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Learning to Efficiently Plan Robust Frictional

Multi-Object Grasps

Wisdom C. Agboh˚1,2, Satvik Sharma˚1, Kishore Srinivas1, Mallika Parulekar1

Gaurav Datta1, Tianshuang Qiu1, Jeffrey Ichnowski3, Eugen Solowjow4, Mehmet Dogar2, Ken Goldberg1

Abstract—We consider a decluttering problem where multiple
rigid convex polygonal objects rest in randomly placed positions
and orientations on a planar surface and must be efficiently
transported to a packing box using both single and multi-object
grasps. Prior work considered frictionless multi-object grasping.
In this paper, we introduce friction to increase the number of
potential grasps for a given group of objects, and thus increase
picks per hour. We train a neural network using real examples
to plan robust multi-object grasps. In physical experiments, we
find a 13.7% increase in success rate, a 1.6x increase in picks per
hour, and a 6.3x decrease in grasp planning time compared to
prior work on multi-object grasping. Compared to single-object
grasping, we find a 3.1x increase in picks per hour.

I. INTRODUCTION

When skilled waiters clear tables, they grasp multiple uten-

sils and dishes in a single motion. Similarly, it is inefficient

for robotic picking systems in warehouses and fulfillment

centers to only handle a single object at a time. Picking

multiple objects at once can significantly increase picks per

hour (PPH), the total number of objects picked from a scene in

an hour. In prior work on multi-object grasping [1], PPH was

increased compared to single-object picking. This improve-

ment was limited due to a frictionless grasping assumption

and no considerations of robustness. In this work, we find that

considering friction and quickly generating robust grasps can

lead to significant improvements in PPH. For example, grasps

like those shown in Fig. 1 cannot exist without appropriate

friction between objects. An important question that then arises

is how to generate such robust frictional grasps.

Robust grasps have been generated in prior work [2, 3, 4, 5],

but only for single objects. Inspired by these works, we de-

velop a robust multi-object grasping system for planar convex

polygonal objects. Instead of using a physics simulator, we

propose to collect data entirely on a physical robot and use it

to train a multi-object grasping function, MOG-Net, which is

robust to state and control uncertainty and predicts the number

of objects that will be grasped out of a target object group.

We train in real to avoid the sim-to-real gap [6, 7, 8]. We

also propose a necessary condition for frictional multi-object

grasping to filter out inadmissible grasps and show that this
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Figure 1. The decluttering problem (top) where objects must be transported
to a packing box. We find robust frictional multi-object grasps (bottom) to
efficiently declutter the scene.

filtering leads to a high quality dataset and saves valuable

physical robot time during data collection.

We use MOG-Net in a novel grasp planner to generate

robust multi-object grasps. The planner maximizes the pre-

dicted number of objects grasped per pick attempt in cluttered

scenes. To improve robustness to state and control uncertainty,

we weight MOG-Net’s predictions with the probability of

satisfying multi-object grasping necessary conditions, obtained

via Monte-Carlo sampling.

We find a 13.7% increase in success rate, a 1.6x increase

in picks per hour, and an 6.3x decrease in grasp planning

time compared to prior work [1] on multi-object grasping.

Compared to single-object grasping we find a 3.1x increase in

picks per hour. This work makes 4 contributions:

1) The derivation of a frictional multi-object grasping nec-

essary condition to filter inadmissible grasps.

2) MOG-Net: a robust multi-object grasp neural network,

self-supervised in real to predict the number of objects

grasped out of a target group, given a grasp candidate.

3) A grasp planning algorithm, µ-MOG, that generates

grasps that are robust to state and control uncertainty,

by considering the probability of necessary conditions

being satisfied.

4) Physical experiments evaluating the methods with ran-



domized scenes of 58 polyhedral objects totaling 2532

grasp attempts.

II. RELATED WORK

Decluttering or picking multiple objects from a table is

a common robotics problem [9] which has mainly been

addressed with single object grasps [10, 11]. In this section, we

discuss prior work on multi-object grasping, frictional single

object grasping, and robust grasp synthesis.

