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Abstract: The moistening impact of El Niño on the tropical lower stratosphere has been extensively
studied, yet a long-standing challenge is its potential nonlinearities regarding the strength of El Niño.
Extreme El Niño’s hydration in 2015/2016 was unprecedented in the satellite era, providing a great
opportunity to distinguish the differential response of water vapor to extreme and moderate El Niño.
Using ERA5 and MERRA-2 reanalysis data from 1979–2019, we compare the composite tropical lower
stratospheric water vapor anomalies throughout all extreme and moderate El Niño episodes since the
satellite era. We validate the variations in the lower stratospheric water vapor during the two distinct
El Niño episodes using a three-dimensional chemistry transport model simulating the same period.
The model reproduces the observed pattern in lower stratospheric water vapor. Both demonstrate that
robust moistening during extreme El Niño events occurs throughout the tropical lower stratosphere.
However, moderate El Niño events seem to have a weak effect on lower stratospheric water vapor.
In comparison to moderate El Niño, the strong convective activities induced by extreme El Niño
release large amounts of latent heat, causing extensive and intense warming in the tropical upper
troposphere and lower stratosphere, thus greatly increasing the water vapor content in the tropical
lower stratosphere. Additionally, moderate El Niño events have strong seasonality in their hydration
effect in the tropics, whereas the intense moistening effect of extreme El Niño events prevails in all
seasons during their episodes.

Keywords: extreme El Niño; stratospheric water vapor; seasonal evolution

1. Introduction

Water vapor is one of the key factors driving weather and climate change and has
an important position in the Earth’s climate system [1–3]. Stratospheric water vapor, as
a natural greenhouse gas, on the one hand, absorbs and radiates heat from the Earth’s
surface and atmosphere, regulating the Earth’s energy balance [4,5]. On the other hand,
stratospheric water vapor participates in chemical reactions in the atmosphere (especially
ozone-related reactions) and plays an important role in the formation and destruction of
the ozone layer [6,7]. In addition, the mutual transport of tropospheric and stratospheric
water vapor can change the temperature distribution in the stratosphere, further affecting
the global atmospheric circulation [8,9]. Therefore, researching the trends and impacting
factors of stratospheric water vapor change has great reference value for further study of
stratospheric-tropospheric exchange and future climate change [10,11].

According to previous studies, the quantity of water vapor that enters the stratosphere
is governed by four key factors; the first and most important of which is the tropical
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tropopause temperature [12–14]. The entry of tropospheric air into the stratosphere occurs
via the tropical tropopause layer, where the extremely low temperatures of the tropopause
result in condensation and dehydration, ultimately controlling the content of water vapor
reaching the lower stratosphere [12,15–17]. Brewer–Dobson (BD) circulation is a vertical
meridional circulation driven by atmospheric motion in the stratosphere, which affects
the tropopause temperature through dynamical cooling, thus regulating the water vapor
concentration in the stratosphere [18–20]. This is the second factor that influences the
concentration of water vapor in the stratosphere. Additionally, deep tropical convection
and upwelling transport water vapor from the troposphere to the stratosphere, whereas
convective activities release large amounts of latent heat to heat the tropical tropopause,
thereby influencing the water vapor content of the stratosphere [21]. The fourth influencing
factor is the oxidative decomposition of methane, which mainly contributes to the water
vapor in the upper and middle stratosphere [22].

