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Abstract

The application of rail buckling models is often limited by uncertain information with respect to track properties, and many

conventional models are poorly suited to network-wide or even regional application. Here, a methodology using fuzzy sets is
presented that, when trained using buckling data can use inputs of track properties to predict the minimum buckling tempera-

ture increase for a particular track. An investigation of the impact of the size of training data and the influence of key track

parameters on the minimum buckling temperature increase was conducted, and it was found that a high level of influence
stems from the sleeper spacing and fastener torsional resistance parameters. The model was shown to give a low prediction

error even for small dataset sizes of training data. The results of this work show the efficacy of a fuzzy sets based model when

applied to track buckling prediction data, giving both a low error and rapid calculation times. The approach has potential for
application for a wider array of variables, such as track geometry and vehicle dynamics, and is not limited to the study of track

buckling owing to the flexibility of the fuzzy inference methodology.
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The buckling of railway tracks in hot weather presents a

challenging problem, being both difficult to predict and

severe in its consequences. In the U.K., buckles were

reported as early as 1885 (1) and, despite improvements

in the form of the track and efforts toward the character-

ization, prediction, and mitigation of buckling events,

buckles still occur. Historically, buckles have resulted in

the loss of life (2) and still pose a derailment threat (3),

while the damage caused to the infrastructure and delays

caused by speed restrictions incur significant costs (4). A

recent total closure of U.K.’s East Coast Main Line on

July 19, 2022, exemplifies this, enacted in part to prevent

buckling incidents caused by extreme heat (5).

Buckles in tracks take the form of the track bending

out, usually in the lateral direction, as a result of con-

strained thermal expansion stress in the rail, which

occurs most often on hot summer days. The main para-

meter governing buckling risk is the temperature of the

rail. A temperature increase above the stress free tem-

perature of the rail can be reached such that a distur-

bance of sufficient magnitude causes the rail to buckle,

called the minimum buckling temperature increase

(DTB, min). This can be seen in Figure 1 where, for a tem-

perature increase above DTB, min, three equilibrium states

exist. The first stable equilibrium state is that of non-

deflected track, a state of unstable equilibrium exists on

section AB, and the third state, of stable equilibrium, is

represented on section BC when the track deforms. If,

for a temperature increase above DTB, min sufficient dis-

turbance is imparted to a track with low lateral displace-

ment on section AB, it can explosively deflect to its

corresponding displacement on branch BC. Therefore,

being able to accurately determine the DTB, min is crucial
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for assessing the risk of buckling, an instrumental part of

planning preventative measures.

Experimental approaches (6) and analytical (7) and

numerical models (8) have been used to identify the key

variables governing the risk of buckling for a particular

section of track. Following the critical survey of previous

work in the field (9), Kerr (10) developed an analysis of

lateral track buckling, which was further expanded on in

Kerr (11). The core concepts from these publications

served to inform future analyses, which introduced new

parameters such as vehicle loads and non-linear lateral

resistance (12), and considered the track as a ladder-type

structure (13).

Despite advances in identifying the main parameters

influencing the minimum buckling temperature, signifi-

cant challenges remain in implementing that knowledge.

Complex interactions between the aforementioned para-

meters necessitate the use of intricate prediction models;

however, these often require extensive computing power

and are limited in their scope. Another limitation of tra-

ditional models is their reliance on experimentally

obtained values (e.g., of the resistance of sleepers to lat-

eral movement in the ballast), the determination of

which in turn can also be challenging. Because of these

factors, implementing accurate predictions of buckling

risk either in the field or for an extensive network of rail-

ways remains difficult.

As such, there exists a need for a methodology that

can offer predictions to the infrastructure manager based

on easily accessible information. While knowledge of

properties such as the sleeper type, sleeper spacing, or

fastener type is easily obtainable, the condition of the

sleepers or of the ballast is often more uncertain.

Without experimental testing, such properties may in

most cases only be described linguistically based on

observation using qualitative terms such as ‘‘ballast is

well consolidated’’.

Field Data Interpretation

Table 1 shows typical data from buckling incidents,

which is in significant contrast to the well quantified

numerical representation of track conditions characteris-

tic of conventional buckling models. A clear challenge

exists in linking the uncertain and largely linguistic data

on buckling with methods that have predictive capability

that may prevent future buckling incidents, such as ana-

lytical buckling models.

The challenge in using track descriptions as inputs for

a prediction model is perhaps best demonstrated by con-

sidering the lateral resistance of sleepers in the ballast

property of a track. Previous studies have shown that the

temperature at which a track buckles is influenced greatly

by the lateral resistance that, in turn, is affected by the

ballast conditions, the influence of which can vary the

lateral resistance by several kNs. Furthermore, while fac-

tors such as the consolidation of the ballast, the width of

the shoulder, and the level of ballast relative to the slee-

per influence the lateral resistance, each of these becomes

uncertain after a buckling event, because of the destruc-

tive nature of the phenomenon. As such, directly apply-

ing recorded data of the type seen in Table 1 as training

data for a machine learning approach would yield few

insights beyond well-established knowledge. Meanwhile,

while conventional buckling models can capture the

detailed characteristics of the buckling mechanism, they

have no capability to use linguistic data as inputs.

