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Magnetoconvection in a rotating spherical shell in the
presence of a uniform axial magnetic field

Stephen J. Mason, Céline Guervilly and Graeme R. Sarson

School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK

ABSTRACT
We report simulations of thermal convection and magnetic-field
generation in a rapidly-rotating spherical shell, in the presence of
a uniform axial magnetic field of variable strength. We consider
the effect of the imposed field on the critical parameters (Rayleigh
number, azimuthal wavenumber and propagation frequency) for the
onset of convection, andon the relative importance of Coriolis, buoy-
ancy and Lorentz forces in the resulting solutions. The imposed field
strength must be of order one (corresponding to an Elsasser num-
ber of unity) to observe significant modifications of the flow; in this
case, all the critical parameters are reduced, aneffect that ismorepro-
nounced at small Ekman numbers. Beyond onset, we study the vari-
ations of the structure and properties of the magnetically-modified
convective flows with increasing Rayleigh numbers. In particular,
we note the weak relative kinetic helicity, the rapid breakdown of
the columnarity, and the enhanced heat transport efficiency of the
flows obtained for imposed field strengths of order one. Further-
more, magnetic and thermal winds drive a significant zonal flow in
this case, which is not present with no imposed field or with stronger
imposed fields. The mechanisms for magnetic field generation (par-
ticularly the lengthscales involved in the axisymmetric field produc-
tion) vary with the strength of the imposed field, with three distinct
regimes being observed for weak, order one, and stronger imposed
fields. In the last two cases, the inducedmagnetic field reinforces the
imposed field, even exceeding its strength for large Rayleigh num-
bers, which suggests thatmagnetically-modified flowsmight be able
toproduce large-scale self-sustainedmagnetic field. Thesemagneto-
convection calculations are relevant to planets orbitingmagnetically
active hosts, and also help to elucidate the mechanisms for field
generation in a strong-field regime.
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1. Introduction

Planetarymagnetic fields are thought to be fundamentally produced by convectivemotions
inside the liquid core of planets via a dynamo process, whereby the kinetic energy of
the flow is converted into magnetic energy. Planetary dynamos operate under the major
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influence of the Coriolis force due to the rapid rotation of the planet. Magnetic fields can
also significantly affect the convective flows via a magnetic feedback force, the Lorentz
force. The relative strengths of the Lorentz and Coriolis forces can be estimated with the
Elsasser number (which we will define more precisely in section 2). An Elsasser number
of order unity is often interpreted as an indication that both forces play an equally impor-
tant role on the dynamics. In the Earth’s core, the Elsasser number is estimated to be of
the order of 10 (Gillet et al. 2010), so the geodynamo (and planetary dynamos in general)
operate under the major influence of the Lorentz force, in addition to the Coriolis force.

Numerical simulations of convective dynamos aim to provide a better understanding of
the core dynamics and the generation of planetary magnetic fields (e.g. Christensen and
Wicht 2015). Although the governing equations solved by these numericalmodels are good
approximations of themodelled system, the controlling parameters used in themodels can
vastly differ from realistic values. A well-know example is the problematic Ekman number
Ek, which measures the ratio of the rotation period to the viscous timescale at the system
size: Ek is O(10−15) in the Earth’s liquid core, but is typically set to O(10−5) in numeri-
cal models. This artificial increase of the fluid viscosity is necessary to eliminate the small
scales that cannot be resolved on the numerical grid. As a result, viscous forces play a more
important role in the large-scale dynamics in numerical models than is realistic. Notwith-
standing these unavoidable computational limitations, geodynamo simulations are able to
reproduce some of the key characteristics of the geomagnetic field such as a mainly dipolar
field. But despite this generation of a relatively strong dipolar magnetic field, the detailed
role played by the magnetic field on the dynamics often remains unclear and debated
(e.g. Soderlund et al. 2012, King and Buffett 2013, Oruba and Dormy 2014, Cheng and
Aurnou 2016). Recent geodynamo simulations have focussed on exploring the parameter
space where the sustained magnetic fields visibly affect the dynamics; these are sometimes
termed “strong-field” dynamos, although this term is ambiguous. Different approaches to
produce strong-field dynamos have been followed, such as using large values of the mag-
netic Prandtl number (the ratio of viscosity to magnetic diffusion) at the relatively high
Ekman numbers considered by most studies (Dormy 2016), or performing computation-
ally intensive simulations with Ekman numbers as low as currently feasible (Ek ≈ 10−7)
(Yadav et al. 2016a, Aubert et al. 2017, Schaeffer et al. 2017). Changes of the convective
flow due to the Lorentz force in these dynamos include a visible increase of the typical flow
lengthscale, and the loss of the regular columnar structure of the flow, which is a feature of
rotationally-dominated convection.

In this work, we adopt a different approach to examine the influence of magnetic
fields on convection by studying magnetoconvection, where a magnetic field is exter-
nally imposed on the convective system. The great advantage of magnetoconvection is
the ability to control the strength and configuration of the imposed magnetic field pre-
cisely. The basis of our knowledge of the effect of large-scale magnetic fields on rotating
convection comes from early studies of linear magnetoconvection in a planar domain
(Chandrasekhar 1961); for instance, a well-known result of planar rotating magnetocon-
vection is that a uniform vertical magnetic field favours convection for Elsasser numbers
of the order of unity, with the emergence of a preferred system-size mode. There have been
numerous studies of magnetoconvection in spherical geometries using imposed azimuthal
fields (e.g. Cardin and Olson 1995, Olson and Glatzmaier 1995, Gillet et al. 2007), but
few using an imposed uniform axial field (Fearn 1985, Sarson et al. 1997, Sakuraba and
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Kono 2000, Sakuraba 2002, 2007, Gómez-Pérez and Wicht 2010, Teed et al. 2015). Here
we choose the uniform axial field configuration, firstly because most planetary mag-
netic fields have a dominant dipolar field at the planet surface, and numerical dynamo
simulations show that magnetic fields generated by rotating spherical convection are
naturally organised in dipole-dominated configuration (Olson et al. 1999, Sreenivasan
and Jones 2011). Secondly, this configuration is particularly relevant for satellite bod-
ies surrounded by the ambient magnetic fields of their host planets. For example, Io is
thought to be able to produce its own field due to the presence of Jupiter’s magnetic field
providing a strong ambient field (Sarson et al. 1997). Thirdly, uniform axial fields are sta-
ble (i.e. force-free). Azimuthal magnetic fields are subject to magnetic instabilities that
can onset before the convective instabilities for strong imposed field (Fearn and Weigl-
hofer 1991a, 1991b, 1992a, 1992b, Zhang and Fearn 1993, Proctor 1994, Zhang 1995), a
situation that we wish to avoid for simplicity.

Linear magnetoconvection in a rotating spherical shell with an imposed uniform axial
field was investigated in a numerical study by Sakuraba (2002). He showed the existence
of an overall minimum of the critical Rayleigh number (which measures the strength of
the buoyancy driving against diffusive effects) for Elsasser number of the order unity, sim-
ilarly to the case ofmagnetoconvection in the presence of a uniform toroidalmagnetic field
(Fearn 1979). Sakuraba found that a variety of convective modes can be unstable, depend-
ing on the strength of the imposed magnetic field. As the Elsasser number is increased,
geostrophic, magneto-geostrophic and magnetostrophic modes are successively preferred
at the onset of convection, where these modes are distinguished by the increasing role
played by the Lorentz force in the primary force balance. In the nonlinear model of Sarson
et al. (1997, 1999), which uses a two azimuthal mode approximation, a weak-field solu-
tion and a strong-field solution were observed, depending on the strength of the buoyancy
forcing. In the latter case, the system essentially behaves like a self-sustained dynamowith-
out being strongly affected by the imposed field. In a study of the fully nonlinear system,
Sakuraba and Kono (2000) found that the transition between the two types of solutions
occurs abruptly for an Elsasser number of order unity. The transition is characterised
by an increase in the kinetic and induced magnetic energies, while the convective cells
retain the same azimuthal lengthscale. On the other hand, Gómez-Pérez andWicht (2010)
found that the flow lengthscale visibly increases in the presence of a strong imposed field.
Interestingly, Sarson et al. (1997, 1999) and Sakuraba and Kono (2000) found evidence of
hysteretic behaviour in this system, where the final state depends on the initial condition.
The present paper follows on from these earlier studies and aims to investigate the modifi-
cation of the convective flows in the presence of a strong magnetic field and, in particular,
the morphology of the magnetic fields that these modified flows induce.

Dynamos driven by planar rotating convection can produce strong large-scale magnetic
fields that disturb the small-scale convective flows and lead to the emergence of box-size
flows (Stellmach andHansen 2004, Cooper et al. 2020). These box-size flows are not able to
sustain large-scale magnetic fields themselves, leading to intermittent dynamo behaviour,
where the system fluctuates between strong-field and weak-field states. This intermit-
tent behaviour has not been reported so far in spherical dynamo simulations with strong
fields (e.g. Dormy 2016, Schaeffer et al. 2017). By studying whether magnetically-modified
flows can induce large-scale magnetic fields, we can speculate whether an intermittent
behaviour might be expected in spherical dynamos. Using spherical magnetoconvection
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results, Zhang and Gubbins (2000a, 2000b) previously suggested that this behaviour might
indeed be relevant for the geodynamo.

The linear magnetoconvection study of Sakuraba (2002) shows that the relatively large
Ekman number adopted in previous nonlinear studies (Ek ≈ 10−4) misses some of the
complexity of the linear convective modes observed at smaller Ek (Ek ≈ 10−5). Further-
more, fully nonlinear studies were carried out in the moderately supercritical regime (with
Rayleigh numbers less than twice the critical value at onset). We will therefore model mag-
netoconvection for values of Ek that allow us both to study the rich small-Ek dynamics
and to explore widely the supercritical regime (with Rayleigh numbers up to 50 times the
critical value).

The layout of the paper is as follows. Themathematical andnumerical formulation of the
model is described in section 2. In section 3, we present the effects of the imposedmagnetic
field on the onset of convection.Wediscuss the evolution of the flowproperties in section 4,
including changes in the efficiency of the convective heat transfer and the formation of
zonal flows. The characteristics of the induced magnetic field and the generation of the
axisymmetric field are presented in section 5. Finally, we discuss the significance of our
results in section 6.