The El Niño-Southern Oscillation (ENSO) phenomenon is a natural climate pattern
formed by changes in sea surface temperature (SST) and pressure over the tropical Pacific
Ocean, which represents the interaction between the anomalous variability of SST in the
equatorial Pacific Ocean and the global atmospheric circulation [23–25]. Previous studies
pointed out that ENSO has a significant influence on the interannual and even interdecadal
fluctuations of global mean temperature, in which the non-adiabatic exchange of heat
between the ocean and the atmosphere contributes significantly [26,27]. The atmospheric
water vapor concentration is regulated by global temperature variations, and prior research
has also demonstrated that ENSO can impact water vapor content both in the troposphere
and stratosphere [28–31]. For the troposphere, ENSO is a key component of interannual
variability in the troposphere, and due to its significant correlation with tropical Pacific SST,
convection and zonal advection, ENSO can further modify atmospheric circulation and
wind direction in the troposphere, thereby affecting tropospheric temperature, water vapor
content and precipitation distribution [32–34]. Kim et al. [2] quantified the dynamics and
thermodynamic processes of water vapor transport during ENSO events and found that the
variation of the low-frequency circulation (dynamical processes) was the main contributor
to the seasonally averaged water vapor transport anomalies. A recent study by Johnston
et al. [30] pointed out that ENSO is strongly correlated with water vapor entering the
upper subtropical troposphere and the lower mid-latitude stratosphere and that moisture
anomalies in the tropics during ENSO events are closely related to the variability of deep
convection. For the stratosphere, prior research has indicated that ENSO has the ability to
regulate the temperature and transportation mechanisms in the tropical tropopause, which
subsequently impacts the amount of water vapor in the stratosphere [29,35–37]. Specifically,
the amplification of deep convection and upwelling in the tropics during the warm phase
of ENSO (El Niño) causes the tropopause to warm above the warm pool, permitting more
water vapor to penetrate the lower stratosphere [18,31,38–41]. Scaife et al. [28] proposed
as early as 2003 that El Niño causes a 10% increase in the concentration of water vapor
entering the stratosphere. In contrast, during La Niña activity (the cold phase of ENSO),
the relatively colder temperature in the upper troposphere may have a drying effect on the
lower stratosphere in the tropics [42,43]. It is worth noting that a 2011 study by Xie et al. [31]
noted that this drying effect of La Niña on the lower stratosphere occurs primarily in a
narrow band of 5◦S–5◦N in the tropics, whereas the entire stratosphere is wet for the wider
tropics (25◦S–25◦N), which also serves as a reminder to pay attention to the zonal mean
heterogeneity when analyzing the effect of La Niña activity on stratospheric water vapor.
In addition, El Niño induces a Rossby wave response that causes anomalous warming in
the tropopause near the Indo-Pacific warm pool and anomalous cooling in the tropopause
near the east-central Pacific [27,44]. The content of water vapor increases in the area with
warmer temperature and reduces in the area with colder temperature within the tropical
tropopause [17,35,45].

However, no two El Niño or La Niña events are identical, and considering the com-
plexity and diversity of ENSO events, scientists have divided them into different categories
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to investigate their fundamental mechanisms and impacts on lower stratospheric water
vapor. ENSO episodes can be categorized as either Eastern-Pacific (EP) or Central-Pacific
(CP) events depending on where the warm SST anomalies are located [46]. According to
research by Garfinkel et al. [47] utilizing chemistry-climate models, EP El Niño episodes
cause much more water vapor to enter the stratosphere than CP El Niño events do, with
this difference approaching 0.3 ppmv in some calendar months. However, a subsequent
study by Garfinkel et al. [41] again clarified that it might not be crucial to discriminate
between EP and CP events and that it is more critical to distinguish between very intense
El Niño events and moderate El Niño events. That is, different intensities of ENSO events
are more likely to cause differences in the net effect of stratospheric water vapor. Therefore,
researchers have further distinguished between strong and moderate ENSO events depend-
ing on their magnitude [48–50] and found that strong ENSO events contribute to wetting
the tropical lower stratosphere, while weak or moderate ENSO events cause dehydration,
which shows that the response of stratospheric temperature and water vapor to ENSO is
nonlinear during boreal spring [41]. In addition, Rao and Ren [49–51] revealed that the
moderate El Niño and the strong La Niña caused considerable nonlinearity and asymmetry
in the boreal winter, controlling the northern winter stratospheric variability more well than
the former and the latter. Furthermore, the effect of ENSO on stratospheric water vapor
also has a nonlinear seasonal dependence [17,18,47,52], with El Niño-related increases and
La Niña-related decreases occurring primarily in the boreal spring.

