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Abstract

Ubiquitous vortical structures are considered to act as a natural source of various solar plasma phenomena, for
example, a wide range of magnetohydrodynamic waves and jet excitations. This work aims to develop an advanced
vortex detection algorithm based on the Γ method and using a separable convolution kernel technique. This
method is applied to detect and analyze the photospheric vortices in 3D realistic magnetoconvection numerical and
observational data. We present the advanced Γ method (AGM), and our results indicate that the AGM performs
with better accuracy in comparison with the original Γ method. The AGM allows us to identify small- and large-
scale vortices with no vortex interposition and without requiring the changing of the threshold. In this way, the
nondetection issue is mostly prevented. It was found that the Γ method failed to identify the large and longer-lived
vortices, which were detected by the AGM. The size of the detected vortical structures tends to vary over time,
with most vortices shrinking toward their end. The vorticity at the center is also not constant, presenting a sharp
decay as the vortex ceases to exist. Due to its capability of identifying vortices with minimum nondetection, the
vortex properties—such as lifetime, geometry, and dynamics—are better captured by the AGM than by the Γ

method. In this era of new high-resolution observation, the AGM can be used as a precise technique for identifying
and performing statistical analysis of solar atmospheric vortices.

Unified Astronomy Thesaurus concepts: Solar atmosphere (1477); Solar atmospheric motions (1478)

1. Introduction

In the solar atmosphere, vortical plasma motions are an
important part of its dynamics. They may be responsible for
magnetohydrodynamic (MHD) wave excitation (Schuessler
1984; Attie et al. 2009; Fedun et al. 2011; Kitiashvili et al.
2011; Yadav et al. 2022) and the formation of plasma jets
(Kitiashvili et al. 2013; Iijima & Yokoyama 2017; Snow et al.
2018; Skirvin et al. 2023) and act as a channel for energy
transfer to the solar corona (Shelyag et al. 2012; Wedemeyer-
Böhm et al. 2012; Yadav et al. 2021). To understand the
mechanism of vortex formation and its role in the plasma
processes mentioned above, the precise automated identifica-
tion of a vortex structure is essential (Tziotziou et al. 2023).
However, the identification of vortices in solar numerical and
observational data is still a challenge, as there is no universal
definition for vortex motion (e.g., Günther & Theisel 2018).
Numerous identification approaches have been developed
based on distinct definitions of what constitutes a vortex.
Initially, investigations of vortical structures in the solar
atmosphere were based on visual inspection of the velocity
field (Nordlund 1985; Brandt et al. 1988; Attie et al. 2009;
Bonet et al. 2010) or detected motion of magnetic elements
(Bonet et al. 2008; Balmaceda et al. 2010). Automated
methodologies for vortex identification in solar physics were
only introduced in the last decade by Moll et al. (2011), when
they detected photospheric vortices using the swirling strength
(Zhou et al. 1999), which was also used in posterior studies by
Yadav et al. (2020) and Canivete Cuissa & Steiner (2020). For
a velocity field U, the swirling strength is based on the velocity

field tensor, D=∇U, and it determines the vortex as a region

where the eigenvalues of D are complex. Kato & Wedemeyer

(2017) introduced a similar criterion, the vorticity strength,

where a vortex region is identified as a local area where the

eigenvalues of D are imaginary. The problem with such

methods is that they provide a swirling region of the velocity

field without giving proper information of the vortex boundary

and centers. Therefore, the analysis of plasma properties and

dynamics across the vortex using such techniques is not

precise.
The first study on the identification of a well-defined

boundary and center for vortical structures in the solar

photosphere was presented by Giagkiozis et al. (2018), who

analyzed a quiet-Sun region by applying the Γ method

(Graftieaux et al. 2001), which is based on local analysis of

the velocity vector field, to the CRisp Imaging Spectro-

Polarimeter (CRISP; Scharmer 2006; Scharmer et al. 2008).

Other identification methods that provide the vortex center and

boundary are the Lagrangian averaged vorticity deviation

(LAVD) and its Eulerian version, instantaneous vorticity

deviation (IVD), both defined by Haller et al. (2016). Those

methods are based on vorticity and have been used to analyze

vortices from observations (Silva et al. 2018; Chian et al.

2019, 2020) and simulations (Silva et al. 2020, 2021; Aljohani

et al. 2022). Silva et al. (2018) compared the performance of

three vortex identification methods. It was found that LAVD

and vorticity strength are prone to false identifications without

an additional requirement, whereas the Γ method may not

detect or provide false detections of some vortex structures.

Researchers addressed these issues by introducing a novel

criterion “d” when applying the LAVD and vorticity strength.

This criterion can also be combined with other detection

methods to address the false detection in shear flow.
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All the vortex methods briefly described above have their

advantages, depending on the goal of the analysis to be

performed. Günther & Theisel (2018) have summarized

existing methods according to the reference-frame invar-

iance. Noninvariant detection techniques, such as visual

inspection of the velocity field, refer to those methods that are

suitable to the situation only when investigating the steady

flow or the flow appears to be steady when choosing the right

reference frame. Besides those noninvariant techniques, the

remaining vortex detection methods are invariant under

specific types of reference-frame motion. The vortex

identification technique vorticity/swirling strength and Γ

method are Galilean-invariant. Objective methods like

LAVD or IVD are invariant when the reference frame is

undergoing constant rotation and translation motion (see,

e.g., Günther & Theisel 2018). Another approach, that is, the

morphological method, which is applicable to the detection

of chromospheric vortical motions, was recently proposed by

Dakanalis et al. (2021, 2022).
Applying different vortex detection methods to solar data,

both observational and simulation, has provided important

information on vortex properties. By visual inspection of

magnetic bright points from G-band images obtained from the

Swedish Solar Telescope, Bonet et al. (2008) found several

plasma vortices with sizes ranging from 0.5 to 2Mm and

lifetimes between 5 and 15 minutes in regions near the

downdrafts of intergranular lanes. However, using magnetic

bright points to identify vortices is not precise, as it can also

overestimate the size of vortical structures and may interpret

two close-by consecutive vortices as the same structure. The

study by Giagkiozis et al. (2018) found an average lifetime of

17 s for intensity vortices detected by the Γ method, and their

statistical analysis also indicated the vortices have a diameter of

around 568 km. In MURaM simulations, vortex identification

with IVD indicated a longer average lifetime, around 84.7 s,

and a diameter approximately seven times smaller. At super-

granular scales, vortices have been detected by visual

inspection (Attie et al. 2009), cork tracking (Requerey et al.

