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Abstract

In this paper, we propose a novel framework of computing the Quantum-based En-

tropic Representations (QBER) for un-attributed graphs, through the Continuous-time

Quantum Walk (CTQW). To achieve this, we commence by transforming each origi-

nal graph into a family of k-level neighborhood graphs, where each k-level neighbor-

hood graph encapsulates the connected information between each vertex and its k-hop

neighbor vertices, providing a fine representation to reflect the multi-level topological

information for the original global graph structure. To further capture the complicat-

ed structural characteristics of the original graph through its neighborhood graphs, we

propose to characterize the structure of each neighborhood graph with the Average

Mixing Matrix (AMM) of the CTQW, that encapsulates the time-averaged behavior of

the CTQW evolved on the neighborhood graph. More specifically, we show how the

AMM matrix allows us to compute a Quantum Shannon Entropy for each vertex, and
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thus compute an entropic signature for each neighborhood graph by measuring the av-

eraged value or the Jensen-Shannon Divergence between the entropies of its vertices.

For each original graph, the resulting QBER is defined by gauging how the entropic

signat ures vary on its k-level neighborhood graphs with increasing k, reflecting the

multi-dimensional entropy-based structure information of the original graph. Experi-

ments on standard graph datasets demonstrate the effectiveness of the proposed QBER

approach in terms of the classification accuracies. The proposed approach can sig-

nificantly outperform state-of-the-art entropic complexity measuring methods, graph

kernel methods, as well as graph deep learning methods.

Keywords: Graph Embedding; Graph Entropy; Quantum Walks; Entropic

Representations;

1. Introduction

In pattern recognition, graph-based representations can well describe pairwise rela-

tionships between components for structure data analysis, e.g., 3D shapes [1, 2], social

networks [3, 4], protein networks [5, 6], etc. The main challenge arising in graph data

analysis is how to represent a graph structure in a manner that can preserve the struc-5

tural characteristics for graph classification. To achieve this, one popular way is to

develop novel methods that can compute the numeric characteristics from the discrete

graph structure [7, 8]. Specifically, these approaches are the so-called graph embedding

methods that can embed or represent the graph structure as a vectorial representation,

so that standard pattern recognition algorithms can be directly employed for graph10

classification or clustering [9, 10]. This paper aims to propose a novel framework of

computing quantum entropy-based numeric representations, for the purpose of graph

classification. Our approach can reflect rich complicated intrinsic graph characteristics

through quantum walks [11], explaining the effectiveness.

1.1. Related Works15

In the literature, there have been many novel approaches that can well embed graph

structures into vectorial representations for graph-based data analysis. For instance,

2



Wilson et al. [12] have developed a spectrum-based approach to compute the vecto-

rial graph representations based on algebraic graph theory. Specifically, they employ

the spectral decomposition of the graph Laplacian, and compute the symmetric poly-20

nomial invariants of graphs associated with the eigenvectors. Bunke et al. [13] have

transformed graphs into vectorial representations through either the vertex or edge at-

tributed statistics. Ren et al. [14] have computed vectorial representations of graphs

by counting the numbers of cycles with different lengths, through the Ihara zeta func-

tion. Kondor and Borgwardt [15] have computed vectorial representations of graphs25

through graph skew spectrum features. He et al. [16] have developed a Adversarial

representation mechanism GAN (ArmGAN) model to learn vectorial representations

of graphs, based on the adversarial learning scheme. One common drawback arising in

these state-of-the-art methods is that they tend to represent graph structures in a low di-

mensional vector space, and may thus neglect intrinsic structural information residing30

on the topological structures of graphs.

To address the above problem, in recent years the quantification of the structural

complexity of graphs has attracted important attentions, due to the fact that the graph

complexity measures can significantly reflect the intrinsic structural information of

graphs and have been proven effective tools for graph data analysis. Generally speak-35

ing, there are two main strategies to compute graph complexities, i.e., (a) the deter-

ministic complexity measures, as well as (b) the probabilistic complexity measures.

Approaches based on the fiRst strategy depend on the encoding [17], subgraph count-

ing [18, 19, 20] and structure generating [21] of graph structures. On the other hand,

approaches based on the second strategy mainly depend on measuring the graph en-40

tropy associated with a probability distribution of each graph. Viewed theoretically,

the entropy-based complexity measures developed in recent years are mainly based on

the statistical graph features, e.g., the vertex degree, the edge density, the Laplacian

spectrum, etc. Thus, these entropy-based complexity measures can capture more cor-

relation information between local vertices based on the statistical graph features, and45

usually have more effective performance than the deterministic complexity measures.

In this work, we focus more on employing the graph entropy as a means of defining

novel graph embedding methods, reflecting the complicated intrinsic structure infor-
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mation of graphs.

Unfortunately, computing the graph entropy in a straightforward way is not a simple50

problem. In previous works, Körner [22] has proposed an entropy-based complexity

measure by posing the structural characterization as an optimization task. Specifically,

the complexity measure of a graph is defined by computing the minimal cross entropy

between an associate probability distribution of the vertices and the vertex packing

polytype of the graph. Dehmer et al. [23, 24, 20] have proposed a family of information55

theoretic graph entropy measures based on information functionals, that quantify the

information content of the topological structure of a given graph. Since the required

information functionals can be constructed through the local subgraph of the given

graphs and avoid the combinatorial computations over different vertex partitions, these

entropy measures can be efficiently computed in a polynomial time.60

Another interesting idea of computing the graph entropy refers to the concept of

quantum mechanics [25], and a number of quantum-based graph entropy measures

have been developed. For instance, Anand et al. [26] and Passerini et al. [27] have pro-

posed a family of von Neumann entropies based on the quantum state of a graph [25].

Specifically, they map the quantum state into the discrete graph Laplacian [28], that65

can be seen as a density matrix if it is scaled by the inverse of the graph volume. The

resulting von Neumann entropy of a graph can be computed based on the discrete graph

Laplacian. Furthermore, they show that the quantum-based von Neumann entropy is

related to the classical Shannon entropy if there is the degree heterogeneity. Unfor-

tunately, computing the von Neumann entropies depends on the decomposition of the70

normalized Laplacian spectrum, that requires time complexity of cubic vertex number-

s. To further improve the computational efficiency for the von Nenmann entropy, Han

et al. [29] have exhibited how the computation can be further improved to quadratic

vertex numbers by adopting a quadratic approximation of the Shannon entropy associ-

ated with the eigenvalues of the Laplacian matrix. This reveals that the von Neumann75

entropy can be calculated based on the expressions of the permutation invariant ma-

trix trace, leading to a simple expression for the approximate von Neumann entropy in

terms of the vertex degrees. To develop this work one step further, Ye et al. [30] have

generalized the approximate von Neumann entropy from undirected graphs into direct-
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ed graphs. To achieve this, they first employ Chung’s [31] definition of the normalized80

Laplacian for directed graphs. Based on this definition, the normalized Laplacian ma-

trix of a directed graph is Hermitian, and thus the interpretation stated by Passerini

et al. [26] still maintains for directed graphs. This indicates that the von Neumann

entropy of the normalized Laplacian matrix can be essentially the Shannon entropy as-

sociated with its eigenvalues, providing an theoretical expression of the von Neumann85

entropy for directed graphs associated with the in-degree and out-degree residing on

the vertices of the directed graphs.