A recent study shows that greenhouse warming and internal variability have increased
the frequency of extreme and central Pacific El Niño since 1980 [53]. In the last 40 years,
there have been three extremely powerful El Niño occurrences, including 1982/1983,
1997/1998 and 2015/2016, which caused a reorganization of atmospheric convection,
triggering catastrophic floods and droughts in the Pacific, leading to severe disruptions
in global climate [54–57]. Due to the considerable impact of extreme El Niño on global
climate patterns, some scholars have focused their attention on the stratospheric response to
extreme El Niño in recent years. Rao and Ren [58] performed a parallel comparison of three
extreme El Niño using multiple sea surface temperature datasets and pointed out that the
three extreme El Niño had a large impact on the troposphere to stratosphere atmospheric
circulation, but extreme El Niño events were less efficient in regulating the extratropical
stratospheric circulation than moderate events. Zhou et al. [59] compared the differential
effects of extreme and moderate El Niño on the stratosphere in boreal winter, revealing
that the response of the Northern Hemisphere stratospheric vortex to extreme El Niño is
four times stronger than that to moderate El Niño but they did not note the difference in
the response of stratospheric water vapor to extreme and moderate El Niño. Fueglistaler
et al. [42] used the model to calculate the interannual variability of water vapor in the
tropical lower stratosphere and noted that the 1997/1998 super strong El Niño resulted
in a wetness anomaly of 0.5 ppmv in the stratosphere. Using observation and simulation,
Avery et al. [60] found that the hydrologic budget of the tropics experienced a remarkable
perturbation due to the extreme 2015/16 El Niño, resulting in record-high levels of water
vapor concentrations across the tropical Western Pacific over a decade, which coincided
with anomalies in warm tropopause temperatures.

In general, previous studies have mainly concentrated on extreme and moderate El
Niño impacts on stratospheric temperature and circulation or on changes in stratospheric
water vapor concentration triggered by individual extreme El Niño events. However, there
is no systematic way to quantify the difference in the net impact of stratospheric water
vapor caused by extreme El Niño events versus ordinary events. In addition, as mentioned
before, water vapor in the stratosphere response to ENSO exhibits a remarkable seasonal
dependence, and previous studies have focused more on the interannual scales variability
due to extreme events without discussing whether the effects of extreme El Niño events on
stratospheric water vapor also exhibit seasonal evolution. Therefore, this study compares
the composites, including stratospheric water vapor, temperature and circulations during
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extreme and moderate El Niño events, aimed to address their different impacts on water
vapor in the tropical lower stratosphere and discuss the causes for these differences.

2. Data and Methods
2.1. Data

This study primarily used monthly mean water vapor, temperature and outgoing
longwave radiation (OLR) data for a total of 41 years from 1979–2019. Among them,
the water vapor and temperature data are obtained from ERA5 reanalysis data with a
horizontal resolution of 0.5◦ × 0.5◦, MERRA-2 reanalysis data with a horizontal resolution
of 0.5◦ × 0.625◦, and TOMCAT model data with a horizontal resolution of 1◦ × 1◦. In
addition, the OLR data are derived from ERA5 reanalysis data.

2.1.1. ERA5

ERA5 is a fifth-generation global climate reanalysis dataset developed by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) that provides comprehensive
meteorological information from 1979 to the present [61]. It combines various observational
data, such as satellite, radiosonde and surface observations, with numerical weather pre-
diction model outputs using data assimilation techniques to generate high spatiotemporal
resolution (0.25 degrees latitude/longitude grid, hourly) global meteorological reanalysis
data up to 137 levels, covering the atmosphere from high altitude (0.1 hPa) to the surface
(ground).

The ERA5 dataset includes a wide range of meteorological variables, including temper-
ature, humidity, wind speed, wind direction, precipitation, cloud cover, pressure and more.
These data can be used in various fields, such as climate research, weather forecasting, me-
teorological disaster warning, agriculture, water resources management, energy planning,
environmental monitoring and many other applications. What’s more, the ERA5 dataset is
known for its high data quality, global coverage, long-term coverage and comprehensive
recording of multiple meteorological variables.

2.1.2. MERRA-2

The MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications,
Version 2) dataset is a global reanalysis dataset developed by the National Aeronautics and
Space Administration (NASA) that provides comprehensive meteorological information
from 1980 to the present [62]. MERRA-2 is based on a state-of-the-art data assimilation
system that integrates a wide range of observational data, such as satellite, aircraft and
surface observations, with a global atmospheric model to produce a consistent and coherent
representation of the Earth’s atmosphere over time. It has a 3 hourly temporal resolution,
a vertical resolution of 72 levels from the surface to 10 Pa, and a horizontal resolution of
roughly 50 km (0.5◦ × 0.625◦). MERRA-2 incorporates observation types not accessible
in its predecessor, MERRA, as well as upgrades to the Goddard Earth Observing System
(GEOS) model and analysis scheme, making it a feasible long-term climate analysis beyond
MERRA. Additionally, products from MERRA-2 can be accessed online at the Goddard
Earth Sciences Data Information Services Centre (GES DISC) of NASA.