A. Multi-object grasps

Harada and Kaneko [12] proposed some of the earliest

works on multi-object grasping. In [12, 13, 14] they develop

conditions for enveloping grasps of multiple objects using

a multi-fingered robot hand, and under a rolling contact

assumption. Not long after, Yamada et al. [15] proposed

a series of methods [15, 16, 17, 18, 19] to evaluate the

grasp stability of multiple planar objects grasped by a multi-

fingered robot hand. While these were the pioneering works

on multi-object grasping, their results focused on numerical

simulations, without physical robot multi-object grasps. This

paper derives conditions for equilibrium multi-object grasps,

under the frictional point-contact model and shows physical

robot multi-object grasps.

Recently, Chen et al. [20] investigated the problem of

dipping a robot hand inside a pile of identical spherical

objects, closing the hand and estimating the number of objects

remaining in the hand after lifting. Shenoy et al. [21] focused

on the same problem but with a goal of transferring the picked

spherical objects to another bin. Our work is focused on

frictional multi-object grasps of arbitrary convex polygonal

objects spread over a plane, so physics-based planning is

required [22, 23, 24, 25].

Sakamoto et al. [26] proposed a picking system that first

uses robot pushing [27, 28, 29], to move one cuboid to the

other and thereafter grasps both cuboids in separate actions. In

this paper, we take a single-step push-grasp action and derive

conditions for multi-object grasping under the frictional point

contact model. Given the uncertainty in grasping systems [30,

31], we plan robust multi-object grasps to improve PPH.

B. Frictional grasps

Some prior works on single object grasping have studied

the effect of friction. Golan et al. [32] develop a gripper

that can switch between being frictionless and frictional, and

show that having a frictional gripper provides more secure

and robust grasps in real. Hang et al. [33] propose a measure

of friction sensitivity to assess how grasp quality varies with

the coefficient of friction. Inspired by nature, Roberge et al.

[34] use a gecko-inspired adhesive on a gripper to apply large

shear forces with low normal forces for grasping a single

object. Agboh et al. [1] did not consider friction in multi-object

grasping. However, for single objects, friction can increase

the number of stable grasps. Using a point contact model,

the friction cone is larger for a higher coefficient of friction,

meaning that more stable single object grasps can be found.

We show that the same is true for multi-object grasping.

We focus on frictional multi-object grasps where objects are

pushed together before they are grasped.

C. Robust grasping

Uncertainty in state and model disparity result in grasp

failure. An important line of grasping work focuses on gener-

ating grasps that are robust to uncertainty. To the best of our

knowledge there has been no prior work on robust multi-object

grasping. Prior work on robust single object grasping typically

falls into one of two categories — analytic or data-driven.

One analytic approach to robust grasp synthesis is the use

of funnels [31, 35]. These are primitives that can analytically

reduce or ‘funnel’ uncertainty from some initial set to a smaller

target set. Bhatt et al. [36] use a sequence of funnels to perform

open-loop and robust in-hand manipulation. Another analytic

method is caging [37, 38, 39] where a grasped object’s mobil-

ity is bounded such that it ‘follows’ when the gripper moves.

These analytic methods exploit the object’s environment and

shape, using carefully chosen primitives to generate robust

grasps. Our work focuses on data-driven methods to generate

robust grasps.

Popular data-driven single-object robust grasp synthesis ap-

proaches are Dex-Net 2.0 and Dex-Net 4.0 [2] [40]. They train

a grasp quality convolutional neural network (GQ-CNN) with

synthetic data to predict grasp success probability. Similarly,

Dex-Net 3.0 trains a GQ-CNN for robust grasps on single

objects but for suction cups [41].

There is a sim-to-real gap [6, 7, 8] when grasps are trained

in simulation. Robustness in these simulation settings has been

achieved through domain randomization or general Monte-

Carlo sampling [42, 43, 44].

In this work, we propose a frictional multi-object grasp

necessary condition and use it to filter inadmissible multi-

object grasp candidates. To be robust to state and control

uncertainty, we estimate the probability of satisfying these

necessary conditions through Monte-Carlo sampling. We avoid

the sim-to-real problem by training MOG-Net entirely in real.