Development of a buckling prediction method that

uses field data inputs requires a two-step approach.

Firstly, the ability of the modeling technique must be

validated for well understood conditions—this is the sub-

ject of the work reported in this paper. Secondly, to be

reported separately, the model must be adapted to work

with the scarce or uncertain data characteristics of field

conditions.

Due to the challenges of using recorded buckling inci-

dent data as described above, the validation of the mod-

eling technique in this paper has been approached by

using training data generated by an analytical model.

While such an approach is unconventional, with most

machine learning models trained on and validated

against experimental or field data, several authors have

used analytical models (14) and finite element models

(15–17) to provide training data for a machine learning

approach.

Figure 1. Diagram of a post buckling equilibrium curve.
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Application of Fuzzy Logic

One approach with the capability to address this chal-

lenge is fuzzy logic, first developed in 1965 by Zadeh

(18). Fuzzy logic allows for a framework within which

non-numerical information (such as linguistic variables)

can be linked to numerical values through the use of sets

of ascribed ‘‘truth values,’’ known as membership.

Unlike classical Boolean logic, which only accepts mem-

bership values of true (1) or false (0), fuzzy logic allows

for a full range of membership values between 0 and 1.

The merit of this methodology in buckling modeling is in

using uncertain or vague information, such as linguistic

descriptions of track properties (19), to arrive at a value

for buckling temperature that is consistent with the

mechanical knowledge or incident data used to train the

model. Furthermore, the approach presented here is not

computationally intensive, requiring neither significant

processing power nor memory usage.

Recently, a fuzzy model was introduced by

Gitman et al. (20), which makes use of experimental data

as a base of knowledge, from which a set of rules is

derived and serves to approximate the unknown function

linking the input and output variables of interest. In the

current paper, an expanded version of that approach is

applied to the field of railway track buckling with the aim

to approximate the minimum temperature increase above

which buckling risk exists based on track parameters.

Methodology

The following describes the implementation of a fuzzy

sets based model in a methodology predicting the buck-

ling risk of a track. The steps taken by the model, from

starting with an initial training dataset to calculating a

prediction, are outlined and further supported by an

example given in the Appendix.

Application of the Fuzzy Model to Calculate Buckling

Temperatures

A flow of information describing the application of the

methodology to determine buckling temperatures for a

section of track is represented in Figure 2. It is an exam-

ple of how the fuzzy inference model could potentially be

integrated in a data acquisition, processing, and predic-

tion framework. The diagram is split into two sections,

the methodology development side and the application

side. The methodology development section deals with

the design of the inference model, sourcing and structure

of the training data, and optimization of the prediction

of the trained model and is the subject of this paper.

Although not in itself part of the scope of this paper, the

application side is given for completeness and deals with

applying linguistic inputs to the trained fuzzy model,

their translation into fuzzy sets, and validation of the

generated predictions. Firstly, data comprising track

parameters and corresponding buckling temperatures is

collected using information from buckling incidents or is

generated by an analytical or finite element model. For

incident data, a suitable training set is selected from the

available rows of data (observations), with each observa-

tion representing a track scenario consisting of values of

track properties (such as the lateral resistance of sleepers

in ballast for the section of track, called inputs) and a

resulting buckling temperature for the track (outputs).

The remaining observations not used to form the train-

ing set are collected in a testing set, used to evaluate the

performance of the model. Using an analytical or finite

element model to provide the observations limits the pre-

dictive capacity of the model to that of the analytical or

finite element model used to train it; however, this

approach is useful in cases where data of sufficient qual-

ity or quantity is not available and has the benefit of

control over the input values, which can be selected to

have a desired range and distribution. Such an approach

was taken in this work (see the Development of Training

Data section). Once the training and testing data have

been selected, they are passed to the fuzzy model. The

fuzzy model, a development on the model first intro-

duced by Gitman et al. (20), uses the training data to for-

mulate rules representing the function linking track

parameters to minimum buckling temperatures. These

rules are stored in a matrix of input–output relations and

are used to calculate predicted output values for the

inputs from the testing set, which are then evaluated

Table 1. Examples of Recorded Data from Three Track Buckling Events

Track Date Fault description Temperature (�C)

A 06/18/2017 ‘‘Poor ballast condition and rail creep’’ 41
B 07/23/2018 ‘‘No obvious cause of buckle. Site was risk assessed

as 21 deg C with no issues detected in last 5
years. Stressing records not evident for this site.’’