2018), and LAVD (Chian et al. 2019, 2020). While visual

inspection provided sizes around 15–20 Mm, the LAVD

identified vortices with a smaller range, 5–10 Mm. In all the

supergranular analyses, there are persistent vortical structures

that last for a couple of hours.
In this paper, we introduce the advanced Γ method (AGM),

which is based on the original Γ method proposed by

Graftieaux et al. (2001). By comparing the Γ method and the

AGM, we show that our technique reduces the influence of

threshold choices. The AGM is applied to detect a solar vortex

in a simulated solar surface obtained by StellarBox (a 3D

radiative MHD code). We investigate the lifetimes, sizes, and

dynamics of the velocity field components of the detected

vortices. The new detection method is also applied to CRISP

observational data and compared with the numerical data

results.
The paper is structured as follows. First, in Section 2, we

describe the AGM technique and the algorithm construction.

Then, in Section 3, we provide detection results and statistical

analysis and compare the performance of the AGM with the Γ

method. Last, the discussion and conclusions are given in

Section 4.

2. Vortex Identification

2.1. Description of Simulation Data

For the numerical modeling, we use a 3D radiative MHD
code, StellarBox (see, e.g., Kitiashvili et al. 2012; Wray et al.
2015), developed for realistic simulations of the upper
convective zone and lower atmosphere. The size of the
simulation area is 6.4× 6.4Mm, and it initially had an
imposed uniform vertical magnetic field around 10 G. The
simulation has a cadence of 5 s and the analyzed data have a
total duration of 625 s. For our investigations, we used the
horizontal velocity field from the simulated solar surface with a
resolution of 12.5 km in the x- and y-directions. An example of
a simulated horizontal velocity field snapshot is shown in
Figure 1.

2.2. Vortex Identification by the Γ Method

For vortex identification, that is, its center and boundary,
Graftieaux et al. (2001) introduced two dimensionless scalar
functions, Γ1 and Γ2, respectively. It was shown that these two
functions are able to detect large-scale vortices in turbu-
lent flows.
The discrete version of Γ1 at a given point P (within the

numerical domain) can be represented as

( )
( ) ·

·
( ) ( )

   å qG =
´

=
PM U z

PM U
P

N N

1 1
sin , 1

S

M

M

M1

where N is the number of discretely sampled velocity field

points of a 2D area S centered on P. Point M lies within S, and

PM denotes the displacement vector from point P to M. The

variable UM denotes the velocity vectors at point M, and z is a

unit vector normal to the horizontal plane. The || · || notation
represents magnitude.
The Γ1 function defined in Equation (1) provides a scalar

field that quantifies the topology of the flow in the neighboring
region of P. At the vortex center, |Γ1|, the cross-product value
PM×UM has a maximum, leading to the highest value of |Γ1|.
The sign of the Γ1 value at the vortex center indicates the
direction of the vortex rotation; that is, negative indicates that

Figure 1. A snapshot of the magnetoconvection simulation at t = 5 s,
displaying the simulated solar surface colored by the vertical velocity field.
The black arrows show the direction of the horizontal velocity field.
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the rotation is clockwise rotation and positive means it is
counterclockwise. The vortex center will have |Γ1| values >0.9
and =1.0 in the ideal case when the vortex is axisymmetric. In
real turbulent flows, the vortex’s appearance contains a broad
range of irregular shapes. Thereby, we set a threshold for a
vortex center |Γ1|� 0.75. More precisely, a point P will be
considered as a vortex center if the |Γ1| value is above 0.75 and
if it is a local maximum within the region S.

The function Γ2 considers the contribution of the average
local velocity field around the vortex center. The definition of
the discrete version of Γ2 is

( )
[ ( )] ·

·
( )

   åG =
´ -

-
PM U U z

PM U U
P

N

1
. 2

S

M P

M P

2

Here, UP is the local average velocity around the point P, that

is,

( )å=U U
N

1
. 3P

S

It can be shown that in the case of incompressible flow, for a

very small 2D vortex area (S→ 0), function Γ2 depends on the

antisymmetrical and symmetrical parts of the velocity gradient

∇U tensor at point P. Locally, the flow is dominated by

rotation if |Ω/μ|> 1, which implies |Γ2|> 2/π. Here, Ω (the

rotation rate) and μ (the eigenvalue) correspond to the

antisymmetrical part and symmetrical part of the ∇U,

respectively. It is important to note that such classification

has not yet been defined in the case of a finite region S

(Graftieaux et al. 2001).

2.3. Vortex Identification with the Convolution Γ Method

The discrete Γ1 function for the 2D convolution version of
the Γ method (hereafter CGM) wasproposed by Zigunov et al.
(2020):

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

( ) 

       

       

å åG = -

= -

PM U PM U

PM U PM U

P
N

PM U PM U

N

PM U PM U

1

1
, 4

S

x My

M S

y Mx

M

x My

M

y Mx

M

1

where UMx and UMy correspond to the x- and y-components of

the velocity vector starting from the point M within the

rectangular region S. Analogously, PMx and PMy are the

corresponding components of displacement vectors from the

point P to a point M. The potential vortex center P is regarded

as the origin of this coordinate system defined inside S. The

variable N is the number of discrete grid points around the

point P within the S region. The “#” is the convolution

operator. We can write the first terms in the convolutions in a

trigonometric representation:

( ) ( ) ( )
   

q q= =
PM PM

PM PM
cos , sin . 5

x
PM

y
PM

Thus, the two convolutions in Equation (4) can be represented

as multiplications of convolution kernels by the sines and

cosines of the angles between the vectors UM and the x-axis,

i.e., ( )qsin UM and ( )qcos UM , respectively (see Zigunov et al.

2020, for more details). Therefore, this equation can be

rewritten as

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( ) ( )

( )

å åq q q qG = -P
N

1
cos sin sin cos .

6

S

PM U

S

PM U1 M M

In other words, the form presented in Equation (4) is still an

analysis of the geometry of the velocity field in the region S. In

fact, Equation (6) can be directly recovered from Equation (1)

by substituting q p q q= - +M U PMM
. The practical advantage

of Equation (4) is the use of convolution operations, which

enable the use of small convolution kernels within the region S.