III. PROBLEM STATEMENT

We consider a decluttering problem where multiple rigid

convex polygonal objects rest in randomly placed positions

and orientations on a planar surface, visible from an overhead

camera, and must be transported to a packing box. The ob-

jective of this work is to develop a decluttering algorithm that

maximizes picks per hour (PPH) for this problem, using robust

frictional grasps. Note that we do not consider rearrangement

actions (e.g. pushing actions) for arranging the groups before

multi-object grasping in this work. Finding the optimal rear-

rangement plan in such scenes is a challenging long-horizon

problem that deserves a separate thorough treatment.

A. Assumptions

We assume that the gripper is a parallel-jaw gripper. We

acknowledge that multi-fingered grippers provide more op-

portunities for multi-object grasps but we focus on parallel-

jaw grippers as they are common. We assume that objects



Initial Cluttered Scene
Max Object

Group

Gen.

Cand.

Grasps

Nec.

Conds.

Probability

MOG-Net

Nk
gγk,uk

u
k Robust

Grasp

max
uk

pγkNk
g q...

...
...

Figure 2. An overview of the decluttering system proposed in this paper. It finds the maximum group of objects that can fit in the gripper and generates
a robust grasp for that group. First, it generates candidate grasps, and for each grasp u

k , estimates a probability of satisfying multi-object grasp necessary
conditions (γk), under state and control uncertainty. Thereafter, it uses MOG-Net which was trained in real to predict the number of objects (Nk

g ) that will

be grasped using u
k . The chosen robust grasp maximizes the product γk ¨ Nk

g . We execute the robust grasp and continue to the next object group until the
table is cleared of all objects.

are extruded convex polygons laying on a flat, uniform color

surface, and that we have a set value for the lower bound

for µ, the coefficient of (Coloumb) friction, for all contact

interactions. We also assume antipodal multi-object grasps

where each object is kept in equilibrium by two neighbouring

objects, or one object and a gripper jaw. We further assume

that a group of objects in force closure will be securely grasped

during motion, and neither the grasping force nor the speed

of the motion will dislodge the objects.

B. State and action

The state x is a list of all convex polygonal objects, where

each object, oi, in the list is represented by its vertices:

x “ roi s @i P r0 . . . No ´ 1s

where oi “ rtx0

i , y
0

i u, . . . , txv
i , y

v
i u, . . . , txNv´1

i , yNv´1

i us

Here, No is the number of objects on the table, txv
i , yvi u

represents the 2D position of vertex v of object i, provided

by an overhead camera, and Nv is the maximum number of

vertices for each object i.

We represent single and multi-object grasp actions in the

same way: u “ rxg, yg, θgs , where xg, yg , and θg represent

the desired grasp pose of the gripper, after which the jaws

close with a maximum force fg .

IV. DECLUTTERING WITH MULTI-OBJECT GRASPS

We present an overview of the decluttering system in Fig. 2.

Given an initial cluttered scene, we take a greedy approach and

find an object group with the maximum number of objects

that can fit in the gripper. The next step is to plan a robust

Algorithm 1: Decluttering Algorithm

1 do

2 x, No Ð GetCurrentState(.)

3 obj groups Ð CreateObjGroups(x)

4 ranked obj groups Ð RankObjGroups(obj groups)

5 for obj group in ranked obj groups do

6 u Ð RobustGraspPlanner(x, obj group)

7 if u ‰ tu then

8 Execute u

9 break

10 while No ą 0 and time remaining;

multi-object grasp for this object group. We sample candidate

grasps within the convex hull of the objects (see Sec. IV-B).

Thereafter, we estimate the probability γk that the kth grasp

u
k will satisfy the multi-object grasp necessary conditions (see

Sec. V), under state and control uncertainty. We also query

MOG-Net (see Sec. VI) to predict the number of objects, Nk
g

that the given grasp will successfully pick. Finally, we choose

the grasp that maximizes the robust prediction γk ¨Nk
g . In the

following subsections, we provide details of the decluttering

algorithm and the robust multi-object grasp planner.