49

C 06/29/2019 ‘‘Insufficient ballast shoulder and inadequate stress
in timbered S&C. Track buckled following recent
disturbance after S&C tamping activity’’

35
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against the testing set output values. The prediction error

is used as the comparison metric in an optimization loop

that modifies the fuzzy model parameters (hyperpara-

meters) to reduce error.

The trained and optimized fuzzy model can then be

used to accept new input values from a railway operator

to predict minimum buckling temperatures. To do this,

track property information, both well-defined and uncer-

tain, is collected at the site of investigation. The linguistic

values are then replaced with previously defined fuzzy

sets and passed to the fuzzy model for prediction. The

map of buckling risk in Figure 2 is a hypothetical repre-

sentation of how the rapid calculation of the fuzzy infer-

ence model has potential application at short intervals to

produce a map of buckling hotspots that could be used

to instruct maintenance work or speed restrictions.

Fuzzy Model Set-Up

The steps taken to create and train the model, compris-

ing fuzzification, construction of relational matrices, and

defuzzification, together with some main aspects of fuzzy

sets theory, are outlined below. The concepts and equa-

tions described in this section are applied in an example

in the Appendix, using parameters of sleeper-ballast lat-

eral resistance and fastener torsional resistance.

Fuzzification. A core concept of fuzzy methodology

involves blurred boundaries for the membership of vari-

able values (elements) in collections of like values (sets).

Contrary to a crisp set, where values are either a full

member of the set or a full member of the complement

of that set, in fuzzy sets elements may have partial mem-

bership in both the set itself and its complement.

Consequently, in an ‘‘IF X THEN Y ’’ rule structure, a

fuzzy framework allows, for example, a rule of X = 5 to

trigger even if the value is close to but not equal to 5,

such as 4.8. Figure 3 depicts two fuzzy sets, with the

membership of values in the set on the vertical axis and

the values of the variable of interest on the horizontal

axis. Both sets describe a crisp value xn, given a member-

ship of 1, while a membership component is provided for

values either side of xn. Crisp sets can be translated into

fuzzy sets through the process of fuzzification—the sup-

plying of membership values for each element of the set.

In this way each element has two components: the value

of the variable of interest, called the universe of discourse,

and its corresponding membership in the fuzzy set.

Membership values can be determined through one of

many functions, two of which are outlined below. The

membership values span from 0 to 1 and a higher mem-

bership value denotes a stronger membership, for which

the description of the set is considered more true. A

membership value of 1 denotes full membership in the

set, while a value of 0 is given to elements that are not

part of the set.

For a value Xj of set X with elements Xi, membership

can be determined for each element Xi, which describes

the similarity of Xi with respect to Xj. A commonly used

triangular membership function (21) can be employed:

Figure 2. The process and flow of information through the model when applied to an illustrative example location.
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mi = max 0, 1+
qi

0:53 h

� �� �

ð1Þ

where

qi = min Xi,Xj

� �

�max Xi,Xj

� �

ð2Þ

and

h=
max Xð Þ �min Xð Þ

a
ð3Þ

where mi is the value of membership for the i th element

of the map set X , describing the Xj value. The indepen-

dent variable a is used to adjust the width of the mem-

bership function and is one of the main hyperparameters

used to optimize the model. It is a positive value and is

directly related to the range of the values in the universe

of discourse, such that for a triangular membership set,

the base of the triangle is equal in size to the range when

a= 1 and half the range when a= 0:5.

Many different fuzzification functions exist beyond

just the triangular shape. For the purposes of this

paper, the effect of two commonly used fuzzification

shapes (FSs) has been considered, those of triangular

and Gaussian shapes. As these concepts may at first

appear quite abstract, readers unfamiliar with the

approach will find a helpful numerical example in the

Appendix.

Construction of Relational Matrices. Fuzzy relations are used

to map elements of one set to that of another, such as,

for example, lateral resistance values to buckling tem-

peratures. One method of formulating a relational matrix

is to employ the Cartesian product of two fuzzy sets,

antecedent ~A and consequent ~C, to calculate the rela-

tional matrix ~R:

~R= ~A3 ~C ð4Þ

where the 3 operator represents a minimum function

taken in the same way as the cross-product of two vectors

(see example in the Appendix). Then, for a new fuzzy

input set ~A0, the previously calculated relational matrix ~R

can be used to calculate a new fuzzy output set ~C0 using

the following:

~C0 = ~A0
8
~R ð5Þ

where the operator 8 represents a max–min composition.

Each relation ~R results from a single observation from

the training data, such that the number of relations is

equal to the size of the training dataset. Instead of enact-

ing the relations individually, a more efficient approach

is to combine the relational matrices using the following:

~Rc = max ~R1, . . . , ~Rn

� �

ð6Þ

where n is the number of relations and the max operator

compares values across the relational matrices for each

matrix position, taking the maximum of each position.