It is also important to mention that a small convolution kernel

helps to identify the vortices that are close to each other, which

is difficult to do in the case of the direct use of the Γ1 function

(see Equation (1)).
The full displacement matrix for the x-components of the

displacement vectors PM for a small area—for example, 7× 7
points M—within the region S can be represented as

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

( )=

- - -
- - -
- - -
- - -
- - -
- - -
- - -

PM

3 2 1 0 1 2 3

3 2 1 0 1 2 3

3 2 1 0 1 2 3

3 2 1 0 1 2 3

3 2 1 0 1 2 3

3 2 1 0 1 2 3

3 2 1 0 1 2 3

. 7x

Each element of this matrix corresponds to the normalized

distance between two discrete points P and each M inside the

convolution kernel. The displacement matrix PMy can be

represented as PMx . The general format of PMx, PMy, and

∥PM∥ is shown in Appendix A. The size of these matrices is

(2n+ 1)× (2n+ 1), where Î +n .
Based on Equation (2), and similar to Equation (4), the

convolution version of the Γ2 function can be introduced as the
following:

⎡
⎣

⎤
⎦

( )

( )

¯

¯

¯

¯
 

       
G = -

-

-

-

-
P .

8

PM U U PM U UN

PM U U PM U U
2

1 x My py

M p

y Mx px

M p

Here, Upx and Upy are the x- and y-components of the local

average velocity (UP) around point P, respectively.

2.4. Advanced Γ Method

Based on the convolution Γ method, we derive the AGM in
this section. In Appendix A, we present the general format of
the full displacement matrices for the x- and y-components of
the displacement vectors PM (PMx and PMy). From their
structure, we notice that they are rank 1 matrices. This implies
that these matrices, for example, PMx and PMy, are separable.
Therefore, they can be represented as

( )= Äw wPM 9x 1 2

and

( ) ( )  = Ä = Äw w w wPM , 10y 1 2 2 1

where w1 is a column unit vector and w2 is a row vector. The

general format of w1 and w2 of size 2n+ 1 can be represented
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as

[ ]

[ ] ( )

 
 

=
= - - -

w

w n n

1 1 1 1 1 1 1 ,

2 1 0 1 2 . 11

1

2

By substituting Equations (9) and (10) into Equation (4), Γ1(P)

can be presented as

⎡
⎣⎢

⎤
⎦⎥

( )

( )

 
 

       
G =

Ä
-

Äw w

PM U

w w

PM U
P

N

U U1
.

12

My

M

Mx

M

1
1 2 2 1

Then, by taking into account that the outer product w1⊗ w2

(for the 2D case) can be replaced by the convolution of these

two vectors (see Appendix B), we arrive at

⎡
⎣⎢

⎤
⎦⎥

( )

( )







 

       
G = -

w w

PM U

w w

PM U
P

N

U U1
.

13

My

M

Mx

M

1
1 2 2 1

Similar to the original Γ method, here we consider a small
region S, such that the values of ∥PM∥ (at all the points in S)
present only minor variations compared with its mean value.
Therefore, ∥PM∥ at every point can be approximated by a
given constant value Z1; that is, Z1 replaces the components of
the matrix ∥PM∥ in the region S. This approximation simplifies
the calculations, which is needed for the better performance of
computation on larger data sets. According to Equation (A2),
one may consider that there are some difficulties with satisfying
this condition, but later on, in Section 2.5, it is shown that this
approximation provides both valid and accurate results.

By applying the commutative and associative properties of
the convolution operation, Equation (13) can be represented as

⎜ ⎟

⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( )

 

  

 

 

G =

-

w
U

w w
U

w

P S
Z N

U

U

,
1

. 14

My

M

Mx

M

1 1

1 1

1

2 2 1

Here, we define S1 as a subset of S (e.g., S1⊂ S) and S1 is a

small enough region to satisfy ∥PM∥≈ Z1; N1 is the number of

grid points within the region S1. The use of Equation (14) has a

number of advantages. First, as demonstrated in Section 2.5,

there is no need to compute ∥PM∥. Second, due to the

separation of the convolution kernel, the AGM for the

calculation of Γ1 is computationally faster than the CGM (see

Equation (4)) by ks/2 times, where ks is the kernel size (see

Appendix C for more details). The ks represents the dimension

of the displacement matrix, for example, PMx, PMy. Analo-

gously, Γ2 can be represented in the following form:

⎜ ⎟

⎜ ⎟

⎡
⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥

( )

( )

 

  

 

 

G =
-

-

-
-

-

w
U U

w w
U U

w

P S
Z N

U U

U U

,
1

, 15

My py

M p

Mx px

M p

2 2

2 2

1

2 2 1

where

( )å=U
N

U
1

16P

S2
2

is the local average velocity within region S2 surrounding a

point P, N2 is the number of grid points in the region S2, Z2 is

the average of ∥PM∥ inside the region SP, andUpx andUpy are

the x- and y-components of the Up defined within region S2,

respectively. The Γ method and the CGM use the same region

S for calculating Γ1 and Γ2. However, the velocity values at the

grid points that are close to the corners of the region S do not

significantly influence the true vortex boundary, and, therefore,

the use of those points in the average calculation ofUp may lead

to an unwanted contribution to the Γ2 calculation. As a result,

we apply a different geometry to the subset of the region S—

that is, S2—when calculating Γ2 in the AGM. For a point P in

the domain, the region S2 includes the vortex center, its

boundary, and neighboring regions that truly contribute to the

actual value of the local average velocity.
The size of region S1 is defined in such way that it

encompasses only one vortex at each time. In other words, a set

of vortices originally found in region S will be separated into
individual vortices where each vortical structure is within a

region S1. In order to achieve this, S1 is set to have the same
size as its convolution kernel. Figure 2 presents the detection

results obtained by the AGM, using two different single kernel
sizes—that is, ks= 3 (blue contours) and ks= 7 (orange

contours)—in a region where multivortices are close to each
other. The AGM with ks= 3 detected five vortex structures,

and the AGM with ks= 7 (orange) only detected two of them.
It is also clear that the center’s locations (indicated by the cross

signs) change slightly depending on the kernel size. This is due
to the fact that a larger S1 area, such as the one for ks= 7, leads

to the contribution of irrelevant flow areas when computing Γ

functions, thereby introducing errors.
The boundaries shown in Figure 2 are obtained by applying

the advanced Γ2 method to a different region S2. The first step in
defining S2 is to consider S2= S1; that is, S2 is rectangular and

has the same size as the kernel used for the calculation of Γ2. In
this way, we obtain an initial vortex boundary, which is defined

by Γ2. Then we analyzed the velocity points surrounding point P

Figure 2. Vortex detection by the AGM using different kernel sizes (ks). The
blue contours (crosses) indicate the vortex boundaries (centers) obtained by
applying the AGM with ks = 3. The orange contours (crosses) indicate the
vortex boundaries (centers) obtained by applying the AGM with ks = 7.
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just outside the initial vortex boundary. To check whether a point
M outside the initial boundary meets the Γ2 criteria, we
recalculate Γ2 with the changed S2 region to encompass the M
point. In other words, we take into account the M-point
contribution to the local UP. This procedure is repeated until
the points outside the new boundary do not obey the original Γ2

criteria. The slightly different shapes for the two vortices
identified by the use of ks= 3 and ks= 7 are related to their
identified center’s location and corresponding customized S2.