A. Decluttering

Alg. 1 details the decluttering algorithm, which is similar

to the picking algorithm in prior work [1]. We estimate the

current state x, containing No objects, using color segmenta-

tion to isolate objects and using their convex hulls to find

vertices (line 2). The algorithm then uses the subroutine

CreateObjGroups(.) (line 3) to create a set of distinct object

groups. It loops through center points of objects and creates

groups of all objects that are half a gripper width radius

away. This also includes all single object groups. Then, the

RankObjGroups(.) subroutine (line 4) ranks the list of object

groups by their size. The RobustGraspPlanner(.) subroutine

(line 6) in section IV-B finds a grasp for the largest object

group. The grasp is executed and the whole process repeats

until the table is cleared or a time limit is reached.

B. Robust multi-object grasp planning

One main distinction from prior work is the robust multi-

object grasp planner µ-MOG, which is detailed in Alg. 2.

Algorithm 2: µ-MOG

Input : x: Current state

obj group: Objects in the potential grasp

Output : ur: A robust grasp action

Nr
g : Predicted number of objects with u

r

1 grasp cands Ð GenGraspCands(x, obj group)

2 for u
k
in grasp cands do

3 γk Ð NecessaryCondsProba(x, uk)

4 Nk
g Ð MOG-Net(x, uk)

5 u
r Ð argmax

uk

(γk ¨ Nk
g )

6 return u
r, Nr

g



The algorithm generates multiple grasp candidates (line 1)

using GenGraspCands(.). It finds the convex hull of a given

group of objects and generates Np points that uniformly

cover the convex hull. At each point, it generates Nθ ori-

entation samples. It rejects grasp samples that result in col-

lisions between the gripper jaws and any object. Next, it

loops through grasp candidates (lines 2-4) and estimates (i)

the probability γk of satisfying necessary conditions using

NecessaryCondsProba(x, u
k), and (ii) the predicted number

of objects that u
k will successfully grasp Nk

g , using MOG-

Net.

To calculate γk, NecessaryCondsProba(.) performs Monte-

Carlo sampling so that the relative position of the grasp

candidate varies with respect to the position of the objects in

the group. Specifically, we consider samples u1 “ u`δu, and

x
1 “ x`δx where δu „ N p0, σu

2q, δx „ N p0, σx
2q, and σu,

σx are standard deviations for control and state respectively.

Then, it returns the ratio of grasp samples (γk) that satisfy

the necessary conditions, under state and control uncertainty.

Finally, we choose the robust grasp u
r such that:

u
r “ argmax

uk

pγk ¨ Nk
g q (1)

C. Robustness to Frictional Uncertainty

We assumed a lower bound on the coefficient of friction

for all objects in Sec. III-A. This is a conservative assumption

to allow for frictional uncertainty. Lower values of µ mean

fewer admissible grasp candidates. Thus, any grasp candidate

that satisfies the necessary conditions for the lower bound will

also satisfy the conditions for higher values of µ.

V. NECESSARY CONDITIONS FOR MULTI-OBJECT

GRASPING

Prior work [1] studied frictionless multi-object grasping. In

this work, we extend the analysis to include friction and derive

the frictional necessary conditions to achieve frictional force

closure.

A. Frictional equilibrium multi-object grasps

Under the frictionless point contact model, the number of

possible antipodal grasp configurations for a polygon is lim-

ited. For example, a triangle has only one possible equilibrium

grasp configuration: a vertex and an opposing edge. With fric-

tion, it is possible to achieve more equilibrium grasps, which

is dependent on the coefficient of friction. We first analyze

equilibrium grasps for a single object under the frictional point

contact model and extend those results to multiple objects.

In single object grasping with a parallel-jaw gripper, fric-

tional equilibrium grasps occur at pairs of contacts where

the friction cones contain opposing forces that lie on the

line passing through them. Recall that µ is the lower bound

on the coefficient of friction at the left and right contacts.