2. Equations andmethodology

2.1. Governing equations

We study thermal Boussinesq convection in a rotating spherical shell in the presence of
an externally imposed magnetic field. The convection is driven by imposing a temperature
difference �T between the inner sphere at radius ri and the outer sphere at radius ro. The
aspect ratio is set to χ = ri/ro = 0.35. The system rotates at the rotation rate � about the
z-axis. Gravity varies linearly in radius, g = −gor/roer. The imposedmagnetic field is uni-
form and axial, B0 = B0ez. This is implemented via a boundary condition, as described in
section 2.2. We use D = ro − ri as the unit of length. The computational domain is there-
fore located between ri/D ≈ 0.54 and ro/D ≈ 1.54. Times are scaled byD2/ν, the velocity
u by ν/D, the temperature T by �T, the magnetic field B by (ρμηΩ)1/2, and the pressure
P by ρνΩ , where ρ is the density, ν the kinematic viscosity, η the magnetic diffusivity, and
μ the magnetic permeability. The dimensionless governing equations are

∂u
∂t

+ u · ∇u + 2
Ek

ez × u = − 1
Ek

∇P + Ra
Ek

r
r0
Ter + 1

PmEk
j × B + ∇2u, (1)

∂B
∂t

= ∇ × (u × B) + 1
Pm

∇2B, (2)

∂T
∂t

+ u · ∇T = 1
Pr

∇2T, (3)

∇ · u = 0, (4)

∇ · B = 0, (5)

where B is the total magnetic field comprised of both the imposed and induced parts, and
j = ∇ × B is the electric current density. The dimensionless parameters are the Ekman
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number

Ek = ν
/(

ΩD2), (6)

the Rayleigh number

Ra = αgo�TD
/(

Ων
)
, (7)

the Prandtl number

Pr = ν/κ , (8)

and the magnetic Prandtl number

Pm = ν/η, (9)

where κ is the thermal diffusivity and α the thermal expansion coefficient. In all our sim-
ulations, Pr and Pm are kept fixed to 1. Note that we use the definition of the Rayleigh
number from the dynamo benchmark (Christensen et al. 2001), which is related to the
traditional definition of the Rayleigh number, R = αgo�TD3/(νκ), by Ra = REk/Pr.

The boundary conditions are fixed temperature, electrically insulating, no-slip and
impenetrable at r = ri and r = ro.

2.2. Numerical method

All our simulations are performed using the code PARODY, which was originally written
by Dormy et al. (1998), and subsequently modified, parallelised and optimised by J. Aubert
and E. Dormy (e.g. Aubert et al. 2008, Dormy 2016). PARODY is a Fortran pseudo-spectral
code that solves the magnetohydrodynamic equations (1)–(5) for a Boussinesq fluid in a
3D spherical geometry. The code was previously benchmarked against five independent
numerical codes used in the geodynamo community (Christensen et al. 2001). The veloc-
ity and magnetic fields are decomposed into poloidal and toroidal scalars, which are then
expanded in spherical harmonics Ym

l in the angular coordinates, with l the degree and m
the order. A second-order finite difference scheme is used on an irregular radial grid, which
is finer near the boundaries and uses a geometrical progression for the radial increment. A
Crank-Nicolson scheme is implemented for the time integration of the diffusion terms
and an Adams-Bashforth procedure is used for the other terms. The poloidal-toroidal
decomposition and the spherical geometry allow a relatively simple implementation of
the magnetic boundary conditions. We use the SHTns library for the spherical harmonic
transforms (Schaeffer 2013). The numerical resolution used for each simulation is given in
table C1 in appendix C.

We have modified the code to include an externally imposed magnetic field. The
imposed field is axial and uniform, B0 = B0ez, and so, it only has a poloidal component
that projects on the spherical harmonic (l,m) = (1, 0). The field is imposed by modifying
the boundary condition at r = ro for this specific harmonic of the poloidal magnetic field,
giving

dp01
dr

∣∣∣∣
ro

= − 2
ro
p01(ro) +

√
3B0
2

, (10)

where p01(r) gives the spectral coefficient of the poloidal magnetic field of degree l = 1 and
orderm = 0 at radius r. The derivation of this boundary condition is given in appendix A.
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For the initial condition, a small perturbation is added to all the spectral coefficients
of the temperature field. All the other fields are set to zero, except in the case of no
imposed magnetic field (B0 = 0), where the magnetic field is initialised by an axial dipole
and a toroidal field of harmonic (l,m) = (2, 0), both of amplitude of order unity in the
dimensionless unit.

2.3. Definitions of the output quantities

The Elsasser number is often used in dynamo studies to estimate the ratio of the Lorentz
force to the Coriolis force. It is defined as

Λ = B2
/(

Ωρμη
)
, (11)

whereB is a r.m.s.measure of themagnetic intensity in dimensional form. In our units,Λ =
B2∗, where the dimensionless r.m.s. magnetic intensity is B∗ = 〈√2Em〉t , with Em the volu-
metric (dimensionless) magnetic energy density in the fluid shell. To quantify the strength
of the imposed field, we will quote values of B0. Previous studies (e.g. Sakuraba 2002) use
instead the Elsasser number based on B0, which is simply Λ0 = B20.

To measure the ratio of the kinetic to magnetic energies, we use the squared Alfvén
number (Aubert et al. 2017)

A2 = ρμU2/B2, (12)

whereU is the r.m.s. velocity in dimensional form. (This can also be identified as the square
of the ratio of the fluid velocity to the Alfvén velocity.) In our units, A2 = PmEkU2∗/B2∗,
where the dimensionless r.m.s. velocity is U∗ = 〈√2Ek〉t , with Ek the volumetric kinetic
energy.

We define the Reynolds number of the convective flow as

Rep =
〈√

2Epk

〉
t
, (13)

where Epk is the volumetric (dimensionless) kinetic energy density based on the poloidal
velocity, and 〈·〉t is a time average taken over at least one third of a viscous timescale.

The magnetic Reynolds number is defined as Rm = DU/η = PmU∗.
The efficiency of the convective heat transfer is usually measured by the Nusselt number

Nu, which is the ratio of the total heat flux to the conducted heat flux in the absence of
convection. In our system, Nu is calculated at the outer boundary and is

Nu = − 1
χ

∂ 〈T〉S
∂r

∣∣∣∣
ro
, (14)

where 〈·〉S denotes an average over a spherical surface, χ = ri/ro is the conducted heat
flux at ro, and T is the total temperature, which includes the static background tempera-
ture. (The conducted heat flux is simply the negative of the radial derivative of the static
background temperature.)

Selected output values from our simulations are given in table C1 in appendix C.
A complete list and the numerical resolution is given in Data.xlsx to be found in the
supplementary material.
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3. Onset of magnetoconvection

3.1. Critical parameters

We first examine the effect of the imposed axial field on the three critical parameters at
the onset of convection: the critical Rayleigh number Rac, the marginally stable azimuthal
wavenumbermc, and the frequency of themarginally stablemodeωc. The onset of convec-
tion is determined numerically using PARODY by observing the growth rate of the kinetic
energy of each azimuthal wavenumber at given Ra. The critical parameters are given in
tables 1–2 for B0 ∈ [0, 10] and Ek ∈ {10−4, 10−5}. In table 1 for B0 = 0, we compare Rac
(which we denote Ra0c hereafter) and mc with the theoretical values obtained from the
asymptotic analysis of Dormy et al. (2004) in the case of non-magnetic rotating convection

Table 1. Critical Rayleigh number Rac and azimuthal wavenumber
mc obtained in our simulations for varying B0 and Ek.

B0 Rac mc Raa ma

Ek = 10−4

0 69.4 7 62.24 6.5
0.1 69.4 7
1 68.5 7
2 60.4 6
2.5 48.3 3
3 45.1 4
4 49.2 5
10 119.4 5

Ek = 10−5

0 105.8 15 102.65 14.0
1 105.8 15
2 103.7 14
3 64.0 2, 3∗
4 58.9 4
5 63.2 6
6 71.0 8
10 115.4 8

Note: The last two columns forB0 = 0 indicate the theoretical values Raa andma
obtained in the asymptotic study of non-magnetic rotating spherical convec-
tion of Dormy et al. (2004). ∗The onset of themodesm = 2 and 3 is very close
for B0 = 3 and Ek = 10−5, both having a critical Rayleigh number of 64.0.

Table 2. Frequency ω of the dominant modemn for simulations
at Ra just above Rac compared with the theoretical value of the
non-magnetic thermal Rossbywaves,ωa, calculated for themode
mn in the asymptotic studyofDormy etal. (2004) (see appendixB).

Case mn ω ωa

Ek = 10−4

B0 = 0, Ra = 70 7 131.8 131.0
B0 = 3, Ra = 46 4 40.1 234.8
B0 = 10, Ra = 120 5 46.5 200.2

Ek = 10−5

B0 = 0, Ra = 106 15 669.7 659.4
B0 = 4, Ra = 60 4 66.4 1479.3
B0 = 10, Ra = 116 9 −180.8 1106.6

Note: A positive frequency means that the wave propagates in the prograde
direction.
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Figure 1. (a) Critical Rayleigh number Rac , and (b) azimuthal wavenumber mc , as a function of the
imposed magnetic field strength B0 for Ek = 10−4 and Ek = 10−5. (Colour online)

with differential heating in a spherical shell with χ = 0.35 and no-slip boundaries. In the
asymptotic theory, Rac andmc both scale as Ek−1/3 in the leading order asymptotics. Note
that we have used the relevant scaling factor to account for the different definitions of the
Ekman and Rayleigh numbers (recall in particular that Ra = REk/Pr in our definition).
The agreement between numerical and theoretical values is good and reduces when Ek
decreases, as expected. Figure 1(a) shows Rac as a function of B0. We find that B0 must
be greater than 1 to significantly influence the onset of convection for both Ekman num-
bers. As B0 increases above unity, Rac first decreases and reaches a minimum at B0 = 3
for Ek = 10−4 and at B0 = 4 for Ek = 10−5. The decrease in Rac is significant, reaching
a minimum of 0.65Ra0c for Ek = 10−4 and 0.56Ra0c for Ek = 10−5. The decrease of Rac is
accompanied by a decrease of mc, which is most noticeable at the smallest Ek, as seen in
figure 1(b). At larger B0, Rac increases, reaching a value that is approximately independent
of Ek and larger than Ra0c for both Ek. This increase is accompanied by an increase in mc,
which is again most noticeable at the smallest Ek.