The resultant ~Rc is a combined relational matrix. The

minimum function used in Equations 4 and 5 is tested

for comparison with the product function, which results

in a max-product composition, a second commonly used

form (21).

Defuzzification. While a fuzzy set can be a useful output

in itself, a crisp value of buckling temperature is desir-

able to gauge the risk of track buckling. In Equation 5

Figure 3. Fuzzy set formed using a triangular and Gaussian membership function.
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above, ~C0 is a fuzzy set for the unknown output, which

can be defuzzified to achieve a single crisp value through

the reverse of the fuzzification process.

Many defuzzification methods (DMs) are available,

two of the most common being the middle of maxima

and centroid. For the middle of maxima method, the

highest value of membership in the set is considered and,

if it is unique, the corresponding buckling temperature

value is taken as the crisp value of the set. If multiple

positions of maximum membership are found, the aver-

age is taken as the output value (22).

The centroid method considers the whole fuzzy set

and applies the following function:

C0 =
X

r

j= 1

~C0
j,m

Pr
i= 1

~C0
i,m

~C0
j, x

 !

ð7Þ

where C0 is the crisp representative of the fuzzy set
~C0, ~C0

j,m is the membership value of element j in the fuzzy

set, r is the number of elements in the fuzzy set, and ~C0
j, x

is the universe of discourse value for element j in the set.

Development of Training Data

Owing to the lack of availability of a large dataset of

buckling incidents, in part because of the difficulty of

being able to accurately know the track conditions before

the buckle occurs, the set of data used here in training

the fuzzy model has been created using an analytical

model. While overcoming the limitations of a missing

high-quality dataset of incidents, such an approach is not

ideal, resulting in a fuzzy model that is constrained by

the assumptions of the analytical model used to generate

the training data.

The model developed by Grissom and Kerr (13) was

implemented in MATLAB to generate a matrix of track

properties and a vector of corresponding minimum tem-

perature increases. The choice of model was based on its

consideration of the sleeper lateral bending stiffness and

the fastener rotational resistance, both of which are

shown to have a significant impact on the minimum

buckling temperature increase.

The five variables seen in Table 2 were chosen from

the Grissom and Kerr model (13) based on their poten-

tial to vary between different tracks and affect the mini-

mum buckling temperature increase. They form the

training inputs and were split into fuzzy and crisp cate-

gories based on whether the variables are considered

continuously distributed and significantly uncertain.

The training data provided by the analytical model

consist of a matrix of input values of longitudinal resis-

tance, lateral resistance, and fastener rotational stiffness

(see Table 2) and a vector of corresponding DTB, min for

each combination of the crisp variables. Each fuzzy vari-

able is split into equally spaced values, as follows:

St = Xmin, . . . , n
Xmax � Xmin

t

� �

, . . . ,Xmax

� �

ð8Þ

where St is the training set of t equally spaced points for

the variable, Xmin is the minimum considered value of the

variable and Xmax the maximum, and n are integers from

1 to t � 2. The equally spaced points divide the variable

space, representing the fuzzy rules. For example, for a

case of three divisions, a variable is split into a minimum

value, a maximum value, and a value in the middle to

give low, high, and medium sets, respectively. These are

then used in combination with the other variables in an

‘‘IF variable x IS LOW AND variable y IS HIGH THEN

output variable z IS MEDIUM’’ rule format. The num-

ber of these divisions, defined by t, can be increased to

give more sets and potentially increase the accuracy of

the model. Every combination of the aforementioned

divisions between all fuzzy variables was considered, such

that the total number of combinations and therefore

dataset size N is given by the following:

N = tv ð9Þ

where t is the number of divisions and v is the number of

fuzzy variables under consideration. For a three-variable

model with each variable of three divisions, N = 3
3 = 27

rows of data are necessary to cover every combination. A

model of 0.60m sleeper spacing and wooden sleepers (see

Table 2), with the fuzzy variables split into three divi-

sions, was considered for the testing scenarios below.

Testing Method

A testing set of 100 observations, generated by the analy-

tical model, was used to test the predictive capabilities of

the model, formed of a matrix of input track properties

of the fuzzy variables described above and a vector of

Table 2. Crisp and Fuzzy Characterization of Variables

Sleeper spacing, {crisp} (m)
Sleeper lateral bending
stiffness, {crisp} (Nm2)

Longitudinal resistance,
{fuzzy} (N/m)

Lateral resistance,
{fuzzy} (kN/m)

Fastener rotational stiffness,
{fuzzy} (kNm/rad)

0.60, 0.65, 0.70, 0.75 Wood—2.30 3 106

Concrete—6.87 3 106
3.26–13.1 5.88–17.7 0–533

6 Transportation Research Record 00(0)



minimum buckling temperature increases. A set of 50

DTB, min values was generated from random combina-

tions of the input variables, a further 25 values close to

the minimum of the range of buckling temperature val-

ues allowable from the input ranges were selected and

the remaining 25 close to the mean of the range. In this

way, the predictive capability was investigated through-

out the range while paying more attention to low buck-

ling temperature values, which are of most concern for

predicting the risk of buckling. While a 70:30 ratio of

training data to testing set is a traditional approach when

training machine learning models, a significantly larger

testing set was chosen here to ensure that any trends in

the prediction error are better revealed.

