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Abstract

We study a home healthcare routing and scheduling problem, where multiple health-
care service provider teams should visit a given set of patients at their homes. The 
problem involves assigning each patient to a team and generating the routes of the 
teams such that each patient is visited once. When patients are prioritized according 
to the severity of their condition or their service urgency, the problem minimizes the 
total weighted waiting time of the patients, where the weights represent the triage 
levels. In this form, the problem generalizes the multiple traveling repairman prob-
lem. To obtain optimal solutions for small to moderate-size instances, we propose 
a level-based integer programming (IP) model on a transformed input network. To 
solve larger instances, we develop a metaheuristic algorithm that relies on a cus-
tomized saving procedure and a general variable neighborhood search algorithm. 
We evaluate the IP model and the metaheuristic on various small-, medium- and 
large-sized instances coming from the vehicle routing literature. While the IP model 
finds the optimal solutions to all the small- and medium-sized instances within three 
hours of run time, the metaheuristic algorithm achieves the optimal solutions to 
all instances within merely a few seconds. We also provide a case study involving 
Covid-19 patients in a district of Istanbul and derive insights for the planners by 
means of several analyses.

Keywords Home healthcare · Personnel routing · Prioritized patient scheduling · 
Multiple traveling repairman problem · Variable neighborhood search

1 Introduction

Home healthcare services have been growing globally (Euchi et  al. 2022; Cinar 
et  al. 2021), mostly due to the increase in life expectancy, as well as the increase 
in the number of patients with chronic diseases and physical disabilities (Fikar and 
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Hirsch 2017; Tippong et al. 2022). These services not only improve the quality of 
service provided to the patients but also decrease hospital congestion (Grenouilleau 
et  al. 2019). The pressure on hospitals could be eased by the delivery of a wide 
range of services from filiation and testing to drug delivery and wound treatment at 
home. For elderly and disabled patients, vaccination could also be conducted at their 
homes. While the range of home healthcare services is wide, our problem defini-
tion and case study are based on optimizing the routes and schedules of teams that 
provide filiation services for patients during the pandemic. In our context, filiation 
services refer to the standard services concerned with assessing the conditions of 
patients affected by an infectious disease.

In most cases, patients’ health conditions differ and it is essential to prioritize 
them accordingly. To achieve this, a triage level is defined for each patient that 
shows the degree of urgency and identifies the severity of the patient’s condition. 
These levels are used as weights for the waiting times (latency) of the patients in 
the objective function of our problem so that urgent patients are more likely to get 
service sooner. Henceforth, we refer to this routing and scheduling problem as the 
Home Healthcare Routing and Scheduling Problem with Patient Prioritization 
(HHRSP-PP).

The HHRSP-PP is closely related to the traveling repairman problem (TRP) and 
its variants that have been studied in the routing literature. In fact, when the service 
time of a node (e.g., patient) is added to the traveling time of each incoming arc to 
that node, the HHRSP-PP can be viewed as a generalization of the multiple traveling 
repairman problem (mTRP) where the waiting time of each node is multiplied by 
its priority weight. Recently, the “weighted multiple traveling repairman problem” 
(WmTRP) has been studied by Muritiba et al. (2021). The authors investigated an 
application of the WmTRP related to the maintenance of speed cameras, where each 
node should be visited by only one repairman. In our application, the weight of each 
node (patient) is associated with the triage level, which is an integer number, typi-
cally between 1 and 5.

While the HHRSP-PP and the WmTRP are similar in terms of problem defini-
tion, our methodological approach to deal with the problem is different from the 
approach presented in Muritiba et al. (2021). As opposed to a standard mixed integer 
programming (MIP) formulation that is only capable of providing exact solutions to 
very small-sized instances, we develop an alternative level-based integer program-
ming (IP) model, together with valid constraints, by means of which medium-sized 
instances are solved optimally in reasonable run times. We compare the level-based 
IP model with the standard MIP model on small-sized instances with 10 and 20 
patients (nodes) adopted from the TRP literature (Salehipour et al.  2011).

In order to solve larger instances, we develop a metaheuristic algorithm in which 
the initial solutions are generated using a problem-specific saving method. A gen-
eralized variable neighborhood search (GVNS) procedure is then employed at the 
improvement step. We test our heuristic algorithm and the level-based IP model 
on several sets of instances adapted from: (i) the TRP literature (Salehipour et al.  
2011), (ii) the vehicle routing problem (VRP) literature (Augerat et  al. 1995) and 
(iii) the WmTRP instances provided in Muritiba et  al. (2021). In all the tested 
instances with up to 60 patients and 15 healthcare service provider teams (HSPTs), 
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optimal solutions are found by both solving the level-based IP model and the pro-
posed heuristic algorithm. However, the metaheuristic algorithm runs within merely 
9 s. The performance of our algorithm is further tested on larger instances and com-
pared with well-known algorithms applied to instances of the TRP and the mTRP. 
We note that our instances and obtained solutions can be used for benchmarking in 
future studies.

A case study based on the COVID-19 filiation services provided at patient homes 
in the Kağıthane district of Istanbul is also presented. The data consists of 647 pri-
oritized patients who are clustered into nine regions so that an HSPT is responsible 
for patients in each cluster. The solution shows that patient prioritization enables 
patients with more severe conditions to be serviced earlier. A comparison with a 
centralized optimization approach for a multi-depot system where patients are not 
clustered prior to optimization reveals how much the centralized system improves 
both the quality of the solutions and the CPU running times.

The rest of the paper is organized as follows. A review of the related literature 
is presented in Sect. 2, and the mathematical models are provided in Sect. 3. The 
metaheuristic algorithm is described in Sect. 4. The results of the experimental study 
that tests the models and the metaheuristic algorithm are given in Sect. 5. The case 
study is presented in Sect. 6. Finally, concluding remarks and future work directions 
are stated in Sect. 7.

2  Literature review

In this section, we review studies related to home healthcare routing and scheduling, 
as well as the TRP and its variants.

2.1  Home healthcare routing and scheduling

The number of studies addressing home healthcare routing and scheduling has been 
growing rapidly in recent years. Comprehensive reviews of studies in the context of 
home healthcare routing and scheduling are provided in Euchi et al. (2022), Grieco 
et  al. (2021), Fikar and Hirsch (2017) and Cisse et  al. (2017). Here, we focus on 
studies that are similar to ours from several perspectives. From the planning hori-
zon viewpoint, the studies on this topic are classified as single- and multi-period. 
Multi-period models are suitable for problems where a large number of requests are 
received a priori and must be served on a long-term planning horizon. In this case, 
the visits must be scheduled over multiple working shifts (Fikar and Hirsch 2017; 
Bowers et al. 2015). On the other hand, the single-period models are a better fit for 
problems where all the requests that are accumulated at the beginning of the work-
ing shift must be handled within the upcoming shift. In our study, we consider a 
single-period planning horizon during which all the patients should be visited in the 
upcoming working shift. Accordingly, the focus of the literature review in this sec-
tion revolves around single-period studies.
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The constraints defined typically in single-period models are time window 
requirements of the patients, skill requirements, working time regulations and prec-
edence. However, the majority of studies use soft time windows (e.g., Trautsam-
wieser et  al. 2011; Eveborn et  al. 2006; Bertels and Fahle 2006) and require all 
patients to be visited (e.g., Liu et  al. (2013); Cappanera et  al. (2018)). Given that 
time windows and latency objectives are in conflict, we do not consider time win-
dows for the patients. Furthermore, we focus on the case with homogeneous teams 
and consider healthcare service provider teams that are self-contained and can pro-
vide all the required services.

The studied problems in the literature can also be categorized as deterministic 
or stochastic, where stochastic studies address the uncertainty in service times or 
travel times. Since patients conditions are known a priori in our problem, we assume 
the service times can be predicted accurately. Thus, our optimization problem has 
a deterministic nature. As a result, here we focus on deterministic single-period 
problems. Few studies in this group provide exact solution methods such as branch-
and-price (e.g., Rasmussen et al. 2012; Manerba and Mansini 2016), and most focus 
on heuristic approaches. Variable neighborhood search (VNS) (e.g., Mankowska 
et  al.  2014; Trautsamwieser et  al. 2011), memetic algorithm (e.g., Decerle et  al. 
2018), simulated annealing (e.g., Hiermann et al. 2015), genetic algorithm (e.g., Li 
et al. 2021), particle swarm optimization (e.g., Akjiratikarl et al.  2007), set parti-
tioning heuristics (e.g., Grenouilleau et  al. 2019) and quantitative threshold-based 
approaches (e.g., Nasir and Dang 2020) are among the heuristics developed.

Various objective functions have been considered in the home healthcare routing 
and scheduling literature, including the minimization of the travel time (e.g., Bred-
strom and Ronqvist 2008; Trautsamwieser et al. 2011; Hiermann et al. 2015), travel 
cost (e.g., Eveborn et al. 2006; Bertels and Fahle 2006; Rasmussen et al. 2012), wait-
ing time of service provider teams (e.g., Trautsamwieser et al. 2011), overtime (e.g., 
Hiermann et al. 2015; Trautsamwieser et al. 2011), maximization of the preferences 
(e.g., Bertels and Fahle 2006; Bredstrom and Ronqvist 2008; Trautsamwieser et al. 
2011; Rasmussen et  al. 2012; Hiermann et  al. 2015) and balancing the workload 
among the HSPTs (e.g., Cappanera et  al. 2018; Manerba and Mansini 2016). We 
depart from these studies by minimizing the weighted total latency of the patients. 
This type of objective is known to be more challenging than the standard objective 
of minimizing the total tour length in the routing literature (Angel-Bello et al. 2013). 
However, in healthcare, waiting can be critical for some patients, and forming routes 
that minimize the total weighted waiting times carries particular importance in this 
context. To the best of our knowledge, our article is the first paper that considers the 
latency objective for a home healthcare routing and scheduling problem.

2.2  Traveling repairman problem and its variants

The traveling repairman problem (TRP) aims to keep the customers wait less in a 
service setting. While the name comes from the repair services, alternative names 
have also been given by some researchers. In the TRP, a complete graph with a 
depot node and positive edge distances are provided. The repairman has to perform 
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a route starting from the depot node, visiting all the nodes and ending at the depot 
node with the objective of minimizing the summation of all visit times. In our prob-
lem, the HSPTs must visit all the patients. Moreover, the service time of each patient 
is incorporated by adding the service time to the traveling time of the incoming arcs 
to that patient. Since we consider a weighted latency objective function, our problem 
can be considered as a generalization of the TRP where weights are associated with 
the customer nodes and multiple repairmen are considered, as opposed to the TRP, 
which optimizes the route of a single repairman. We next present a brief overview of 
the previous work on the TRP and its variations.