The evolution of Rac and mc with B0 is similar to that observed in the linear mag-
netoconvection study of Sakuraba (2002), which mainly focussed on the case of internal
heating with no inner core and zero flux boundary condition at r = ro. The main differ-
ence between their results and ours is that Sakuraba observed that the preferred mode at
the onset is an axisymmetric mode for B0 ∈ [1, 2]. This axisymmetric “polar” mode con-
sists of a large-scale meridional circulation that crosses the equatorial plane and transports
heat between the two hemispheres. The absence of this polar mode at the onset in our sim-
ulations is presumably due to our choice of inner core size and fixed temperature boundary
conditions, as Sakuraba shows that the stability curve of the polar mode increases towards
larger Ra in these conditions.

The qualitative behaviour of Rac is also similar to that expected from linear magneto-
convection in rotating planar geometry (Chandrasekhar 1961). In the case where rotation
vector and imposedmagnetic field are vertical,Rac starts to decrease when B0 = O(Ek1/6),
while the lengthscale of the convection switches to a system-size scale (Roberts and
King 2013). This change corresponds to a change in the primary force balance from a
viscously-dominated regime for B0 < O(Ek1/6), where the viscous force is needed to break
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the Proudman-Taylor constraint, to a magnetically-dominated regime, where the Lorentz
force becomes sufficiently large to assume this role. For themodest values of Ek considered
here, the regime change is expected to occur around B0 ≈ Ek1/6 ≈ 0.1. In our configura-
tion, we find that the regime change occurs for larger B0, B0 = O(1), with no apparent
dependence on Ek. However, our simulations are relatively coarse-grained in B0, while Ek
only varies by a decade.Wewould therefore not be able to pick up an Ek1/6 trend. In planar
magnetoconvection, theminimum of Rac occurs for B0 = O(1) and, in the limit B0 → ∞,
Rac scales as B20 and the critical horizontal wavenumber as B0 (Roberts and King 2013). In
our spherical system, we also find thatRac becomes independent of Ek at largeB0, although
we have too few data points to check the scaling with B0. However, the critical wavenumber
retains an Ek-dependence with no clear dependence on B0.

Table 2 gives the frequency ω of the waves at the dominant azimuthal wavenumbermn
for simulations with Ra just above Rac. By dominant wavenumber, wemean the wavenum-
ber corresponding to the peak in the power spectrumof the kinetic energy. The frequencies
were obtained by calculating the azimuthal drift of the dominant mode in Hovmöller
maps (longitude-time maps at a fixed radius in the equatorial plane) of the radial veloc-
ity. Note that any azimuthal drift due to the zonal velocity was subtracted to extract the
frequency of the waves. The frequency can be compared with the expected frequency of
thermal Rossby waves of azimuthal wavenumbermn at the onset of non-magnetic convec-
tion, which we estimate by using the theoretical values provided by the asymptotic study of
Dormy et al. (2004) for our configuration (see appendix B). Outside the tangent cylinder
(where the height of the outer sphere decreases outwards), thermal Rossby waves always
propagate in the prograde direction and their frequency decreases for increasing azimuthal
wavenumber. For B0 = 0, ω is close to the theoretical frequency of the thermal Rossby
waves. For B0 > 0,ω is much slower than the frequency of the thermal Rossby waves, indi-
cating that the Lorentz force plays a significant role in the propagationmechanism.Near the
minimum of Rac (B0 = 3 and 4 for Ek = 10−4 and 10−5 respectively), the increase of the
frequency of the dominant mode mn = 4 when Ek decreases is relatively weak compared
with the increase expected for the thermal Rossby wave (scaling as Ek−2/3 in the leading
order asymptotics, see appendix B). For B0 = 10 at Ek = 10−5, the wave propagates in the
retrograde direction, revealing the dominance of the Lorentz force (Finlay 2008). The force
balance in these waves will be analysed in section 3.3 below.

3.2. 3D structure of the flow

Figure 2 shows the 3D isosurfaces of the radial velocity ur for selectedB0 withRa just above
the onset of convection for Ek = 10−4 and 10−5. For each Ek, the three cases were chosen
to represent the viscously-dominated regime (B0 = 0) and the field-dominated regimes at
theminimumof theRac stability curves (B0 = 3 or 4) and at largeB0 (B0 = 10). In all cases,
the convective flow is mainly columnar. For B0 = 0, we observe the well-known structure
of thermal Rossby waves with a tilt of the column in the prograde direction (Zhang 1992).
For B0 ∈ [3, 4], the flow adopts a banana shape with a visible z-dependence, especially for
Ek = 10−5. For B0 = 10, the columns are straight with no tilt. The preservation of the
columnar shape of the convection cells for B0 > 0 can explain why the axial magnetic field
starts to influence convection for B0 = O(1) in our simulations, while studies of spherical
magnetoconvection with an imposed azimuthal field find that a smaller field amplitude
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Figure 2. Isosurfaces of ur for values of Ra just above the onset of convection (as in table 2). The top
row shows cases at Ek = 10−4 and the bottom row at Ek = 10−5. The red and blue surfaces correspond
to isosurfaces at±20% of the maximum value of ur respectively. (a) B0 = 0. (b) B0 = 3. (c) B0 = 10. (d)
B0 = 0. (e) B0 = 4 and (f ) B0 = 10. (Colour online)

(B0 = O(Ek1/6)) is sufficient (Fearn 1979). In the axial field problem, the magnetic per-
turbations are created by the distortions of the imposed field due to the z-gradients of the
velocity (via the (B0 · ∇)u part of the induction term), as opposed to the azimuthal field
problem,where they aremainly due to theφ-gradients. For columnar flows, the z-gradients
of the velocity are much smaller than the φ-gradients, so the effect is only comparable for
larger B0.

To study the axial structure of the flow,we consider themodifiedProudman–Taylor con-
straint following Sakuraba (2002). Taking the curl of the Navier-Stokes equation (1) and
assuming that inertia, buoyancy and viscous forces are negligible gives

∂

∂z

(
u + B0

2Pm
j
)

≈ 0, (15)
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Figure 3. Contour plots of us (left), B0/(2Pm)js (middle) and ûs (right) on the axial cylindrical surface
(φz plane) of cylindrical radius s = 0.7 for the three cases shown in figure 2 for Ek = 10−5. For clarity, a
restricted azimuthal range is shown; for (a), the azimuthal range is φ ∈ [0,π/4], for (b) φ ∈ [0,π ], and
for (c)φ ∈ [0,π/2]. All panels on the same rowhave the same colorbar. (a) B0 = 0, Ra = 106. (b) B0 = 4,
Ra = 60 and (c) B0 = 10, Ra = 116. (Colour online)

where the nonlinear contributions to the Lorentz force have also been neglected. Since the
imposed field is uniform, j is only produced by the induced magnetic field. We define the
modified velocity as

û ≡ u + B0
2Pm

j, (16)

so that the modified Proudman–Taylor constraint is ∂û/∂z ≈ 0.
Figure 3 shows the s-components of u, B0/(2Pm)j and û on the axial cylindrical surface

of radius s = 0.7 for the three cases of figure 2 at Ek = 10−5. The onset of the dynamo
for B0 = 0 occurs at larger Ra (Ra ≈ 500) so this case does not have a magnetic field. For
B0 = 4, the contours of us are bent along the z-axis, which gives the banana shape observed
in 3D in figure 2. In this case, B0/(2Pm)js opposes us near the equatorial region, which
produces a modified velocity that is fairly z-invariant. The system therefore closely follows
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the modified Proudman–Taylor constraint (15). For B0 = 10, both us and ûs are largely
z-invariant, although the deviation from z-invariance is greater near the outer boundary
for the velocity. In this case, B0/(2Pm)js is greater near the outer boundary, where it is
correlated with us. Interestingly, the axial structure of ûs for B0 = 4 and 10 is similar to that
of us for B0 = 0, with the maxima of the absolute value located near the outer boundary.
This is perhaps logical, given that the increased significance of viscosity in the boundary
layers acts to reduce the applicability of the (modified) Proudman–Taylor constraint there,
allowing for local variations. Moreover js has a contribution from ∂Bφ/∂z, and since the
magnetic boundary condition requires the toroidal scalar to go to zero at the outer radius,
the maxima of js at the boundary is also unsurprising. The fact that the maxima of |us|
are encountered around the equatorial region rather than near the outer boundaries (for
B0 > 0) has an effect on the convective heat transport, as shown in section 4.2.

3.3. Force balance

To conclude this section, we investigate the dynamical force balance near the onset of con-
vection. To do so, we look at the vorticity equation to eliminate the pressure term. Since
the flow is mainly columnar, we consider the equation of the z-component of the vorticity
ωz,

∂ωz

∂t
= IC + IL + IB + IV + IR, (17)

where

IC = 2
Ek

∂uz
∂z

, (18)

IL = 1
EkPm

[∇ × (
j × B

)]
z, (19)

IB = − Ra
Ek ro

∂T
∂φ

, (20)

IV = ∇2ωz, (21)

IR = −[∇ × (u · ∇) u
]
z. (22)

Figure 4 shows ωz and the terms in equations (18)–(22) on the axial cylindrical surface
of radius s = 0.7 for the three cases of figure 2 at Ek = 10−5. The terms are plotted using
individual snapshots that are representative of the flow over time. For B0 = 0, the Corio-
lis and buoyancy terms are the most significant in the force balance; the viscous term is
non-negligible, but is subdominant. Positive buoyancy terms are largely balanced by nega-
tive Coriolis terms, both being largest between anticyclones and cyclones (in the prograde
direction); with opposite signs, there is a similar balance between cyclones and anticy-
clones. For B0 = 4, the Lorentz term is one of the dominant forces, alongside the Coriolis
and buoyancy terms (a MAC balance). The Coriolis and Lorentz terms balance each other
at higher latitudes, whereas the contribution of the buoyancy term is more relevant near
the equatorial region. Here, “sinks” in the buoyancy term are opposed by the Lorentz force,
whilst buoyancy “sources” are balanced by the Coriolis force. For B0 = 10, the force bal-
ance is primarily between the buoyancy term and the Lorentz term in the equatorial region
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Figure 4. Contour plots, from left to right, of:ωz , IC , IL, IB, IV , IR, and IT=IC + IL + IB + IV + IR on the axial
cylindrical surface (φz plane) of cylindrical radius s = 0.7 for the three cases shown in figure 2 for Ek =
10−5. The second to sixth panels on each row have the same colorbar. For clarity, a restricted azimuthal
range is shown; for (a), the azimuthal range isφ ∈ [0,π/4], for (b)φ ∈ [0,π ], and for (c)φ ∈ [0,π/2]. 10
radial grid points have been excluded at the outer boundary to highlight the dynamics in the bulk. (a)
B0 = 0, Ra = 106. (b) B0 = 4, Ra = 60 and (c) B0 = 10, Ra = 116. (Colour online)

(a MA balance), but towards the outer surface the balance is again between Coriolis and
Lorentz contributions. The sum of the r.h.s. terms is relatively large for B0 = 0, consistent
with the greater frequency of propagation seen for that case in table 2. In other words,
one effect of the Lorentz force for B0 > 0 is to reduce this prograde propagation, as noted
earlier for the frequencies at onset.