Then, the friction cones (Cl and Cr) are characterized by

αl “ αr “ tan´1pµq, and are centered on the contact normals

(n̂l, n̂r). If the line Lg that passes through both contact points

is contained in both friction cones, the parallel-jaw grasp is in

equilibrium.

fg fg

αli

Cli Cri

Lgi

Cli`1
Cri`1

Lgi`1
Lgi`2

Figure 3. A top-down view of a 3-object frictional equilibrium grasp. We
check that each object i is in an equilibrium grasp by inspecting their left
(Cli ) and right (Cri ) friction cones and the line (Lgi ) passing through both
contact locations. Also, we ensure that all connecting lines lie on the same line

(L̂gi “ L̂gi`1
“ ¨ ¨ ¨ “ L̂gno

). The friction cones are centered on the contact

normal and are defined by the coefficient of friction µ. α “ tan´1pµq.

For a convex polygonal object, it is then possible to consider

discrete points along the object’s surface, and enumerate

equilibrium grasps by considering opposing contact pairs using

the friction cones. The number of equilibrium grasps can be

infinite depending on the size of the friction cone (α).

We require each individual object in a frictional multi-

object grasp to be in an equilibrium grasp. Consider Fig. 3. It

shows a sample frictional multi-object equilibrium grasp for 3

objects. The left (Cli ) and right (Cri ) friction cones for object

i are characterized by αli “ αri “ tan´1pµq. To achieve

an equilibrium multi-object grasp for a group of no objects,

both friction cones for each object i P t0, 1, . . . , no ´1u, must

contain opposing forces that lie on line Lgi , connecting their

contact locations. Since the forces at object-object contacts are

reactionary, all connecting lines (Lgi in Fig. 3) must lie on the

same line:

L̂gi “ L̂gi`1
“ ¨ ¨ ¨ “ L̂gno

(2)

where L̂gi is the unit vector of Lgi , for object i.

B. Frictional multi-object grasp diameter

Every object has a final diameter df at which a stable

frictional single-object grasp will occur. This is the distance

between gripper jaws when they become stationary in a stable

grasp. By sampling stable frictional contact pairs on an object,

we can enumerate multiple final single object grasp diameters

to find the minimum, d˚

f . Similarly, every object group has

a final multi-object diameter hf at which a stable frictional

multi-object grasp will occur. We compute the minimum final

multi-object grasp diameter h˚

f given no objects as:

h˚

f “
no´1
ÿ

i“0

d˚

fi
(3)

This is true because we showed in Eq. 2 that all connecting

lines must lie on the same line. We use h˚

f in the multi-object

grasping necessary condition detailed in Sec. V-C.

C. Necessary conditions for multi-object grasping

Prior work on frictionless multi-object grasping [1] devel-

oped two necessary conditions — intersection area and multi-

object grasp diameter. These conditions are used to filter



inadmissible grasps in a multi-object grasp planner. In this

section we summarize these conditions for completeness.

Given a grasp, let the internal rectangular region between

the gripper jaws be S. Let osi “ S X oi, be the intersection

polygon between S and object oi.

1) Intersection area: Let Aiptq “ Areaposi q, be the area

of the intersection polygon for object i, during a multi-object

grasp at time t for a grasp. The intersection area condition

from prior work [1] can be written as:

Aip0q ą 0, i P t0, 1, . . . , no ´ 1u. (4)

We directly use this intersection area condition in this work.

2) Multi-object grasp diameter: Prior work [1] defined the

multi-object grasp diameter necessary condition. We restate

it here for completeness. Let wgptq be the gripper width at

time t. Let blptq be the shortest distance between os
0

and the

left jaw (where os
0

is the closest object to the left jaw), and

brptq be the shortest distance between osno´1
and the right jaw

(where osno´1
is the closest object to the right jaw). Then, the

multi-object grasp diameter as a function of time is: hptq “
wgptq´pblptq`brptqq. Let h0 be the initial multi-object grasp

diameter at time t0, and hf be the corresponding final multi-

object grasp diameter, at time tf when the grippers become

stationary after closing. Given a group of no objects, one can

compute the minimum possible diameter h˚

f , such that any

multi-object grasp must satisfy:

h0 ě h˚

f . (5)

Prior work [1] computed h˚

f for the frictionless case. Here

we provide a method to compute it for the frictional case.

Specifically, we compute d˚

fi
in Eq. 3 by sampling Ns contact

points along an object’s edge. Then, we generate all contact

pairs resulting from these points. Next, we check if a contact

pair is stable by ensuring that the left and right friction cones

contain the line connecting the contact points. We pick d˚

fi
as

the stable contact pair with the minimum diameter.