Numerous articles proposed exact solution procedures including mathemati-
cal models for the TRP (e.g., see Sarubbi et al.  2008; Picard and Queyranne 1978; 
Mendez-Diaz et al. 2008). Mendez-Diaz et al. (2008) formulated a three-index math-
ematical model that can solve instances having up to 40 nodes by taking advantage 
of effective valid constraints. Bulhões et al.  (2018) developed a branch-and-price 
algorithm for a set partitioning formulation. Angel-Bello et al. (2013) designed two 
mathematical models for the TRP based on a multi-level network system. Based on 
their computational study, Angel-Bello et al. (2013) conclude that level-based mod-
els outperform other modeling approaches for the TRP. On the other hand, several 
studies have developed heuristics and metaheuristics to solve the TRP. Salehipour 
et al.  (2011) developed two metaheuristics where the initial solutions are generated 
using a greedy randomized adaptive search procedure (GRASP). They have used 
VNS and variable neighborhood descent (VND) for the improvement phase of their 
metaheuristics. They called their algorithms the GRASP+VNS and GRASP+VND 
algorithms. Mladenović et al.  (2013) developed a VNS algorithm for the TRP. They 
tested their algorithm on instances provided in Salehipour et al.  (2011) and showed 
that their proposed algorithm outperforms the GRASP+VNS and GRASP+VND 
algorithms on these instances.

The multiple TRP (mTRP) is a generalization of the TRP in the sense that it 
involves finding the routes of multiple repairmen. Luo et  al. (2014), Nucamendi 
et  al.  (2015), and Nucamendi-Guillén et  al.  (2016) provided different methods 
to address the mTRP. For example, Nucamendi-Guillén et  al.  (2016) proposed a 
metaheuristic algorithm that contains an iterated greedy (IG) phase for initiation and 
a local search (LS) phase for improvement. Sze et  al. (2017) developed an adap-
tive variable neighborhood search algorithm to solve the mTRP. Angel-Bello et al. 
(2019), on the other hand, focused on exact approaches and proposed five mathe-
matical models for the mTRP. The first three formulations emanated from the classi-
cal flow-based formulations and the latter two were based on time-dependent models 
regarding a multi-level network. These models perform much better than the first 
three. Liu et al. (2018) developed a branch-and-price algorithm to solve the multi-
trip variation of the mTRP with up to 85 nodes. More recently, larger instances were 
solved exactly and approximately; Bruni et al. (2022) studied the multi-depot mTRP 
and proposed two mathematical models as well as a hybrid genetic algorithm to 
solve instances with up to 240 nodes.

Several authors proposed heuristic algorithms for various variations of the mTRP. 
Bang (2018) considered a variation of the mTRP with a distance constraint, where 
each vehicle is not permitted to travel longer than a given limit. They designed a 
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GRASP heuristic to generate the initial solution, and a VND algorithm to improve 
the initial solution. In Avci and Avci (2019), the authors designed an adaptive large 
neighborhood search algorithm (ALNS) for solving the mTRP with time-depend-
ent profits. Lalla-Ruiz and Voß (2020) addressed the multi-depot extension of the 
mTRP and proposed a matheuristic algorithm.

While both the TRP and mTRP are well-studied problems, there are only a few 
studies that focus on the variations of these problems where weights play a role in 
the objective function. Dewilde et al.  (2013) employed a tabu search algorithm for 
the prize-collecting TRP, where prizes are associated with the nodes and a subset of 
the nodes should be selected to be visited to collect the maximum total prize within 
a given time limit. In this variation, a prize of pi − ti is collected when the repair-
man arrives at node i ∈ V  at time t

i
 , where pi is a fixed prize allocated to node i ∈ V  . 

This variation differs from minimizing the weighted waiting times (latencies) as the 
problem is selective and the prizes are time-dependent. Lu et al. (2019) developed a 
memetic algorithm to solve a generalization of the problem introduced in Dewilde 
et al.  (2013) with multiple repairmen. García et al. (2002) provided a linear time 
exact algorithm and Wu (2000) presented a dynamic programming model for solv-
ing a special case of the weighted TRP (WTRP) in which the underlying graph is a 
path. Akbari and Shiri (2021) addressed an online variation of the weighted TRP 
considering only one repairman. In a recent study, Muritiba et al. (2021) proposed 
a branch-and-cut algorithm and developed an iterated local search algorithm to 
address the weighted multi-repairmen WTRP, motivated by an application involving 
speed cameras to be maintained.

To the best of our knowledge, none of the TRP variations we have encountered in 
the literature have been studied in the context of home healthcare. Our paper is the 
first study that investigates the “latency” objective in this context. That is, we study 
a TRP with multiple repairmen and a weighted latency objective function, motivated 
by the home healthcare routing and scheduling problem. Our level-based IP model 
and metaheuristic algorithm are also new additions to the WmTRP literature.

3  Mathematical models

We define the HHRSP-PP on a complete graph G = (V0, E) with node set 
V0 = {0, 1,… , n} and arc set A = {(i, j) ∶ i, j ∈ V0, i ≠ j} . The depot (starting loca-
tion of the HSPTs) is located at node 0 and the set of nodes to be serviced (patients) 
is represented by V = V

0
⧵{0} . The distance from node i to node j (or travel time) is 

given as cij, (i, j) ∈ A , according to the locations of patients i and j and the shortest 
path in the road network between them. We incorporate service times in our prob-
lem by adding the service time of patient i ( i ∈ {1, 2,… , n}) to the traveling time 
of each incoming arc to patient i. Since each patient must be visited exactly once, 
the optimal solution and the optimal objective function value remain unchanged 
after this transformation. A priority (triage level or weight) is associated with each 
patient (i.e., each node in V) that is denoted by w

i
, i ∈ V  , where higher values indi-

cate increased priority. In the HHRSP-PP, there are m number of HSPTs that origi-
nate from the depot node at time 0, (t0 = 0) , traverse a number of nodes to service 
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the patients, and return back to the depot. The collection of the routes of the HSPTs 
should be such that each patient in V is serviced in one of the routes. Clearly, it can 
be assumed that the number of HSPTs is less than the number of patients that should 
be serviced, i.e., m < n . Letting t

i
 be the time at which patient i ∈ V  is visited, the 

objective function of the HHRSP-PP is to minimize 
∑

i∈V
w

i
t
i
 . Next, we present two 

formulations for this problem.

3.1  Model I

Model I is based on calculating the arrival time to each patient considering the 
visit time of the previously serviced patients by the same HSPT and the travel time 
between the patients and also the service time of the considered patient. Since the 
visit time of a patient must be greater than the time at which the previous patient 
was visited, the solution cannot contain a closed tour. However, the optimal solu-
tion of the problem should include m closed tours starting and ending in the depot 
node, where m shows the number of HSPTs. In order to remedy this issue, a dummy 
sink node indexed by n + 1 is defined such that the HSPTs finish their routes at this 
node. For this purpose, we set the time of going from i ∈ V  to the dummy sink 
node equal to the time of going from i to the depot excluding the service time of 
node i. We show the union of the node set V together with the sink node n + 1 by 
V

n+1
= V ∪ {n + 1} and the union of all nodes consists of the depot and the sink 

node by V0,n+1 . In this model, xij ∈ {0, 1} (i ∈ V0, j ∈ Vn+1, i ≠ j) is the first set of 
variables that denote whether a HSPT is going from node i to node j or not, and 
t
i
≥ 0 (i ∈ V0,n+1) is the second set of variables that denote the time at which patient 

i is visited.

(1)Min

∑

i∈V

w
i
t
i

(2)

∑

i∈V
n+1

x
0i
= m

(3)

∑

i∈V

x
in+1

= m

(4)

∑

j∈Vn+1⧵{i}

xij = 1, i ∈ V

(5)

∑

i∈V0⧵{j}

xij = 1, j ∈ V

(6)tj ≥ ti + cijxij − M(1 − xij), i ∈ V0, j ∈ Vn+1, i ≠ j



814 V. Akbari et al.

1 3

The objective function in (1) minimizes the total weighted latency (arrival times) of 
all the patients nodes. Constraints (2) and (3) ensure that m routes are determined for 
the m HSPTs. Constraints (4) and (5) ensure that each patient is visited exactly once. 
Constraints (6) calculate the arrival times and prevent sub-tours. In this constraint, 
M can get any value greater than or equal to 

∑

(i,j)∈A cij.

3.2  Model II

As mentioned, since each patient must be visited exactly once, the HHRSP-PP is 
equivalent to the WmTRP when the service times of patients are added to the trave-
ling times of incoming arcs to the corresponding patient nodes. Model II is based 
on a multi-level model developed in Angel-Bello et al. (2019) for the multiple TRP 
with no weights. We modify the mathematical formulation of Angel-Bello et  al. 
(2019) to make it applicable to HHRSP-PP.

Angel-Bello et al. (2019) showed computationally that a level-based model out-
performs flow-based (Gavish and Graves 1978) or multiple TSP-based (Bektas 
2006) formulations for latency objectives in terms of computational time. This is 
because the level-based model is designed to compute the arrival times to the 
patients (nodes) via the objective function. In Model II, a set of binary variables xr

ij
 

are defined where if the arc (i, j) is used to link patient i at level r + 1 with patient j 
at level r, then it will be equal to one. Levels in this model are defined to facilitate 
the modeling and show the steps of the movements for each of the HSTPs. An illus-
tration of the level-based model is provided in Fig. 1. In this example, a case with 
four patients ( n = 4 ) and 2 HSPTs ( m = 2 ) is considered. Since each HSPT visits at 
least one patient in the optimal solution, the number of levels at which a patient is 

(7)xij ∈ {0, 1}, i ∈ V0, j ∈ Vn+1, i ≠ j

(8)t
i
≥ 0, i ∈ V0,n+1

Fig. 1  Level-based structure
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visited is restrained by L = n − m + 1 , which is equal to 4 in our example. A sample 
route for each of the HSPTs is also presented in Fig.  1. The route of one of the 
HSPTs include visiting patients 1, 4 and 3 consecutively. For this HSPT, the teams 
leave the depot in level 4, visits patient v

1
 in level 3 and then visits patients v

4
 and v

3
 

in levels 2 and 1, respectively. For the other HSPT, they only meet patient v
2
 in level 

1.
Given that this level-based formulation was first proposed for the case with no 

weights on the nodes (patients), to develop Model II we define a transformation 
of the input graph G = (V0, E) to a graph denoted by G = (V0, E) . Suppose that the 
weight (triage level) w

i
 for a node (patient) i in V is an integer number which rep-

resents the severity of the condition of patient i. G is a complete graph with node 
set V

0
 that includes the depot and w

i
 duplicated nodes for each node i ∈ V  . An 

example of this transformation is given in Fig. 2. In this example, there are three 
patients that should be visited. The triage level of the first patient is two (w

1
= 2) , 

the triage level of the second patient is three ( w
2
= 3 ), and the triage level of the 

third patient is one (w
3
= 1) . In this transformation of the graph G to graph G , 

each node i ∈ V  with a weight of w
i
 is replaced with w

i
 duplicated nodes denoted 

by Va

i
∶ i ∈ V , a ∈ {1,… , w

i
} . As a result, G is a complete graph with node set 

V0 = 0 ∪ {V
a

i
∶ i ∈ V , a ∈ {1,… , w

i
}} . Furthermore, the set of nodes in G exclud-

ing the depot is denoted by V.
In graph G , the cost or distance of going from node Va

i
 to node Vb

j
 is set equal to cij 

for i, j ∈ V0 if i ≠ j , a ∈ {1,… , w
i
} and b ∈ {1,… , wj} . If i = j for two nodes in V 

(i.e., if both nodes are duplicated nodes of the same patient), then the cost of moving 
between them equals 0.