4. Evolution of the flowwith increasing Rayleigh number

In the rest of paper, we will present results obtained at Ek = 10−5 for varying Ra. Similar
observations can be drawn from the simulations at Ek = 10−4; exceptions are discussed in
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Figure 5. Reynolds number of the poloidal flow as a function of the Rayleigh number for Ek = 10−5.
(Colour online)

the text. In this section, we study how the presence of the ambient magnetic field affects
the different components of the flow.

4.1. Convective flow

Figure 5 shows the evolution of the Reynolds number based on the poloidal velocity Rep
(defined in equation (13)) as a function of Ra for B0 = 0, 4 and 10. Cases with B0 = 4
produce stronger Rep close to onset than cases with B0 = 0 and 10. However, for Ra away
for the onset, there are no particularly notable differences in Rep for different B0, although
B0 = 4 tends to produce slightly smaller Rep. For the largest values of Ra, B0 = 0 and B0 =
10 produce Rep that become increasingly similar, to the point where the final values in the
figure are overlapped. ForB0 = 4, a transition froma steady solution branchwith dominant
modem = 4, to a branch with fluctuating solutions, is visible as a kink in the trend of Rep
for Ra > 100. (This transition is more prominent in some later plots of other diagnostics.)

The magnetic Prandtl number is set to 1 in all our simulations, so the magnetic
Reynolds number Rm is equal to the Reynolds number. In self-sustained spherical con-
vective dynamos, the magnetic Reynolds numbers (based on the total velocity) needs to
be greater than approximately 40 for dynamo action (Christensen and Aubert 2006). This
is verified in our simulations with B0 = 0, where the dynamo onsets at Ra = 500 with a
Reynolds number based on the total velocity of 73 and Rep = 32. Since the Reynolds num-
ber is essentially similar for allB0 at a givenRa, wemight consider that cases withRa > 500
for B0 > 0 have magnetic Reynolds numbers that are large enough for dynamo action, so
these solutions might behave essentially as dynamo solutions. This point will be explored
in more detail in section 5.
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Figure 6. (a) Columnarity and (b) relative helicity as a function of Ra for Ek = 10−5. Both quantities have
been time-averaged; the vertical bars shows the standard deviation. (Colour online)

To study the evolution of the columnar structure of the flow with Ra, we estimate the
variations of the axial vorticity along z using the measure of the columnarity Cωz proposed
by Soderlund et al. (2012). Cωz is based on the non-axisymmetric vorticity ω′ and defined
as

Cωz =
∫∫ |〈ω′

z〉z|s ds dφ∫∫ 〈|ω′|〉zs ds dφ , (23)

where 〈·〉z denotes the average in the axial direction. The integral is evaluated as a sum
on a discrete finite grid, where the summation is made over cylindrical radius s and φ

outside the tangent cylinder. This measure is calculated from taking the time average of
Cωz from various data snapshots. Figure 6(a) shows Cωz as a function of Ra for the same
parameters as figure 5. The values of Cωz near the onset of convection are consistent with
our observations in section 3, i.e. the flow at B0 = 4 (B0 = 10) is less (more) z-invariant
than forB0 = 0. Soderlund et al. considered that the columnar structure breaks downwhen
Cωz < 0.5. By this definition, the columnar flows first breaks down for B0 = 4 for Ra ≈
350. The degradation of the columnarity occurs later for B0 = 0 and 10.

Examples of the 3D structure of the floware shown in figure 7 forRa = 350.As expected,
the columnarity has visibly broken down for B0 = 4, but the flow remains columnar to a
good degree for B0 = 0 and B0 = 10. In this latter case, the flow displays quasi-2D sheet-
like structures. Convection in this case is heterogeneous with quiescent regions located
between the pair of intense radial jets. This sheet-like structure is still noticeable for higher
values of Ra but becomes less uniform between Ra = 500 and Ra = 750.

To further characterise the flow structure, we measure the kinetic helicity, which
describes the spatial correlation between the components of the velocity and vorticity and
is defined as

H = u · ω. (24)

The helicity is often thought to be essential to the generation of large-scale magnetic fields
(Olson et al. 1999, Sreenivasan and Jones 2011, Moffatt and Dormy 2019) and is there-
fore an interesting measure to assess the dynamo capability of the flow. Since we study
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Figure 7. Isosurfaces of ur for (a) B0 = 0, (b) B0 = 4, and (c) B0 = 10 at Ra = 350 and Ek = 10−5. The
red and blue surfaces correspond to isosurfaces at ±20% of the maximum value of ur respectively.
(Colour online)

the evolution of the flow with varying Ra, we use the relative helicity defined as (Olson et
al. 1999)

Hrel = 〈u · ω〉h
/(〈u · u〉h 〈ω · ω〉h

)1/2, (25)

where 〈·〉h corresponds to the average in the northern or southern hemispheres. Simi-
larly to Cωz, the measure is calculated from taking the time average from different data
snapshots. Hrel is negative (positive) in the northern (southern) hemispheres (Olson et
al. 1999), so we average the absolute value of the two hemispheres. Figure 6(b) shows Hrel
as a function of Ra. For B0 = 0, the relative helicity is approximately constant for non-
magnetic solutions (Ra < 500). There is a small increase in the helicity after the onset of
dynamo action, while the saturated field remains weak (for 500 ≤ Ra ≤ 750, whereΛ < 1;
see section 5); but for higher Ra the helicity decreases significantly. After the columnarity
breaks down, the time-averaged helicity in each of the two hemispheres remains approx-
imately equal in absolute value. Around 50% of the relative helicity is produced by the
correlation of the z-components, 〈uzωz〉h. This percentage decreases slightly at the highest
values of Ra, coinciding with the decrease in columnarity. Although the correlation of the
z-components is always the largest contributor to the relative helicity, the dominance of
the z-components is not as great as might naively be expected. In their asymptotic (small
Ek) linearmagnetoconvection analysis (with an imposed azimuthal field), Sreenivasan and
Jones (2011) note that the contributions from uzωz and usωs are equal. Nevertheless some
authors (e.g. Soderlund et al. 2012) concentrate on the “axial helicity”, uzωz; and indeed,
the variations in this quantity are informative. In the presence of an imposed axial field (for
B0 = 4 and 10), the correlation between uz and ωz is poor, and the values of the relative
helicity are always small. One possible consequence is that these flows would be inefficient
for the generation of large-scale magnetic fields (in the absence of the imposed field). This
is in contrast to the conclusions of Sreenivasan and Jones (2011), who found enhanced cor-
relation of uz andωz (and thus enhanced helicity), from calculations with no imposed field,
and also from linear magnetoconvection analysis with an imposed azimuthal field. (Most
of their calculations used stress-free boundary conditions, where this effect is stronger; but
the effect is also present with no-slip conditions, as in the calculations presented here.)
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They note the effect as stronger for solutions of dipolar symmetry (i.e. Br antisymmet-
ric with respect to reflection in the equator), and argue that this effect may explain the
dominance of this symmetry for planetary dynamos. Our imposed vertical field has this
equatorial symmetry, but the Lorentz force produced by magnetoconvection in its pres-
ence clearly does not enhance the vertical flow within convective columns (and hence the
helicity) in the sameway. In the study of Sreenivasan and Jones, the Lorentz forcewas dom-
inated by Bφ , which is zero near the equator so cannot balance the buoyancy force there.
The Coriolis force must therefore balance the buoyancy force near the equator, meaning
that the z derivative of uz cannot be zero there, giving rise to coherent axial flows along the
columns. In our case the Lorentz force is dominated by Bz, so the buoyancy and Lorentz
forces are able to balance near the equator.

Figure 8 shows the spectra of the kinetic energy with respect to the spherical harmonic
degree and order for selected Rayleigh numbers. For B0 = 0 and 10, the peak of the spec-
tra in m always remains close to their respective critical mode at the onset of convection.
For B0 = 0, there is no drastic change in the spectra for the non-magnetic (Ra = 350) and
dynamo (Ra = 750) cases, except for a slight shift of the dominantm towards smaller val-
ues. For B0 = 4, the peak is broader, even close to onset, and the energy is increasingly
transferred to smaller azimuthal wavenumbers for increasing Ra.

Finally, we conclude this section by looking at the activity inside the tangent cylinder.
Convection inside the tangent cylinder onsets when 750 < Ra < 1200 for B0 = 0. The
convection begins at the edge of the tangent cylinder, encroaching from the convection
flows in the rest of the shell, before spreading to all latitudes as Ra increases. The delay
of the convection onset inside the tangent cylinder is well-documented in studies of non-
magnetic convection (Jones 2015) and is caused by the hindering effect of rotation on the
linear onset, which is more pronounced towards the poles, where the direction of grav-
ity and the rotation axis are aligned. For B0 = 4, the convection onsets inside the tangent
cylinder earlier than for B0 = 0 (when 350 < Ra < 500); in this case, the presence of both
rotation and an imposed field with Elsasser number of order unity is favourable to convec-
tion, similarly to the situation outside the tangent cylinder. For B0 = 10, convection has
not occurred inside the tangent cylinder for the highest values of Ra that we have consid-
ered (Ra = 2800). This delay is also expected from results of linear magnetoconvection
in plane layer geometry with no rotation or high Elsasser number (Chandrasekhar 1961):
analogously to the rotating case, the hindering effect of the magnetic field on the convec-
tion onset is more pronounced towards the poles when the direction of the imposed field
is aligned with the direction of gravity.