2.5. The Estimation of the Z Value

In order to compare the detection performance between the
AGM and the CGM, both were applied to the same
magnetoconvection simulation data set (Figure 1). The
corresponding values of the Γ1 and Γ2 fields calculated for
the horizontal velocity field are shown in Figure 3. To analyze
the influence of Z1 and Z2, first we calculate the AGM using

Z1= Z2= 1, and we call the map of those Γ values the
“‘unnormalized” AGM (see Figures 3(a) and (c), respectively).
For comparison, panels (b) and (d) of the same figure display
the results obtained by the CGM. Both the AGM and CGM
were applied using the same kernel size ks= 11; that is, each
separable convolution kernel has the same size of 11× 11.
Both the AGM and CGM provide the same spatial distribution
of Γ1 and Γ2 functions, differing only in the absolute values.
The CGM provides the same range as the classical Γ method,
which is expected, since one can easily recover the original Γ
method from CGM functions. The separation of kernels
introduced by the AGM changes the maximum and minimum
range of its functions if the correct values of Z1 and Z2 are not
applied, but it does not change the Γ functions’ spatial
distribution.
Figure 4 presents distributions of ratios (i.e., C1 and C2)

between the unnormalized AGM and CGM for Γ1 and Γ2. The
mean values of the C1 and C2 distributions are 4.625 and 4.5,

Figure 3. The distributions of the Γ function values obtained by the AGM ((a) and (c)) and CGM ((b) and (d)), which were applied to the photospheric horizontal
velocity field, as shown in Figure 1. For both cases, a convolution kernel size ks = 11 was applied. As here, the values of Z1 and Z2 for the AGM were equal to 1, and
the AGM was unnormalized.
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respectively. In other words, the Γ values detected by the
unnormalized AGM are on average μ(Ci) times larger than the
corresponding Γ values detected by the CGM. Therefore, in
general, to obtain the AGM within the same range as the CGM
for ks= 11, one should apply the values obtained for μ(C1) and
μ(C2) to Z1 and Z2, respectively. The variance of the C1,2

distributions reflects how good the approximation provided by
the Z1,2 values to the ∥PM∥ values is; that is, if Var (C1,2)= 0,
Z1,2 is identical to ∥PM∥. In Appendix D, we present the same
analysis for the case ks= 33.

Figure 5 presents a series of mean ratios of C1 (blue squares)
and C2 (orange circles) versus the corresponding size of the
convolution kernel (ks). Both dependencies show near-linear
behavior, which indicates that the mean ratio increases with ks.

Based on the analysis performed, we can conclude that Z1
and Z2 can be chosen to be equal to the mean values of C1 and
C2. In other words, such assumptions will provide the AGM
functions within the expected range of –1, 1. Moreover, in
cases where the difference between Z1 and Z2 is small enough,
one can set Z1= Z2, which can simplify the algorithm further.
Our results also indicate that the selection of kernel size will
influence the detection efficiency (see Equation (C1)) and
accuracy. For instance, by comparing Figures 3 and 19, we
have found that the small-scale processes are better captured in
Figure 3.

The vortex detection by the AGM can be optimized by
using an adaptive version of the AGM, which is based on a
sequence of different kernel sizes, for example, 3, 5, 7, 9, and
11, and so on. Ideally, the kernel is located at the center of the
potential vortical structure. For small odd-size kernels—that
is, ks= 3—this may lead to nondetection (a failure to detect),
and the use of a sequence of growing kernel sizes increases
the chance of detection. This is illustrated in Figure 6(a),
where the AGM with ks= 5 detected the vortex center (blue
cross) outside the grid points. The same region would have a
Γ1 value lower than the threshold when applying the AGM
with ks= 3, as illustrated in Figure 6(b), where the
corresponding Γ1 values of the grid points surrounding the

vortex center are indicated with black dashed arrows. The

blue and red dashed squares show two kernel domains that

can be applied when calculating the corresponding Γ1 values.

When the kernel size increases to ks= 5, which is depicted in

Figure 6(c), the Γ1 value is above the threshold and the

vortex center is finally detected.
As discussed above, several kernel sizes may yield values of

Γ1 greater than the threshold; therefore, the result with the

maximum value of Γ1 will be selected to be the detection result.

The maximum of the Γ1 value indicates the most accurate

location of the vortex center, as illustrated by Figures 2 and 6.

As the vortex boundary is influenced by the kernel size (see

Figure 2), the final area of the vortex is affected by the choice

of the kernel. Therefore, some statistical features of the vortex,

like the size and center properties, are affected as one applies

the most appropriate kernel size to describe a given vortex. For

example, larger kernel sizes are better suited to describe

vortices presenting greater areas and the opposite is found for

small kernels. Therefore, varying the kernel size for each

vortex, as done by the adaptive AGM, provides us with better

identification and leads to the more accurate statistical results of

the vortex parameters.

3. Vortex Detection Results and Statistical Analysis

In this section, the vortex detection was performed with the

use of the AGM method with a maximum of five different

convolution kernel sizes. The candidate for a vortex center is

located at the center of the kernel, and, therefore, it is

surrounded by an even number of grid points in the x- and y-

directions, which correspond to ks= 3, 5, 7, 9, and 11. For

convenience, we set Z1= Z2 (see Section 2.5). For different

kernel sizes, the values of Z1 and Z2 were set equal to the values

of the linear regression function (see Figure 5). For example,

for ks= 11, these values correspond to Z1= Z2= 4.597. The

threshold of |Γ1| is set equal to 0.75. As in the classical Γ

method, a candidate for a vortex center will be considered a

true center if |Γ1|> 0.75 and if the |Γ1| value at that point is

larger than in the other surrounding grid points. Similarly, for

Γ2, we apply the threshold of 2/π.

Figure 4. The distributions of the ratios between the unnormalized AGM
(Figures 3(a) and (c)) and CGM (Figures 3(b) and (d)) for Γ1 (C1 is shown in
blue) and Γ2 (C2 is shown in red). For both cases, the convolution kernel is
equal to 11.

Figure 5. The relationship between the estimated Z values and convolution
kernel size (ks). Blue squares indicate the mean ratios of C1 and orange circles
correspond to the mean ratios of C2. The black dashed line is the linear
regression between them.
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3.1. Detection Results

The AGM algorithm was applied to the whole simulated
photospheric velocity field (see Figure 1), but here we will

focus on the detection results of a single vortex. Figure 7 shows
the identification obtained by applying the AGM with ks= 7.
In all the panels, the vortex boundary is indicated by a red

curve, and we see that the AGM provides a boundary that
aligns well with the velocity streamlines (shown in blue).