To further reflect interior structural information for graphs, recently a number of

thermodynamic entropy measures have been developed. For instance, Wang et al. [32]

have developed an entropic graph representation method based on the thermodynamic90

edge entropy decomposition associated with the spin statistics. Specifically, they inves-

tigate three spin-dependent statistical models to determine the thermodynamic entropy

of a network, including (a) the classical spinless Maxwell-Boltzmann distribution, and

two models based on quantum mechanical spin-statistics, namely (b) the Bose-Einstein

model for particles with integer spin, and (c) the Fermi-Dirac model for particles with95

half-integer spin. Zhang et al. [33] have developed a graph motif entropy measure

based on motifs, i.e., the subgraphs recurring most frequently over different graphs.

Specifically, they employ the motifs as the graph primitives based on the concept of

cluster expansion from statistical physics. By mapping the network motifs to clusters

in the gas model, they derive the partition function for a graph structure to compute100

global thermodynamic quantities, e.g., the energy and entropy. Both entropy-based

methods can capture intrinsic complicated structural information through the thermo-

dynamic characteristics residing on either the edges or motifs.

Unfortunately, all the above entropy measures usually suffer from three common

theoretical drawbacks. First, these entropy measures tend to represent graph structures105

in the one-dimensional vectorial space from the original high-dimensional structural

space. In other words, these entropy measures only provide one single characteristic

value of a graph structure, leading to significant information loss. Second, most of

the entropy measures mainly rely on the computation of simple structural characteris-

tics, e.g., the information functionals for the Shannon entropy defined by Dehmer et110
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al. [23], and the vertex degree for the von Neumann entropies defined by Han and Ye

et al. [29, 30]. As a result, these entropy measures can only reflect the limited and sim-

ple topological information for original graph structures. Third, most of these entropy

measures can be essentially seen as the sum of the entropic features over all vertices

or edges of a global graph, thus these entropy measures can only capture global graph115

characteristics, ignoring local graph characteristics residing on the local substructures.

To address the shortcomings of existing graph entropy measuring methods, Bai et

al. [34, 35] have developed a novel framework of computing Depth-based Complexity

Traces for graphs. They commence by decomposing each original graph structure into

a family of k-layer expansion subgraphs rooted at a centroid vertex, and the result-120

ing complexity trace of the original graph is defined by measuring the aforementioned

Shannon entropies or the von Neumann entropies on the expansion subgraphs. Since

the centroid vertex is identified by selecting the vertex that has the minimum average

shortest path length to the remaining vertices, the required expansion subgraphs around

the centroid vertex can provide a fine graph structure representation that gradually leads125

the structure from the local centroid vertex to the original global graph, as a function

of structural depth. As a result, the complexity trace can not only gauge how the en-

tropies of the expansion subgraphs vary with the increasing layer k and provide an

elegant way of representing the original graph structure in a high-dimensional entrop-

ic vectorial space, but also simultaneously capture both global and local entropy-based130

graph characteristics. However, since the required entropy measures for the complexity

trace are based on the structurally simple vertex degrees. Similar to the above graph en-

tropy measures, the above complexity trace may not sufficiently reflect the complicated

intrinsic structure information based on the simple structural features. In a summary,

developing effective entropy-based graph embedding methods is always a theoretical135

challenging problem.

1.2. Contributions of This Work

The objective of this work is to overcome the theoretical shortcomings of the afore-

mentioned graph entropy-based methods, by proposing a novel framework of comput-

ing Quantum-based Entropic Representations (QBER) for un-attributed graphs. One140
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Figure 1: The proposed framework to compute the DBER of a given sample graph G. (1) Construct the

family of k-level neighborhood graphs for each original graph structure, by varying the parameter k from 1

to K (i.e., the greatest value of the shortest path lengths over a set of graphs). (2) Compute the AMM matrix

of the CTQW evolved on each neighborhood graph. (c) Compute the averaged and JSD-based entropic

signature for each neighborhood graph, through the Quantum Shannon Entropies of the neighborhood graph

vertices computed based on the AMM matrix. The resulting QBER of each original graph is computed by

measuring how the entropic signatures vary on its neighborhood graphs.

key innovation of the proposed QBER approach is to compute the Quantum Shan-

non Entropy measures of all local vertices, through the Average Mixing Matrix (AM-

M) [36] of the Continuous-time Quantum Walk (CTQW) [11]. Unlike the classical

random walk (e.g., the classical Steady State Random Walk (SSRW) [37]), the AMM

matrix of the CTQW not only better reflects the complicated interior structure informa-145

tion, but also simultaneously represents both global and local structural information of

the graph (see Section 2 for more details). As a result, the resulting QBER associated

with the Quantum Shannon Entropies can reflect richer graph structure characteristics

than existing graph entropy-based methods. The computational procedure of the pro-

posed QBER approach is exhibited in Fig.1. Overall, the contributions of this work are150

summarized as follows.

First, for each graph structure, we commence by transforming the global structure

into a family of neighborhood graphs, where each k-level neighborhood graph encapsu-

lates the structural connected information between each vertex and its k-hop neighbor

vertices in the original graph. We show that these neighborhood graphs can provide a155

fine representation of reflecting the multi-level global topological information for the
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original graph structure.

Second, to capture complicated intrinsic structure information of the given graph,

we propose to evaluate how the CTQW evolves on its family of neighborhood graphs,

and employ the AMM matrix to describe the time averaged behavior of the CTQW160

evolved on the neighborhood graphs. The reasons of utilizing the CTQW are twofold

(see more theoretical details in Section 2). First of all, it has been theoretically proven

that the CTQW can better discriminate different graph structures than its classical coun-

terpart, i.e., the classical Continuous-time Random Walk (CTRW) [38, 39]. Moreover,

the AMM matrix can concisely summarize the time-averaged evolution of the CTQW,165

naturally providing a closest quantum analogue of the classical SSRW to compute a

Shannon entropy for the graph. Specifically, we show how the AMM matrix allows

us to define a Quantum Shannon Entropy for each vertex of the neighborhood graph,

and thus compute an entropic signature for each neighborhood graph by measuring the

averaged value or the Jensen-Shannon Divergence (JSD) [40] between the entropies170

of the neighborhood graph vertices. For each original graph, the resulting QBER is

defined by gauging how the entropic signatures vary on its family of k-level neighbor-

hood graphs with the increasing level k, reflecting multi-dimensional entropy-based

structure information of the original graph. We show that the QBER can not only re-

flect complicated intrinsic structure information of the graph, but also simultaneously175

capture both global and local structural characteristics through the AMM matrix of the

CTQW, explaining the effectiveness of the proposed QBER approach.

Third, we employ the proposed QBER approach for graph classification problems

on several benchmark graph datasets, and empirically demonstrate the effectiveness

of the proposed approach. The proposed approach can significantly outperform state-180

of-the-art entropic complexity measures, graph kernel methods, as well as graph deep

learning methods.