Note that given a group of no objects, h˚

f is smaller in

the frictional case compared to the frictionless case. This

allows for more multi-object grasps to satisfy the necessary

conditions when friction is considered. We further note that

these necessary conditions are independent of the contant area,

given the Coulomb friction assumption.

VI. LEARNING A MULTI-OBJECT GRASP NEURAL

NETWORK

We train MOG-Net with self-supervised learning in real to

predict the number of objects (Ng) that can be successfully

grasped from a target object group. It takes the state of all

objects in a target group, and a grasp action u as inputs.

In Sec. VI-A we detail our data collection process, and in

Sec. VI-B we explain details of the neural network model.

A. Data collection

Physical robot time is expensive and we would like to

quickly generate a high quality dataset for MOG-Net. An

important question is what grasps do we execute during

data collection. Given an object group, instead of randomly

sampling grasps, we propose to use the frictional multi-object

grasp necessary conditions to filter out inadmissible grasps.

Our data collection algorithm is similar to the decluttering

algorithm with two key differences: i) unlike in Alg. 1,

during data collection, obj group consists of only multi-object

groups (i.e lenpobj groupq ą 2), and is chosen at random, ii)

in Alg. 2, we use a heuristic instead of MOG-Net — the total

intersection area, AT =
řno´1

i“0
pAiq (see Sec. V-C1). We pick

the grasp with argmax
uk

pγk ¨ Ak
T q. After grasp execution, the

data collection system uses an overhead image of the scene

and the gripper jaw position to count the number of objects

grasped. In this way, data collection is self-supervised.

B. Multi-object grasp neural network

MOG-Net predicts Ng P t0, . . . , Nmax
g u, where Nmax

g is

the maximum number of objects that can be grasped. We train

a separate classifier for each Ng prediction class, using the

same dataset collected in real. Specifically, data for a specific

class is created by setting only occurrences of the desired

Ng label to true while others are false. Thereafter, we train

a feedforward neural network model for each class to perform

binary classification. At test time, given a target object group

of size no ď Nmax
g , we query neural network models for

classes between 0 and no. Then, we pick the prediction with

the maximum probability as Ng . We provide further details

on MOG-Net in VII-C.

VII. PHYSICAL EXPERIMENTS

We conduct physical experiments to evaluate the data collec-

tion and decluttering algorithms. Our goal is to investigate

the effect of friction on multi-object grasping for different

methods. In the following subsections, we explain the general

setup, experimental details, baselines, and results.

A. Experimental setup

The setup is as shown in Fig. 1 where we use a UR5 robot

with a Robotiq 2F-85 gripper. In experiments, we have two

sets of objects – low friction and frictional. Each contains a

total of 58 objects from 3-sided to 8-sided convex polygons.

To get frictional objects we wrap low friction objects with

transparent, non-stick, high friction tape.

During data collection and decluttering experiments, we

generate initial scenes with randomized object poses. We begin

by repeatedly creating random object clusters. Each scene

contains 17 non-overlapping object clusters that have a random

Table I. In this table, we show the number of grasped objects in the dataset
of 1545 grasp samples collected on the physical robot for MOG-Net and
Rand-Net. We see that MOG-Net produces a more balanced and higher
quality dataset compared to Rand-Net. This saves valuable robot time.

Number of grasped objects in the dataset

0 1 2 3 4

Rand-Net 543 665 250 74 13
MOG-Net 278 322 474 341 130



Table II. Physical decluttering experimental results for 10 scenes, each with 58 objects randomized as described in VII-A. We reset each scene precisely by
hand to compare the methods. Errors here are within 95% confidence interval of the mean. Compared to prior work (Frictionless MOG[1]), MOG-Net

achieved 13.7% higher grasp success, 1.6x PPH, and plans grasps 6.3x faster. We also record a 3.1x improvement in PPH compared to Frictional SOG.