4.2. Efficiency of the heat transfer

We now study whether the changes to the 3D structure of the radial velocity for varying B0
affect the efficiency of the heat transfer. We calculate the convective heat flux as

F = Pr urT, (26)

where the overbar denotes an azimuthal average. Contour plots of F are shown in figure 9
for Ra near the onset of convection. Note that these cases are not exactly located at the
same Ra/Rac, so we compare the shape of the contours rather than the amplitude of F, and
check that our observations remain valid for varying Ra around these values. F occupies
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Figure 8. Spectra of the kinetic energy with respect to the spherical harmonic degree l (left) and order
m (right) for Ek = 10−5. The spectra are time-averaged. (a) Ra = 350. (b) Ra = 500 and (c) Ra = 1200.
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Figure 9. Meridional slices of the axisymmetric convective heat flux F for the three cases shown in figure
2 for Ek = 10−5. (a) B0 = 0. (b) B0 = 4 and (c) B0 = 10.

a wider region around the equatorial plane for B0 = 4 than for both B0 = 0 and 10. The
Lorentz force partially offsets the Coriolis force in this region (figure 4), favouring more
vigorous radial flow there.

To measure the improved convective heat transfer in the presence of the imposed field,
we look at the evolution of the Nusselt number (defined in equation (14)) with Ra in
figure 10. Nu − 1 is approximately 2 orders of magnitude larger near the onset for B0 = 4
than for B0 = 0 and 10, so the efficiency of the convection is greatly improved near onset.
AsRa increases to values greater than 1000, the three cases tend to similar values ofNu − 1.
(Note that this is despite the slightly smaller Rep values noted for B0 = 4 at high Ra;
i.e. notwithstanding the relatively lower Rep, the B0 = 4 flow remains efficient at trans-
ferring heat.) This is somewhat surprising given the differences observed in the kinetic
energy spectra at larger Rayleigh numbers, and in particular, that the flow is dominated
by different lengthscales (this remains true at our largest Rayleigh number). This shows
that global diagnostics such as Rep and Nu do not fully capture the significant differences
observed in the flow at large Ra. In all cases, the measure of columnarity indicates that the
columnar structure has nearly broken down for these Rayleigh numbers for all three B0,
which could allow equally vigorous convection in all 3 cases. There has been considerable
discussion of the variation of the heat flow in simulations (and experiments), and on its
scaling with varying Ra, Pr and Ek (see Jones 2015, for a review and for references).

4.3. Zonal flow

Dynamo simulations tend to have relatively weak zonal (i.e. axisymmetric azimuthal) flows
comparedwith non-magnetic convection simulations (Aubert 2005), unless heterogeneous
boundary conditions are used (Aubert et al. 2013). This is caused by the action of the
Lorentz force to prevent the shearing of the poloidal field. We assess how the presence
of an imposed axial magnetic field affects this behaviour. Figure 11 shows the ratio of
the kinetic energy of the zonal flows to the total kinetic energy as a function of Ra. For
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Figure 10. Nusselt number as a function of Ra for Ek = 10−5. The vertical dashed lines show the onset
of convection for each case following the colour code of the legend. (Colour online)

B0 = 0, the zonal flow amplitude is visibly reduced when the dynamo starts at Ra = 500,
as expected from previous dynamo studies. This ratio is much stronger for B0 = 4 than for
the other cases, reaching up to 30% for Ra = 200. The strong axial field for B0 = 10 largely
suppresses zonal flows, whose energy remains around 1% only of the total kinetic energy.

Figure 12 shows a meridional slice of the zonal flow for the case B0 = 4 and Ra = 200.
The zonal flow is retrograde near the inner core and prograde near the outer boundary,
which is a similar to the pattern observed in non-magnetic rotating spherical convection at
moderate Ra (Christensen 2002). The zonal flow has a strong degree of axial dependence
in the region of the convective columns, with the largest amplitude near the equatorial
region. Ferraro’s law of isorotation (Ferraro 1937) states that, in the limit of high electrical
conductivity (high Rm), the field lines of the time-averaged axisymmetric poloidal field
lines and the isocontours of the time-averaged angular velocity, uφ/s, adjust to become
aligned, thereby minimising the production of an azimuthal magnetic field via an omega
effect (see e.g. Roberts 2015). To check the validity of Ferraro’s law in our simulations, we
superpose the axisymmetric poloidal magnetic field lines in figure 12. While the poloidal
field remains largely directed along z, the z-dependence of the zonal flow means that the
isocontours of the zonal flow cross the poloidal field lines around the mid-latitudes. This is
at odds with Ferraro’s law, but is not unexpected for a fluid of finite electrical conductivity.

The presence of strong zonal flows for B0 = 4 is surprising because the convective
columns near the onset of convection do not have a tilt as for B0 = 0. In the non-magnetic
case, the column tilt produces the correlation between radial and azimuthal velocities, lead-
ing to significant Reynolds stresses that generate the zonal flows (Busse and Hood 1982).
We therefore anticipate that the Reynolds stresses are not the primary source for the zonal



478 S. J. MASON ET AL.

Figure 11. Ratio of the kinetic energy of the zonal flows to the total kinetic energy as a function of Ra
for Ek = 10−5. (Colour online)

flows forB0 = 4. To determine the sources and sinks of the zonal kinetic energy for B0 = 4,
we examine the power budget for the zonal flow, followingAubert (2005). To do so, wemul-
tiply the azimuthal average of the φ-component of the Navier-Stokes equation (1) by uφ to
obtain

1
2

∂uφ
2

∂t
= PR + PC + PL + PV , (27)

where

PR = −[(u · ∇)u]φ · uφ , (28)

PC = − 2
Ek

us · uφ , (29)

PL = 1
EkPm

[j × B]φ · uφ , (30)

PV = [∇2u]φ · uφ . (31)

Figure 13 shows the time average of each of these terms in a meridional slice for the case
B0 = 4 and Ra = 200. The power budget is dominated by the contributions from the Cori-
olis and Lorentz terms, which nearly balance each other, with the Lorentz term acting
mainly as a sink near the equatorial region and a source towards mid-latitude. The contri-
bution from the Reynolds stresses is small and acts as a sink around the tangent cylinder
and a source at larger cylindrical radius, producing a mostly invariant pattern along z (and
opposing the residual of PL + PC). The viscous term is a sink term in most of the domain,
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Figure 12. Meridional slice of the zonal flow (colour) and field lines of the axisymmetric poloidal field
(black lines) for B0 = 4, Ra = 200 and Ek = 10−5. The zonal flow and the poloidal field have been time-
averaged. (Colour online)

especially in the vicinity of the tangent cylinder and in the boundary layers (which have
been excluded from figure 13 to highlight the dynamics in the bulk). Overall, the main
sources of the zonal flow are the Coriolis and Lorentz forces, with contributions that are
spatially-dependent. To complete the description of the source terms of the zonal flow, we
analyse the terms in the thermal wind equation. The thermal wind equation is obtained by
taking the azimuthal average of the φ-component of the curl of Navier-Stokes equation (1)
(e.g. Aubert 2005). Retaining only the Coriolis, buoyancy and Lorentz terms, we obtain

∂uφ

∂z
≈ Ra

2ro
∂T
∂θ

− 1
2Pm

[∇ × (j × B)]φ . (32)

Figure 14 shows the time average of each term in this equation for B0 = 4 and Ra = 200.
The magnetic wind (driven by the Lorentz term) nearly balances the thermal wind (driven
by the buoyancy term). The sum of the two terms is shown in plot (d) for comparison with
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Figure 13. Time averages of the terms in the power budget of the zonal flow in a meridional slice for
the same case as in figure 12. Ten radial points have been excluded at the inner and outer boundaries.
(Colour online)

the z-gradient of uφ shown in plot (a). The two plots are nearly identical, which indicates
that the viscous and nonlinear inertial terms only play a minor role in the balance. The
thermal wind is stronger near the equatorial plane, while the magnetic wind is stronger
close to the outer boundary. The magnetic wind is mainly due to the interaction of the
magnetic perturbations with the imposed field and opposes the shearing of the poloidal
magnetic field lines by the z-gradients of the zonal flow. The thermal wind is strong in
this case because the convection is efficient at transporting heat as described in section 4.2,
which creates strong latitudinal variations of the temperature. The enhanced zonal flows
observed forB0 = 4 (shown in figure 12) are therefore indirectly produced by the enhanced
convective transport.

Sakuraba (2007) studied a case of magnetoconvection with imposed axial field for
Ek ≈ 10−5, Ra ≈ 500 and B0 ≈ 1.4 (where we have rescaled their parameters to match
our definitions). They also observe the formation of thermal-wind driven zonal flows that
are retrograde near the inner core. This is despite the different choice of thermal boundary
conditions, with Sakuraba using mixed boundaries (fixed temperature at the inner core
r = ri and zero flux at r = ro). The shape of the isotherms are very sensitive to the choice
of thermal boundary conditions, but the same choice of inner boundary condition seems
to result in similar behaviour here, regardless of the differing outer condition.

5. Generation of themagnetic field

5.1. Evolution of themagnetic energywith Ra

In this section, we study the characteristics of the magnetic field induced by the flow for
varying Ra and B0. We first study the evolution of the strength of the magnetic field.

Figure 15(a) shows the Elsasser number Λ (see definition in section 2.3) as a function
of Ra. For B0 = 0, the Elsasser number increases monotonically up to values greater than 1
for Ra > 1000. For Ek = 10−5, the magnetic field always remains dominated by the dipole
in the range of Rayleigh numbers investigated here, which goes up to Ra = 2800. Higher
values of Ra are required to enter the multipolar regime (Christensen and Aubert 2006).
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Figure 14. Time averages of the terms in the thermal wind equation in a meridional slice for the same
case as in figure 12. Plot (d) shows the sum of the buoyancy term and the Lorentz term. All the panels

have the same colorbar. Ten radial points have been excluded at the inner and outer boundaries. (a) ∂uφ

∂z .

(b) Ra
2ro

∂T
∂θ
. (c)− 1

2Pm (∇ × (j × B))φ and (d) Residual. (Colour online)

For Ek = 10−4, the multipolar regime is entered at smaller values of Ra (Ra = 2100), at
which point the Elsasser number decreases below unity. When B0 > 0, Λ drops towards
Λ0 (= B20) near the onset of convection, so the solution branch is continuous at Ra = Rac.
For B0 = 4, � reaches a local maximum for Ra = 100, before increasing monotonically
for Ra > 150. This local maximum corresponds to the kink in the plot of Rep observed in
section 4.1, and is the result of a change of branch betweenRa = 100 and 150. For B0 = 10,
� increases steadily after the onset of convection.