Proposition 1 The optimal solution and its objective function value on G is the same 

as the optimal solution and its objective function value on G.

Proof First, let us assume the optimal visiting times on G are given as t∗
i
 for i ∈ V  . 

As a result, 
∑

i∈V
w

i
t
∗

i
 represents the optimal objective function value on G. The dis-

tance from Va

i
∈ V to Vb

j
∈ V on G equals the distance from i ∈ V  to j ∈ V  on G for 

i ≠ j . Also, the distance from Va

i
∈ V to Vb

j
∈ V equals 0 when i = j . Thus, we trans-

form the optimal solution obtained on G to a feasible solution on G such that t
V

a

i

= t
∗

i
 

0 2

3

1

V1
1 V1

2

V2
1

V2
20

V2
3

V3
1

Fig. 2  Demonstration of the transformation



816 V. Akbari et al.

1 3

for i ∈ V  and a ∈ {1,… , w
i
} . Noting this, we can rewrite 

∑

i∈V
w

i
t
∗

i
 as 

∑w
i

a=1

∑

i∈V
t
V

a

i

 . 

This corresponds to finding a feasible solution on G with the same objective function 
value obtained on G.

There exists an optimal solution on G such that once one of the w
i
 duplicated 

nodes of patient i is visited by one HSPT, all the other w
i
− 1 duplicated nodes of 

patient i will be visited before that HSPT leaves patient i. This is because the dis-
tances between the duplicated nodes for the same patient are set equal to zero and 
once a HSPT arrives to a duplicated node of a patient, the visiting time of all the 
other duplicated nodes of that patient is set to that time. This means that an optimal 
solution on G corresponds to a feasible solution on G with the same objective func-
tion value and the proof is completed.   ◻

Relying on Proposition 1, we develop a level-based model to solve the HHRSP-
PP on G as described in the following. In this model, we only have xr

Va
i

Vb
j

 variables 

that are equal to 1 if arc (Va
i
, Vb

j
) is used by a HSPT to visit node Vb

j
 at level r imme-

diately after visiting node Va

i
 at level r + 1 . In this model, the maximum number of 

levels is L =
∑

i∈V
w

i
− m + 1 . For simplicity of notation, indices u and s are used to 

show the nodes in set V as well.

The objective function of the level-based model on G is expressed in (9). Constraint 
(10) guarantees that exactly m HSPTs terminate their routes at level 1. By constraint 
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(11), the number of HSPTs that leave the depot node is set to m. The flow conserva-
tion constraints are given by constraints (12) and (13) to ensure the continuity of 
the paths. Constraint set (14) guarantees that each patient is visited by one and only 
one HSPT. In the level-based model, this is achieved by ensuring that each patient is 
active only in one of the levels.

3.2.1  Valid constraints

Since there exist w
i
 duplicated nodes for patient i ( i ∈ {1, 2,… , n} ) in the level-

based formulation, the size of the input graph grows significantly. Moreover, 
there may be several optimal solutions where the order of the visits of the patients 
is optimal, but within the duplicated nodes for each patient, the order of visiting 
the duplicated nodes changes. To remedy this, we propose a number of valid con-
straints and add them to our level-based model to cut off the feasible space. This 
way, we eliminate the alternative optimal solutions that correspond to the same 
order of visiting the patients but allow different combination of visits between the 
duplicated nodes for the same patient. For that, we set a rule such that for a fixed 
patient i ∈ V  , the HSPT should first visit the duplicated node V1

i
 , then V2

i
 , then V3

i

,..., and then V
w

i

i
 . It should be noted that this rule does not eliminate the optimal 

solution from the feasible space and only eliminates repetitive solutions that cor-
respond to the same order of visiting the patients. The valid constraints are given 
in the following.

By (16), the m HSPTs should visit the first indexed duplicated nodes of n patients 
in V as the first node of their route. Constraints (17) ensure that only the first and 
last indexed duplicated can be visited first and last of a visit to a patient. Given con-
straints (18), the HSPTs only visit the dummy nodes allocated to a patient in their 
indexed order. By constraint (19), there are n − m traversals from the last indexed 
duplicated node of a patient to the first indexed duplicated node of another patient. 
By adding constraints (16) to (19) to constraints from (9) to (15), we form the sec-
ond model named as Model II.
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4  Saving+GVNS heuristic

Model II presented in Sect. 3.2 is shown to solve some moderate-sized instances in 
our computational tests. This model has two major limitations: firstly, the priority 
weights (triage levels) of the patients should be integer values and secondly, when 
the priority weights increase the number of duplicated nodes increases significantly 
and the problem becomes very difficult to solve. However, here we point out that for 
our application, the weights of each patient (node) are determined according to tri-
age levels, which are usually integer values between 1 and 5. Nevertheless, in order 
to overcome these shortcomings, we develop a two-phase algorithm which is capa-
ble of handling non-integer weights and is able to solve much larger instances in 
short time. Similar to Models I and II, we consider the service times in our algo-
rithm by adding the service time of patient i ( i ∈ {1, 2,… , n}) to the traveling time 
of each incoming arc to the node of patient i in the solutions. At the first phase, 
a saving procedure is used to generate an initial solution. In the second phase, a 
general variable neighborhood search (GVNS) algorithm is utilized to improve the 
initial solution found in the first phase. VNS, which has the advantage that it needs 
few parameters, has been successfully used in solving diverse problems (see Hansen 
et al. 2008; Pan et al. 2021; Sadati et al.  2022).

Next, an overview of the proposed algorithm, called the Saving+GVNS algo-
rithm, is presented. The algorithm starts with an initial solution S

0
 . A set of neigh-

borhood structures N
k

(k = 1,… , k
max

) are used in the shaking phase and another 
set of neighborhood structures M

l
(l = 1,… , l

max
) in the local search phase. In the 

shaking phase, a solution S̄ is generated by applying the first neighborhood N
1
 on 

the initial solution S
0
 . For a given solution S̄ , local search is performed by applying 

the first neighborhood l
1
 to obtain a new solution S′ . If the new solution S′ has a bet-

ter objective function value compared to the incumbent solution S∗ , the incumbent 
solution S

∗ is updated and local search is continued with the first neighborhood 
l
1
 . Otherwise, l is incremented by 1 and local search is performed using the next 

neighborhood. This process is continued until all local search neighborhood struc-
tures are explored ( l = l

max
 ). In the local search phase, if a new incumbent solu-

tion is produced, index k is set to 1. Otherwise, k is incremented by 1 and GVNS 
restarts from the incumbent solution S∗ . These steps are repeated until a termina-
tion criterion is met. The proposed GVNS is terminated when any of the provided 
conditions is encountered: (i) a specified number of iterations (10,000 in our exper-
iments), (ii) a number of consecutive non-improving iterations (1000 in our experi-
ments). The pseudo-code of the Saving+GVNS algorithm is given as Algorithm 1. 
Based on line 9 of Algorithm 1, a solution is feasible if it satisfies constraints (2) to 
(5) of Model I.
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4.1  Generating an initial solution using a saving method

In order to construct a feasible initial solution, we apply a modified greedy savings 
heuristic which is inspired from the Clarke and Wright (CW) savings algorithm 
(Clarke and Wright 1964). CW is originally proposed for solving the VRP and con-
tains three steps including; (i) initial allocation of one HSPT to each patient, (ii) 
calculating the saving from merging two routes and sorting the savings in decreasing 
order and (iii) merging two routes to form a new route starting from the largest sav-
ing if it results in a feasible route. Our proposed saving heuristic is different from the 
original CW in calculations of the saving values and the feasibility of merging two 
routes. The saving values in our algorithm are calculated as Sij = wj(c0j − c

0i − cij) 
where 0 indicates the depot node.

The feasibility of the HHRSP-PP is defined based on using exactly m HSPTs. To 
achieve this, a pre-determined number of patients are assigned to each HSPT. In this 
regard, at the merging step of the algorithm, at most ⌈

n

m

⌉ patients can be assigned to 
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each HSPT (route) initially, where n is the number of patients and m is the total 
number of HSPTs. The pseudo-code of the proposed saving procedure for generat-
ing initial solutions is presented in Algorithm 2.

In the merging step at line 5 of Algorithm 2, based on the positions of two given 
patients i and j, four cases can be defined as the following:

Case I If patient i is the first and j is the last patient on two separate routes, edges 
(0, i) and (j, 0) will be removed and a new edge (j, i) will be added to form a single 
route. Figure 3 gives a visual representation of this merging. Note that in all visual 
representations of each case (i.e., Figs. 3, 4, 5 and 6), first and second routes give the 
initial two routes, and the third route shows the merged one.

Case II If patients i and j are both the first patients on their respective routes, initially 
the order of the first route is reversed and then edges (i, 0) and (0, j) are removed and 
a new route is formed by adding edge (i, j). Figure 4 gives a visual representation of 
this merging.

Fig. 3  Case I of the merging step
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Case III If patient i is the last and j is the first patient on their respective routes, 
edges (i, 0) and (0, j) are eliminated and the merged route is formed by adding (i, j). 
Figure 5 gives a visual representation of Case III merging.

Case IV If patients i and j are both the last patients on their respective routes, initially 
the order of the first route is reversed and then edges (0, i) and (j, 0) are removed. 
Finally, by adding edge (j,  i), the merged route is formed. Figure 6 gives a visual 
representation of this merging.

If the generated number of HSPTs (routes) R at the end of line 11 of Algo-
rithm  2 is greater than m (i.e., m < R ), the extra R–m routes that include the 
minimum number of patients are discarded from the solution, and the patients in 
these routes are inserted to the end of the first m routes, which contain the least 
number of patients (lines 12–14). Note that in line 9 of Algorithm 2, if the new 
route generated by linking nodes u and v does not satisfy the assignment of at 
most ⌈

n

m

⌉ patients, the route is ignored, and the algorithm continues to check 

other pairs of nodes in the saving list to form a new route (line 4).

Fig. 4  Case II of the merging step

Fig. 5  Case III of the merging step

Fig. 6  Case IV of the merging step
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4.2  Shaking

In the shaking phase, a solution is generated by applying the set of neighborhoods 
N

k
 . In our implementation, we used five neighborhoods for the shaking phase of 

our GVNS. These moves are applied both as intra-route and inter-route moves. In 
Figs. 7, 8, 9, 10 and 11, parts (a) and (b) show the pre-move and post-move states 
of the intra-route move, respectively, and parts (c) and (d) show the pre-move and 
post-move states of the inter-routes move for two HSPTs, respectively. In the case 
where the routes of two HSPTs are considered (parts (c) and (d) of the figures), 
the routes are distinguished by solid and dashed lines.

1–0 Move In this move, a patient from his/her current position is removed and 
inserted in another new position (Fig. 7).

(a) (b) (c) (d)

Fig. 7  1–0 move: Same Route: [a Before, b After] - different Routes: [c Before, d After]

(a) (b) (c) (d)

Fig. 8  2–0 move: Same Route: [a Before, b After] - different Routes: [c Before, d After]

(a) (b) (c) (d)

Fig. 9  1–1 Exchange: Same Route: [a Before, b After] - different Routes: [c Before, d After]
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2–0 Move In this move, a patient and his successor are removed and inserted in 
other new positions (Fig. 8).