2.1.3. TOMCAT

The Tropospheric Ozone Modelling for Climate and Atmospheric Chemistry (TOM-
CAT) model [7] is a global 3D chemistry-transport model that simulates the distribution
and evolution of atmospheric constituents, including ozone, aerosols and other trace gases,
in the troposphere [63,64] and lower stratosphere [65,66]. Typical model data include
outputs of various atmospheric variables, such as concentrations of ozone, aerosols and
other trace gases, and meteorological variables, such as temperature, wind speed and
precipitation. These data are typically available at different vertical levels and temporal
resolutions, depending on the specific configuration and application of the TOMCAT model.
In addition, the model employs a σ–p coordinate system, with surface levels corresponding
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to the terrain (σ) and higher levels (>100 hPa, up to 0.1 or 0.01 Pa) utilizing pressure levels
(p). For multidecadal stratospheric investigations, the typical horizontal resolution ranges
from 2.8◦ × 2.8◦ to 1◦ × 1◦ for brief case studies.

For this study, the chemical transport model (CTM) configuration employed is compa-
rable to the recent control simulations used by Feng et al. [65]. That is, for the TOMCAT
model to be specified, we use the ERA5 reanalysis product of temperature, vorticity, diver-
gence and specific humidity to force the model. Thirty-two hybrid sigma-pressure levels
are used in the simulations, which are run with a horizontal resolution of 2.8◦ by 2.8◦ and
cover a distance of around 60 km [67]. The model incorporates time-dependent observed
global mean surface mixing ratios for the main greenhouse gases and ozone-depleting
substances, which are treated as well mixed throughout the troposphere. The impacts of
solar flux fluctuation and heterogeneous chemistry on volcanically increased stratospheric
aerosol are also taken into account in the model [68,69]. In addition, TOMCAT incorporates
contributions from VSLSs that contribute chlorine and bromine, as described in Hossaini
et al. [70]. TOMCAT has been widely used in atmospheric chemistry and climate studies to
investigate long-term changes in atmospheric composition and stratospheric trace gases,
demonstrating excellent agreement with numerous ground-based and satellite-based data
sets [65,71–73].

2.2. Methods

In this study, we mainly use composite analysis to discuss the effects of extreme and
moderate El Niño, and the Oceanic Niño Index (ONI) is used to distinguish between
extreme and moderate El Niño events. The ONI is defined by the National Oceanic and
Atmospheric Administration (NOAA) and is calculated as the 3 month running average
of SST anomalies in the Niño 3.4 region, which is an area of the tropical Pacific Ocean
extending from 120◦W to 170◦W longitude and from 5◦N to 5◦S latitude. ONI can be used
to characterize ENSO events, with large consecutive positive ONI values indicating El Niño
conditions while large consecutive negative ONI values indicating La Niña conditions.
Specifically, 5 consecutive months with ONI equal to or greater than +0.5 ◦C is defined
as an El Niño event. In our study, 5 consecutive months with ONI equal to or greater
than +2.0 ◦C is defined as an “extreme” El Niño event, while other El Niño events are
identified as “moderate” El Niño events [59,74]. The ONI reports that in the 41 years
from 1979 to 2019, there were 3 extreme El Niño events and 9 moderate El Niño events.
Table 1 lists the specific years in which the extreme and moderate El Niño events occurred.
In addition, monthly anomalies were obtained by subtracting the monthly climatic state
average from the monthly raw values for 41 years. Meanwhile, the stratospheric water
vapor and temperature also filtered out 24–32 months of the perturbation signal in order to
avoid the possible influence of the stratospheric quasi-biennial oscillation (QBO) signal.

Table 1. Extreme and Moderate El Niño events during the time period 1979–2019.