1.3. Paper Outline

This paper is organized as follows. Section 2 introduces the concepts of the C-

TQW as well as its AMM matrix, and shows how to compute the Quantum Shannon185

Entropy associated with the AMM matrix for each vertex. Section 3 gives the theo-
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retical definition of the proposed QBER approach. Section 4 empirically demonstrates

the performance of the proposed QBER approach on graph classification problems.

Section 5 concludes of this work.

2. Graph Entropies through the CTQW190

In this section, we commence by introducing the concepts of the CTQW as well as

its AMM matrix. Moreover, we show how the AMM matrix allows us to compute a

Quantum Shannon Entropy for each vertex of a graph.

2.1. The AMM Matrix of the CTQW

One main objective of this paper is to employ the AMM matrix [36] of the C-195

TQW [11] to compute the Quantum Shannon Entropy for each graph vertex. The rea-

son of adopting the CTQW as well as its AMM matrix is that the CTQW is theoretically

different from the CTRW [41] (i.e., the classical counterpart of the CTQW) and thus

has a number of interesting properties that are not available for the classical CTRW.

First, the evolution of the CTQW is controlled by the time-varying unitary matrix and200

its state vector can be complex-valued. Thus, unlike the classical CTRW, the evolution

of the CTQW is reversible, indicating that the CTQW is non-ergodic and does not pos-

sess a limited distribution. As a result, the CTQW significantly reduces the notorious

tottering problem appearing in the classical CTRW. Second, the CTQW is not deter-

mined by the Laplacian spectrum associated with low frequency components, indicat-205

ing that the CTQW better discriminates graph structure differences than the classical

CTRW. Third, the AMM matrix can well describe the complicated evolution behavior

of the CTQW, by summarizing the time-averaged vertex visiting information of the

CTQW.

In this subsection, we give the concepts of the CTQW and its associated AMM

matrix. Specifically, for a given graph G(V,E) with the vertex set V and the edge set

E, the state space of the CTQW is V . According to the Dirac notation, the basis state

of the CTQW at vertex v ∈ V is defined as |v〉, that is an orthonormal vector in a

|V |-dimensional complex-valued Hilbert space. The state |ψ(t)〉 at time t is a complex
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linear combination of the orthonormal state vectors |v〉 over all vertices v ∈ V , and is

formulated as

|ψ(t)〉 =
∑

v∈V

αv(t) |v〉 , (1)

where αv(t) ∈ C is the complex amplitude. Unlike the classical counterpart, the

evolution of the CTQW is based on the Schrödinger equation, i.e.,

∂ |ψt〉

∂t
= −iH |ψt〉 , (2)

where H represents the system Hamiltonian and accounts for the total energy of the210

system, and one can adopt the adjacency matrix as the Hamiltonian.

Specifically, the behavior of the CTQW over G(V,E) at time t can be described

with the AMM matrix [36], i.e.,

QM(t) = U(t) ◦ U(−t)

= eiHt ◦ e−iHt, (3)

where the symbol ◦ represents the operation of the Schur-Hadamard product between

eiHt and e−iHt. Note that, since U is unitary, QM(t) is a doubly stochastic matrix and

its entryQM(t)uv corresponds to the probability of the CTQW visiting vertex v ∈ V at

time t when the CTQW departs from u ∈ V . To guarantee the convergence of QM(t),

we can take the Cesàro mean and compute a time-average based AMM matrix of the

CTQW as

Q = lim
T→∞

∫ T

0

QM (t)dt, (4)

where each entry Qvu of the AMM matrix Q corresponds to the average probability

of the CTQW visiting u ∈ V and departing from v ∈ V , and Q is still a doubly s-

tochastic matrix. Furthermore, since Godsil [36] has indicated that the entries of Q are

rational numbers, thus one can easily compute Q from the spectrum of the Hamiltoni-

an. Specifically, let the adjacency matrix A of G be the Hamiltonian H, λ1, . . . , λ|V |

represent the |V | distinct eigenvalues of H , and Pj be the matrix representation of the

orthogonal projection on the eigenspace associated with the λj (i.e., H =
∑|V |

j=1 λjPj),

the AMM matrix Q of the CTQW can be rewritten as

Q =

|V |
∑

j=1

Pj ◦ Pj . (5)
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Remarks: Comparing to the classical random walk, the AMM matrix of the CTQW

has a number of interesting properties. Specifically, Fig.2 exhibits a comparison be-

tween the AMM matrix of the CTQW and the classical Steady State Random Walk

(SSRW) [37], explaining the important theoretical advantages of the CTQW. For the215

given graph G(V,E), the probability distribution of the SSRW visiting the vertices

of G is related to the vertex degree distribution [40], that is computed based on the

adjacency matrix of G. Specifically, the higher degree for a vertex indicates a higher

probability of the SSRW visiting the vertex. Since the degrees of the vertices v1, v2

and v4 are the same (see the red and blue broken frames on the probability distribution220

vector of the SSRW), the probabilities of the SSRW visiting these vertices are also the

same even if v1 and v2 have distinct structural locations with respect to v4 in terms of

the original global graph structure. In other words, the SSRW cannot discriminate the

salient structural differences of the vertices through the simple use of vertex degrees.

By contrast, the AMM matrix can summarize the time-averaged probability distribu-225

tion of the CTQW visiting the vertices, through the complicated time evolution on the

complex graph structure. Specifically, each i-th row of the AMM matrix corresponds

to the probability distribution of the CTQW visiting all vertices when the CTQW de-

parts from vertex vi. Unlike the SSRW, the AMM matrix can provide different CTQW

visiting probability distributions if the CTQW departs from the vertices having distinct230

structural locations. For instance, the 1-th and 2-th rows are different from the 4-row,

since the vertices v1 and v2 are structurally different from v4 in terms of their struc-

tural location. Moreover, each CTQW visiting probability distribution can also assign

the vertices different probabilities (see the red and blue broken frames on AMM ma-

trix). The above observations indicate that the AMM matrix not only simultaneously235

captures both global and local graph characteristics through the CTQW visiting prob-

ability distribution of each starting vertex, but also better reflects complicated interior

graph structure information. As a result, the AMM matrix can provide us an elegant

way to compute the quantum-based Shannon entropy for each vertex associated with

the CTQW visiting probability distribution of the vertex, providing a multi-viewed240

entropy-based characteristics for a graph structure.
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Figure 2: The AMM matrix of the CTQW versus the classical SSRW.

2.2. Quantum Shannon Entropies through the CTQW

For the given graph G(V,E), since the v-th row Qv,: of its AMM matrix Q defined

by Eq.(5) corresponds to the probability distribution of the CTQW visiting all vertices

in V and departing from the vertex v ∈ V , we propose a Quantum Shannon Entropy

HQS(v) for the vertex v ∈ V associated with Q. Specifically, HQS(v) is formulated as

HQS(v) = HQS(Qv,:)

= −
∑

u∈V

Qvu logQvu, (6)

where HQS(v) is essentially the classical Shannon entropy associated with the proba-

bility distribution Qv,: (i.e., the v-th row of Q). Obviously, we can compute a family

of Quantum Shannon Entropies for all vertices of G.245

Remarks: The proposed Quantum Shannon Entropy has two theoretical advantages.