1–1 Exchange This move swaps the positions of two given patients (Fig. 9).
1–2 Move For two given patients, this move swaps the position of the first patient 

with the second patient and her successor (Fig. 10).
2–2 Exchange For two given patients, this move swaps the positions of the first 

patient and his successor with the second patient and her successor (Fig. 11).
The aforementioned neighborhoods are implemented both as intra- and inter-

route moves and are explored in a cyclic sequential order starting with N
1
= 1 –0 

move and ending with N
5
= 2 –2 Exchange.

4.3  Local search

At each iteration of the GVNS, local search is performed by applying the set of four 
move operators. In these moves, instead of changing the position of the patients, the 
steps of the traversed edges are modified.

2-Opt For a given set of two arcs in a single route that define a crisscross, this 
move substitutes them with two new arcs by reversing the sequence of the nodes 
visited in between (Fig. 12).

2-Opt* This move is a modification of the 2-Opt move. For a given set of two 
arcs from two separate routes that create a crisscross, they are replaced with two 
new edges without reversing the sequence of the patients (Fig. 13).

(a) (b) (c) (d)

Fig. 10  1–2 Move: Same Route: [a Before, b After] - different Routes: [c Before, d After]

(a) (b) (c) (d)

Fig. 11  2–2 Exchange: Same Route: [a Before, b After] - different Routes: [c Before, d After]
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3-Opt In this move, three arcs in a given route are removed and then the network 
is reconnected in all feasible ways (Fig. 14).

Or-Opt This move resettles a chain of successive patients by substituting three 
arcs with three new ones without reversing the sub-routes (Fig. 15).

Here, we point out that 2-Opt, 3-Opt and Or-Opt are applied only as intra-route 
moves. In these four move operators of local search, we resort to the best improve-
ment approach. These neighborhoods are investigated in a cyclic sequential order-
ing beginning from M

1
= 2-Opt and terminating with M

4
= Or-Opt. If a new and 

Fig. 12  a Before 2-Opt move, b 
after 2-Opt move

(a) (b)

Fig. 13  a Before 2-Opt* move, 
b after 2-Opt* move

(a) (b)

Fig. 14  a Before 3-Opt move, b 
after 3-Opt move

(a) (b)
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better solution is produced by applying any of these neighborhood structures, the 
local search is continued with the first neighborhood M

1
= 2-Opt (i.e., the index l is 

reinitialized to one). Otherwise, the local search is performed using the next neigh-
borhood. This process is continued until all local search neighborhood structures are 
explored (lines 7–18 of Algorithm 1).

5  Computational study

For the purpose of conducting a comprehensive computational experiment, we com-
pare the performance of the proposed Saving+GVNS algorithm with the best known 
algorithms from the literature for various variants of the WmTRP. All experiments 
were performed on a computer equipped with Intel Xeon(R) and 3.60 GHz proces-
sor. The models were coded in Python and solved using Gurobi Optimizer 9 with 
an academic license. The Saving+GVNS algorithm was coded in C# Visual Studio 
2019.

5.1  Performance of the Saving+GVNS algorithm

In this section, we assess the performance of the Saving+GVNS algorithm on sim-
plified versions of WmTRP from the literature. In Sects. 5.1.1 and 5.1.2, our algo-
rithm is compared with TRP and mTRP instances from the literature, respectively.

5.1.1  Performance of the Saving+GVNS on TRP instances

In this section, we analyze the performance of Saving+GVNS algorithm on a 
TRP variation. This version of the TRP has three main differences with WmTRP: 
(i) nodes are not weighted and hence the weight of each node is set to one, (ii) 
only one repairman exists, and (iii) the time in which the repairman returns to 
the depot is added to the objective function. Moreover, the authors of this study 
compared their results with the Branch-and-Cut-and-Price (B&C&P) algorithm 
tested on the TSPLib instances presented in Abeledo et  al. (2013). We selected 

Fig. 15  a Before Or-Opt move, 
b after Or-Opt move

(a) (b)
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those TSPLib instances that were tested in Mladenović et al.  (2013) and utilized 
two-dimensional Euclidean distances. The results of the experiments are given in 
Table 1.

In Table  1, the name of the instance is given in the “Instance” column. The 
objective function values obtained in Abeledo et al. (2013) and Mladenović et al.  
(2013) were the same in these instances and they are given in the second col-
umn. These values are directly extracted from these articles. Those values that are 
given with a bold font are the optimal solutions of the corresponding instances. 
The results of the Saving+GVNS algorithm on these instances are given in the 
next columns. In the presented tables, OFV denotes objective function value and 
CRT refers to the CPU run time in seconds. Since the VNS of Mladenović et al.  
(2013) was able to find similar solutions to the B&C&P in all the instances, we 
only reported the gap between the best found objective function value from the 
Saving+GVNS algorithm and the results reported in the literature. Since these 
algorithms were not coded by us and were tested on computers prior to 2013, we 
have not reported their CPU run time. In total, in nine instances out of 12, opti-
mal solutions were found using the Saving+GVNS algorithm. The maximum gap 
was in instance rat99 with 1.01% and the average gap over these instances was 
0.18%. The average CPU run time over these instances was 132.70 s with a maxi-
mum of 246.34  s for the lin105 instance. Considering that the Saving+GVNS 
algorithm was developed to solve the WmTRP and is now tested on a special 
case of the WmTRP, obtaining such small gaps is promising and verifies the good 
performance and robustness of the Saving+GVNS algorithm in terms of both the 
solution quality and CPU run time.

Table 1  Results of 
Saving+GVNS on TSPlib 
instances

Instance Abeledo et al. (2013) Saving+GVNS

Mladenović et al.  (2013) Best OFV CRT GAP (%)

eil51 10,178 10,178 15.87 0.00

berlin52 143,721 143,721 18.25 0.00

st70 20,557 20,557 60.87 0.00

eil76 17,976 17,976 81.15 0.00

pr76 3,455,242 3,464,384 82.31 0.26

rat99 57,986 58,571 135.14 1.01

kroA100 983,128 983,128 146.31 0.00

kroB100 986,008 986,008 150.49 0.00

kroC100 961,324 966,106 147.79 0.50

kroD100 976,965 981,728 191.55 0.49

kroE100 971,266 971,266 165.22 0.00

rd100 340,047 340,706 203.01 0.19

eil101 27,513 27,570 173.11 0.21

lin105 603,910 603,910 246.34 0.00

pr107 2,026,626 2,026,626 173.05 0.00

Average 132.70 0.18
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5.1.2  Performance of the Saving+GVNS on mTRP instances

In this section, we test the performance of the Saving+GVNS algorithm on some 
mTRP instances that were addressed in Nucamendi-Guillén et  al.  (2016) and 
Angel-Bello et al. (2019). The main difference of mTRP and the WmTRP is that in 
the mTRP, the weight of all the nodes is equal to one. As part of the computational 
study of these articles, they tested their models and algorithms on 21 P-instances 
from the VRP literature (Augerat et al. 1995). While Angel-Bello et al. (2019) con-
sidered Euclidean distances that were rounded down to the nearest integer, Nuca-
mendi-Guillén et  al.  (2016) considered Euclidean distances with up to two deci-
mal points. The results of our computational experiments are given in Table 2. The 
“Instance” column gives the name of the instances, which include the number of 
nodes and repairmen in that instance. The column denoted by “Angel-Bello et  al. 
(2019)” gives the extracted values from this article which are obtained for the mTRP 
using their mathematical model. In the next three columns, the results of testing the 

Table 2  Results of Saving+GVNS on mTRP instances

Instance Angel-
Bello et al. 
(2019)

Saving+GVNS Nucamendi-
Guillén et al.  
(2016)

Saving+GVNS

Best OFV CRT GAP (%) Exact IG+LS Best OFV CRT GAP (%)

P-k8-n16 377 377 0.50 0 382.9 382.9 382.9 0.50 0

P-k2-n19 780 780 0.85 0 812.15 812.15 812.15 0.87 0

P-k2-n20 869 869 1.01 0 905.19 905.19 905.19 0.95 0

P-k2-n21 906 906 1.14 0 937.1 937.1 937.1 1.11 0

P-k2-n22 961 961 1.28 0 993.1 993.1 993.1 1.29 0

P-k8-n22 610 610 0.91 0 623.4 623.4 623.4 0.93 0

P-k8-n23 549 549 0.99 0 561.33 564.31 561.33 1.03 0

P-k5-n40 1491 1491 3.89 0 1537.79 1537.79 1537.79 3.77 0

P-k5-n45 1857 1857 5.25 0 1912.31 1912.31 1912.31 5.50 0

P-k7-n50 1493 1493 6.01 0 1547.89 1547.89 1547.89 5.71 0

P-k8-n50 1399 1399 5.56 0 1448.92 1448.92 1448.92 5.39 0

P-k10-n50 1256 1256 5.22 0 1296.48 1296.48 1296.48 5.47 0

P-k10-n51 1372 1372 5.50 0 1419.43 1419.43 1419.43 5.91 0

P-k7-n55 1705 1705 7.35 0 1766.56 1766.56 1766.56 7.31 0

P-k8-n55 1560 1560 7.24 0 1614.61 1614.61 1614.61 6.87 0

P-k10-n55 1395 1395 6.58 0 1438.6 1438.6 1438.6 6.76 0

P-k15-n55 1243 1243 6.50 0 1280.92 1280.92 1280.92 6.42 0

P-k10-n60 1622 1622 7.82 0 1676.35 1676.35 1676.35 8.15 0

P-k15-n60 1416 1416 7.70 0 – – 1462.5 7.62 –

P-k10-n65 1866 1866 9.37 0 1928.46 1928.46 1928.46 9.98 0

P-k10-n70 2027 2027 11.02 0 2097.17 2097.17 2097.17 11.50 0

Average 4.84 0 4.91 0
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Saving+GVNS algorithm on these mTRP instances are given. Our algorithm found 
the optimal solutions to all of these instances with an average and maximum CRT 
of 4.84 and just over 11 s, respectively. We note that since Angel-Bello et al. (2019) 
used a mathematical model, they obtained the optimal solutions to all of these 
instances. In the next two columns denoted by Nucamendi-Guillén et  al. (2016), 
we present the extracted results of their MIP model and metaheuristic algorithm 
labeled by IG+LS from their article. Their metaheuristic algorithm finds the opti-
mal solutions to all the tested instances except for P-k8-n23. The results of testing 
the Saving+GVNS algorithm on these instances are given next. Similar to the case 
with integer distances, our algorithm found all the optimal solutions to these mTRP 
instances with an average CRT of under 5 s. While the Saving+GVNS was devel-
oped to solve the WmTRP, it is also capable of finding the optimal solutions to all of 
these mTRP instances verifying its robustness.

5.2  WmTRP instances

Next, the Saving+GVNS algorithm and our models are tested on WmTRP instances. 
This section is divided into two subsections based on the size of the networks and 
the number of customers in the solved instances.