Figure 15(b) shows the ratio ofΛ/Λ0 as a function of Ra. The induced field exceeds the
imposed field (Λ/Λ0 > 2) for B0 = 4 at Ra > 750. For B0 = 10, this situation has not yet
occurred, although the amplitude of the induced field gets increasingly close to the imposed
field: Λ/Λ0 ≈ 1.75 for our largest Rayleigh number. For both B0 = 4 and 10, there are no
obvious changes in the evolution of Λ around Ra = 500, where the magnetic Reynolds
number reaches the value of the dynamo threshold in the absence of imposed field.

Figure 15(c) shows the evolution of the squared Alfvén number, A2, the ratio of the
kinetic to magnetic energies as defined in section 2.3 (equation (12)). For reference, A2

is thought to be of the order of 10−4 in the Earth’s core (Aubert et al. 2017). For B0 = 0,
A2 decreases with increasing Ra, but always remains fairly large, never falling below 0.1.
For B0 = 4 and 10, A2 is much smaller, of the order of 10−5 and 10−7 close to the onset
respectively. However, in both cases, A2 increases with Ra up to approximately 10−2 and
5 × 10−3. The kinetic energy therefore increases more rapidly than the magnetic energy
in the magnetoconvection case, contrary to the dynamo case.

Note that we did not observe notably large temporal fluctuations of the kinetic andmag-
netic energies in any of our simulations. For instance, at Ra/Rac ≈ 12, the kinetic energy
fluctuates by approximately 10% around themean value, while the fluctuations of themag-
netic energy tend to be smaller at larger B0 (around 10% of the mean value for B0 = 0 and
1% for B0 = 10). Figure 16(a) shows the evolution of the toroidal ratio i.e. the ratio of the
toroidal magnetic energy to the total magnetic energy. For B0 = 0, the toroidal ratio is
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Figure 15. (a) Elsasser numberΛ, (b) ratioΛ/Λ0, and (c) squaredAlfvénnumberA2 (seedefinition (12)),
as a function of Ra for Ek = 10−5. (Colour online)

approximately 0.5 for all Ra. For B0 > 0, the toroidal ratio is much smaller: simulations
at B0 = 4 slowly increases above 0.01 up to around 0.3, while for B0 = 10, the toroidal
ratio is less than 10−7 near the onset of convection and increases up to 10−2 for the largest
Ra. The poloidal component therefore largely dominates the magnetic field in magneto-
convection with an imposed axial field, while the magnetic energy is equally distributed
between poloidal and toroidal components in our dynamo simulations. This observation
is consistent with the results of Sakuraba and Kono (2000).

Figure 16(b) shows the evolution of the ratio of the axisymmetric toroidal to the toroidal
magnetic energies. For B0 = 0, this ratio remains constant around 0.15 for the highest Ra.
For B0 = 4, approximately 50% of the toroidal magnetic energy is contained in the axisym-
metric mode around Ra = 200. This observation is consistent with the formation of strong
zonal flows in this case, as the zonal flows distorts the poloidal magnetic field to produce
the axisymmetric toroidal field via an omega effect. The zonal flows are relatively weaker
at larger Ra, so the axisymmetric toroidal field weakens compared to the total toroidal field
then. For B0 = 10, the axisymmetric toroidal field is weak, especially at small Ra, which is
consistent with the weak zonal flows observed in this case.
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Figure 16. (a) Ratio of the toroidal magnetic energy to the total magnetic energy and (b) ratio of the
axisymmetric toroidal to the toroidalmagnetic energies as a functionofRa for Ek = 10−5. (Colour online)

To conclude this section, we study the partition of the poloidalmagnetic energy between
dipolar and multipolar components. Figure 17 shows the spectra of the time-averaged
poloidal magnetic energy for fixed Rayleigh numbers. The dominant degree is l = 1 even
for the highest values of Ra, indicating the dipolar nature of the field. As mentioned ear-
lier, for Ek = 10−4 at B0 = 0, we found that the field becomes multipolar for Ra = 2100,
but no multipolar regime was found for Ek = 10−5 for Rayleigh number up to Ra = 2800.
Christensen and Aubert (2006) found that convective dynamos produce multipolar fields
when the local Rossby number (Rol = U/(ΩLu) with Lu is a typical flow lengthscale) is
greater than 0.1. In our simulations,Rol ≈ 0.03 forRa = 2800 andEk = 10−5, sowe expect
that higher values of Ra are required to enter the multipolar regime in this case, despite
Cωz being less than 0.5. The cases with B0 > 0 show a gradual degradation of the relative
dipole strength when Ra increases, which is more pronounced for B0 = 4. However, the
field remains overwhelmingly dipolar even at large Ra where the induced field is of the
same order of magnitude as the imposed field. In these cases too, Rol is still less than 0.1.

5.2. Morphology of themagnetic field

We now analyse the morphology of the magnetic field, starting from the axisymmetric
magnetic field. Figure 18 shows meridional slices of the axisymmetric azimuthal magnetic
field and the poloidal magnetic field lines. In the magnetoconvective cases, the poloidal
field lines remain largely z-invariant, indicating that the imposed field is relatively unper-
turbed by the induced poloidal field, with themost significant variations observed at larger
Ra. For B0 = 4 and Ra = 1200, the induced field has a larger amplitude than the imposed
field (see figure 15(b)) but, even then, the magnetic field largely retains the shape of the
imposed magnetic field. For B0 = 4, the azimuthal field consists of a single ring located
outside the tangent cylinder and of opposite sign in each hemisphere. For Ra = 200, the
azimuthal field can be related to the zonal flow shown in figure 12 via an omega effect.
Only weak azimuthal field is present inside the tangent cylinder, which is consistent with
the absence of zonal flow there (and despite the presence of convection for Ra ≥ 500). By
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Figure 17. Spectra of the poloidal magnetic energy with respect to the spherical harmonic degree l
(left) and orderm (right) for Ek = 10−5. The coloured circles on each vertical axis represent the poloidal
energy of the imposed magnetic field itself. The spectra are time-averaged. (a) Ra = 350. (b) Ra = 500
and (c) Ra = 1200. (Colour online)
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Figure 18. Meridional slices of the axisymmetric azimuthal field (colour) and field lines of the axisym-
metric poloidal field (black lines) for Ek = 10−5. The magnetic field has been time-averaged in all cases.
(a) B0 = 0, Ra = 500. (b) B0 = 4, Ra = 200. (c) B0 = 4, Ra = 500. (d) B0 = 4, Ra = 1200. (e) B0 = 10,
Ra = 200. (f ) B0 = 10, Ra = 500 and (g) B0 = 10, Ra = 1200.
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contrast, for B0 = 0, a strong azimuthal field is produced on the tangent cylinder and dif-
fuses inwards (there is no convection inside the tangent cylinder forRa = 500 in this case).
For B0 = 10, the azimuthal field is very weak, even for higher values of Ra, and multiple
patches are seen in both hemispheres.

To determine whether the induced magnetic field reinforces or diminishes the imposed
magnetic field, we plot in figure 19 the induced component of the axisymmetric axial mag-
netic field, Bz − B0. Only the northern hemisphere is shown as Bz is largely symmetric
about the equator. ForB0 > 0, the axialmagnetic field is strongest at higher latitudes, and of
the sense to reinforce the imposed field. (The sense for B0 = 0 is coincidental, as the oppo-
site sense is an equally valid solution.) In the equatorial regions near the outer boundary
(and in the exterior), the induced dipole field results in locally negative induced Bz values;
these are always weaker than the imposed field, however, so the total axisymmetric Bz is
always positive. ForB0 = 4, there is a significant octopole component of induced field close
to onset, resulting in opposite polarity fields near the equator. At Ra = 500, the induced
field inside the tangent cylinder is a significant fraction of the imposed field. Overall, for
both B0 = 4 and 10, the induced axial dipole therefore reinforces the imposed field.

Figure 20 shows equatorial slices of the induced axial magnetic field (i.e. Bz − B0) in
the equatorial plane, superimposed on the axial vorticity. For B0 = 0, we show the nearest
case to the dynamo onset, Ra = 500 ≈ 4.7Ra0c . In this case, the maximum of Bz is located
within the anticyclones, which is a familiar feature of convective dynamos (e.g. Jones 2011).
In the magnetoconvective cases for Rayleigh numbers close to onset, the axial magnetic
field is concentrated between cyclones and anticyclones, with regions of positive induced
axial fields (which reinforce the imposed field) correlated with cold (inward) radial flow.
At larger Rayleigh numbers (Ra = 350) however, the axial magnetic field is concentrated
in the anticyclones in the equatorial plane, similarly to the dynamo case. This observation
is in agreement with the study of Sakuraba and Kono (2000) forΛ0 > 2, which emphasises
that the magnetic flux concentration inside anticyclones leads to an asymmetry between
cyclones and anticyclones with enlarged anticyclones. They argue that the magnetic con-
finement is due to convergent flows towards the core of the anticyclones in the equatorial
plane that compensate the Ekman pumping at the outer boundary.

5.3. Generation of the axisymmetric poloidal field

In order to determine which lengthscales play amajor role in the generation of the axisym-
metric poloidal magnetic field, we study the contributions to the electromotive force
(e.m.f. ). The equation for the poloidal magnetic component Bp is obtained by taking the
dot product of the magnetic induction equation with the vector r,

∂

∂t
L2Bp = r · ∇ × E + 1

Pm
∇2L2Bp, (33)

where we have used that rBr = L2Bp and the L2 operator isolates the angular part of the
Laplacian,

L2(·) = − 1
sin θ

∂

∂θ

(
sin θ

∂(·)
∂θ

)
− 1

sin2 θ

∂2(·)
∂φ2 . (34)

Applied to a spherical harmonic Ym
l , it gives L2Ym

l = l(l + 1)Ym
l . The e.m.f. is E =

u × B. From equation (33), the axisymmetric poloidal component Bp is driven by the
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Figure 19. Meridional slices of the induced axisymmetric axial magnetic field, Bz − B0, for Ek = 10−5.
The rows show cases at B0 = 0, 4 and 10 from top to bottom. The field has been time-averaged for Ra =
500. (a) Ra = 500. (b) Ra = 60. (c) Ra = 500. (d) Ra = 116 and (e) Ra = 500.
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Figure 20. Contours of the induced axial fieldBz − B0 (black lines) superimposedonto the axial vorticity
(colour) in a quarter of the equatorial plane for cases at Ek = 10−5. For the induced Bz , the solid and
dashed lines denote positive andnegative values respectively. The case for B0 = 0 (a) is near the dynamo
onset. Cases forB0 > 0arenear theonset of convection (b)–(c) and forRa = 350 (d)–(e). Ten radial points
have been excluded at the inner and outer boundaries to highlight the axial vorticity in the bulk of the
fluid. (a) B0 = 0, Ra = 500. (b) B0 = 4, Ra = 60. (c) B0 = 10, Ra = 116. (d) B0 = 4, Ra = 350 and (e)
B0 = 10, Ra = 350. (Colour online)

φ-component of the axisymmetric e.m.f., Eφ . (Specifically, the relevant source term
is (1/ sin θ) ∂(sin θ Eφ )/∂θ .) We decompose Eφ into contributions from individual
azimuthal spherical harmonics orderm,

Em
φ = umr B

m
θ − Bmr u

m
θ , (35)

where the superscript indicates a component of the velocity or magnetic field correspond-
ing to a givenm.