First, Fig.2 indicates that the probability distributions of the CTQW visiting all ver-

tices are usually different, if the CTQW departs from different starting vertices that

have distinct structural locations in terms of the global graph structure. Thus, for each

graph, the Quantum Shannon Entropies of different vertices are usually different. This250

indicates that the Quantum Shannon Entropy of each vertex not only captures global

structural information of the whole graph structure, but also captures the local struc-

tural characteristics of each individual vertex. In other words, the Quantum Shannon

Entropy provides a way to simultaneously reflect both global and local graph structure
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features. Second, since the CTQW can well discriminate different graph structures and255

reflect complicated intrinsic graph structure information. Moreover, the AMM matrix

can well describe the averaged behavior of the CTQW. The Quantum Shannon Entropy

associated with the AMM matrix of the CTQW can also well represent the structure

information of graph structures. Overall, the Quantum Shannon Entropy provides us

an elegant way to develop novel entropy-based graph embedding methods.260

3. Quantum-based Entropy Representation

In this section, we propose a novel framework to compute the Quantum-based En-

tropic Representation (QBER) for a graph, through the AMM matrix of the CTQW

evolved on the graph. We commence by introducing the concept of the JSD. Moreover,

we construct a family of k-level neighborhood graphs for each original graph, and show265

how to compute the entropic signature of each neighborhood graph by measuring the

averaged value or the JSD between the Quantum Shannon Entropies of its vertices.

Finally, we give the definition of the proposed QBER approach for each graph, by

gauging how the entropic signatures vary on its k-level neighborhood graphs.

3.1. The Jensen-Shannon Divergence270

In information theory, the JSD is a dissimilarity measure between probability distri-

butions [42]. For a pair of discrete probability distributions X = (x1, . . . , xn, . . . , xN )

and Y = (y1, . . . , yn, . . . , yN ), the JSD between X and Y is defined as

DJS(X ,Y) = HS(
X + Y

2
)−

HS(X ) +HS(Y)

2

= −

N
∑

n=1

xn + yn

2
log

xn + yn

2

+

N
∑

n=1

xn log xn +

N
∑

n=1

xn log yn, (7)

where HS(X ) =
∑N

n=1 xn log xn is the classical Shannon entropy associated with the

probability distribution X .

Indeed, the JSD measure can also be employed for a mixture of M probability dis-

tributions X1, . . . ,Xi, . . . ,XI associated with the mixing proportions π1, . . . , πi, . . . , πI
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(i.e.,
∑

i πi = 1) , the JSD defined in Eq.(7) can be re-formulated as

DJS(X1, . . . ,Xi, . . . ,XI) = HS(

I
∑

i=1

πiXi)−

I
∑

i=1

πiHS(Xi). (8)

Note that the JSD measures DJS, defined either by Eq.(7) and Eq.(8), are both well de-

fined, symmetric, negative definite and bounded (i.e., 0 ≤ DJS ≤ 1). Moreover, both

the JSD measures can be seen as the dissimilarities between the entropies associated275

with the corresponding probability distributions.

3.2. Neighborhood Graphs of Original Graph Structures

In this subsection, we show how to construct a family of k-level neighborhood

graphs for each original graph G(V,E). To this end, assume S ∈ R|V |×|V | denotes the

shortest path matrix of the given graph G(V,E), where each (v, u)-th element Svu of

S represents the shortest path between the vertices v ∈ V and u ∈ V . The set of k-hop

neighbor vertices Nk
v of the vertex v ∈ V is defined as

Nk
v = {u ∈ V | Svu ≤ k}, (9)

i.e., Nk
v encapsulates the vertices u ∈ V having the shortest paths of length k to the

vertex v ∈ V . For the graph G(V,E), the k-level neighborhood graph Gk(Vk, Ek) is

defined as






VK = {v ∈ V };

EK = {(v, u) ⊂ Nk
v | Svu ≤ k}.

(10)

When we vary the parameter k from 1 to K (i.e., the greatest length of the shortest

paths), we can construct a family of k-level neighborhood graphs as

GK = {G1(V1, E1), . . . ,Gk(Vk, Ek), . . . ,GK(VK , EK}.

Since, the vertex set Vk of each neighborhood graph Gk is as same as the vertex set V of

the original graph G, and the 1-level neighborhood graph G1 is essentially the original

graph G itself, i.e., its 1-hop neighbor vertices of a vertex are essentially the adjacent280

vertices of the vertex. The neighborhood graphs in GK can provide a fine representa-

tion of reflecting the multi-level global topological information for the original graph

structure.
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3.3. Entropic Signatures of Neighborhood Graphs

In this subsection, we show how to compute the entropic signature for each neigh-

borhood graph through the AMM matrix of the CTQW introduced in Section 2. Specif-

ically, for the given graph G(V,E) and its associated neighborhood graph set GK

defined previously, we commence by performing the CTQW on each k-leve neigh-

borhood graph Gk(Vk, Ek) ∈ GK and compute the associated AMM matrix Q based

on Eq.(5). Based on Eq.(6), we propose to compute the averaged entropic signature

EA(Gk) for Gk by calculating the averaged value between the Quantum Shannon En-

tropies of all vertices in Gk associated with Q, i.e.,

EA(Gk) =
1

|Vk|

∑

v∈Vk

HQS(Qv,:)

=
1

|Vk|

∑

v∈Vk

HQS(v)

= −
1

|Vk|

∑

v∈Vk

∑

u∈Vk

Qvu logQvu. (11)

Moreover, based on Eq.(7), we also propose to compute the JSD-based entropic signa-

ture EJS(Gk) for Gk by measuring the JSD-based dissimilarity between the Quantum

Shannon Entropies of all vertices in Gk associated with Qk, i.e.,

EJS(Gk) = DJS(Q1,:, . . . ,Qv,:, . . . ,Q|Vk|,:)

= HQS(
∑

v∈Vk

πvQv,:)−
∑

v∈Vk

πvHQS(Qv,:). (12)

For the above JSD measure, we propose to assign the probability distributions Qv,: over

all vertices v ∈ Vk the same proportion, i.e., πv = 1
|Vk|

. As a result, the JSD-based

entropic signature EJS(Gk) defined by Eq.(12) can be re-written as

EJS(Gk) = −
∑

v∈Vk

{
1

|Vk|

∑

u∈Vk

Qvu} log{
1

|Vk|

∑

u∈Vk

Qvu}

+
1

|Vk|

∑

v∈Vk

∑

u∈Vk

Qvu logQvu. (13)

3.4. The Definition of the QBER Approach for Graphs285

In this subsection, we give the definition of the proposed Quantum-based Entropic

Representation (QBER) for each original graph G(V,E), through its set of neighbor-
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hood graphs in GK . We commence by defining the QBER based on the averaged

entropic signature formulated as Eq.(11).

Definition 1 (The Averaged QBER): For the given graph G(V,E) and its associated

k-level neighborhood graphs in GK , the averaged QBER ERQ
A of G is defined as

ERQ
A(G) = [EA(G1), . . . , EA(Gk), . . . , EA(GK)], (14)

where EA(Gk) is the averaged entropic signature of the k-level neighborhood graph290

Gk ∈ GK of G, and the parameter k varies from 1 to K, i.e., the specified value of the

greatest shortest path over all given sample graphs. �

Moreover, to reflect more intrinsic interior relationships between the vertices of

each neighborhood graph, we also propose to define the QBER based on the JSD-based

entropic signature formulated as Eq.(13), that can measure the information theoretic295

dissimilarity between the Quantum Shannon Entropies of the vertices.