5.2.1  Small instances

In order to provide a performance comparison of Models I and II, we adopted some 
small instances from the TRP literature (Salehipour et al.  2011). These small data 
sets have 10 and 20 nodes. Since these instances are not weighted, based on triage 
levels that are integer values between 1 and 5, we assigned a uniformly distributed 
number between 1 and 5 to each of the patient nodes as their weights and then tested 
both Models I and II and the Saving+GVNS algorithm with 3, 4 and 5 HSPTs on all 
the instances. The results of testing these instances with 10 and 20 nodes are given 
in Figs. 16 and 17, respectively.

For the instances with 10 nodes, both Models I and II found the optimal solu-
tions in less than 2.5 s in all the instances. The Saving+GVNS algorithm was able 
to find the same optimal solutions in less than 0.2 s. As a result, Fig. 16 only shows 
the comparison of the CPU run time between these models and the algorithm. For 
the case with 20 patients however, Model I was not able to find any of the optimal 
solutions in a time limit of 1 h. As a result of this, we only gave the CRT comparison 
between Model II and Saving+GVNS in Fig. 17.

Among the instances with 20 patients, Model II found the optimal solution to all 
these instances with a maximum CRT of 26.79 s. An observation is that, when the 
number of HSPTs increases, on the same instance, the problem becomes computa-
tionally easier. For example, in instances with 20 nodes, the average CRT over the 
ten tested instances with 3 HSPTs is 14.51 s, while it reduces to 11.78 and 9.83 s 
with 4 and 5 HSPTs, respectively. As expected, adding more HSPTs on the same 
instances reduces the objective function value. While the average objective function 
value over ten instances with 20 nodes and 3 HSPTs is 3872.9, it reduces to 3408.4 
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and 3170.5 for 4 and 5 HSPTs, respectively. In both cases with 10 and 20 nodes, 
the Saving+GVNS algorithm performed found the optimal solution in all the cases. 
Since the algorithm was able to find the optimal solutions in all the 10 randomized 
runs for all the instances, the Best OFV and the Avg OFV are the same for all the 
small instances in this section.

5.2.2  Moderate‑sized instances

In this section, we test the performance of the Saving+GVNS and Model II on mod-
erate-sized instances. Some of these instances are directly taken from the literature 
and some are generated on instances adopted from the VRP literature.

5.2.2.1 Performance of the Saving+GVNS on WmTRP instances Recently, Muritiba 
et al. (2021) introduced the WmTRP and proposed a branch-and-cut (B&C) algo-
rithm to solve this problem. In their study, they addressed the application of the 
WmTRP for maintenance of speed cameras and introduced six categories of data 
sets denoted by “brd14051,” “d15112,” “d18512,” “fn14461,” “nrw1379” and 

Fig. 16  Results of the small instances with 10 patients
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“pr1002.” For each of these categories, they generated instances with 30, 40 and 
50 nodes and assigned a floating point weight value between 0 and 2 to each of 
the nodes. For instances with 30 nodes, they used 6 repairmen and for instances 
with 40 and 50 nodes they used 8 and 10 repairmen, respectively. We note that in 
our context, these repairmen represent HSPTs and each node represents a patient 
location. Moreover, for each category and combination of number of nodes and 
repairmen, they generated 10 instances and reported the average objective function 
value obtained from their B&C algorithm over them.

The B&C algorithm developed by Muritiba et al. (2021) was able to find the 
optimal solution in all of their tested instances. Our Saving+GVNS algorithm 
was also able to find all the same optimal solutions in all the tested instances. 
Therefore, we only presented the CPU run times in Fig. 18. In this figure, we used 
the same run times that were presented in Muritiba et al. (2021). For their com-
putational experiments, they coded their B&C algorithm in Java 8 and executed 
it on an Intel i7-3820 processor with eight cores running at 3.60 GHz and with 
16  GB of random access memory, operating under Ubuntu 18.04. As an MILP 
solver, they used Gurobi 8.0. We can see that the Saving+GVNS algorithm was 
able to find the optimal solutions in a considerably shorter time.

Fig. 17  Results of the small instances with 20 patients
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Since Model II only handles integer weights, we have modified the instances 
described above and generated triage levels for each of the nodes (patients) using 
integer values between 1 and 5 and solved the new instances using both Model II 
and our Saving+GVNS algorithm. The results of these experiments are presented in 
Table 3. Since in Muritiba et al. (2021), the allocated weights to the nodes are float-

ing points between 0 and 2, we modified them to integer weights using w
i
= ⌈

w
�

i

0.4
⌉ 

formula where w′

i
 shows the weights used by Muritiba et al. (2021) and w

i
 denotes 

the modified weights that we used in our computational experiments. In order to 
obtain the optimality gaps of the Saving+GVNS algorithm presented in this table, 

we calculated them as: 
Best OFV − Optimal Solution

Optimal Solution
× 100% . We use the same for-

mula to calculate the optimality gap throughout the article. This term is also referred 
to as the denominated relative percentage deviation (RPD) in the literature (Vallada 

Fig. 18  Results of the WmTRP instances from Muritiba et al. (2021)
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et al. 2019; Abreu et al. 2020; Ying and Lin 2022). As it can be observed in Table 3, 
all the instances were solved optimally using Model II within a highest CPU time of 
20  min. Furthermore, our Saving+GVNS algorithm was able to find the similar 
optimal solution to all the instances in an average run time of just over 2 s.

5.2.2.2 VRP instances In this section, we further analyze the performance of Model 
II and verify the performance of the Saving+GVNS algorithm. Since Model I was 
not capable of solving instances with 20 nodes within 1 h time limit, we did not test 
its performance in this section for the moderate-sized instances. Instead, we adopted 
55 instances from the VRP literature (Augerat et al. 1995) with up to 60 nodes and 15 
vehicles. We have adopted these instances from three sets of instances denoted by A, 
B and P in this study. Each instance is named as X-kY-nZ where X denotes whether 
that instance is from set A, B, or P, Y gives the number of vehicles in that instance 
and Z gives the number of nodes in the VRP problem. For each of these instances, 
we used the same number of HSPTs with the number of vehicles in the VRP prob-
lem. Furthermore, since these instances are not weighted, we tested them under two 
different scenarios. In the first scenario, we assigned weights to each node such that 
the summation of the weights equals 100. This could for example represent triage 
values under a different scale or a case where importance percentage is allocated to 
the nodes (patients). In the second scenario, similar to previous parts, we assigned tri-
age levels using uniformly distributed integer values between 1 and 5 for each of the 

Table 3  Results of modified WmTRP instances from Muritiba et al. (2021)

Instance n m Model II Saving+GVNS

Optimal OFV CRT Best OFV CRT Opt GAP (%)

brd14051 30 6 310,651.72 110.23 310,651.72 1.10 0.00

d15112 30 6 823,829.90 113.33 823,829.90 1.11 0.00

d18512 30 6 308,056.26 117.30 308,056.26 1.12 0.00

fnl4461 30 6 176,340.73 100.76 176,340.73 1.09 0.00

nrw1379 30 6 108,902.86 105.30 108,902.86 1.09 0.00

pr1002 30 6 589,241.26 74.68 589,241.26 1.12 0.00

brd14051 40 8 366,822.74 393.22 366,822.74 2.07 0.00

d15112 40 8 1,041,017.05 383.81 1,041,017.05 2.04 0.00

d18512 40 8 401,214.84 424.15 401,214.84 2.05 0.00

fnl4461 40 8 223,372.23 390.99 223,372.23 2.06 0.00

nrw1379 40 8 131,035.45 381.57 131,035.45 2.08 0.00

pr1002 40 8 772,348.63 365.50 772,348.63 2.04 0.00

brd14051 50 10 459,627.24 1055.44 459,627.24 3.25 0.00

d15112 50 10 1,289,289.21 1020.96 1,289,289.21 3.30 0.00

d18512 50 10 485,326.37 1132.05 485,326.37 3.24 0.00

fnl4461 50 10 281,773.14 1093.28 281,773.14 3.27 0.00

nrw1379 50 10 165,271.23 1063.27 165,271.23 3.22 0.00

pr1002 50 10 961,273.67 969.01 961,273.67 3.29 0.00

Average 494,188.58 516.38 494,188.58 2.14 0.00
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patients (nodes). The results of these experiments for the instances denoted by A, B 
and P are given in Tables 4, 5 and 6. For each instance, under each scenario, we report 
the optimal objective function value and the CPU run time (in seconds) of Model II 
and denoted them by Optimal OFV and CRT, respectively. For each instance, we also 
give the results of the Saving+GVNS algorithm including the best objective function 
value (Best OFV), the CPU run time in seconds and the optimality gap calculated 
similar to what was explained above.

Table 4 gives the results of the experiments on the A-instances. In these instances, 
the summation of the triage levels for all the patients is assumed to be 100. For 
the second scenario, however, since the triage level or weight of each patient is a 
uniformly generated random integer between 1 and 5, the summation of the triage 
levels over all the patients is variable and hence is given as column W in the tables. 
As it can be observed in Table 4, Model II solved all the instances of both scenarios 
optimally, with a maximum CRT of 1302.68 for the A-k9-n55 instance in the sec-
ond scenario. The maximum CRT of the first scenario belongs to A-k7-n57 with 
231.57 s. As it was expected, once the number of nodes and/or the summation of the 
triage levels over all the patients increases, the CRT of the Model II also increases. 
This is evident when comparing the same instances over the first and second sce-
narios. Given that W is fixed at 100 for all the instances in the first scenario, in those 
second scenario instances that W is more 100, generally, the CPU run time is higher 
than the first scenario and vice versa. But a comparison between the CRT of the 
instances shows that in general, the same sized instances with less HSPTs are more 
difficult to solve. For example, this can be observed comparing instances A-k5-n39 
and A-k6-n39. The results given in this table shows the good performance of the 
Saving+GVNS algorithm. Our metaheuristic algorithm found the optimal solution 
in all the tested instances and in the largest instance, i.e., A-k9-n60, the optimal solu-
tions of the first and second scenarios were found in 8.23 and 8.10 s, respectively. 
We note that development of Model II enabled us to find the optimal solutions in 
these instances which were used to test the performance of the Saving+GVNS algo-
rithm. We recall that the Best OFV values reported in Table 4 are extracted from 10 
runs of our Saving+GVNS algorithm over each instance. In some of the instances, 
the optimal solution was not found in all the 10 runs (i.e., Best OFV is not equal 
to the Avg OFV). However, the average gap of all the tested A-instances between 
the Best OFV and the Avg OFV of both scenarios is under 0.01%. Among different 
instances of the first scenario, instance A-k5-n39 had the highest gap between the 
Avg OVF and the Best OFV with 0.18%. In the second scenario, instance A-k9-n55 
had the largest gap between Avg OFV and Best OFV with 0.08%.