Optimization of Hyperparameters

The choice of FS, composition type (CT), and DM

options under investigation was based on standard fuzzy

model parameters, commonly seen across fuzzy applica-

tions, although it should be noted that a wide array of

options exists, especially for fuzzification and DMs. The

range of IW and OW was based on a consideration of

the training data. For the input width, a minimum width

of one third of the range (practically a = 0:33) was cho-

sen, so that for a three-division per variable input every

section of the universe of discourse has a membership

value. The upper limit of a= 2 was chosen as it is the

smallest value of IW resulting in overlap of every fuzzy

set at any given point in the universe of discourse. This

upper limit was likewise introduced for the output width,

with the range further extended to a lower limit of

a= 0:01 because of the larger number of unique values

in the output training dataset.

A Bayesian optimization algorithm, bayesopt in

MATLAB, was used to explore the available combina-

tions of the fuzzy hyperparameters in Table 3 that mini-

mize the error, using the expected-improvement-plus

acquisition method with an exploration ratio of 0.1, over

800 steps (23). The maximum prediction error was cho-

sen as the objective function, being the largest value of

error witnessed when providing predictions for the 100

points of the testing set. The maximum error was chosen

as the performance metric to emphasize reducing the

error of outlying predictions, by grading the predictive

ability of the model on its worst prediction. The choice

of Bayesian optimization was based on its favorable

comparison with similar methods, such as the grid search

method (24).

Results and Discussion

The following section details a comparison of the mini-

mum buckling temperature increase (DTB, min) predic-

tions offered by the fuzzy model against the values of the

testing set. The values in the testing set are shown on the

horizontal axis of the result plots while the vertical axis

represents the values predicted by the fuzzy model, with

the black dashed line showing the ideal case scenario of

predicted values being equal to the test (expected) value,

here called the ideal line.

Initial Hyperparameter Choice

Figure 4 shows an initial prediction with hyperparameter

values of triangular FS, minimum CT, centroid DM, IW

of a= 1, and OW of a= 0:0186. The FS and CT were

chosen for their simplicity of calculation, while the DM

was selected based on its widespread use in fuzzy appli-

cations. The input width of a= 1 allows for the fuzzy

sets to overlap to a maximal extent without the high set

and low set overlapping, while the output width of

a= 0:0186 was chosen based on the following consider-

ation of the distribution of the output training set. The

Table 3. The Fuzzy Parameters of Optimization and their Ranges

Optimizable parameter Range

Fuzzification shape (FS) Triangular, Gaussian
Training input set membership
function width (IW)

0.33–2

Training output set membership
function width (OW)

0.01–2

Composition type (CT) min, product
Defuzzification method (DM) centroid, maximum

Figure 4. Prediction results offered by the model with initial

hyperparameter choice.

S1odczyk et al 7



output training set of minimum buckling temperature

increases features a range of 80.25�C, with the nearest

neighbor differences having a mode of 1.49, the division

of the latter by the former giving the width of

a= 0:0186. This value of width, therefore, is a compro-

mise between ensuring enough of the universe of dis-

course is represented with membership values without

featuring too much overlap. While the value of 80.25�C

is much higher than would be reasonably expected to be

seen on a track, this value comes from combinations of

the extremes of track property values applied to the ana-

lytical model. The benefit of such an approach is in

exploring both exceptionally strong and particularly

weak tracks, and thus showing the difference in strength

between the two through the minimum buckling tem-

perature increase figure. A reasonable fit can be seen

with a mean absolute error (MAE):

MAE=

P

errorj j

no: error values

� �

ð10Þ

resulting in MAE= 2:7%; however, the maximum error

of 11.3% is quite high. Prediction errors are generally

low for values of DTB, min below around 60�C, although

above that point a larger number of higher error values

are seen. A least-squares method trendline was calcu-

lated with an intercept of 1.04 and slope of 0.958, close

to the 0 intercept and 1 slope of the testing set, showing

that despite its scatter, the trend of the predicted data

is very close to that of the testing set. Radiant heating

typically raises rail temperature significantly above

ambient, leading to the consideration of very high tem-

peratures here (25).

Optimized Hyperparameter Results

Following the initial results, the Bayesian optimization

algorithm described in the Optimization of

Hyperparameters section was employed to determine val-

ues of the fuzzy model hyperparameters that reduce the

maximum error. Figure 5a shows the values predicted by

the optimized model, using the hyperparameters of trian-

gular FS, product CT, centroid DM, IW of a= 1.02,

and OW of a= 0.0127.