Methods Success rate (%) Picks per hour Grasped Objs. Planning time (s) Cleared (%) Pick attempts

Frictional SOG 51.5 ˘ 2.2 188.9 ˘ 9.2 0.59 ˘ 0.0 0.11 ˘ 0.0 98.5 ˘ 0.7 80.7 ˘ 3.6
Rand-Net 67.0 ˘ 3.0 321.9 ˘ 19.9 0.93 ˘ 0.1 0.53 ˘ 0.1 99.5 ˘ 0.7 54.9 ˘ 3.3
Frictionless MOG [1] 68.9 ˘ 5.6 370.5 ˘ 48.3 1.30 ˘ 0.2 2.21 ˘ 0.2 99.0 ˘ 0.8 43.0 ˘ 5.6
Frictionless MOG-Net 71.5 ˘ 5.7 392.1 ˘ 24.8 1.26 ˘ 0.1 0.59 ˘ 0.1 97.8 ˘ 1.4 44.0 ˘ 2.4
MOG-Net 82.6 ˘ 3.8 580.7 ˘ 29.1 1.83 ˘ 0.1 0.35 ˘ 0.1 100.0 ˘ 0.0 30.6 ˘ 1.6

center point. Within each cluster, we randomly sample 1 the

number of objects, their types, positions, and orientations.

We use an RGBD camera (Intel Realsense Camera D435) to

get a top-down image of the cluttered scene and then extract

vertices of all objects to get the state x. The grasp action u

involves four steps. (1) Moving the open gripper above the

desired grasp pose and lowering until just above the table. (2)

Closing the gripper jaws. (3) Moving the gripper upwards and

above the packing box. (4) Opening the jaws so the objects

fall into the packing box. All parameters used in this work are

detailed here (i) grasp sampling parameters: Np “ 25 , and

Nθ “ 12. (ii) Monte-Carlo sampling parameters to estimate γ:

σu “ r2mm, 2mm, 2˝s, and σx “ 2 ¨ t1umm. (iii) friction:

µ “ 0.5 for frictional, µ “ 0.01 for frictionless, and Ns “ 5

for contact point sampling. (iv) Nv , the maximum number of

vertices per object is set to 8 in our object set.

B. Baseline methods

1) Frictional SOG: We use Alg. 1 but restrict object groups

to contain only single objects. It plans a frictional single-object

grasp with the frictional point-contact model. This is similar

to state of the art single-object grasping methods such as Dex-

Net.

2) Rand-Net: This trains the same neural network model as

ours but with a different dataset. The dataset is comprised of

random grasps to execute during training from grasp cands

in Alg. 2 but without filtering with the necessary conditions.

We trained and tested this baseline with frictional objects.

3) Frictionless MOG: This is state-of-the-art in multi-

object grasping from prior work [1]. It filters grasp candidates

with frictionless necessary conditions and uses a physics

simulator (Mujoco) to find grasps.

4) Frictionless MOG-Net: This baseline uses MOG-Net but

computes necessary conditions using a low friction value.

Note that we use low-friction objects for the two friction-

less baselines above since they rely on frictionless necessary

conditions from prior work [1] to generate grasps.

We left one set unmodified to use as low-friction objects

for the frictionless baselines. We added clear grip tape to the

objects of the other set to use as the high-friction counterparts

1For each cluster, we first randomly select an orientation for the diameter
of that cluster and an ordered subset of all 58 objects without replacement to
place in that cluster. We then randomly sample points along the diameter of
that cluster, with uniform noise r´0.9, 0.9s cm perpendicular to that diameter,
to be the center of the longest edge for that object. For each object in the
cluster, we sample a random orientation in r´π{2, π{2s.

for the frictional methods. The low-friction objects do not

generate frictional grasps, but instead get filtered out as

inadmissible grasps using the frictionless necessary conditions

from prior work [1].

C. Experimental details

1) Data collection: We collected 1545 grasp samples in real

for MOG-Net and Rand-Net, using the random initialization

process described in VII-A.

2) Decluttering: We create 10 decluttering scenes with the

same process as data collection. In each scene, we use the

four different baselines and MOG-Net to generate grasps. We

replicated the randomly generated scene manually in each

case, leading to a total of 50 physical robot experiment scenes

and a total of 2532 robot grasp samples. A failed grasp attempt

is where the robot misses a grasp (all objects escape), or where

all objects fall out of the gripper before they reach the packing

box.