Table 5 gives the results of testing Model II and the Saving+GVNS algorithm on 
B-instances. The columns of this table are the same as those in Table 4. We can see 
that all the instances were solved optimally using Model II within the 3 h time limit. 
For instances B-k7-n52 and B-k7-n56 in the second scenario, the CRT of Model 
II increased to more than 2 h to find the optimal solutions. However, except these 
two instances and B-k7-n57 of the second scenario, all the remaining instances were 
solved optimally within 1 h. Among these three instances, B-k7-n52 was solved in 
less than 62 min. The performance of the Saving+GVNS algorithm is impressive 
on the B-instances as well. Our metaheuristic algorithm found the optimal solution 
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Table 4  Results of the A-instances

Instance Scenario 1 Scenario 2

Model II Saving+GVNS Model II Saving+GVNS

Optimal OFV CRT Best OFV CRT Opt Gap (%) W Optimal OFV CRT Best OFV CRT Opt Gap (%)

A-k5-n32 7296.40 99.91 7296.40 2.34 0 103 7035.51 241.48 7035.51 2.29 0

A-k5-n33 4954.27 108.75 4954.27 2.27 0 94 5130.66 95.91 5130.66 2.30 0

A-k6-n33 4781.73 99.96 4781.73 2.35 0 89 4070.04 42.23 4070.04 2.38 0

A-k5-n34 5987.11 93.97 5987.11 2.65 0 99 6044.87 120.61 6044.87 2.46 0

A-k5-n36 6806.18 114.30 6806.18 2.96 0 113 7410.94 198.52 7410.94 2.78 0

A-k5-n37 5292.81 111.20 5292.81 3.43 0 113 6006.35 198.99 6006.35 3.28 0

A-k6-n37 6596.17 108.36 6596.17 3.01 0 103 6703.96 67.80 6703.96 3.04 0

A-k5-n38 5173.79 170.51 5173.79 3.29 0 106 5463.88 155.87 5463.88 3.23 0

A-k5-n39 5637.15 120.08 5637.15 3.76 0 109 6075.69 154.98 6075.69 3.51 0

A-k6-n39 4488.34 102.75 4488.34 3.45 0 110 5921.42 155.14 5921.42 3.21 0

A-k7-n44 4888.18 123.52 4888.18 4.25 0 113 6297.61 248.55 6297.61 4.03 0

A-k6-n45 5739.56 124.03 5739.56 5.02 0 139 8087.72 387.15 8087.72 4.91 0

A-k7-n45 6067.98 206.35 6067.98 4.67 0 127 8121.10 636.12 8121.10 4.49 0

A-k7-n46 4556.78 145.36 4556.78 4.81 0 132 6725.65 403.29 6725.65 4.59 0

A-k7-n48 6321.02 188.89 6321.02 5.39 0 135 8318.74 469.96 8318.74 5.33 0

A-k7-n53 5975.00 189.28 5975.00 6.58 0 147 8126.08 768.23 8126.08 6.60 0

A-k7-n54 6344.95 231.57 6344.95 7.01 0 161 9566.45 1031.48 9566.45 6.75 0

A-k9-n55 4674.91 159.46 4674.91 6.89 0 173 7875.65 1302.68 7875.65 6.82 0

A-k9-n60 6113.35 207.74 6113.35 8.23 0 160 8789.17 1017.48 8789.17 8.10 0
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Table 5  Results of the B-instances

Instance Scenario 1 Scenario 2

Model II Saving+GVNS Model II Saving+GVNS

Optimal OFV CRT Best OFV CRT Opt Gap (%) W Optimal OFV CRT Best OFV CRT Opt Gap (%)

B-k5-n31 6036.14 166.60 6036.14 2.08 0 78 4802.60 86.20 4802.60 1.95 0

B-k5-n34 6810.04 226.79 6810.04 2.75 0 112 7378.63 449.60 7378.63 2.67 0

B-k5-n35 8581.57 229.37 8581.57 2.77 0 110 8841.24 290.26 8841.24 2.71 0

B-k6-n38 5482.06 186.67 5482.06 3.11 0 114 6401.15 233.54 6401.15 3.06 0

B-k5-n39 4579.46 170.70 4579.46 3.91 0 120 5566.80 463.95 5566.80 3.86 0

B-k6-n41 5605.00 182.23 5605.00 3.97 0 114 6232.10 313.98 6232.10 3.81 0

B-k6-n43 4715.92 208.99 4715.92 4.22 0 134 6139.92 585.43 6139.92 4.31 0

B-k7-n44 5175.44 194.82 5175.44 4.22 0 132 7082.53 566.95 7082.53 4.56 0

B-k5-n45 5173.07 269.98 5173.07 5.54 0 127 6596.38 392.02 6596.38 5.19 0

B-k6-n45 4647.59 280.10 4647.59 4.86 0 129 5642.13 798.00 5642.13 5.19 0

B-k7-n50 4363.89 1148.75 4363.89 5.82 0 145 6264.68 769.08 6264.68 5.72 0

B-k8-n50 5616.58 190.32 5616.58 5.67 0 138 7864.20 938.85 7864.20 5.59 0

B-k7-n51 5907.48 911.26 5907.48 6.01 0 168 10,011.65 2547.48 10,011.65 5.99 0

B-k7-n52 4945.94 790.19 4945.94 6.60 0 173 8782.00 3699.47 8782.00 6.42 0

B-k7-n56 4063.03 559.67 4063.03 8.29 0 188 8116.65 8507.35 8116.65 7.56 0

B-k7-n57 6423.37 1587.16 6423.37 8.45 0 173 11,483.92 10,467.23 11,483.92 8.65 0

B-k9-n57 7816.18 294.93 7816.18 7.35 0 165 12,974.29 1569.00 12,974.29 7.67 0
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Table 6  Results of the P-instances

Instance Scenario 1 Scenario 2

Model II Saving+GVNS Model II Saving+GVNS

Optimal OFV CRT Best OFV CRT Opt Gap (%) W Optimal OFV CRT Best OFV CRT Opt Gap (%)

P-k8-n16 2395.74 29.19 2395.74 0.47 0 39 1004.64 1.44 1004.64 0.48 0

P-k2-n19 4011.38 66.22 4011.38 0.85 0 62 2735.18 19.89 2735.18 0.82 0

P-k2-n20 3867.48 50.29 3867.48 0.95 0 57 2462.62 19.07 2462.62 0.95 0

P-k2-n21 4339.84 78.24 4339.84 1.15 0 52 2245.47 9.49 2245.47 1.08 0

P-k2-n22 3940.58 66.67 3940.58 1.21 0 65 3015.94 32.34 3015.94 1.23 0

P-k8-n22 3053.37 47.30 3053.37 0.92 0 67 2094.43 13.28 2094.43 0.92 0

P-k8-n23 2665.63 49.02 2665.63 1.02 0 65 1606.01 11.61 1606.01 1.02 0

P-k5-n40 3674.48 138.55 3674.48 3.74 0 107 4186.52 112.35 4186.52 3.65 0

P-k5-n45 3910.11 187.30 3910.11 5.89 0 147 5865.40 904.65 5865.40 5.14 0

P-k10-n50 2728.15 108.51 2728.15 5.33 0 146 3711.14 445.80 3711.14 5.59 0

P-k7-n50 3155.27 131.53 3155.27 5.63 0 149 4542.04 510.07 4542.04 5.58 0

P-k8-n50 2917.60 124.52 2917.60 5.48 0 139 4336.72 453.26 4336.72 5.63 0

P-k10-n51 2871.04 111.48 2871.04 5.66 0 153 4228.13 517.90 4228.13 5.42 0

P-k10-n55 2752.35 114.73 2752.35 6.59 0 153 4253.81 547.59 4253.81 6.28 0

P-k15-n55 2335.54 95.41 2335.54 6.22 0 174 4160.29 825.94 4160.29 6.11 0

P-k7-n55 2956.70 137.60 2956.70 7.33 0 171 5246.30 994.17 5246.30 7.38 0

P-k8-n55 2819.32 118.55 2819.32 6.64 0 127 3763.03 309.54 3763.03 6.74 0

P-k10-n60 2583.20 229.74 2583.20 7.93 0 184 4948.53 1212.28 4948.53 7.70 0

P-k15-n60 2317.83 99.67 2317.83 7.44 0 184 4535.49 1041.99 4535.49 7.51 0
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to all the tested instances with a maximum CRT of just over 8 s for the B-k7-n57 
instances. The optimal solutions of the remaining instances were found using our 
algorithm in less than 8 s. The significant difference between the CRT of Model II 
and the Saving+GVNS algorithm combined with the fact that our algorithm found 
the optimal solutions in all of these instances verifies the superior performance of 
the Saving+GVNS algorithm. In some of the B-instances, not all the 10 runs were 
able to find the optimal solutions (i.e., Best OFV was not equal to Avg OFV). In the 
instances of the first and second scenarios, instances B-k7-n50 and B-k6-n43 had 
the highest gap between Best OFV and Avg OFV with 0.69 and 0.15%, respectively. 
The average of this gap over all the B-instances remained under 0.05% for the first 
scenario and under 0.03% for the second scenario.

Table  6 gives the results of Model II and the Saving+GVNS algorithm on 
P-instances. The columns of this table are the same as those of Table 4. The results 
of the P-instances are similar to those of the A and B instances. Impressively, in all 
the tested instances, the Saving+GVNS found the optimal solution in less than 8 s. 
Model II also found the optimal solution to all the tested instances within the given 
3 h time limit. Similar to A and B instances, the optimal solution was not found in 
some runs of a few instances. For the first scenario, the maximum gap between Best 
OFV and Avg OFV was in instance P-k10-n51 with 0.22% and the average of these 
gaps was 0.04%. For the second scenario, the average gap between Best OFV and 
Avg OFV among all the P-instances remained under 0.06% and the maximum gap 
occurred in instance P-k5-n40 with 0.79%.

6  Case study

In this section, we provide a case study of our problem related to the filiation opera-
tions during the pandemic for the patients residing in the Kağıthane district of the 
European side of Istanbul. The data consists of 647 patients who are assigned to 
clusters according to their home addresses, that is, their geographical proximity to 
each other. The clusters are formed such that each cluster has about the same num-
ber of patients and the sum of the distances between the patients in each cluster is 
minimized by means of a clustering algorithm. Using this clustering method, the 
647 patients are clustered into 9 regions. In addition, a priority score based on the 
triage level which is an integer number between 1 and 5 is assigned to each patient, 
indicating the urgency of visiting that patient. The available HSPTs (which contain 
one or more personnel such as a doctor, nurse or other caregivers) are assigned to 
these regions such that their workloads are balanced and patients that are geographi-
cally close to each other are assigned to the same HSPT. Among these nine regions, 
we selected region 2 with 71 patients and three HSPTs to provide the visualiza-
tion of the placement of the patients in Figs. 19 and the obtained routes from the 
Saving+GVNS algorithm for the three HSPTs on the right side of Fig. 20. Here, we 
note that the traversal time between two coordinates was calculated using the Haver-
sine formula considering an average speed of 30 km/h. For each patient, a service 
time of 15 min (0.25 h) is considered as their service time. The weighted latency 
objective function is calculated based on hours each patient have to weight until they 
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are initially met with a HSPT. For the tested instances in this section, we applied 
our Saving+GVNS algorithm for ten repetitions and reported the best results among 
them.