Based on the velocity field arrows (shown in black), it is clear
that the vortex center, represented by a red cross, is also well
detected by the AGM. The radial velocity component changes

sign with the flow, as displayed in panel (a), and the tangential
velocity component decreases from the boundary toward the
center (see panel (b)). As expected, the vortex covers the area

with the maximum vorticity, panel (c), and the high value of
the angular velocity component, panel (d). In particular, this

vortex is located in a downflow region, panel (e), and in the
region of the low compressible plasma, panel (f).

The averaged (over angular directions) radial and tangential
velocity profiles as a function of time and radius for the vortex
shown in Figure 7 are shown in Figures 8(a) and (b),
respectively. The vertical axis represents the distance from
the vortex center to the mean maximum vortex radius (green
dashed line), and the horizontal axis indicates the lifetime scale
of the vortex. The radial and tangential velocity components
show a maximum value just after the vortex appearance, and
then they tend to decrease as the vortical structure disappears.
The value of the tangential velocity component is approxi-
mately five times larger than the corresponding radial velocity
component. Furthermore, the tangential component has larger
values closer to the boundary; that is, plasma decelerates as it
approaches the center. This result is in good agreement with
previous results (Silva et al. 2020). The change in sign of the
radial velocity component close to the average boundary (see
Figure 8(a)) indicates that the AGM detection might have
slightly overestimated the vortex boundary.

The AGM identifies vortices at each time frame, but it does
not automatically provide the time evolution of a detected
vortical structure. To analyze the vortex behavior during its
lifetime, it is necessary to make sure that tracking of the vortex
center and boundary is applied to the same vortex over a period
of time. To satisfy this, it was assumed that the maximum
displacement distance of the vortex center between two

successive frames of this numerical simulation would be
50 km (equivalent to four pixels of the simulation grid). This
strategy is based on Giagkiozis et al. (2018), where the speed of
the vortex center was assumed to be near the speed of sound in
the photosphere (i.e., 10 km s−1, given by Nordlund et al.
2009). Therefore, if in two consecutive frames a vortex center
is detected within 50 km from another vortex center in the
previous frame, they are the same vortical structure.
The temporal evolution of the boundary and center of vortex

number 1 is presented in Figure 9. The position of the vortex
center is mostly oscillating during its lifetime (i.e., between t0
and t7) around the initial position. This means that the vortex
does not show significant displacement in space. The boundary
tends to shrink close to the end of the vortex lifetime (t7). The
decrease in the vortex area is shown in Figure 9(b). The blue
and orange curves depict the area and average radius of the
vortex as functions of time, respectively. An identified average
radius around 35–45 km is in accordance with previous
findings for lower photospheric vortices in MURaM magne-
toconvection simulations (Silva et al. 2020; Aljohani et al.
2022). The vorticity and Γ1 as functions of time are shown in
Figure 9(c). This result can be explained in the following way.
The vorticity does not start at zero, due to the fact that the
velocity field lines start to curl even before the detection by Γ1.
Due to the threshold, the vortex is only considered to start to
exist when its Γ1 is greater than the threshold. Close to the end
of its lifetime, there is a steep decrease in the vorticity
magnitude, which starts at t5= 30 s, close to the vortex decay
at t7= 40 s. As expected, the Γ1 value (orange curve) shows a
similar behavior.

3.2. Statistical Results

First, to evaluate how different kernel sizes affect the
statistics of the identified vortices, the AGM with ks= 3, 7, and
11 and the Γ method were applied to the same simulation data.
Figure 10 summarizes the obtained results. The green, yellow,
and purple curves correspond to the results of AGM ks= 3, 7,
and 11, respectively. The blue curve indicates the instantaneous
detection result by the adaptive AGM. The Γ method
identification results are shown in red. All results show a
similar curve trend as a function of time, but they provide a
different number of detections. Among the different ks applied
for the AGM, the lowest average number of vortex detections

Figure 6. (a) Vortex detected with the adaptive AGM. The vortex center and boundary are indicated with the blue cross and contour, respectively. (b) The Γ1 map
detected with ks = 3 of panel (a). The blue and red squares indicate the two 3 × 3 kernel domains that were used to calculate Γ1. (c) The Γ1 map detected with ks = 5
of panel (a). The blue and red squares indicate the two 5 × 5 kernel domains that were used to calculate Γ1.
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—that is, on average, 51.1 at each time frame—is obtained
when using ks= 11, followed by ks= 7, with 95.1 detections,
and ks= 3, with 124.6 detections. The Γ method presents
results similar to the AGM with ks= 3, with an average
detection number of 112.4. The higher number of detected
vortices by the adaptive AGM appears to be due to the use of
different kernel sizes in the same region of interest (ROI). This
makes it possible to detect vortices even if they are very close
to each other. By comparing the total number of detected
vortices, it was found that the Γ method detects only 69.7% of
the actual vortical structures in the ROI compared with the
AGM. The AGM ks= 3 identifies 77.3%, while AGM ks= 7
and AGM ks= 11 identify 59% and 31.6%, respectively. These
percentage values can be used to provide an estimate of the
actual number of vortical structures present in the photospheric
flow and also the number of nondetections of each method
applied.

In total, 3390 vortices were identified for a time interval of
625 s by the adaptive AGM. Most of the detected vortices tend
to anchor around a local region with slight spatial displacement

during their lifetime. Figure 11(a) shows the spatial and

temporal behavior of a number of identified vortices in the

ROI. The evolutions of their boundaries and centers are plotted

as a function of time (vertical axis). A zoom-in of the selected

area (3× 3 Mm) is shown in Figure 11(b). Identified vortical

motions have similar behaviors to vortex number 1 shown in

Figure 9; that is, little spatial displacement in time and a

tendency toward boundary shrinking. The majority of the

detected vortices have a lifetime below 50 s, which justifies

why it is hard to see 150 vortices in Figure 11. We have only

two vortices presenting lifetimes larger than 200 s, which is in

accordance with previous studies, for example, Giagkiozis et al.

(2018) and Silva et al. (2021). From Figure 10, it is clear that

the number of instantaneous detections of vortices by the AGM

is larger than the detections by the Γ method, but, at the same

time, the lifetimes of the vortices detected by the AGM are also

larger. Therefore, the total number of vortices detected by the

AGM (3390) is not considerably larger than the number

detected by the Γ method (3211).