Definition 2 (The JSD-based QBER): For the given graph G(V,E) and its associated

k-level neighborhood graphs in GK , the JSD-based QBER ERQ
JS of G is defined as

ERQ
JS(G) = [EJS(G1), . . . , EJS(Gk), . . . , EJS(GK)], (15)

where EJS(Gk) is the JSD-based entropic signature of the k-level neighborhood graph

Gk ∈ GK of G. �

Remarks: The above definitions indicate that both the proposed QBER approaches can

represent the original graph G in a K-dimensional entropic vectorial space by gauging300

how the averaged or JSD-based entropic signatures of the k-level neighborhood graphs

vary with the increasing parameter k. As we have stated previously, the neighborhood

graphs can provide fine representations that describe multi-level global structures of

the original graph, leading the structural information between 1-hop neighbor vertices

(i.e., the original adjacent vertices) to that between K-hop neighbor vertices. Thus the305

proposed QBER approaches can reflect multi-viewed global structural characteristics

in terms of the entropic signatures. Moreover, for the neighborhood graph, the Quan-

tum Shannon Entropy of each vertex is computed through the corresponding row of the

AMM matrix, that corresponds to the probability distribution of the CTQW visiting all
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Table 1: Properties of the Proposed QBER Approaches

Theoretical Properties QBER-A QBER-JS SE-SSRW [40] SE-IF [23] vNE [29, 30] DBCT [34]

Capture Local Structural Information Yes Yes No No No Yes

Capture Global Structural Information Yes Yes Yes Yes Yes Yes

Reflect Intrinsic Vertex Relationship No Yes No No No No

Based Complicated Structure Information Yes Yes No No No No

Reflect Multi-dimensional Complexity Yes Yes No No No Yes

Computational Complexity O(N3) O(N3) O(N2) O(N log N + NE) O(n2) O(N log N + NE)

vertices when the CTQW departs from the vertex. Thus, the Quantum Shannon En-310

tropy not only reflects the local structural information in terms of the starting vertex,

but also captures the global structural information of the neighborhood graph in terms

of the visiting probabilities of all vertices. As a result, the resulting QBER approach-

es based on the averaged value or the JSD measure between the Quantum Shannon

Entropies of vertices can simultaneously capture both the global and local structure in-315

formation of original graphs. Finally, as we have stated previously, the CTQW can well

describe the complicated intrinsic structural information of graphs. Thus, the proposed

QBER approaches through the AMM matrix of the CTQW can reflect the rich intrinsic

entropic complexity information of graphs.

3.5. Discussions of Related Works320

Comparing to existing state-of-the-art entropy-based graph complexity measuring

methods, the proposed QBER approaches have a number of theoretical advantages,

explaining the effectiveness of the proposed approaches. These properties are shown

in Table 1, where QBER-A and QBER-JS correspond to the averaged QBER approach

and the JS-based QBER approach defined by Eq.(14) and Eq.(15) respectively. More325

specifically, we briefly discuss the advantages as follows.

First, the proposed QBER approaches are defined based on the AMM matrix of

the CTQW, that can not only better discriminate different graph structures but also re-

flect the complicated graph structure information. Moreover, the Quantum Shannon

Entropies of vertices based on the AMM matrix can simultaneously encapsulate both330

the global and local structural information of graphs. Thus, the proposed QBER ap-

proaches can not only reflect intrinsic structural entropic complexity information, but
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also simultaneously capture both global and local structural characteristics of the graph

structures. By contrast, the Shannon Entropy measure based on the Information Func-

tionals (SE-IF) [23] and that based on the State Steady Random Walk (SE-SSRW) [40],335

as well as the approximated von Neumann Entropy measure based on the vertex de-

grees (vNE) [29], can only reflect graph structural characteristics through simple graph

structures or features, e.g., the information functionals of small sizes for the SE-IF

entropy measure, the vertex degree distribution for the SE-SSRW entropy measure,

the vertex degrees for the vNE entropy measure. Moreover, the required structures or340

features of these entropy measures are directly abstracted from the global graph rep-

resentations of the graph structures, i.e., the vertex adjacency matrix or degree matrix.

Thus, these entropy measures can only capture global characteristics of graphs. On

the other hand, the proposed QBER approaches can represent the graph structures in a

multi-dimensional entropic vectorial space, reflecting the multi-level entropic structure345

information of graphs. By contrast, the SE-IF, SE-SSRW and vNE entropy measures

can only provide one-dimensional entropy-based complexity value, reflecting the lim-

ited entropy content of graphs.

Second, similar to proposed QBER approaches, the Depth-based Complexity Trace

(DBCT) [34] of the graph can also represent each graph structure in a multi-dimensional350

entropy space, by measuring the SE-SSRW or the vNE entropy on the family of k-layer

expansion subgraphs. Moreover, since the expansion subgraphs can lead the graph

structure from a local centroid vertex to the global graph structure, the DBCT can al-

so simultaneously capture both global and local structural characteristics of the graph.

However, the DBCT relies on the computation of the SE-SSRW or the vNE entropy355

that is based on the simple graph structures or features. By contrast, the proposed

QBER approaches are defined through the AMM matrix of the CTQW that can reflect

complicated structure information. As a result, the proposed QBER approaches can

reflect more complicated structural characteristics than the DBCT.

Third, the proposed JSD-based QBER approach is based on the JSD-based entrop-360

ic signatures, that measure the JSD-based dissimilarity between the Quantum Shannon

Entropies of the vertices of each neighborhood graph. In other words, the JSD-based

QBER can reflect the intrinsic relationships between the vertices of each neighborhood
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graph, capturing more complicated interior structural information residing in the depth

graph structures. By contrast, the existing SE-IF, SE-SSRW and vNE entropy mea-365

sures, as well as the DBCT cannot reflect any intrinsic relationship between vertices.

3.6. Computational Complexity

Computing the QBER of each graph mainly relies on two computational steps,

i.e., (a) the construction of the neighborhood graphs, and (b) computing the AMM

matrix of each neighborhood graph. For a graph having N vertices and M edges,370

the first step depends on computing the shortest path matrix of the graph, requiring

the time complexity O(N logN + NM). The second step depends on the spectral

decomposition, that requires the time complexityO(N3). SinceM is smaller thanN2,

the resulting time complexity of the proposed QBER approaches is O(N3), indicating

that the proposed QBER approaches can be computed in a polynomial time.375

Comparing to the computational complexity of the classical entropy-based graph

complexity measuring methods discussed in Section 3.6, Table 1 shows that the pro-

posed QBER approaches are not the most efficient algorithm in terms of the compu-

tational complexity. However, Table 1 and the discussions in Section 3.5 also indicate

that the proposed QBER approaches have a number of theoretical advantages, that are380

not available for the classical methods. As a result, the proposed QBER approaches

may have better trade-off between the classification performance and the computation-

al efficiency, and we will empirically verify this in Section 4.