The solution obtained by our Saving+GVNS algorithm is depicted on the right 
side of Fig. 20. The objective function value for visiting these 71 patients with three 
HSPTs is 512.91. The objective function value is calculated as the total weighted 
latency of the patients, where the latency of the patients is calculated based on 
hours. The total traveled distance according to the obtained routes is 16.64  km 
and the total time including the service times is 18.30 h (i.e., 6.10 h per team on 
average). As can be observed on the right side of Fig. 20, with a weighted latency 

Fig. 19  The geographical loca-
tions of the hospital and patients

Fig. 20  Visualization comparison of weighted and non-weighted objectives
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objective, the obtained routes are visually different from typical efficient solutions 
for routing problems. To further illustrate this, on the left side of Fig. 20, we gave 
the illustration of the routes when the weights are ignored, i.e., are set to 1 for all the 
patients. Although in this solution the total traveled distance reduces to 14.18 km, 
the corresponding weighted latency objective for these routes is 695.16 which is 
35.53% higher than the 512.91 found using a weighted latency objective.

To investigate the impact of the number of HSPTs on the solutions, we solved the 
region 2 instance using m = 1, 2, 4 and 5 HSPTs as well. The results of these experi-
ments are given in Table 7. In this table, columns “n” and “m” show the number of 
patients and the number of HSPTs. Columns “OFV”, “CRT (s)”, “TD (km)”, “TT 
(hr)” and “TT (hr) per team” indicate the objective function value, CPU run time in 
seconds, total traveled distances, total time (travel and service) and the average total 
time per team, respectively. According to the obtained results, as expected, once the 
number of HSPTs increases, the obtained objective function value decreases. We 
also observe that the rate of this deduction decreases when more HSPTs are consid-
ered. For instance, while this deduction is around 34% when instead of one HSPT, 
two HSPTs are utilized, this deduction is under 18% when the number of HSPTs 
increases from four to five. Another important observation is based on the last col-
umn. While with only one HSPT the tasks will be finished after 18.26 h, when 5 
HSPTs are used, the average time of each team decreases to 3.67 h.

In order to investigate the impact of considering patient priorities, we also solved 
the same instances by considering equal weights for all the patients. In this scenario, 
we ignored the weights and set the triage levels of all patients equal to 1. This is 
equivalent to a “un-weighted” problem. We then solved the instance of the second 
region using different number of HSPTs, i.e., m = 1, 2, 3, 4, and 5. The results are 
provided in Fig. 21, in which a comparison of the OFV of the un-weighted problem 
with the original problem (solution provided in Table 7) is given. To be consistent 
in comparing the results, for the un-weighted cases, we have extracted the routes 
for each of the HSPTs and calculated the adjusted objective function value using 
the corresponding triage level for each of the patients. While using the un-weighted 
latency objective, the routes might be shorter (as depicted in Fig. 21), ignoring the 
triage level in planning the routes can result in finding inefficient solutions when a 
weighted latency objective is considered. When the total weighted latency is calcu-
lated for these routes, it is seen that the solutions are on average 43.21% worse than 
the solutions found directly from the weighted objective function.

Table 7  Results of region 2 with different number of HSPTs

Instance n m OFV CRT (s) TD (Km) TT (hr) TT (hr) per team

Region 2 71 1 1145.98 95.34 15.36 18.26 18.26

2 756.69 52.54 13.51 18.20 9.10

3 512.91 25.90 16.64 18.30 6.10

4 365.85 20.97 17.29 18.33 4.58

5 301.72 12.34 18.22 18.36 3.67
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To further analyze the importance of incorporating the triage levels, we provide 
the average latency (in hours) of patients categorized by triage levels and the num-
ber of teams in Table 8. For example, the average latency of patients with w = 1 and 
m = 1 is 7.68 and 16.54  h in non-weighted and weighted cases, respectively. The 
results are given in Fig.  22. As it can be observed, for the un-weighted problem, 
the average latency of the more urgent patients having a triage level of 5 is consist-
ently more than the average latency of the same patients category under a weighted 
objective. This verifies the importance of considering the triage levels of the patients 
in this home healthcare delivery problem. However, it can be observed that, in the 
weighted version, the latency of the patient categories with lower triage levels can 
be considerably more than the same patients in the un-weighted scenario. For exam-
ple, when m = 1 , the latency of the least urgent patients with w = 1 , is more than 
twice in the weighted version when compared to the un-weighted solution.

As mentioned earlier, we selected region 2 among the nine regions to provide 
its visualization and further analysis. In this part, we present the results on the 
remaining eight regions using three HSPTs for each of the regions. For each of these 
regions, a hospital is considered as the depot and hence, for each of these regions, 
we have a single-depot problem. Moreover, in order to see the effect of a central-
ized system and to highlight the capability of our proposed GVNS in solving the 
multi-depot case, we solve the multi-depot centralized case with all patients and the 
nine depots (hospitals). Similar to the case for each region where three teams were 
considered, in the multi-depot case we assume three HSPTs are pre-positioned in 
each of the depots (i.e., in total there are 27 teams). We refer to the first case as 
“decentralized” and the latter as “centralized.” Table 9 provides the results for each 
of these cases. In this table, the “Region” column indicates the selected region, and 
the remaining columns are translated in the same way as Table 7. The last row shows 
the improvements in the centralized cases compared to the decentralized ones. The 
total objective function value in the decentralized case is 4524.58, whereas in the 
centralized case it reduces to 4398.96 (a 2.78% improvement). We can also see that 
solving the centralized instance with 646 patients took 36.48% less time compared 
to the summation of the times for the decentralized cases over the nine regions. This 

Fig. 21  Comparison of the 
obtained routes when the 
weights are ignored
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Table 8  Average latency (in hours) for different patient categories with weighted and un-weighted objectives

Weight m = 1 m = 2 m = 3 m = 4 m = 5

Non-weighted Weighted Non-weighted Weighted Non-weighted Weighted Non-weighted Weighted Non-weighted Weighted

w = 1 7.68 16.54 4.59 8.04 3.05 5.56 2.55 4.21 1.84 3.31

w = 2 8.71 13.58 3.62 6.80 1.94 4.13 1.58 3.36 1.72 2.76

w = 3 9.18 10.38 4.36 5.01 2.59 3.16 2.27 2.61 1.81 1.86

w = 4 9.99 6.32 4.25 3.03 3.32 2.25 2.21 1.42 1.98 1.55

w = 5 9.62 2.38 5.73 1.83 4.12 1.53 2.89 1.08 2.17 0.93
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analysis shows that considering a centralized system can improve patients’ satisfac-
tion and decrease total latency.

7  Conclusion

We considered a real-life emergency situation such as the COVID-19 outbreak, 
where standard home healthcare services such as testing or filiation must be pro-
vided to the patients at their homes. In this context, we investigated a problem 
where multiple home healthcare service provider teams (HSPTs) should provide 
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Fig. 22  Latency of patient categories based on the objective

Table 9  Comparison of centralized and decentralized models

Region n m OFV CRT (s) TD (Km) TT( hr) TT (hr) per 
team

Decentral-
ized

1 71 3 474.48 34.41 19.88 18.41 6.14

2 71 3 512.91 25.90 16.64 18.30 6.10

3 72 3 588.65 29.72 17.38 18.58 6.19

4 72 3 463.96 29.96 14.72 18.49 6.16

5 72 3 512.42 32.35 17.62 18.59 6.20

6 72 3 453.58 31.31 14.29 18.48 6.16

7 72 3 542.26 30.29 18.22 18.61 6.20

8 72 3 466.30 28.38 14.91 18.50 6.17

9 72 3 510.02 32.30 17.01 18.57 6.19

Total sum 646 4524.58 274.61 150.67 166.53 55.51

Centralized Joint regions 646 (9 ∗ 3) = 27 4398.96 174.44 142.76 166.26 55.42

Improvement 2.78% 36.48% 5.25% 0.16% 0.16%
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service to a given set of patients. The patients are prioritized by triage levels 
based on the severity of their condition or the urgency of servicing them. Each 
patient should be serviced by exactly one HSPT and the objective is to mini-
mize the summation of the weighted times at which the patients are serviced. 
We introduced a number of valid constraints for a level-based model driven by 
a transformation of the input graph and developed an efficient exact model for 
this problem which is capable of solving moderate-sized instances. We then 
developed a metaheuristic (Saving+GVNS) algorithm to solve larger instances 
in shorter time. In our metaheuristic algorithm, the initial solutions are con-
structed by a problem-specific saving procedure and then improved by a GVNS 
algorithm.

We performed extensive computational tests. Initially, to compare our 
Saving+GVNS algorithm with best known algorithms from the literature, we 
tested its performance on two well-studied special cases of our problem. We 
then tested our models and the Saving+GVNS algorithm on standard traveling 
repairman problem and as well as and the vehicle routing problem test instances. 
To conduct these experiments, we first verified the importance of developing 
our level-based model to solve even small-sized instances by comparing its per-
formance with a standard MIP model on small-sized instances. We then tested 
the performance of the Saving+GVNS algorithm by comparing its results with 
those from a recent article that addresses the weighted K-traveling repairman 
problem (Muritiba et  al. 2021). On these instances, our algorithm was able to 
find, impressively, all the optimal solutions within merely 2 s.

In order to show the good performance of the Saving+GVNS algorithm, 
we next compared its results with the level-based model on moderate-sized 
instances. Our level-based model was able to solve all the moderate-sized 
instances within a 3 h time limit. Our algorithm was able to find similar optimal 
solutions to all the small and moderate-sized instances within a maximum CPU 
run time of 9  s. We also provided a detailed analysis of a real-life case study, 
based on a data set of a district in the European side of the Istanbul city, which 
consists of 647 patients. Finally, in order to further analyze the performance of 
our metaheuristic algorithm, we tested instances with up to 500 nodes and 20 
teams and reported the results in Appendix A.

Analyzing the extension of the studied problem where the triage levels of the 
patients are not known in advance and are only revealed online can be further 
analyzed. In such cases, not only the triage level will be online, the service time 
will also be online and it can only be estimated after the conditions of a patient 
is examined by the HSPTs. Lastly, although we presented our problem and the 
solution approaches in the context of home health care services, and in particu-
lar our case study was related to the filiation services, they can be applied to 
cases with visits serving other purposes in other application areas, such as repair 
and maintenance services. The methods can be applied to solve routing and 
scheduling problems in other check-up services and even distribution problems 
in city logistics where having a service-oriented objective is important.



844 V. Akbari et al.

1 3

Appendix A: Large instances

In this section, we adopted and tested larger instance from the TRP literature (Sale-
hipour et al.  2011) to further analyze the performance of our Saving+GVNS algo-
rithm. These instances were initially generated and tested on the traditional TRP 
with 1 repairman considering 50, 100, 200 and 500 non-weighted nodes. In order 
to assign a weight to each of the nodes, which represent triage levels in our study, 
we generated and assigned a uniformly distributed random number between 1 and 5 
to each node. The results of testing the Saving+GVNS algorithm on these instances 
are given in Tables 10 and 11.