3) Neural network details: We use a feedforward neu-

ral network with 4 hidden layers. Specifically, we use the

MLPClassifier(.) from scikit-learn [45] with default parameters

and hidden layer sizes “ p500, 300, 150, 50q. We limit the

maximum number of objects for the input vector to Nmax
g “ 4

given the gripper’s size. Each object can have at most (Nv “ 8)

vertices. The input vector contains x and y points for each

object’s vertex taken with respect to the grasp center. It also

contains the grasp orientation. Therefore, the input vector size

is fixed at 16 ˆ 4 + 1 = 65. If an object has vertices less than

Nv , we pad the input vector with the last vertex in the list.

Similarly if the number of objects in a group (no) is less than

Nmax
g , we pad the input vector with the last object’s vertices in

the list. Recall that we train 5 classifiers with the same model

architecture to predict 5 different number of objects grasped

(Ng) classes (0 to 4). We then pick the Ng prediction with the

highest probability as the output of MOG-Net.

D. Metrics

We compare methods with (i) Success rate: percentage of

grasp attempts that moved at least one object into the box,

(ii) Picks per hour: total number of objects picked per hour,

through single or multi-object grasps, (iii) Grasped Objs: the

average number of objects grasped per pick attempt, (iv)

Planning time: time to plan a grasp, (v) Cleared: fraction of

objects that were moved to the box from the cluttered scene,

(vi) Pick attempts: the average number of pick attempts.



E. Results

1) Data collection and model: Please see Table I for a

distribution of the data collected for MOG-Net and Rand-

Net. We see that MOG-Net collects a well distributed dataset

with more balanced samples per class as opposed to Rand-

Net, thereby saving valuable physical robot time. Classification

accuracy was 71.8% for MOG-Net and 45.1% for Rand-Net

on a combined test set containing 20% of the data samples.

2) Decluttering: The results can be found in Table II. We

see that introducing friction and learning a grasp function in

real significantly increases PPH. Compared to prior work [1],

MOG-Net achieved 13.7% higher grasp success, 1.6x picks

per hour, and plans grasps 6.3x faster. We also record a

3.1x improvement in PPH compared to single object grasping

(Frictional SOG, which is very similar to other state of the art

grasping methods such as Dex-Net [46]) as opposed to a 1.6x

improvement in prior work [1]. A sample rollout on the same

scene for 3 of the methods can be seen in Fig. 4.

MOG-Net outperforms Rand-Net on all metrics, suggesting

the importance of our data collection system that generates

a more balanced dataset for training by using the necessary

conditions. Frictionless MOG uses a physics simulator and that

led to a lower success rate, compared to MOG-Net which was

trained in real. Frictionless MOG-Net outperforms Frictionless

MOG on PPH. This demonstrates the importance of a reduced

planning time by using a learned model, instead of a physics

simulator. One mode of failure for all systems is where a grasp

attempt topples objects, resulting in difficult-to-grasp poses.

VIII. LIMITATIONS AND FUTURE WORK

This work has the following limitations: i) Pushing to

rearrange objects: The experiments have randomly generated

object groups, but the robot could consider pushes to rearrange

objects before planning multi-object grasps. This is explored

in [47, 48]. ii) Contact models: To derive the necessary con-

ditions to speed up MOG-Net’s training and grasp planning,

we assumed a frictional point-contact model. However, for

more general 3D objects we will explore soft contact models

that account for torsional frictional forces. iii) Non-polygonal

objects: We assume scenes with extruded convex polygons

but household objects can be curved, non-convex, and non-

polygonal. We will explore multi-object grasps for household

objects and in more diverse backgrounds.

In this work, we consider the decluttering problem where

multiple convex polygonal objects are grasped and moved to

a packing box. We leverage a novel frictional multi-object

grasping necessary condition to train MOG-Net, a neural

network model using real examples. It predicts the number of

objects grasped out of a target object group. We use MOG-Net

in a novel grasp planner to generate robust multi-object grasps.

Experiments suggest that introducing friction and considering

robustness in multi-object grasping leads to improvements in

success rate and picks per hour, compared to prior work.
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