Composite Year

Extreme El Niño 1982/1983, 1997/1998, 2015/2016

Moderate El Niño 1979/1980, 1986/1987, 1987/1988, 1991/1992, 1994/1995,
2002/2003, 2006/2007, 2009/2010, 2018/2019

3. Results

First, the water vapor data in ERA5 and MERRA-2 are mainly based on conventional
observations (such as radiosondes or satellite retrievals), whereas the stratospheric water
vapor simulated in TOMCAT is mainly produced by the chemical reactions (e.g., methane
oxidation). Differences may exist between observed and simulated values. In order to
make a more intuitive comparison of the water vapor data and to quantify the tropical-
averaged stratospheric water vapor concentration, Figure 1a shows the monthly time series
of stratospheric water vapor anomalies averaged in the tropics (30◦N–30◦S) at 100 hPa from
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1980 to 2020 for the two analysis dataset ERA5 and MERRA-2, along with simulations by
TOMCAT. In addition, the seasonal variation of stratospheric water vapor climatology in
the tropics from 1980–2020 for the three datasets are presented in Figure 1b–d, respectively.
Apparently, the water vapor for climatology and anomalies in the three datasets agree
well with each other, with the best agreement between ERA5 and TOMCAT. From the
climatology of water vapor, there is a significant seasonal variation in the concentration
of stratospheric water vapor, with a minimum of 3.5 ppmv in winter and up to 5.4 ppmv
in summer, which is consistent with previous studies [75–77]. In terms of water vapor
anomalies, the anomalous values of 100 hPa water vapor generally ranged from −0.75 to
0.75 ppmv during 1980–2020, implying an amplitude of 10–20% of stratospheric water
vapor variability [78,79]. It is worth noting that a large water vapor anomaly occurred in
1983, which may have been triggered by the volcanic eruptions of El Chichón in Mexico
in 1982. Following the volcanic eruption, a massive volume of volcanic aerosols heated
the stratosphere, leading to a significant increase in the water vapor content of the strato-
sphere [80]. Apart from the seasonal cycle, the time series also exhibits strong interannual
variability, in line with previous studies [42]. The majority of the interannual variability is
due to interannual changes in the tropical sea surface temperature, especially ENSO.
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seasonal variations of stratospheric water vapor climatology averaged over the tropics (30◦N–30◦S)
from (b) ERA5 (blue line), (c) MERRA-2 (black line) and (d) TOMCAT (red line) datasets.

3.1. Water Vapor Response to Extreme and Moderate El Niño

Since the majority of El Niño occurrences mature in winter (December, January and
February) and gradually decay the following spring (March, April and May), we will
focus on the changes in the lower stratospheric water vapor in El Niño winter and the
following spring. Based on ERA5, MERRA-2 and TOMCAT simulations, Figure 2 shows the
vertical profiles of tropical-averaged stratospheric water vapor anomalies during extreme
and moderate El Niño winters and the following springs. The water vapor anomalies
in the lower stratosphere are substantially stronger during extreme El Niño events than
during moderate events in all three datasets. The tropical lower stratosphere experiences
significant wetting during extreme El Niño episodes, with the stratospheric water vapor
increase exceeding 0.4 ppmv in both the El Niño winter and the following spring. In
contrast, in the case of moderate El Niño, the lower stratospheric water vapor shows a
rather weak, if any, decrease in the winters and a weak increase at 100 hPa (~0.1 ppmv) in
the following springs. (Figure 2a,e). Interestingly, the water vapor wetting value of the
extreme El Niño in spring is four times that of the moderate El Niño, which corresponds to
the four times higher response of the Northern Hemisphere stratospheric vortex to extreme
El Niño than moderate event derived by Zhou et al. [59]. The results for MERRA-2 are
similar to those of ERA5 and TOMCAT, but the stratospheric water vapor increase in
MERRA-2 is close to 0.3 ppmv during extreme events. In addition, we also note that the
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water vapor increase does not significantly vary from winter to spring during extreme
events, while it slightly increases during moderate El Niño events.
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Figure 2. Vertical profiles of tropical−averaged water vapor anomalies (Qa; units: ppmv) during
extreme El Niño (dashed lines) and moderate El Niño (dotted lines) events in (a,c,e) winter and
(b,d,f) spring based on the (a,b) ERA5 and (c,d) MERRA-2 and (e,f) TOMCAT.

