

average
MAPE

PBU (27) 0.062 0.017 0.9016 8.200 100.600
SBU (20) 0.023 −0.012 0.848 8.280 97.180
PHYS (4) 0.743 0.741 0.222 4.431 40.858
PHYS + PBU

(31)
0.842 0.8340 0.1356 3.217 29.049

PHYS + SBU
(24)

0.803 0.795 0.1702 3.646 34.001

PBU + SBU
(47)

0.064 −0.017 0.9100 8.324 102.249

all descriptors
(51)

0.864 0.851 0.117 2.882 26.544

aThe set of descriptors with the highest adjusted R2 has been
highlighted. The number of descriptors used in each category is
shown in brackets.
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PBU descriptors, which would reduce the predictors from 51 to
31, could give a comparatively accurate result in less time.

Partial least-squares (PLS) fitting was performed to give
variable importance scores (VIPScores) for each descriptor,
with a higher score meaning that the descriptor contributes
more to the percentage variance explained. First, PLS was
performed to find the minimum number of components needed
for the model to predict accurately. The results for this are
shown in Figure 2, with the estimated mean squared prediction
error plotted against the number of components used.

In this principle component analysis (PCA) plot (Figure 2),
the “elbow”, being the point at which the error starts to level off,
is at seven components, with the elbow method of choosing the
number of components being well documented.19 This method
is performed to ensure that overfitting is not occurring through
including too many components and because after this point the
increase in performance for increasing components has been
reduced drastically. Following this, PLS was repeated using six
components to give accurate VIPScores for the descriptors,
which should be comparable to the variable importance found
earlier when using different data sets. These VIPScores are
shown in Figure 3, with the descriptors showing a score of 0.5 or
higher labeled. While in the literature a score > 1 is used as an
indication that a descriptor is important,20 this would only leave
the temperature, pressure, and type of gas in this case. As shown
in Table 4, using other descriptors alongside the physical
conditions does increase the performance of the model while not
overfitting, as seen with the increasing adjusted R2, so some of
these must also be important.

After the physical conditions (except electronegativity
difference), the descriptors that show the highest contribution
are those relating to certain linker bonds in the PBUs as
highlighted in Figure 3. The bonds with the highest contribution
to the uptake being carbon-bonded to other atoms make sense as
a higher number of C−C bonds for example would usually result
in a longer linker, increasing the surface area and the pore size.21

Fitting the GBDT model was repeated using these descriptors
with VIPScores > 1 and > 0.5 to see how their inclusion affected
performance, with their errors shown in Table 6.

When limited to these nine descriptors, the model has
comparable performance to that found when using the full 51,
whereas only using the physical conditions yield a model with a
lower performance. Future work using larger databases could
benefit from using just these nine descriptors to reduce the
computing power required.13

Figure 2. Estimated mean squared prediction error vs number of PLS components. The datapoint at five components has been highlighted.

Figure 3. Variable importance scores for each of the 51 descriptors.
Those with a score > 0.5 are labeled and highlighted in red.

Table 6. R2, Adjusted R2, Kfold Loss, MAE, and MAPE for
GBDT Models Fitting Using only the Descriptors with
VIPScores > 1, VIPScores > 0.5, and Fitting Using All 51
Descriptors

R2
adjusted
R2

Kfold
loss

average
MAE

average
MAPE

VIPScores > 1 0.737 0.736 0.228 4.521 41.415
VIPScores > 0.5 0.804 0.801 0.169 3.651 33.139
all descriptors 0.864 0.851 0.117 2.882 26.544
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An interesting finding from the PLS and fitting the GBDT
model with certain descriptor sets is that the SBU metal type
shows a very low impact on the predicted gas uptake. This is
unexpected as the metal type is one of the key features of an
MOF structure so was thought necessary to include in
prediction of the gas uptake. There are two potential reasons
for this lack of impact. First, the type of metal is not as important
as the linker bonds that are present when it comes to gas uptake,
with longer/larger linker units potentially leading to higher
surface areas/pore sizes. In general, higher surface areas and/or
pore volumes will lead to higher gas uptakes so this does make
sense why they are so important. The second reason could be
due to the limited data set that is present in this work, with a
larger data set potentially showing trends for the metal type that
cannot currently be seen for this model.

With the completed GBDT model formed, new researchers
can use this database and model to form gas uptake predictions
on new MOF structures quickly and easily as a one-stop
preliminary model. This model differs from others through its
flexibility, being able to predict for different gases, temperatures,
and pressures without the researcher first needing to perform
any other modeling work, only needing to provide the
descriptors for the linker, SBU, and the physical conditions for
the gas uptake. The use of experimental data in the model fitting
should provide results that are more in line with real-world
observations, rather than theoretical structures. The errors
found for each gas have been provided so researchers using this
model may accurately determine a predicted uptake range for
their chosen MOF and gas. Future work expanding this
database, especially with datapoints at the temperature/pressure
extremes, will help improve the performance of this model as it is
a relatively small data set compared to other works.7,8

■ CONCLUSIONS
In this work, a GBDT model has been developed to predict the
uptake of H2, CO2, and CH4 in MOF materials and is able to
predict these for a range of temperatures and pressures. The
average R2 of this model is found to be 0.864 with an average
MAE of ± 2.88 wt % for the uptakes. This model’s high
performance while using experimental data should provide
researchers with predictions more in line with real-world
observations, with the added flexibility to vary physical
parameters quickly and easily. Future work should aim to
expand this database to give greater predictive performance.

■ DATA AND SOFTWARE AVAILABILITY
A list of all of the literature data used in this work is provided in a
PDF file, which lists the MOF, the physical conditions for the
uptake value (temperature and pressure), the wt % value, and the
reference for this datapoint. Also, in this document are the
hyperparameters used in other machine learning techniques,
individual coefficient of determination values for each fold in 10
runs of the GBDT model, and a full list of the references used for
the uptake values. An Excel file has been made available with all
of the descriptors for each datapoint attached as well, which was
used to perform the fitting of the GBDT model. Alongside this,
the code used to perform this work has been made available in a
ZIP file attached, with annotation provided throughout to
explain certain parts. The software needed to perform the model
fitting was MATLAB 2020 with the Statistics and Machine
Learning toolbox.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00135.

Supporting information document, containing the hyper-
parameters used in other machine learning techniques,
uptake values, and references for all of the data used in
fitting the model and the individual coefficient of
determination values for each fold in 10 runs of the
GBDT model (PDF)
Excel file containing all of the descriptor values for each
datapoint used in fitting the GBDT model (XLSX)
Zip file containing code used for this work, with
annotation provided throughout (ZIP)
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