Figure 7. The vortex number 1 as it was detected by the AGM using ks = 7 at the moment t = t0. The orange plus sign indicates the vortex center, and the orange
contour depicts the corresponding boundary. The direction of the horizontal velocity field is indicated by the streamlines and the arrows in blue. The background is
colored by (a) the radial velocity component, (b) the tangential velocity component, (c) the vorticity, (d) the angular velocity component, (e) the vertical component of
the velocity field, and (f) the divergence of the velocity.
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Figure 8. The radial and tangential velocity components (averaged over angular directions) as a function of time and radius are shown in panels (a) and (b),
correspondingly. The vertical axis indicates the distance from the vortex center to the mean vortex radius calculated at the corresponding time (green dashed line). The
horizontal axis indicates the lifetime scale of the vortex shown in Figure 9.

Figure 9. The time-dependent behavior of vortex number 1, which is shown in Figure 7. (a) A series of detected centers of the vortex (blue plus signs) and its
boundaries (orange contours) are shown for times t0 − t7, from the bottom to top. (b) The evolution of the vortex area (blue curve) and mean radius (orange curve).
The error bars show the maximum and minimum of the radius at the corresponding time. The dark blue dashed line indicates the mean area of the vortex. (c) The
evolution of the vorticity at the center of the vortex (blue curve) and the corresponding evolution of the Γ1 value (orange curve).

Figure 10. The instantaneous number of vortices detected by the AGM with the use of different kernel sizes: ks = 3 (green), ks = 7 (yellow), and ks = 11 (purple).
The results obtained by the adaptive AGM (ks = 3, 5, 7, 9, and 11) are shown in blue, and those by the Γ method are shown in red.
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3.3. Comparison of Identification Results Obtained by the AGM
and the Γ Method

In this section, we compare the vortex detection perfor-

mance between the adaptive AGM and the Γ method.

Figure 12 shows the distributions of various vortex

parameters—that is, lifetime, mean area, and diameter—

detected by the adaptive AGM (shown in blue) and the Γ

method (shown in red). These distributions were obtained by
analyzing of 625 s of numerical data. The top panels, that is,
Figures 12(a)–(c), show the distributions of counterclockwise
vortices, and the bottom panels (d)–(e) depict the clockwise-
direction vortices. The adaptive AGM detected slightly more
vortices than the Γ method; that is, 3390 versus 3211,
respectively. The ratio between the counterclockwise and
clockwise vortices is nearly 1: 1: the AGM identified 1697

Figure 11. Time evolution of 150 detected vortices (some of them are less visible, due to their short lifetimes; see Figure 12) in simulation data. The size of the
analyzed region is 6.4 Mm × 6.4 Mm. The vertical axis indicates the time, and the black arrow indicates the horizontal velocity field at the initial moment of time. The
vortices were detected by the AGM using kernel sizes 3, 5, 7, 9, and 11. The orange and blue contours indicate clockwise and counterclockwise rotation vortices,
respectively.

Figure 12. Statistical comparison between vortices detected by the AGM (blue) and the Γ method (red) in numerical data. (a) Probability mass function of the lifetimes
of detected counterclockwise vortices. (b) Probability mass function of the mean area of detected counterclockwise vortices. (c) Probability mass function of the mean
diameter of detected counterclockwise vortices. (d) Probability mass function of the lifetimes of detected clockwise vortices. (e) Probability mass function of the mean
area of detected clockwise vortices. (f) Probability mass function of the mean diameter of detected clockwise vortices.
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counterclockwise and 1693 clockwise vortices; the Γ method

detected 1608 counterclockwise and 1603 clockwise vortices.

It is clear that the distributions for the detected number,

lifetime, mean area, and diameter are independent of the

vortex’s direction. There are small differences at the tails of

the distributions; however, these may appear due to the

limitations of the sizes of our time sequences and do not

represent the real physical properties of the vortices. The

average lifetimes of the detected vortices are 29.72 s for the

adaptive AGM and 21.82 s for the vortices detected by the Γ

method. This difference relies on the fact that the AGM

performs better on the identification of both small- and large-

scale vortices when varying kernel size. As it has been

shown, close to its lifetime, the vortex tends to shrink and a

small convolution kernel enables the AGM to capture this

behavior better than the Γ method. Also, the vortex may start

at a smaller size that is not easy to capture by the Γ method.
The mean area distributions are shown in Figures 12(b) and

(e), and they display nearly Gaussian distribution behavior. The

vortex’s mean area as detected by the Γ method is 7.28×
103 km2 and the corresponding value given by the AGM is

4.67× 103 km2. On the other hand, the tail distribution

indicates that the AGM has a higher number of detections

presenting larger areas. Another pair of Gaussian-like distribu-

tions is obtained for the mean diameter of the detected vortex,

as depicted in Figures 12(c) and (f). The AGM gives a smaller

value of the detected vortex’s mean diameter than the Γ

method; that is, AGM, 83.51 km versus Γ, 110.31 km.
The differences in sizes and shapes for vortices detected by

the AGM and the Γ method are illustrated in Figure 13, which

presents the detections obtained for a selected time frame,

t= 35 s. The color bar indicates the vorticity scale of the

region, and the arrows indicate the direction of the horizontal

velocity. The AGM detection is depicted in blue, and the Γ

method vortex identification is shown in red. We selected three

ROIs, that is, R1, R2, and R3, for comparison. The AGM-

detected vortex boundaries were always smoother than those

provided by the Γ method, and most of the AGM detections do

not overlap, even if vortices are near each other. The Γ method

exhibits a sparse detection result within the same region; that is,

it has a number of nondetection issues when the vortices are too

close to each other. Also, the Γ method tends to overestimate

the vortex region compared with the AGM, but it also depends

on the chosen threshold value.