4. Experimental Evaluation

We empirically investigate the performance of the proposed QBER approaches on385

graph classification problems. Moreover, we compare the classification performance

of the proposed QBER approaches to some state-of-the-art graph-based pattern recog-

nition and machine learning methods, including entropy-based graph complexity mea-

suring methods, entropy-based graph kernels, and graph deep learning methods.
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Table 2: Statistical Information of the Benchmark Datasets.

Datasets MUTAG NCI1 PTC PPIs CATH1 CATH2 Reeb COIL5 Shock GatorBait

Max # vertices 28 111 109 218 568 568 220 241 33 548

Min # vertices 10 3 2 3 44 143 41 72 4 239

Mean # vertices 17.93 29.87 25.60 109.63 205.70 308.03 95.43 144.90 13.16 348.70

Max # edges 33 119 108 4493 2356 2220 219 702 32 1313

Min # edges 10 2 1 2 145 556 40 206 3 443

Mean # edges 10.79 32.30 25.96 531.50 819.85 1254.80 94.59 419 12.16 796.11

# graphs 188 4110 344 219 712 190 300 360 150 100

# classes 2 2 2 5 2 2 15 5 10 30

Description BIO BIO BIO BIO BIO BIO CV CV CV CV

4.1. Benchmark Dtasets390

We use ten benchmark graph datasets for the experimental evaluation, and these

datasets are extracted from both computer vision (CV) and bioinformatics (Bio). The

Bio datasets can be found on the website [43], and the CV datasets are introduced in

the references [44, 1]. More specifically, Table.2 shows the statistical details of these

datasets.395

4.2. Comparisons with Entropy-based Graph Complexity Measuring Methods

Experimental Setups: In this subsection, we compare the classification perfor-

mance of the proposed Averaged QBER (QBER-A) and JS-based QBER (QBER-JS)

approaches with some classical entropy-based graph complexity measures. These com-

plexity measures include: (1) the Shannon Entropy based on the Information Function-400

als fV (SE-FV) and fP (SE-FP) [23], (2) the Shannon Entropy associated with the

State Steady Random Walk (SE-SSRW) [40], (3) the approximated von Neumann En-

tropy based on the vertex degrees (vNE) [29], and (4) the Depth-based Complexity

Trace [34] associated with the SE-SSRW (DBCT-SE) entropy and the vNE entropy

(DBCT-vNE) respectively. For the proposed QBER-A and QBER-JS approaches on405

each dataset, we set the associated parameter K as the greatest value of the shortest

paths over all graphs in the dataset. For the DBCT-SE and DBCT-vNE methods, we

follow the same parameter setting based on the original paper. For each of the proposed
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Table 3: Classification Accuracy Comparisons with Entropy-based Complexity Measures.

Datasets MUTAG NCI1 PTC(MR) PPIs CATH1

QBER-A 84.27 ± 0.75 73.51 ± 0.17 58.19 ± 0.59 76.40 ± 0.79 98.77 ± 0.06

QBER-JS 82.97± 0.84 72.33 ± 0.13 57.57± 0.51 78.33 ± 0.55 98.64 ± 0.14

SE-FV 81.04± 0.70 62.61± 0.20 56.24± 0.72 55.80± 0.87 97.86± 0.12

SE-FP 80.33± 0.71 62.50± 0.16 57.16± 0.59 56.28± 1.04 97.85± 0.11

SE-SSRW 80.91± 0.74 61.94± 0.20 55.05± 0.55 59.19± 0.80 98.31± 0.11

vNE 84.00± 0.75 62.41± 0.18 57.19± 0.59 61.04± 0.64 98.32± 0.13

DBCT-SE 81.53± 0.67 69.93± 0.13 56.67± 0.71 72.00± 0.68 98.38± 0.10

DBCT-vNE 82.68± 0.77 68.96± 0.10 57.97± 0.40 70.33± 0.74 98.15± 0.20

Datasets CATH2 Reeb COIL5 Shock GatorBait

QBER-A 76.57± 0.91 51.93 ± 0.66 67.27± 0.60 47.88 ± 0.78 11.10 ± 0.81

QBER-JS 77.18 ± 0.93 54.30 ± 0.81 67.89± 0.57 44.65 ± 0.63 10.90 ± 0.41

SE-FV 69.89± 0.47 27.53± 0.48 70.47± 0.58 37.06± 1.12 7.70± 0.90

SE-FP 70.78± 0.48 26.50± 0.46 69.55± 0.41 37.40± 1.21 10.80± 0.76

SE-SSRW 70.73± 0.92 25.80± 0.55 70.38± 0.71 37.00± 0.86 10.50± 0.48

vNE 71.05± 0.86 28.26± 0.80 70.69 ± 0.57 39.06± 0.88 7.90± 0.85

DBCT-SE 76.62± 0.98 42.93± 0.62 68.04± 0.74 41.42± 1.00 5.30± 0.55

DBCT-vNE 75.32± 0.98 40.00± 0.63 60.88± 0.77 42.65± 0.88 5.35± 0.61

and alternative methods, we perform the 10-fold cross-validation strategy associated

with the C-Support Vector Machine (C-SVM) [45] based on the Gaussian Kernel to410

compute the classification accuracy on each dataset. Specifically, we randomly divide

each dataset into ten folds, and use nine folds to train the C-SVM and one fold for the

test. For each method on each dataset, we employ the optimal C-SVM parameters and

perform the experiment for ten times and compute the averaged classification accura-

cy. The experimental results (classification accuracies ± standard errors) are shown in415

Table 3. Moreover, we also provide the CPU runtime for each method in Table 4, that

is evaluated with Matlab 2017b.

Experimental Results and Analysis: In terms of the classification accuracies, Ta-

ble 3 indicates that both the proposed QBER-A and QBER-JS approaches can sig-

nificantly outperform the alternative entropy-based complexity measuring methods.420

Specifically, the proposed approaches can achieve the best classification accuracies
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Table 4: CPU Runtime Comparisons with Entropy-based Complexity Measures.

Datasets MUTAG NCI1 PTC(MR) PPIs CATH1

QBER-A 2s 3min 56s 14s 22s 18min 43s

QBER-JS 2s 4min 8s 12s 23s 19min 37s

SE-FV 1s 4s 1s 1s 10s

SE-FP 1s 4s 1s 1s 9s

SE-SSRW 1s 1s 1s 1s 1s

vNE 1s 1s 1s 1s 1s

DBCT-SE 1s 4s 1s 1s 8s

DBCT-vNE 1s 4s 1s 1s 8s

Datasets CATH2 Reeb COIL5 Shock GatorBait

QBER-A 11min 29s 4min 20s 1min 30s 1s 40min 29s

QBER-JS 10min 13s 3min 46s 1min 26s 1s 41min 11s

SE-FV 1s 2s 2s 1s 5s

SE-FP 1s 2s 2s 1s 5s

SE-SSRW 1s 1s 1s 1s 1s

vNE 1s 1s 1s 1s 1s

DBCT-SE 4s 1s 2s 1s 2s

DBCT-vNE 4s 1s 2s 1s 2s
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on nine of the ten datasets. For the proposed QBER-A and QBER-JS approaches,

the reasons of the effectiveness are threefold. First, as we have stated previously, the

alternative the SE-FV, SE-FP, SE-SSRW, vNE entropy measures can only provide the

one-dimensional graph structure complexity information, and their computations main-425

ly rely on the simple graph structure features, e.g., the information functionals and the

vertex degrees. As a result, these graph entropy measures can only reflect the limited

structure information of graphs. By contrast, the proposed approaches rely on mea-

suring the averaged and JSD-based entropic signatures on a family of neighborhood

graphs through the AMM matrix of the CTQW. As a result, the proposed QBER-A430

and QBER-JS approaches can not only provide the high-dimensional entropy-based

complexity information of graphs, but also reflect more complicated interior structure

information of graphs through the CTQW. Second, the SE-FV, SE-FP, SE-SSRW, vNE

entropy measures can only reflect structural characteristics of global graph structures.