This choice of parameters leads to a reduction of error

to just 1.90% maximum and 0.898% mean error. The

excellent accuracy of these results shows the fuzzy model

is capable of faithfully approximating the buckling

model providing its training data. Furthermore, the time

required for the model to be trained and calculate buck-

ling temperatures for 100 scenarios was just 0.129 s, in

contrast to the 30 s calculation time required by the ana-

lytical model to calculate a single buckling scenario.

It should be noted that the 0.129 s time is not the time

required to optimize the model, which was of the order

of magnitude of 60min. Nonetheless, the rapid calcula-

tion time of the model is an important metric, as once

the optimization of the model has been performed it does

not need to be enacted each time the model is used to

predict the buckling temperature for a section of track.

Furthermore, the model does not need to be trained, or

the relational matrix recalculated, each time it is used for

prediction, further reducing the prediction time. Through

both accurate results and rapid calculation times, a

method such as this could be used to provide buckling

risk prediction for a large array of sites, such as a net-

work of tracks.

Figure 5. (a) Prediction results offered by the optimized model (top) and (b) convergence of the minimum error (bottom).
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The convergence of the optimization algorithm,

shown in Figure 5b, settles on the choice of hyperpara-

meters before 200 iterations, significantly below the

allowed 800 iterations. A rapid convergence is desirable,

supporting the choice of values for hyperparameters as

being close to optimal for the model.

Two possible methods of reducing the number of

iterations taken to find an optimized solution would be

to either reduce the number of hyperparameters consid-

ered or to reduce the range of hyperparameters under

optimization. The second option would require fore-

knowledge of the range of hyperparameter values leading

to more accurate results, which usually is specific to the

training dataset and application of the model. As the

method aims to be applicable to a wide range of buckling

data and scenarios, the variable ranges seen in Table 3

should be used without reduction. The first option, of

reducing the number of hyperparameters, offers more

potential. The DM, with categorical options of either the

centroid or middle of maxima, could be reduced to just

the centroid option, thus removing the parameter from

consideration by the optimization algorithm. While the

middle of maxima method was included here for aca-

demic interest and its classical use, it has been seen to

provide vastly inferior accuracy to the centroid method

throughout testing the model.

Because of considering a lower amount of information

(the location of the highest peak of a fuzzy set, rather

than both the width and height of the whole set, as done

by the centroid method), it is unlikely that middle of

maxima defuzzification will offer superior accuracy in

other applications of this model. Likewise, the composi-

tion of fuzzy sets can be established using either the mini-

mum or the product operator, although the product

option has seen consistently more accurate results during

testing and is theorized to offer results of quality at least

as good as, if not better, than the minimum method for

applications of inputs featuring a degree of compensat-

ability (26). The FS parameter is thought to be signifi-

cantly dependent on the application of the model and so

both options of triangular and Gaussian should be kept,

with the potential to expand the pool of fuzzification

methods in future iterations of the model, while the input

and output widths of the fuzzy sets are dependent on the

size and distribution of the training data and so remain

free to be optimized.

Analysis of Training Data Size Impact

An investigation of the effect of the number of experi-

ments used to train the model was conducted, with each

fuzzy variable split into t=2, 3, 4, 5, and 6 divisions

using Equation 8, corresponding to 8, 27, 64, 125, and

216 observations, respectively. It should be noted that

this distribution of training data was made possible

through the use of an analytical model that generated the

training and testing sets. For buckling incident data from

real-life scenarios, such equal spacing is extremely diffi-

cult to achieve outside of a controlled laboratory envi-

ronment and would usually be composed of unequally

distributed divisions, which possibly would not cover all

parameter value combinations, thus potentially affecting

the accuracy of the model.

Figure 6 shows the change in maximum and MAE for

increasing numbers of observations, for equally spaced

training inputs, when predicting values of the testing set.

As can be seen, both types of error decrease consistently

with increasing the amount of training data, showing the

model is adept at predicting buckling temperatures beyond

merely the case presented in the Optimized Hyperparameter

Results section. The model has shown robust performance

even for low numbers of datapoints, such as the eight

observations case (the leftmost point in Figure 6), with the

maximum error remaining below 8%. This agrees with the

findings presented by Gitman et al. (27), which show that

the fuzzy methodology does not need large sizes of data to

obtain accurate results.

Having considered the accuracy of the inference

results it is useful to explore the logistics of training and

applying the model. Of particular importance is the pre-

diction time, enacted each time the model is used to cal-

culate an output given new inputs, which has significance

for applications on a large scale. For example, for a net-

work of tracks, the prediction time will have a direct

impact on the discretization of the network, with long

calculation times limiting the lengths of track under

Figure 6. Impact of number of observations in the training set

on the accuracy of prediction.
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consideration. While the configuration of hyperpara-

meters has little bearing on this time, the same is not the

case for the size of the relational matrix, resulting from

the number of observations and number of variables

considered.