Figure 13. Comparison of detected results between the adaptive AGM method and the Γ method. The blue and orange contours indicate vortices detected by using the
adaptive AGM and the Γ method, respectively. Blue dots indicate vortex centers identified by the AGM, while orange dots indicate those identified by the Γ method.
The black arrow indicates the horizontal velocity field. Three ROIs (R1, R2, and R3) were selected to zoom in on and are presented with the details in (b), (c), and (d).
(a) Spatial domain when time =35 s. (b) Zoom-in view of region R1. (c) Zoom-in view of region R2. (d) Zoom-in view of region R3.
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3.4. Comparison of Observational Data Analysis with
Numerical Data Results

In order to test the performance of the adaptive AGM
method on high-resolution observational data, we used the data
set from the CRISP instrument mounted on the Swedish 1 m
Solar Telescope (Scharmer et al. 2003, 2008). The identifica-
tion results were compared with the results of the Γ method
applied to the same observational time sequence. The analyzed
data were collected between 08:07:24 and 09:05:46 UT on
2012 June 21, with resolution 0 059 per pixel with a mean
cadence of 8.25 s. Only part (8.5× 8.5 Mm) of the whole
domain (55″× 55″), with a of duration 2425.5 s, was selected
for analysis. The adaptive AGM detected 1449 vortices within
the ROI, with 709 clockwise and 746 counterclockwise
vortices. In contrast, the Γ method detected 982 vortices (464
clockwise and 518 counterclockwise). The ratio between the
number of vortices with different directions of rotation
(clockwise/counterclockwise) is similar for both methods; that
is, 0.95 for the advanced AGM and 0.9 for the Γ method.
Therefore, the flexibility of utilizing different kernel sizes in the
adaptive AGM when analyzing observational data shows good
improvement in the identification of small-scale vortices,
especially those with weak vorticity, which may be missed
by the Γ method. This is similar to the results obtained from the
analysis of numerical magnetoconvection simulations (see
Section 3.3).

The mean lifetimes of the vortices detected by both methods
are nearly equal, with 11.79 s for the adaptive AGM and
11.68 s for the Γ method. We also found that the mean area of
the vortices detected by the adaptive AGM (0.164 Mm2

) is
comparable to the mean area of the vortices detected by the Γ

method (0.2 Mm2
). Additionally, the adaptive AGM provided a

smaller mean vortex diameter than the Γ method; that is, 504
km and 540.5 km, respectively (see Figure 14).
Comparison of Figures 12 and 14 shows that the ability of

the adaptive AGM to detect smaller and larger-scale vortices is
preserved even in the case of more irregularly shaped vortices.
Although the observation data have a lower resolution
(42.75× 42.75 km2

) compared with the numerical data
(12.5× 12.5 km2

), the mean lifetimes of the vortices found
by both methods are rather similar. The observed vortex
lifetimes are most likely longer since crucial parts of the vortex
lifetimes (the beginning and end) are missed by the lower
resolution. A key difference found between the results of the
numerical and observational analysis is that the number of
detected vortices in the CRISP data is around 12 times smaller
than that obtained from the StellarBox simulations (see
Figures 10 and 15). This is in accordance with the difference
in the spatial resolution, as the resolution of the simulation data
is approximately 12 times higher than that of the observational
data. Figure 16 shows the identified vortices in the observa-
tional data at t= 231 s. Zoom-in views of the three selected
regions, namely, R1, R2, and R3, are shown in panels (b), (c),
and (d). The adaptive AGM provided more precise vortex
detection and showed better performance in comparison with
the Γ method in regions with a weak vorticity (see
Figure 16(d)).

4. Conclusions

In this work, we have presented a new and improved method
for vortex identification, based on the previously proposed Γ

method (Graftieaux et al. 2001). The CGM (Zigunov et al. 2020)

Figure 14. Statistical comparison between vortices detected by the adaptive AGM (blue) and the Γ method (red) in observational data. Three results are shown:
lifetime probability mass function of the detected counterclockwise (a) and clockwise (d) vortices; mean area probability mass function of the detected
counterclockwise (b) and clockwise (e) vortices; and mean diameter probability mass function of the detected counterclockwise (c) and clockwise (f) vortices.
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Figure 15. The instantaneous number of vortices detected in the observational data (CRISP) by the adaptive AGM and the Γ method. The results obtained by the
adaptive AGM with kernel sizes ks = 3, 5, 7, 9, and 11 are shown in blue, and those obtained by the Γ method are shown in red.

Figure 16. Results of vortex detections by the adaptive AGM and the Γ method. Both methods were applied to observational (CRISP) data at t = 231 s (a). The blue
and red contours indicate vortices detected by the adaptive AGM and the Γ method, respectively. The detected vortex centers from both methods are shown in blue
and red colors as well. The black arrows indicate the horizontal velocity field. Three ROIs (R1, R2, and R3) are selected to zoom in on and are presented in panels (b),
(c), and (d).

13

The Astrophysical Journal Supplement Series, 267:35 (18pp), 2023 August Yuan et al.



was extended to provide Γ2 functions, and the CGM was used to
develop the AGM. We have proved that the CGM is
mathematically the same as the Γ method and that the AGM
provides similar maps to the CGM. The advantage of using the
AGM relies on choices of kernel sizes, which allow the detection
of vortices at both small and large scales. Moreover, the adaptive
AGM, which uses different kernel sizes for identification,
provides a smoother and more accurate vortex center and a
smoother boundary and is more successful at preventing
nondetections. For better identification results, the Γ method
requires the customized tuning of parameters separately; that is,
for small- and large-scale vortices. Hence, this method is onerous
and may lead to overfitting for a specific vortex. Since the AGM
is better suited to detecting both small-scale and large-scale
vortex behavior, the values of the mean area and diameter given
by the AGM are more reliable. Note that the adaptive AGM
algorithm selects the optimal vortex profiles and produces the
most accurate results, but is more computationally expensive.
Although the AGM limits the nondetections caused by threshold
choices, there are still limitations on the detections caused by the
application of the threshold. More precisely, to be considered as
a vortex center, the grid point should present a minimum curl of
velocity field lines, and this may lead to the nondetection of
weak vortices. Another issue is that it is based on the Γ method,
which was developed for divergence-free flows, and therefore
the AGM may not work as well in compressible plasma.
However, both Giagkiozis et al. (2018) and our results indicate
that the Γ method and the AGM perform well in the flow
conditions found in the solar atmosphere.

Using the adaptive AGM, we detected and analyzed vortices
from a numerically simulated photosphere obtained using the
3D radiative MHD code StellarBox (see, e.g., Kitiashvili et al.
2012; Wray et al. 2015). We found that the vortical structures
had a size, a mean radius of about 41.75 km, which was similar
to previous vortex studies based on MURaM simulation (Silva
et al. 2020; Aljohani et al. 2022). Therefore, our results suggest
that the different vortex detection methods were comparable in
calculating the average vortex size. However, the tail
distributions of the mean radius indicate that the Γ method
and the AGM lead to considerable differences in the maximum
sizes of the vortices detected in the photosphere. Another
discrepancy was found for the average lifetimes, as the adaptive
AGM indicated an average lifetime that was much shorter than
the one found using IVD in MURaM data (Silva et al. 2021).
Those differences may be due to distinct definitions proposed
for vortices by different methods, as well as the particularities
of the simulation configurations. For instance, Giagkiozis et al.
(2018) applied the Γ method to an observational data set and
found the average lifetime of the detected vortices to be around
17 s, whereas applying the same methodology to StellarBox
data, we found 21 s. However, in all the studies there is a
general tendency toward most of the vortices being short-lived,
regardless of the type of data set or identification methodology.