It appears that the impacts of El Niño on tropical lower stratospheric water vapor
vary depending on its magnitude, with extreme events tending to strongly moisten the
lower stratosphere while moderate events have less pronounced effects. In order to better
understand the different impacts of extreme and moderate El Niño on tropical lower
stratospheric water vapor, we now consider the seasonality of the response of lower
stratospheric water vapor to El Niño events. Figure 3 shows the composite water vapor
anomalies for extreme and moderate El Niño throughout the El Niño year. During extreme
El Niño episodes, it is evident that the tropical lower stratosphere experiences intense
wetting, persisting for four seasons in both ERA5 and TOMCAT. The peak occurs at
0.4 ppmv during winter and spring. MERRA-2 shows the wetness persists for three
seasons with a maximum of 0.3 ppmv. However, significant seasonal evolution occurs in
water vapor response to moderate El Niño events, with three datasets exhibiting weak
wetness in the lower stratosphere in spring but little change in the other seasons. Although
there are some differences in the anomalous wetting amplitude in different datasets, the
results of ERA5, TOMCAT and MERRA-2 all show the strong wetting of the tropical lower
stratosphere in extreme El Niño years with small seasonal dependence while weak changes
with evident seasonality during moderate El Niño years.
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In general, the tropical lower stratosphere experienced significant wetting through-
out the season during extreme El Niño events, especially in winter and spring, while
the response of water vapor during moderate El Niño events exhibits distinct seasonal
evolutions, with invariant in winter and weakly wet in spring. This result also confirms
the conclusion in Figure 2 that extreme El Niño gives rise to the lower stratosphere wetter
violently, whereas moderate El Niño has little effect on the lower stratosphere.

Figure 4 shows the composite water vapor anomalies at 100 hPa for extreme and
moderate El Niño averaged in winter and spring. Similarly, the pattern of water vapor
anomalies in the ERA5, MERRA-2 and TOMCAT simulations are in close agreement.
Extensive wetting overwhelms the tropics during extreme El Niño, with its strongest
changes over the warm Indo-Western Pacific. Even though the Central-Eastern Pacific saw
small areas of dryness in winter, the dryness there was far less intense and widespread than
the wetness in the tropics. On the contrary, during moderate El Niño winters, dipole-shaped
wet and dry regions of comparable intensity are observed in the Indo-Western Pacific and
Central-Eastern Pacific, respectively. This is similar to the previously observed annual
average distribution of 100 hPa water vapor in response to the El Niño signal [30,31,43],
i.e., cooling in the tropical central-eastern Pacific at 100 hPa is accompanied by negative
water vapor anomalies, while warming in the western Pacific corresponds to positive water
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vapor anomalies. However, unlike the distribution of annual mean water vapor anomalies,
the wetness of the western Pacific is comparable to the dryness of the central-eastern Pacific
during the winter of moderate El Niño; thus, the net impact of water vapor in the lower
stratosphere tends to be zero after zonally averaged. Moreover, from winter to spring, the
drier areas in the Central-Pacific almost disappeared during both extreme and moderate
events, which helped to wet the entire tropical lower stratosphere in the spring.
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To further demonstrate the differences in how the lower stratospheric water vapor
responds to the two magnitude El Niño events, the zonal distribution of the winter and
spring water vapor anomalies are displayed in Figure 5. Likewise, the patterns of TOMCAT
are largely the same as ERA5 for both seasons, and the result of MERRA-2 are similar to
them. It is clear that extreme El Niño results in substantially larger water vapor changes
than moderate El Niño. Consistently, during extreme El Niño, the lower and middle
stratosphere’s water vapor content increases significantly in the winter and spring, whereas
during moderate El Niño, the water vapor content barely changes in the winter and only
marginally wets in the spring, failing to pass the 95% significance test. In addition, the
magnitude of stratospheric water vapor wetting in extreme El Niño episodes is consistent
in both winter and spring, with the maximum value of water vapor anomalies reaching
0.4 ppmv. Contrarily, during moderate El Niño episodes, the lower stratospheric water
vapor shows a distinct seasonal development, with water vapor anomalies converging
to zero in winter and becoming more prominent in spring. It is worth noting that the
wetting of the lower stratosphere in spring occurs mainly in the southern hemisphere,
which is consistent with a previous study by Xie et al. [31] that El Niño activity impact on
tropical stratospheric water vapor is stronger in the southern hemisphere, where stronger
upwelling is present.
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Overall, from Figures 2–5, we found the significant wetting of the tropical zonal mean
(30◦S~30◦N) stratosphere following extreme El Niño, and this humidification can even
reach the middle stratosphere. Although a dipole-like of negative water vapor anomalies
appears in the east-central Pacific on the horizontal distribution map of the tropics (Figure 4),
this weaker drying zone is neutralized by a super-humid region of the Western Pacific
after zonal averaging. As a result, the net effect of the extreme events on the entire tropical
stratosphere appears wet. However, the total amount of stratospheric water vapor hardly
changes in the winter when moderate El Niño occurs, which is different from previous
studies showing that El Niño events can increase stratospheric water vapor [31,35,37,42,81].
This is probably due to the weak effect of moderate El Niño combined with the drastic
wetting effect of extreme El Niño. Meanwhile, from the point of view of seasonal evolution,
extreme El Niño significantly affects the stratosphere in all seasons, while moderate El
Niño responds differently in the stratosphere in different seasons, which also reminds us
to distinguish the El Niño response in different seasons in future studies. Next, we will
investigate the reasons for the difference in water vapor response to extreme and moderate
El Niño.
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3.2. Mechanisms of Water Vapor Response to Extreme and Moderate El Niño