Table 4 shows the influence of dataset factors on the

prediction time and accuracy of the fuzzy model. For the

sake of brevity the opposite impact of the factors has

been omitted; however, it should be noted that the oppo-

site of each of the factors mentioned will likewise have a

reversed effect on the prediction time and accuracy, for

example, decreasing the number of divisions per variable

will negatively affect the accuracy.

Firstly, based on the low improvement in accuracy

from the four-division to the six-division model seen in

Figure 6 coupled with the already good accuracy of the

two-, three-, and four-division cases, an increase above

four divisions offers little benefit while unnecessarily

increasing the calculation time. The accuracy of the

model is expected to vary across the applications and

variables under consideration, and as such an analysis of

the impact of data size on the prediction accuracy is an

integral part of determining how much data is necessary

for an accurate but quick calculation.

Secondly, care should be taken to declare variables as

fuzzy only where there is need, where the variable may

take any value across the range and may be uncertain.

For example, while sleeper spacing can be considered a

fuzzy variable (without greatly compromising the accu-

racy of the model, as seen in the Sensitivity Analysis of

Track Parameters section), the spacing of sleepers in a

track generally conforms to a standard spacing (for

example, 60, 65, 70, or 75 cm) and is unlikely to take

intermediary values (such as 67.5 cm) or be vague or

uncertain to a significant degree. Therefore, sleeper spac-

ing is a poor choice for a fuzzy variable, unlike para-

meters such as the lateral resistance, which can vary

across a continuous range of values for various tracks

and may be highly uncertain.

A further issue of a needlessly large set of training

data is the time and resources necessary for its acquisi-

tion. Looking at Figure 6, the difference in accuracy

between the penultimate (125 datapoints) and final (216

datapoints) instances is a mere 0.16% improvement in

the maximum error despite an increase of 72.8% in the

size of training data. In this paper a relatively lightweight

analytical model was used to provide the training sets;

however, for cases where a finite element model or

experimental data are used, increasing the number of

experiments carried out may be costly without significant

benefit to the accuracy of the model while slowing down

its calculation time. With this in mind, the influence of

hyperparameters and their optimization should be con-

sidered first when aiming to improve the accuracy of the

model, before looking to increase the size of the training

data.

Finally, the choice of the source of training data

whether from analytical and finite element models or

from buckling incidents should be considered, as it

affects both the accuracy and applicability of the predic-

tion methodology. When using training data from a

buckling incident on track section A, the application of

the fuzzy model for track section B can only be con-

ducted if data is available for all the variables in the

training set. Furthermore, the range of the variables in

the training set needs to encompass the new input values

supplied for prediction, otherwise it will result in a loss

of accuracy. A third consideration should be made for

the distribution of the training data that, if the values are

clustered around a few select points and lack information

for a large section of the range for each track variable,

will again lead to an increase in prediction error. Each of

the three aforementioned conditions is relatively simple

to fulfil for data from analytical and finite element mod-

els, while posing a challenge for data from incidents,

which can be incomplete, limited in scope, low in num-

ber, and have erroneous values. Nevertheless, a signifi-

cant advantage of using data from incidents is its ability

to offer insights into the track buckling mechanism,

which analytical or finite element models may not

account for, being limited by their assumptions. As such,

a set of information from buckling incidents that takes

into account the considerations mentioned above would

be of significant value to the method presented here.

Table 4. Impact of Training Data on the Prediction Time and Accuracy of the Fuzzy Model

Prediction time Accuracy

Positively affected by � Evaluating the relational matrix before
the prediction calculation

� Increasing number of divisions per variable
� Optimization of hyperparameters

Negatively affected by � Increasing number of divisions per variable

� Increasing number of variables

� Unnecessary introduction of previously crisp
variables as fuzzy variables

� Unevenly scattered distribution of variable divisions
� Erroneous input–output pairs in the training data
� Prediction using input values outside of the training

input range

10 Transportation Research Record 00(0)



Sensitivity Analysis of Track Parameters

Collecting a comprehensive description of track condi-

tions at sites of buckling incidents is sometimes impos-

sible, especially in the field of track buckling where the

event of a buckle often makes it difficult to determine

the conditions before the buckle. The following sensi-

tivity study therefore considers the predictions of the

fuzzy model as applied to the buckling data generated

by the Grissom and Kerr (13) analytical model. The

aim of this study is to investigate the agreement of the

trends perceived through the parametric investigation

against other publications, thus validating the applic-

ability of the fuzzy inference model. To investigate the

impact of missing variables on the quality of prediction

of the model, a four-variable training dataset was con-

structed, with the sleeper spacing introduced as the

additional variable. Each variable was split into five

equally spaced values, for the ranges seen in Table 2,

resulting in a training dataset of 625 theoretical track

scenarios. The same optimization algorithm that was

used in the Optimized Hyperparameter Results section

was employed to determine the values of the hyper-

parameters and an accuracy of 2.5% maximum error

and 1.28% MAE were achieved.