In Table 10, the results of testing the Saving+GVNS algorithm on instances with 
50 and 100 nodes are given. In this table, the left hand side columns give the results 
of the instances with 50 nodes and the columns on the right side give the results of 
the tested instances with 100 nodes. With both 50 and 100 nodes, 10 instances were 
introduced in (Salehipour et al.  2011). These instances are distinguished by n − Ri 
notation, where n shows the number of nodes and i shows the instance number, 
i ∈ {1,… , 10} . The name of each instance is given in Instance column. The number 
of HSPTs in each instance is given by m. While with 50 nodes, we tested the 
Saving+GVNS algorithm with 3, 4 and 5 HSPTs, with 100 nodes, we tested 5, 8 and 
10 HSPTs for each instance. We provided the best objective function value and the 
average objective function value in the next columns. The CPU time of the 
Saving+GVNS algorithm on average are provided in column CRT. We also pre-
sented the average Saving+GVNS gap over the 10 runs of each instance in the 

Saving+GVNS Gap column. This is calculated as 
Avg OFV − Best OFV

Best OFV
× 100%.

As it can be observed, the average CRT of the instances with 50 nodes is 10.91 s 
and the average Saving+GVNS gap over these instances is 0.22%. The maximum 
Saving+GVNS gap over instances with 50 nodes is 2.14% for the 50-R3 instance 
with 3 HSPTs. These low Saving+GVNS gaps verify the robustness of our algo-
rithm. The maximum reported CRT over the instances with 50 nodes is observed in 
the 50-R8 instance with 15.24 s. We see that the average CRT reduces as the num-
ber of HSPTs increases. In an example from instances with 3 HSPTs, the average 
CRT is 14.05 s, and it lowers to 10.33 and 8.38 s in instances with 4 and 5 HSPTs, 
respectively.

In the instances with 100 nodes, we set the number of HSPTs equal to 5, 8 and 
10. Over these instances, the average CRT is 20.65 s and the average Saving+GVNS 
gap is 0.49%. As expected, compared to the case with 50 nodes, when the num-
ber of nodes increases, both the average CRT and Saving+GVNS gap increases 
but the average gap remains under 0.49% which again verifies the robustness of 
our Saving+GVNS algorithm. Over the instances with 100 nodes, the maximum 
Saving+GVNS gap is 1.68% in the 100-R9 instance with 5 HSPTs. Similar to the 
instances with 50 nodes, we can observe that the CRT decreases when the number 
of HSPTs increases. The average CRT over the 10 instances with 5 HSPTs is 29.91 s 
and it lowers to 17.01 and 15.04 in the instances of 8 and 10 HSPTs, respectively. 
When the number of HSPTs increases, the achieved best objective function value 
decreases. However, on average, when the number of HSPTs increases from 5 to 
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Table 10  Large instances results for instances with 50 and 100 nodes

n = 50 n = 100

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

50-R1 3 10,939 10,939.0 13.80 0.00 100-R1 5 25,076 25,268.1 28.24 0.77

4 8830 8830.0 9.96 0.00 8 19,731 19,859.8 16.34 0.65

5 7946 7946.0 8.12 0.00 10 18,336 18,416.1 14.17 0.44

50-R2 3 11,568 11,568.0 13.13 0.00 100-R2 5 22,946 23,153.1 31.60 0.90

4 9645 9645.0 10.23 0.00 8 18,191 18,224.0 17.35 0.18

5 8674 8704.0 8.74 0.35 10 16,914 16,949.1 13.62 0.21

50-R3 3 13,631 13,922.2 14.30 2.14 100-R3 5 23,815 23,897.4 28.31 0.35

4 10,896 10,911.0 10.72 0.14 8 19,498 19,563.6 17.85 0.34

5 9352 9452.0 7.85 1.07 10 18,281 18,344.9 15.06 0.35

50-R4 3 13,563 13,590.6 13.43 0.20 100-R4 5 26,636 26,726.7 31.61 0.34

4 11,207 11,301.5 10.51 0.84 8 22,210 22,273.4 18.76 0.29

5 10,033 10,038.9 8.36 0.06 10 21,014 21,046.0 14.56 0.15

50-R5 3 12,666 12,677.6 13.51 0.09 100-R5 5 23,286 23,316.9 32.58 0.13

4 10,660 10,660.0 9.84 0.00 8 17,521 17,569.4 16.48 0.28

5 9683 9689.5 8.57 0.07 10 16,187 16,235.2 22.89 0.30

50-R6 3 11,964 11,964.0 14.82 0.00 100-R6 5 24,859 25,178.5 30.63 1.29

4 9813 9813.0 10.30 0.00 8 18,526 18,665.9 17.09 0.76

5 8907 8919.0 8.29 0.13 10 16,826 16,912.9 13.19 0.52

50-R7 3 12,049 12,049.0 13.79 0.00 100-R7 5 25,890 26,074.4 28.74 0.71

4 9606 9606.0 10.82 0.00 8 20,736 20,775.0 15.90 0.19

5 8442 8442.0 8.95 0.00 10 19,366 19,431.2 14.67 0.34

50-R8 3 15,024 15,064.5 15.24 0.27 100-R8 5 20,010 20,038.5 28.31 0.14

4 12,543 12,543.0 10.37 0.00 8 16,047 16,083.9 15.86 0.23

5 11,548 11,567.0 8.31 0.16 10 14,812 14,848.6 13.51 0.25
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Table 10  (continued)

n = 50 n = 100

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

50-R9 3 14,356 14,356.0 14.40 0.00 100-R9 5 20,729 21,078.1 27.80 1.68

4 12,471 12,489.4 9.83 0.15 8 15,338 15,413.5 16.98 0.49

5 11,283 11,321.6 8.24 0.34 10 13,628 13,760.9 14.57 0.98

50-R10 3 14,849 14,945.5 14.08 0.65 100-R10 5 19,278 19,489.2 31.25 1.10

4 12,110 12,110.0 10.67 0.00 8 14,972 14,975.1 17.48 0.02

5 10,748 10,756.2 8.36 0.08 10 13,680 13,740.5 14.14 0.44

Average 10.91 0.22 Average 20.65 0.49
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Table 11  Large instances results for instances with 200 and 500 nodes

n = 200 n = 500

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

200-R1 5 61,212 62,828.1 434.21 2.64 500-R1 10 691,005 722,804.1 1783.11 4.60

8 44,900 45,671.5 181.07 1.72 15 515,484 524,198.9 925.52 1.69

10 39,955 40,414.3 138.44 1.15 20 434,111 440,058.8 582.57 1.37

200-R2 5 67,182 68,543.7 558.40 2.03 500-R2 10 735,485 761,131.4 1610.59 3.49

8 51,690 52,392.4 202.81 1.36 15 566,237 579,711.4 852.42 2.38

10 48,093 48,361.7 210.71 0.56 20 496,613 502,221.8 587.06 1.13

200-R3 5 59,235 60,775.3 425.02 2.60 500-R3 10 735,437 755,097.1 1699.91 2.67

8 42,175 43,411.8 314.02 2.93 15 570,233 586,216.0 870.08 2.80

10 37,965 38,523.1 131.43 1.47 20 513,739 518,261.0 651.17 0.88

200-R4 5 62,796 63,792.9 442.88 1.59 500-R4 10 691,517 711,198.6 1674.71 2.85

8 44,891 45,543.6 169.09 1.45 15 517,098 525,151.1 878.46 1.56

10 40,204 40,538.4 190.63 0.83 20 449,809 454,880.0 610.82 1.13

200-R5 5 57,839 58,654.5 660.85 1.41 500-R5 10 680,424 696,743.4 1731.13 2.40

8 40,066 40,965.3 188.99 2.24 15 504,144 516,053.4 883.58 2.36

10 34,930 35,222.2 160.22 0.84 20 435,699 442,946.9 614.97 1.66

200-R6 5 62,943 64,273.2 586.97 2.11 500-R6 10 705,411 719,660.4 1702.11 2.02

8 42,660 43,464.2 185.79 1.89 15 545,831 552,813.2 909.86 1.28

10 36,387 36,966.6 117.06 1.59 20 470,859 476,279.2 580.21 1.15

200-R7 5 60,127 60,856.3 411.55 1.21 500-R7 10 666,005 700,416.9 1725.30 5.17

8 40,546 41,209.0 210.72 1.64 15 514,699 521,397.1 913.35 1.30

10 34,949 35,677.8 137.88 2.09 20 448,275 455,944.3 593.79 1.71

200-R8 5 57,533 58,193.4 506.60 1.15 500-R8 10 735,993 755,161.2 1718.36 2.60

8 40,496 41,343.4 235.48 2.09 15 570,012 578,983.5 893.57 1.57

10 35,758 36,214.5 148.47 1.28 20 498,810 506,144.4 720.95 1.47
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Table 11  (continued)

n = 200 n = 500

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

Instance m Best OFV Avg OFV CRT Saving+GVNS 
GAP (%)

200-R9 5 62,912 64,055.3 555.95 1.82 500-R9 10 648,364 681,186.5 1726.25 5.06

8 45,856 46,643.9 190.50 1.72 15 498,085 505,992.0 955.05 1.59

10 41,090 41,523.3 119.01 1.05 20 415,308 423,022.1 609.03 1.86

200-R10 5 57,291 58,371.2 499.54 1.89 500-R10 10 713,622 733,410.5 1869.74 2.77

8 44,532 45,032.6 214.76 1.12 15 553,981 561,590.1 941.83 1.37

10 41,127 41,331.3 150.47 0.50 20 487,962 493,889.5 604.24 1.21

Average 289.32 1.60 Average 1080.66 2.17
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8, the objective function has a decrease of 21.40% and when the number of HSPTs 
increases from 8 to 10, the average decrease in the objective function is 7.51%. 
This shows that increasing the number of HSPTs beyond a certain point might not 
decrease the objective function significantly.

Table 11 gives the results of testing the Saving+GVNS algorithm on instances 
with 200 and 500 nodes. These instances are again adopted from Salehipour et al.  
(2011) and a uniformly distributed random number between 1 and 5 is assigned to 
each node as its weight.

The results of the instances with 200 nodes are given on the left hand side of 
the Table  11. For each of these instances, we set the number of HSPTs 5, 8, 10. 
The average CRT over these instances is 289.32 s with a maximum of 660.85 s on 
200-R5 instance with 5 HSPTs. The average Saving+GVNS gap for the instances 
with 200 nodes is 1.60%. The average CRT over instances with 5, 8 and 10 
HSPTs are 1.84, 1.82 and 1.35%, respectively. This confirms the robustness of the 
Saving+GVNS algorithm.

For the instances with 500 nodes, we tested each instance with 10, 15 and 20 
HSPTs and gave the results on the right side of Table 11. The average CRT over 
these instances is 1080.66  s. The maximum CRT is up to 1869.74  s for the 500-
R10 instance with 10 HSPTs. The average CRT decreases as the number of HSPTs 
increases. With 10, 15 and 20 HSPTs, the average CRT is 1724.12, 902.37 and 
615.48  s, respectively. The average Saving+GVNS gap is 2.17% and this aver-
age gap has a decreasing trend as the number of HSPTs increases. While for the 
instances with 500 nodes and 10 HSPTs, the average Saving+GVNS gap is 3.36%, 
this average gap decreases to 1.79% for 15 HSPTs and 1.36% with 20 HSPTs.
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