By contrast, the proposed QBER-A and QBER-JS approaches can simultaneously re-435

flect both global and local graph structural characteristics through the averaged and

JSD-based entropic signatures, that are computed through the AMM matrix of the C-

TQW. Third, on the other hand, the alternative DBCT-SE and DBCT-vNE methods can

measure the entropies on a family of expansion subgraphs rooted at the centroid vertex,

that leads an information content flow from the local centroid vertex to the global graph440

structure. Thus, similar to the proposed QBER-A and QBER-JS approaches, the alter-

native DBCT-SE and DBCT-vNE methods can not only provide the high-dimensional

graph structure complexity information, but also simultaneously reflect both global

and local structural characteristics. However, the associated entropy measures for the

DBCT-SE and DBCT-vNE methods are the SE-SSRW and vNE entropy measures, that445

are defined based on the structurally simple vertex degrees. As a result, unlike the pro-

posed approaches, the alternative DBCT-SE and DBCT-vNE methods cannot reflect

the complicated interior graph structure information.

Furthermore, Table 3 indicates that the proposed QBER-JS approach can signifi-

cantly outperform the proposed QBER-A approach on the PPIs, CATH2, Reeb, and450

COIL5 datasets. Furthermore, we observe that these datasets usually have more av-

eraged vertex numbers as well as averaged edge densities (i.e., the ratio between the
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averaged edge numbers and averaged vertex numbers) than the remaining datasets. As

we defined previously, the proposed QBER-JS approach is computed by measuring the

JSD-based dissimilarity (i.e., the JSD-based entropic signature) between the Quantum455

Shannon Entropies of the vertices for each neighborhood graph. By contrast, the pro-

posed QBER-A approach is computed by measuring the averaged value of the Quan-

tum Shannon Entropies. Obviously, based on the theoretical viewpoint, computing the

JSD-based dissimilarity between the vertex entropies can reflect more structurally in-

trinsic relationships between the vertices than simply computing the averaged value of460

the vertex entropies. Since more averaged vertex numbers and averaged edge densities

usually indicate more complicated graph structures for a graph dataset, the QBER-JS

approach should have better classification performance than the proposed QBER-A ap-

proach for such a dataset, verifying that the proposed QBER-JS approach can reflect

more complicated intrinsic relationship between vertices.465

Finally, in terms of the CPU runtime, although the proposed QBER-A and QBER-

JS approaches are not the fastest, but our approaches can still finish the computation

in a meaningful polynomial time. Overall, comparing to all alternative methods, the

proposed approaches have superior tradeoff between classification accuracies and com-

putational efficiencies.470

4.3. Comparisons with Graph Kernels

Experimental Setups: In this subsection, we compare the classification perfor-

mance of the proposed QBER-A and QBER-JS approaches with some classical entropy-

based and R-convolution graph kernel methods. These kernels include: (1) the Jensen-

Shannon Graph Kernel (JSGK) [40], (2) the Jensen-Shannon Subgraph Kernel (JSSK) [46],475

(3) the Quantum Jensen-Shannon Graph Kernel (QJSK) [38], (4) the Entropy-based

Reproducing Graph Kernel (ERGK) [47], and (5) the Graphlet Count Graph Kernel

(GCGK) [48] with graphlets of size 4. Following the same experimental setup of the

proposed approaches, we directly perform the 10-fold cross-validation strategy asso-

ciated with the C-SVM [45] based on these alternative graph kernels. We show the480

averaged classification accuracy ± standard error in Table 5. Moreover, the CPU run-

time for each method is exhibited in Table 4, that is evaluated with Matlab 2017b.
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Table 5: Classification Accuracy Comparisons with Graph Kernels.

Datasets MUTAG NCI1 PTC(MR) PPIs CATH1

QBER-A 84.27 ± 0.75 73.51 ± 0.17 58.19 ± 0.59 76.40 ± 0.79 98.77 ± 0.06

QBER-JS 82.97± 0.84 72.33 ± 0.13 57.57 ± 0.51 78.33 ± 0.55 98.64 ± 0.14

JSGK 83.11± 0.80 62.50± 0.33 57.29± 0.41 34.57± 0.54 98.19± 0.12

JSSK 83.77± 0.74 64.86± 0.24 56.94± 0.43 45.04± 0.80 98.35± 0.11

QJSK 82.72± 0.44 69.09± 0.20 56.70± 0.49 65.61± 0.77 98.35± 0.12

ERGK 84.11± 0.46 62.35± 0.13 57.52± 0.58 60.90± 0.99 98.33± 0.10

GCGK 82.04± 0.39 63.72± 0.12 55.41± 0.59 46.61± 0.47 97.91± 0.17

Datasets CATH2 Reeb COIL5 Shock GatorBait

QBER-A 76.57 ± 0.91 51.93± 0.66 67.27± 0.60 47.88 ± 0.78 11.10 ± 0.81

QBER-JS 77.18 ± 0.93 54.30 ± 0.81 67.89± 0.57 44.65 ± 0.63 10.90 ± 0.41

JSGK 72.26± 0.76 21.23± 0.76 69.13± 0.79 21.20± 0.58 7.26± 0.62

JSSK 75.42± 0.76 52.76± 0.47 67.75± 0.67 37.66± 0.80 9.20± 0.65

QJSK 71.11± 0.88 30.80± 0.61 70.11± 0.61 40.60± 0.92 9.00± 0.89

ERGK 70.94± 0.97 28.73± 0.37 70.27 ± 0.69 38.20± 0.65 5.98± 0.48

GCGK 73.68± 1.09 22.96± 0.65 66.41± 0.63 26.93± 0.63 8.40± 0.83

Table 6: CPU Runtime Comparisons with Graph Kernels.