Figure 21 shows the r.m.s. value of Em
φ as a function ofm form ∈ [0, 20] for Ra close to

onset and at Ra = 500. Figure 22 shows the corresponding meridional slices of Em
φ for the

dominant value(s) of m and also the sum
∑m=20

m=0 Em
φ . Eφ is mainly symmetric about the

equator in all cases, so we only show the northern hemisphere. For comparison, we also
plot the azimuthal component of the axisymmetric electric current (which is related to the
mean e.m.f. via Ohm’s law)

jφ = 1
r
∂rBθ

∂r
− 1

r
∂Br
∂θ

. (36)

For B0 = 0, the largest contribution to the mean e.m.f. is produced by the modes m ≥ 8,
all contributing at a similar level until m = 20. The large-scale modes 1 ≤ m ≤ 7 have
relatively weak kinetic energy (see the kinetic energy spectrum in figure 8(b)), so it is
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Figure 21. R.m.s. value ofEm
φ as a function ofm for the first 20 spherical harmonics orders. The red circle

atm = 0 on each plot shows the value of E0
φ for the induced field only (i.e. B − B0ez). The values have

been time-averaged for Ra = 500. (a) B0 = 0, Ra = 500. (b) B0 = 4, Ra = 60. (c) B0 = 4, Ra = 500. (d)
B0 = 10, Ra = 116 and (e) B0 = 10, Ra = 500. (Colour online)
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Figure 22. Meridional slices of Em
φ and jφ for the same cases as in figure 21. The chosen values ofm for

Em
φ are noted in the subfigure caption. For the caseswithRa = 500, the values havebeen time-averaged.

(a) B0 = 0, Ra = 500; from left to right: E0
φ ,

∑m=20
m=9 Em

φ ,
∑m=20

m=0 Em
φ , jφ . (b) B0 = 4, Ra = 60; from left

to right: E0
φ , E

4
φ ,

∑m=20
m=0 Em

φ , jφ . (c) B0 = 4, Ra = 500; from left to right: E0
φ ,

∑m=8
m=1 E

m
φ ,

∑m=20
m=0 Em

φ , jφ .

(d) B0 = 10, Ra = 116; from left to right: E0
φ , E

9
φ ,

∑m=20
m=0 Em

φ , jφ and (e) B0 = 10, Ra = 500; from left to

right: E0
φ , E

11
φ ,

∑m=20
m=0 Em

φ , jφ . (Colour online)

perhaps unsurprising that their contribution to the mean e.m.f. is small. The sum of the
mean e.m.f. produced by the modes 0 ≤ m ≤ 20 is very similar to jφ , so the small scales
corresponding to m>20 only play a minor role in the generation of the axisymmetric
poloidal field. In fact, this is true for all the cases shown in figure 22.
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For B0 = 4, the main contribution comes fromm = 0 andm = 4 at onset, withm = 4
generating amean e.m.f. that opposes that ofm = 0 (which is largely due to the interaction
of the axisymmetric meridional circulation with the imposed field), but cannot entirely
match it. The net mean e.m.f. is thus similar to that of m = 0 with a reduced amplitude.
It produces a ring of negative jφ in the equatorial region, topped by a ring of positive jφ
at higher latitudes. Positive (negative) induced Bz is produced inside (outside) the ring of
positive jφ and vice-versa (see figure 19). For Ra = 500, modes up to m = 8 contribute
significantly to Eφ . Here again the non-axisymmetric modes generate a mean e.m.f. in
opposition to that ofm = 0. The net e.m.f. now producesmainly a ring of positive jφ whose
maximum is located atmid-latitudes near the outer boundary. As a result, the inducedBz is
positive in most of the domain and only negative near the outer boundary at low latitudes.
For Ra away from the onset, the large-scale non-axisymmetric modes that dominate the
kinetic energy spectrum (figure 8(b)) therefore largely contribute to the generation of an
induced field that reinforces the imposed field.

At B0 = 10 near onset, the dominant contribution comes from m = 9 (which domi-
nates the kinetic energy spectrum). The resulting jφ is positive and contained in a narrow
band outside the tangent cylinder, which corresponds to the location of the columnar
flow (see figures 2 and 20). Accordingly, the induced Bz is mainly positive inside the tan-
gent cylinder and negative outside. At higher Ra, the dominant non-axisymmetric mode
is now m = 11 (also the dominant non-axisymmetric mode of the kinetic energy spec-
trum), with m = 0 contributing at a similar level. These two modes produce e.m.f. that
are in opposition in most of the domain. As the flow structure extends further in cylindri-
cal radius when Ra increases (see figure 20), the resulting positive jφ now fills most of the
domain outside the tangent cylinder, producing a positive induced Bz throughout most of
the domain. Interestingly, the net mean e.m.f. is fairly similar for B0 = 4 and B0 = 10 at
Ra = 500 (hence similar induced Bz in figure 19), although the contributions from indi-
vidual modes are very different. This highlights a notable difference in field generation
mechanisms between B0 = 4 and B0 = 10, although the net outcome in both cases is the
production of an axisymmetric poloidal field reinforcing the imposed field in the interior.

6. Discussion

Wehave studied the effects of an imposed axialmagnetic fieldB0 = B0ez on rotating spher-
ical convection at onset and for supercritical values of the Rayleigh number. Our parameter
survey included both Ek = 10−4 and Ek = 10−5, for a range of values of Ra/Rac varying
from 1 to 50, with fixed Pr = Pm = 1, and with fixed temperature, no-slip, and electrically
insulating boundary conditions.

We found significant changes in the onset of convectionwhenB0 � O(1) (whereB0 = 1
corresponds to an Elsasser number of unity), with a decrease in the critical Rayleigh num-
ber Rac and azimuthal wavenumber mc that is more pronounced at small Ek. The critical
Rayleigh number increases again for larger values of B0 ∼ O(10), becoming independent
of the choice of Ek. The structure of the flow at onset is mainly columnar, regardless of the
choice of B0. The primary force balance gradually changes as B0 increases, and the Lorentz
force becomes one of the dominant forces balancing the Coriolis and buoyancy forces.
Interestingly, we find that the primary force balance varies locally: for B0 = 10, the buoy-
ancy and Lorentz forces balance in the equatorial region, but the balance is mainly between
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the Coriolis and Lorentz forces near the outer surface. The change in the force balance is
evident in the wave propagation, which is prograde and matches the frequency of thermal
Rossby waves for B0 < O(1), and subsequently slows down as B0 increases, until reversing
direction at B0 = 10 for small Ek.

For higher values of Ra, the columnar flows break down, with the earliest collapse seen
for B0 = 4. In this case, more efficient transport of heat is seen in the equatorial region,
as the Lorentz force offsets the Coriolis force here. The improved convective heat transfer
leads to strong latitudinal variations of the temperature resulting in a strong thermal wind.
This in turn has led to zonal flows in ourmagnetoconvective simulations, despite the equiv-
alent dynamo simulations normally having weak zonal flows. These zonal flows can distort
the poloidal component of the magnetic field, to produce a stronger axisymmetric toroidal
field. For larger values of B0, zonal flows are suppressed by the stronger axial field. Yadav
et al. (2016b) found that the presence of dominant zonal flows (and hence large shear) in
non-magnetic convection simulations reduces the efficiency of the convective heat transfer
compared with dynamo cases, where the zonal flows are drastically reduced. This occurs
when using stress-free boundary conditions, which favour the development of large zonal
flows. Here, on the contrary, we have a strong thermal wind combined with efficient heat
transfer. However the zonal flows are never dominant over the convective flows in our
simulations because the zonal flow amplitude is limited by the use of no-slip boundaries.
Additionally, Yadav et al. (2016b) found that no-slip dynamo simulations have signifi-
cantly improved heat transfer compared with the non-magnetic cases when the Elsasser
number of the self-sustained magnetic field is order unity, which is consistent with our
results.

Near onset, the induced magnetic field generated by magnetoconvection is much
smaller than the imposed field. The existence of subcritical behaviour, where a convective
solution that is obtained by switching off the imposed field exists at the same parameters
as the trivial conducting state, would require that the induced magnetic field is sufficiently
strong to modify the flow effectively. Here we found that the field needs to be order unity
to significantly influence the flow, so we expect that subcritical solutions would be difficult
to maintain near onset. Indeed, we carried out multiple attempts to maintain convec-
tive dynamos below the onset of convection by gradually reducing the imposed field, but
all were unsuccessful. However, for B0 = 4, the induced field exceeds the imposed field
for Rayleigh numbers approximately ten times critical. The induced field reinforces the
imposed field inmost of the domain, and themagnetic field largely retains the z-invariance
of the imposed field, even at the largest Rayleigh numbers. The magnetically-modified
flows are therefore able to generate a large-scale field with an intensity and morphology
comparable to the imposed field. As a result, the intermittent behaviour observed in the
planar dynamo simulations of Stellmach and Hansen (2004), Cooper et al. (2020) and sug-
gested by the magnetoconvection results of Zhang and Gubbins (2000a, 2000b) might be
avoided in this case. Additionally, hysteretic behaviour at high Rayleigh numbers might
be possible: for Rayleigh numbers greater than the value required for the dynamo onset, a
“strong” dynamo solution (obtained by switching off the imposed field) might exist at the
same parameters as a “weak” dynamo solution (obtained by small initial perturbation).
This was indeed observed by Sarson et al. (1997, 1999) and Sakuraba and Kono (2000) in
this regime. We have also attempted to obtain hysteresis for B0 = 4 and Ra ≥ 750, but this
has been unfruitful so far and will require further study.
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The large-scale field generation is greatly affected by changes in the imposed field
strength. In our dynamo simulations at B0 = 0, the axisymmetric poloidal field is gen-
erated by the “small-scale” convective flows that are relatively unaffected by the Lorentz
force (corresponding to azimuthal ordersm ∈ [8, 20] for Ek = 10−5, but we would expect
these scales to become smaller for decreasing Ek based on linear stability). A clear change
occurs for B0 = 4, where only the large-scale flows (withm<8) are significant in the pro-
duction of the axisymmetric poloidal field. These scales carry most of the kinetic energy
and are greatly affected by the Lorentz force. Notably, they lack attributes that are some-
times associated with the generation of axial dipoles (e.g. Olson et al. 1999, Sreenivasan
and Jones 2011): their relative kinetic helicity and columnarity are significantly reduced
compared with cases at B0 = 0. Another change occurs at larger B0 (B0 = 10), where a
single non-axisymmetric mode is largely responsible for the production of the axisym-
metric poloidal field together with contributions from the axisymmetric mode (at least up
to Ra = 500, where this mode remains close to the value of the dominant wavenumber at
onset). Our simulations are performed atmoderate values of Ek, so the distinction between
“small” and “large” scales is not strongly marked, but we would expect this distinction to
become very pronounced in planetary core conditions at smaller Ek.