For each variable, the parameter in question was

removed from the input training data of the main set,

while keeping the values of the output unchanged. Then,

inputs missing the parameter under investigation were

used to calculate a prediction, which was compared

against an unchanged value of the minimum buckling

temperature increase of the testing set. The minimum

and mean errors of these predictions were then reduced

by the respective errors of the main set, resulting in the

impact on error introduced to the prediction resulting

from removal of the variable of interest, seen in Table 5.

The least impact is seen for the longitudinal resistance

variable that, when not considered, only increases the

maximum error by 3.82%, thus still giving a reasonable

prediction with 6.32% maximum error. This agrees with

findings from other parametric analyses, which show

that while the longitudinal resistance has an influence on

the minimum buckling temperature increase, the effect is

small (28).

The sleeper spacing is seen to have a larger effect than

both longitudinal and lateral resistances, showing it is a

key parameter when considering the buckling of track.

Given that both the longitudinal and lateral resistances

of the track rely on the number of sleepers, while the fas-

tener torsional resistance is enacted at each sleeper, a

change in sleeper spacing has an effect for multiple dif-

ferent mechanisms opposing the buckling phenomenon.

The spacing of sleepers is of particular interest for the

lateral resistance property, as the spacing not only influ-

ences the lateral resistance of the track as a whole but

also affects the lateral resistance of individual sleepers, as

seen in Koyama et al. (29).

The largest impact is seen to stem from the fastener

rotational stiffness variable, with the maximum error ris-

ing by almost 50%. The MAE also increases by the sig-

nificant amount of 18%, showing that the reduction in

accuracy is not limited to a single difficult-to-predict sce-

nario. Despite a relatively limited amount of research

into the influence of this variable, the findings in Table 5

largely agree with Van (30), Grissom and Kerr (13), and

Samavedam et al. (28), where high torsional resistance

fasteners are seen to have a large impact on the minimum

buckling temperature increase. The agreement of this

sensitivity analysis with that of the aforementioned publi-

cations further supports the applicability of the fuzzy

inference model to real-world buckling scenarios.

It should be noted that the analysis offered here only

considers a small selection of track properties relevant

to the study of buckling of tracks. This selection was

made based on the impact of these variables on the

safety criteria, that being the minimum buckling tem-

perature increase of the track, which is influenced most

by the variables mentioned above, as shown by

Samavedam et al. (28). Other variables, such as track

curvature, vehicle loads, and the size of rail imperfec-

tions, are considered secondary to the prediction of

minimum buckling temperature increase, having been

shown to have a greater impact on the maximum buck-

ling temperature increase, and their impact in a fuzzy

logic model approach is a matter of further research.

Nevertheless, the data presented here allows for a rudi-

mentary comparison between each variable and a rank-

ing of their impact on the buckling risk based on the

minimum buckling temperature safety criteria.

Following the success of the model based on its low

error and agreement with previous authors’ studies of

parameter influence, the future directions include valida-

tion against recorded field data and investigating the

effect of using linguist descriptions of track, in the form

of fuzzy sets, as inputs. The former will further confirm

the validity of the modeling technique, while the latter

opens up the applicability of the model to account for

the uncertainty of track conditions.

Table 5. Sensitivity of Prediction Error to Missing Variable

Information

Variable
Rise in maximum

error
Rise in mean

error

Longitudinal resistance 3.82 1.98
Lateral resistance 21.0 6.22
Sleeper spacing 26.8 13.6
Fastener torsional stiffness 49.8 18.0
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Conclusions

In this work, a methodology using a fuzzy inference

model for predicting the minimum buckling tempera-

ture increase based on track properties has been pre-

sented. A high degree of accuracy was achieved with

maximum and MAE measures below 1% and rapid cal-

culation times. The method does not rely on large sizes

of training data and once trained can be used without

the need for knowledge of fuzzy methodology by the

operator. The inference method has been applied for

training data generated by an analytical model, which

offers the advantage over using field training data

of calculating the minimum buckling temperature

increase, an important concept for prediction of buck-

ling events.

The model shows particularly good results when

trained using a triangular membership function shape,

product CT, and centroid DM. Increasing the data size

has been shown to reduce error, with a significant

improvement for increased number of observations at the

low range of data size. To achieve a model with less than

1% maximum error, 125 datapoints are shown to be

effective, although 64 or 27 points both feature less than

2% maximum error and offer shorter prediction times.

Following further investigation into the use of the

methodology with the application of linguistic inputs of

track conditions based on engineering experience rather

than measured data on condition, the methodology pre-

sented here could prove to be an accurate, reliable, and

fast method for predicting buckling temperatures for

both well-known and uncertain track properties.
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