Datasets MUTAG NCI1 PTC(MR) PPIs CATH1

QBER-A 2s 3min 56s 14s 22s 18min 43s

QBER-JS 2s 4min 8s 12s 23s 19min 37s

JSGK 1s 6s 1s 1s 6s

JSSK 1s 52s 4s 2s 11s

QJSK 20s 2h 55min 1min 46s 3min 42s 3h 49min

ERGK 1s 5s 1s 1s 2s

GCGK 1s 5s 1s 4s 3s

Datasets CATH2 Reeb COIL5 Shock GatorBait

QBER-A 11min 29s 4min 20s 1min 30s 1s 40min 29sec

QBER-JS 10min 13s 3min 46s 1min 26s 1s 41min 11sec

JSGK 1s 1s 2s 1s 1s

JSSK 4s 1s 3s 1s 3s

QJSK 1h 14min 10min 30s 18min 20s 14s 20min 53sec

ERGK 1s 1s 2s 1s 1s

GCGK 8s 2s 4s 1s 3s
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Experimental Results and Analysis: In terms of the classification accuracies, Ta-

ble 5 indicates that the proposed QBER-A and QBER-JS approaches can significantly

outperform the alternative graph kernel methods. Specifically, the proposed approach-485

es can achieve the best classification accuracies on nine of the ten datasets. The reasons

of the effectiveness are twofold. First, the JSGK, JSSK, ERGK kernels are all defined

based on the SE-SSRW and vNE entropy measures, that rely on simple graph fea-

tures and only capture global graph characteristics. Thus, these kernels can only reflect

the limited graph structure information in terms of the global graph structures. More-490

over, the GCGK kernel is defined based on the simple graphlet substructures of small

sizes. Thus, similar to the alternative entropy-based kernels, this kernel can only cap-

ture the limited local graph structure information. By contrast, the proposed QBER-A

and QBER-JS approaches can not only reflect more complicated structural information

through the AMM matrix of the CTQW, but also simultaneously capture both global495

and local graph characteristics through the associated averaged and JSD-based entropic

signatures. Second, on the other hand, the alternative QJSK kernel is defined based on

the CTQW. Thus, similar to the proposed approaches, the QJSK kernel can also reflect

complicated graph characteristics through the CTQW. However, unlike the proposed

approaches that are defined based on the AMM matrix of the CTQW, the QJSK kernel500

is defined by measuring the Quantum Jensen-Shannon Divergence (QJSD) between the

graph density matrices of the CTQW. Since the density matrix can be seen as a structure

representation of the global graph, the QJSD fails to capture local graph characteristic-

s. By contrast, the proposed QBER-A and QBER-JS approaches can simultaneously

capture both global and local graph characteristics.505

Generally speaking, unlike the graph embedding methods that tend to represen-

t the original graph structures in a low-dimensional vectorial space from the original

structure space, the graph kernels can represent graph structures in a high-dimensional

Hilbert space that can well preserve the graph structure information residing on the

original structure space, i.e., the graph kernels usually have better performance than510

the graph embedding methods. However, as a kind of embedding methods, the pro-

posed QBER-A and QBER-JS approaches can still outperform the alternative kernels,

verifying the effectiveness of the proposed approaches.
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Table 7: Classification Accuracy Comparisons with Graph Learning Methods.

Datasets MUTAG NCI1 PTC(MR)

QBER-A 84.27 ± 0.75 73.51 ± 0.17 58.19 ± 0.59

QBER-JS 82.97± 0.84 72.33± 0.13 57.57 ± 0.51

DCNN 66.98 56.61± 1.04 56.60

DGK 82.66± 1.45 62.48± 0.25 57.32± 1.13

DEMO-Net 81.40 − 57.20

node2vec 72.63± 10.20 54.89± 1.61 −

sub2vec 61.05± 15.80 52.84± 1.47 −

graph2vec 83.15± 9.25 73.22± 1.81 −

Finally, in terms of the CPU runtime, although the proposed QBER-A and QBER-

JS approaches are not the fastest, but the computational efficiency of our approaches is515

still competitive to these alternative graph kernels. Considering the classification accu-

racies, the proposed approaches have better tradeoff between classification accuracies

and computational efficiencies.

4.4. Comparisons with Graph Learning Methods

Experimental Setups: We compare the classification performance of the proposed520

QBER-A and QBER-JS approaches with some graph learning methods. These methods

include: (1) the Deep Graph Kernel (DGK) [49], (2) the Diffusion Convolutional Neu-

ral Network (DCNN) [50], (3) the Degree Specific Graph Neural Network (DEMO-

Net) [51], (4) the Scalable Feature Learning Model for Networks (node2vec) [52], (5)

the Feature Learning Model for Subgraphs (sub2vec) [53], and (6) the Distributed Rep-525

resentation Learning Model for Graphs (graph2vec) [54]. Since these graph learning

methods employ the same experimental setup with our proposed approaches, we di-

rectly report the results from the original papers in Table 7. Note that, the symbol ”-”

indicates that the method was not evaluated on the dataset by the original authors. S-

ince, the original references of the alternative graph learning methods do not evaluate530

the CPU runtime, here we do not provide any runtime comparison.

Experimental Results and Analysis: In terms of the classification accuracies,

Tabel 7 indicates that the proposed QBER-A approach can significantly outperform the

27



alternative graph learning methods on any dataset. Although, the proposed QBER-JS

approach can only achieve the best classification performance on the PTC(MR) dataset,535

it is still competitive on the MUTAG and NCI1 dataset and outperforms most of the

alternative graph learning methods. Indeed, some of the alternative graph learning

methods are instances of the Graph Deep Neural Network Models, and can naturally

provide an end-to-end framework to adaptively learn meaningful graph characteristics

for classification problems. On the other hand, the proposed approaches are evaluated540

by associating with the C-SVM based on the Gaussian Kernel. Essentially, this learn-

ing manner can be theoretically seen as a kind of shallow learning frameworks and

usually has lower performance than the deep learning methods. However, the proposed

approaches can still achieve the best classification performance, again indicating the

effectiveness of the proposed approaches.545

5. Conclusion and Future Work

In this paper, we have developed a family of Quantum-based Entropic Representa-

tions (QBER) for un-attributed graphs, through the AMM matrix of the CTQW. Specif-

ically, the proposed QBER approaches are defined by measuring the averaged or JSD-

based entropic signatures on a family of k-level neighborhood graphs of each graph550

structure. Since the neighborhood graphs can provide a fine representation to reflect

the multi-level topological information for the global structure of the original graph,

and the associated entropic signatures are computed through the AMM matrix of the

CTQW that can reflect complicated intrinsic graph structure characteristics. The pro-

posed QBER approaches not only reflect the multi-level entropic structure information555

of original graphs, but also capture the complicated interior structure information re-

siding on both global and local structures. Experiments on standard graph datasets

demonstrate the effectiveness of the proposed QBER approach.

Recently, Fettal et al. [55] have proposed a multi-view graph representation learn-

ing method that not only reflects multi-view structural information like the proposed560

QBER approaches, but also learns the structural characteristics for attributed graphs.

Moreover, Fang et al. [56] have developed a structure-preserving graph representation
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learning method that not only captures both global and local structural characteristics

like the proposed QBER approaches, but also integrates the structure learning process

into the construction of graph representations. By contrast, the proposed QBER ap-565

proaches are developed for un-attributed graphs, and thus cannot accommodate the

edge or vertex label information. Moreover, the proposed QBER approaches rely on

computing the structural characteristics through the precalculated entropic graph fea-

tures in terms of the AMM matrix of the CTQW. In other words, the proposed QBER

approaches cannot capture the general graph characteristics through learning the struc-570

tural patterns over all graphs [57]. To address the above problems, our future work is

planed to further extend the proposed QBER approaches, and develop a family of novel

structure-learning based QBER approaches for attributed graphs.
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