To further assess the adaptive AGM’s detection ability, we
applied the method to selected observational data obtained
from the CRISP instrument found on the Swedish 1 m Solar
Telescope (Scharmer et al. 2003, 2008). The AGM and Γ

methods were applied to the same observational data set, and
statistical results were compared to the previously obtained
numerical results. It was found that the adaptive AGM
extracted more vortices than the Γ method and was more
capable of capturing both smaller- and larger-scale vortices.

Both methods obtained comparable vortex sizes: the adaptive
AGM, 0.164 Mm2, versus the Γ method, 0.2 Mm2. The
adaptive AGM found a smaller mean diameter than that
calculated by the Γ method, in accordance with the results from
numerical data. Also, the adaptive AGM was able to detect
both smaller- and larger-scale vortices, as indicated by the tails
of the distributions in Figure 14, reproducing similar results to
the numerical data. Therefore, the adaptive AGM works for the
identification of realistic irregular vortices. The ratio of average
lifetimes calculated by both methods was nearly equal to 1;
however, compared with the corresponding statistical analysis
with the numerical data, we found that the mean lifetime of the
detected vortices in the observational data is smaller than that
in the numerical data. Moreover, the instantaneous vortex
detection rate in the observational data is far less than in the
numerical data. The reason behind this is that the resolution of
the observational data used for comparison is 12 times smaller
than the numerical simulation data resolution and does not
involve any limitations of the advanced AGM.
The vortices extracted by the AGM tend to have an oval

boundary with a vortex core located near the center of the
vortical structure. By analyzing the vortex properties, the mean
tangential velocity component is larger than the corresponding
radial velocity component, and the magnitude of the tangential
velocity component increases when the component is farther
from the vortex center. This result is consistent with the
previous finding by Silva et al. (2020). By tracking vortices
detected by the AGM over a period of time, we found that the
size of the vortical structure tends to vary and will shrink as the
vortical structure ceases to exist. The vorticity at the center of
the vortex is not constant, oscillating as a function of time and
steeply decaying close to the end of the vortex lifetime.
Therefore, vortices exhibiting a fast vorticity decay are likely to
be at the ends of their lives. The velocity components, radial
and tangential, also display a distinct radial profile at the
beginning and at the end of the life of a vortex. In particular,
both components tend to decrease around the vortex center as
the vortical structure is decaying. In summary, the developed
adaptive AGM is able to precisely capture a number of
essential aspects of the vortex geometry and dynamics.
Therefore, the proposed automated algorithm can be used to
recover crucial information on photospheric vortices and
statistical results. In an era of high-resolution observational
data—for example, DKIST (Rast et al. 2021), theEuropean
Solar Telescope (Quintero Noda et al. 2022), and SULIS
(Scullion et al. 2022)—we expect that the proposed algorithm
and methodology will provide the necessary accuracy for
photospheric vortex detection.
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Appendix A
The General Format of the Convolution Kernels

where Î +n .

Appendix B
Proof of Separable Convolution Kernel

If h(m, n) is a matrix of size m× n and its rank is equal to 1,
then matrix h can be represented as the outer product of two
vectors, w1(m, 1) and w2(1, n), as

( ) ( ) ( ) ( )= Äw wh m n m n, , 1 1, , B11 2

where w1(m, 1) is a column vector of size m× 1 and w2(1, n) is

a row vector of size 1× n.

Gonzalez et al. (2004) have shown that the outer product

a⊗ b can be represented as convolution a# b (“padded”

convolution operation). The graphical explanation of this is

presented in Figures 17 and 18. Here, a and b are column and

row vectors of size 5, respectively. Figure 17 shows the result
of the outer product between a and b; that is, a matrix of 5× 5
elements. The convolution procedure is detailed in
Figures 18(a)–(d), where the operation performed in this
example is referred to as the “padded convolution.” The first
step of this operation is to rotate the row vector b by 180° and
perform multiplication sequentially between the rotated row
vector and the first element of the column vector to compute
each element in the first row of the output matrix; see
Figure 18(a). Then the same procedure is applied between the
rotated row vector b and the column vector aʼs second element
(Figure 18(b)) to compute the second row of the output matrix.
This procedure continues until the last element of the column
vector (Figure 18(c)). Figure 18(d) shows the result of the
convolution.
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Figure 17. The outer product between column vector a and row vector b.
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Figure 18. Convolution between column vector a and row vector b. (a) The output of the first row of the convolution between column vector a and row vector b. (b)
The output of the second row of the convolution between column vector a and row vector b. (c) The output of the fifth row of the convolution between column vector
a and row vector b. (d) The output of the convolution between a and b.
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Appendix C
Computational Cost

When applying the convolution operation between a matrix
of sizeM× N and a separable convolution kernel of size m× n,
the result will require approximately M×N×m× n multi-
plications and additions without using the kernel’s separability.
If the separability of the kernel is being applied—that is, the
above kernel is being decomposed into a column vector of size
m× 1 and a row vector of size 1× n—then the calculation will
have two steps. The first step is applying the convolution
between the matrix and the column vector, and the corresp-
onding multiplications and additions are aboutM× N×m. The
second step will perform the convolution between the output
result of the first step (the output size of the first step remains
M × N) and the row vector. The second step will have
M× N× n multiplications and additions. Thus, the total
multiplications and additions of the calculation when applying
the kernel’s separability will be MN(m+ n). When m= n, the

convolution kernel is square. By comparing the computational
complexity between the direct and the separable convolution,
the estimated computational advantage is

( ) ( )
( )

+
=

+
=

MNmn

MN m n

mn

m n

m

2
. C1

This ratio means that the AGM Γ1 is expected to be
m

2
times

faster than the CGM Γ1 in each convolution operation between

the velocity domain and each separable kernel.

Appendix D
Unnormalized AGM versus CGM

Figure 19 shows the detection result when using ks= 33.
Figure 20 displays the corresponding distributions of ratios
(i.e., C1 and C2) between the unnormalized AGM and CGM for
Γ1 and Γ2 when using ks= 33.

Figure 19. The distributions of the Γ function values obtained by the AGM ((a) and (c)) and CGM ((b) and (d)) that were applied to the photospheric horizontal
velocity field are shown in Figure 1. For both cases, a convolution kernel size ks = 33 was applied. As here, the values of Z1 and Z2 for the AGM were equal to 1 and
the AGM was unnormalized.
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