Magnetoconvection calculations help to elucidate the mechanisms for the production
of magnetic fields in planets embedded in external fields of various strengths (e.g. the
Jovian satellites and some exoplanets), as well as general aspects of field-generation in
a strong-field regime. Our calculations complement the more prevalent studies of mag-
netoconvection with an imposed toroidal field. Some important differences are noted –
including the imposed field strength required to markedly affect the flow (Fearn 1979) and
the effect of the imposed axial field to reduce the relative kinetic helicity (e.g. see Sreeni-
vasan and Jones 2011), with possibly significant implications for magnetic field generation
– which warrant further work to elaborate to what extent the effects noted here rely on
the imposed axial field geometry. A disadvantage of using a uniform magnetic field is that
the whole domain is subject to the presence of the ambient field, whereas recent dynamo
simulations show that the magnetic field is heterogeneous within the bulk of the domain
(Schaeffer et al. 2017). The presence of magnetic-free regions have not been considered
here, but could be the subject of future magnetoconvection studies. Other work could fur-
ther investigate different boundary conditions or parameters, or imposing an axial field
that is not uniform (Sreenivasan and Gopinath 2017).

Work is currently in progress to extend this study to variable Pm, for values both smaller
and larger than the Pm = 1 case considered here. The case Pm < 1 is relevant to planetary
interiors (where Pm � 1, based onmolecular diffusivities); but as noted by Dormy (2016),
the case Pm > 1 may allow calculations at relatively high Ek to attain a strong-field solu-
tion branch, more relevant to the expected magnetostrophic balance, than the weak-field
and multipolar solutions found here for Pm = 1 (when considering B0 = 0). The com-
bined effects of varying Pm and B0 are therefore of considerable interest for understanding
planetary dynamos.
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APPENDICES

Appendix A: Implementation of the externally imposedmagnetic field

The magnetic field and electric current density, j = ∇ × B, are decomposed into poloidal and
toroidal components

B = ∇ × ∇ × (Bpr) + ∇ × (Btr), (A.1)

j = ∇ × ∇ × (jpr) + ∇ × (jtr). (A.2)

The poloidal and toroidal scalars of B and j are related as

jp = Bt , jt = −∇2Bp. (A.3)

In the vacuum outside the outer sphere, the electric current density is zero and so

Bt = 0, ∇2Bp = 0. (A.4)

The poloidal scalar is decomposed in spherical harmonics,

Bp(r, θ ,φ) =
∑
l

∑
m

gml (r)Ym
l with Ym

l = Cm
l P

m
l (cos θ)eimφ . (A.5)

Note that g here denotes the external solution, while we will denote the internal solution by p.
∇2Bp = 0 implies that

r2
d2gml
dr2

+ 2r
dgml
dr

− l(l + 1)gml = 0, (A.6)
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where we used L2Ym
l = l(l + 1)Ym

l , with L2 the angular part of the Laplacian introduced in
section 5.3. The solutions are of the form gml = Cαrα . Substituting in equation (A.6) gives α(α +
1) = l(l + 1), which has for solutions α = l (corresponding to external sources) and α = −l − 1
(corresponding to internal sources).

We consider the case where an external source at r > ro produces a uniform axial field,

B0 = B0ez = B0 cos θer − B0 sin θeθ . (A.7)

The imposed field only has a poloidal component. We denote byH and h the poloidal scalars of the
imposed field in real and spectral spaces. The uniform axial field projects onto the spherical har-
monics (l,m) = (1, 0) with the Legendre polynomial P01(cos θ) = cos θ and normalisation constant
C0
1 = √

3:

H(r, θ ,φ) = h01(r)
√
3 cos θ . (A.8)

By definition of the radial component of the field, Br = r−1L2H, we get

h01(r) = B0
2
√
3
r. (A.9)

In the vacuum, the solution for the spherical harmonics (l,m) = (1, 0) is the contribution from the
external and internal sources:

g01 = B0
2
√
3
r + A

r2
, (A.10)

where A is a constant. The poloidal scalar and its radial derivative are continuous at r = ro, and so,
the boundary condition for the internal solution at r = ro for (l,m) = (1, 0) is

p01(ro) = g01(ro), (A.11)

dp01
dr

∣∣∣∣
ro

= B0
2
√
3

− 2A
r3o

= B0
2
√
3

− 2
ro

(
p01(ro) − B0

2
√
3
ro

)
= − 2

ro
p01(ro) +

√
3B0
2

. (A.12)

There are no external sources for all the other spherical harmonics coefficientswith (l,m) �= (1, 0), so
the external solution depending on rl must have Cl = 0. For (l,m) �= (1, 0), the boundary condition
for the internal solution at r = ro is then simply

pml (ro) = gml (ro), (A.13)

dpml
dr

∣∣∣∣
ro

= dgml
dr

∣∣∣∣
ro

= − l + 1
ro

pml (ro). (A.14)

This latter boundary conditions is already implemented in PARODY, so the only required modifi-
cation to the code is the implementation of the boundary condition (A.12).

Appendix B: Theoretical frequency of the thermal Rossby waves

To compare the frequency of the waves near the onset of magnetoconvection in our simulations
with the expected frequency of thermal Rossby waves at the same azimuthal wavenumber, we use
the theoretical values for non-magnetic thermal Rossby waves provided by the asymptotic study of
Dormy et al. (2004) in the case of differential heating with χ = 0.35 and no-slip boundaries. The
theoretical values are given by

ωa = (1 − χ)2
[
ωgvÊk−2/3 + Êk−1/3

(
∂ω

∂m

)
c
mn

]
, (B.1)

ωgv = ω
gv
c + Êk2/9ωgv

1 + Êk1/6ω̃gv, (B.2)

Êk = Ek
(1 − χ)2

2
, (B.3)
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where we have introduced the relevant factors to match our choice of units and

ω
gv
c = 0.743835, ω

gv
1 = 0.56878, ω̃gv = −0.72723,

(
∂ω

∂m

)
c
= −2.2637. (B.4)

mn is the azimuthal wavenumber of the dominant mode in the numerical simulations.

Appendix C: List of simulations

Table C1. Summary of the input and output quantities for the simulations at Ek = 10−5 and
Pr = Pm = 1.

Ra lmax mmax Nr Ek Em Nu Cωz Hrel

B0 = 0
106 84 64 120 0.34 0 1.000 0.852 0.152
350 108 108 160 1489.4 0 1.323 0.829 0.152
400 108 108 160 2191.9 0 1.395 0.816 0.153
450 164 164 160 3071.1 0 1.415 0.802 0.157
500 164 164 160 2691.8 0.048 1.524 0.7829 0.169
600 164 164 160 4116.0 0.079 1.685 0.7592 0.165
750 164 164 160 6733.6 0.41 2.385 0.6738 0.176
1200 204 204 200 13762 1.3 3.721 0.5277 0.132
1500 204 204 200 18620 2.2 4.675 0.4784 0.104
2100 204 204 200 31633 3.7 6.374 0.4302 0.075
2800 204 204 200 52062 4.9 8.010 0.4000 0.061

B0 = 4
60 64 64 120 13.0 8.1 1.083 0.7744 0.086
75 64 64 120 49.5 8.4 1.263 0.7359 0.073
100 64 64 120 115.9 9.3 1.450 0.7204 0.059
150 108 108 120 241.2 9.3 1.452 0.7451 0.064
200 124 124 120 448.1 10.3 1.655 0.7188 0.060
300 164 164 120 963.3 12.7 2.045 0.6780 0.056
350 164 164 120 1263.4 13.9 2.229 0.6362 0.051
500 164 164 160 1629.7 15.0 2.627 0.5182 0.037
750 164 164 160 2942.0 17.6 3.272 0.4659 0.034
1200 204 204 200 6023.7 20.8 4.175 0.4217 0.033
1500 204 204 200 8625.0 26.0 4.699 0.4062 0.029
2100 204 204 200 14563 28.3 5.755 0.3848 0.025
2800 204 204 200 22261 25.4 7.048 0.3651 0.024

B0 = 10
116 64 64 120 0.58 50.0 1.002 0.902 0.034
200 84 84 120 154.7 51.4 1.244 0.880 0.029
350 108 108 160 813.7 56.4 1.702 0.892 0.033
500 164 164 160 1940.6 62.7 2.160 0.865 0.041
750 204 204 200 4043.8 70.2 2.787 0.778 0.043
1200 204 204 200 10673 74.5 3.968 0.720 0.048
1500 204 204 200 14331 78.9 4.376 0.644 0.049
2100 204 204 200 22898 83.7 5.130 0.559 0.047
2800 204 204 200 34509 87.4 5.917 0.505 0.042

Note: lmax andmmax are the truncation degree and order of the spherical harmonics expansion andNr is the number of radial
grid points. Ek and Em are the volumetric kinetic and magnetic energies.


	1. Introduction
	2. Equations and methodology
	2.1. Governing equations
	2.2. Numerical method
	2.3. Definitions of the output quantities

	3. Onset of magnetoconvection
	3.1. Critical parameters
	3.2. 3D structure of the flow
	3.3. Force balance

	4. Evolution of the flow with increasing Rayleigh number
	4.1. Convective flow
	4.2. Efficiency of the heat transfer
	4.3. Zonal flow

	5. Generation of the magnetic field
	5.1. Evolution of the magnetic energy with Ra
	5.2. Morphology of the magnetic field
	5.3. Generation of the axisymmetric poloidal field

	6. Discussion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