As we mentioned in the introduction, the concentrations of water vapor in the lower
stratosphere are primarily influenced by the cold tropical tropopause because the tem-
perature of tropopause determines the saturation water vapor pressure, which means
whether the ascending moist air in the troposphere is freeze-dried or enters the lower
stratosphere. Therefore, the response of the tropopause temperature to El Niño can explain
the variation of the lower stratospheric water vapor. In this study, we approximated the
tropical tropopause temperature with a temperature of 100 hPa. Figure 6 shows the 100 hPa
temperature response to extreme and moderate El Niño in winter and spring, which ex-
plains the changes in water vapor at 100 hPa. Since the temperature in TOMCAT mode is
driven by ERA5, here we only display the results for ERA5 and MERRA-2. During extreme
El Niño events, the relative cooling of the Central-Eastern Pacific is counterbalanced by
widespread warming throughout the entire tropics, especially above the warm pool in
the Western Pacific. This overall warming effect, resulting from the asymmetric cooling
and warming of the tropics, causes an increase in the amount of water vapor in the lower
stratosphere. In contrast, the weak warming of the Western Pacific and the weak cooling of
the Central-Eastern Pacific during moderate El Niño events lead to negligible temperature
variations in the whole tropical region. Another noteworthy thing is that from winter
to spring, the weak cooling in the Central-Eastern Pacific region gradually disappeared
during the moderate events, which corresponds to the seasonal evolution of stratospheric
water vapor during the moderate El Niño events in Figure 4d,f.
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based on the (a–d) ERA5 and (e–h) MERRA-2. Anomalies that passed the 95% significance test are
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Similarly, we next present the zonal distribution of temperature anomalies in two
magnitudes of El Niño events in order to provide further elucidation on the variations of
stratospheric water vapor. Figure 7 illustrates the zonal distribution of temperature anoma-
lies in the stratosphere during extreme and moderate El Niño events based on ERA5 and
MERRA-2. Remarkable warming occurs in the lower stratosphere, and this warm anomaly
extends to the middle stratosphere during extreme El Niño winters. Conversely, in mod-
erate events, the cooling in the lower stratosphere is weaker. This change in temperature
corresponds to the changes in water vapor; that is, a large increased content of stratospheric
water vapor during extreme events and less content of water vapor in moderate events.
Furthermore, during the extreme El Niño spring, the lower stratosphere still shows strong
warming despite the middle stratosphere conversion to cooling than in the winter. At the
same time, anomalous warming appears in the lower stratosphere during moderate spring;
thus, a slight moistening occurs in moderate El Niño spring.
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The temperature anomalies are interpreted using the tropical convection excited by the
ENSO because thermally-induced deep convection occurring in the troposphere releases
latent heat and excites equatorial planetary waves, which play a significant role in affecting
the temperature of the upper troposphere and lower stratosphere [21]. Outgoing longwave
radiation (OLR) serves as an indicator for convection in the tropics, reflecting not only the
intensity of convection but also the dynamic interplay between the atmosphere over the
sea and the sea surface temperature [82]. Figure 8 shows the anomalies in the outgoing
longwave radiation to demonstrate the difference in convective activity in distinct strengths
of El Niño events. During extreme El Niño, intense convective activity is observed centered
over the Central-Eastern Pacific, which releases large amounts of latent heat, leading to
significant warming in the lower stratosphere. By contrast, although similar patterns are
seen during moderate events, the strengths and extent of the convection is significantly
reduced. Hence, weaker amplitude convective activity in moderate El Niño events formed a
colder lower stratosphere. In terms of seasonal changes, strong tropical convection persists
from winter to spring in extreme El Niño activities (Figure 8a,c), while moderate events
matured in winter but decayed by the following spring, thus weaker convection activity
appeared in moderate El Niño springs (Figure 8d). The contrasting reactions of robust and
feeble convective activity during extreme and moderate El Niño are responsible for the
striking divergence in tropical tropopause temperatures. This difference in temperature
further elucidates the varying effect of extreme and moderate El Niño on water vapor in
the lower stratosphere of the tropics.
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In general, extreme El Niño excites extensive convections in the tropic troposphere,
which are way stronger than those during moderate El Niño events. The overwhelming
latent heat released by convective activities during extreme El Niño heats the tropical
tropopause, resulting in strong perturbation on the tape recorder signal. In addition, the
patterns of temperature and convection in extreme El Niño events are significant both in
winter and spring, while moderate El Niño events exhibit a strong seasonality with only
evident impact in Spring.

4. Discussion

Extreme El Niño events have received much attention in recent years due to their se-
vere impacts on the global climate and economy [55,56,59]. Although a lot of investigations
have been conducted on ENSO’s impact on stratospheric water vapor [17,18,41,49], it is
still not conclusive due to the limited El Niño events and corresponding observations since
the satellite era versus the large internal variability of the stratospheric water vapor. An
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understanding of the variety of El Niño in its strengths is essential in order to understand
ENSO impacts on the stratospheric water vapor, and Fueglistaler et al. [42] pointed out that
the 1997/98 El Niño caused a 0.5 ppmv water vapor anomaly in the tropical tropopause,
and Avery et al. [60] showed that the 2015/2016 El Niño produced a decadal record amount
of water vapor in the tropical western Pacific. Here, by comparing all the extreme and
moderate El Niño events since the satellite era, we show that extreme El Niño events lead
to 0.4 ppmv of the stratospheric water vapor increase in the tropical stratosphere when
moderate events correspond with an increase of 0.1 ppmv.

However, a comprehensive dynamical analysis is not provided in this study; thus,
it is hard to conclude whether the mechanisms are different between the extreme and
moderate El Niño impacts on the stratospheric water vapour. The current study is also
limited by the small number of extreme El Niño events. Further studies are needed with
more observational evidence. A climate chemistry model with a good representation of
tropical waves is required to fully understand the tropical dynamics and the water vapor
chemistry during extreme and moderate El Niño events.

5. Conclusions

While ENSO’s impacts on stratospheric composition have been extensively discussed,
the net effect on zonal mean stratospheric water vapor is still not clear due to its limited
sample and also ENSO’s asymmetric pattern adding onto the general changes in Brewer-
Dobson circulation [28]. Using the ERA5 and MERRA-2 reanalysis datasets from 1979 to
2019, we compared the differences in the impacts of extreme and moderate El Niño events
on tropical stratospheric water vapor, further validated with TOMCAT chemistry model
simulations. There are three main findings of this study:

(1) From the perspective of tropical averaging, extreme El Niño events lead to significant
moistening in the tropical lower stratosphere, while moderate El Niño events have
little effect on water vapor in the lower stratosphere;

(2) This is because strong convective activities excited by extreme El Niño release large
amounts of latent heat, which warms the tropical tropopause temperature and thus
increases the content of water vapor in the lower stratosphere;

(3) The strong seasonality in the stratospheric water vapor response occurs only during
moderate El Niño events when the content of water vapor does not vary in winter
and increases slightly in spring. In contrast, the robust wetting effect of extreme El
Niño events occurs in all seasons.

Overall, this study reveals the effects of El Niño activity on water vapor in the tropical
lower stratosphere, particularly the significant moistening of the stratosphere following
extreme El Niño events. Although it has been previously concluded that El Niño wets
the lower stratosphere, our division of El Niño activity into extreme and moderate inten-
sity events reveals that it is likely that the previously derived moistening of the lower
stratosphere is mainly contributed by extreme events, while moderate El Niño events have
little effect on lower stratospheric water vapor. This finding emphasizes the importance
of extreme events and highlights the crucial role of El Niño intensity in determining its
impact on stratospheric water vapor.

Furthermore, our previous study [43] proposed that the impact of ENSO on strato-
spheric water vapor is more pronounced in spring as a result of the lag in stratospheric
response to ENSO signals. In this study, we found that only moderate El Niño events exhibit
a lagged effect, while extreme events elicit a strong response in the stratosphere regardless
of the season, which provides new insights for future research on extreme climate events.
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