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Abstract

Exploiting cross-lingual resources is an effective way to com-

pensate for data scarcity of low resource languages. Recently,

a novel multilingual model fusion technique has been pro-

posed where a model is trained to learn cross-lingual acoustic-

phonetic similarities as a mapping function. However, hand-

crafted lexicons have been used to train hybrid DNN-HMM

ASR systems. To remove this dependency, we extend the con-

cept of learnable cross-lingual mappings for end-to-end speech

recognition. Furthermore, mapping models are employed to

transliterate the source languages to the target language without

using parallel data. Finally, the source audio and its translit-

eration is used for data augmentation to retrain the target lan-

guage ASR. The results show that any source language ASR

model can be used for a low-resource target language recogni-

tion followed by proposed mapping model. Furthermore, data

augmentation results in a relative gain up to 5% over baseline

monolingual model.

Index Terms: automatic speech recognition, low-resource,

cross-lingual, multilingual, data augmentation

1. Introduction

End-to-end (e2e) acoustic modelling techniques require a lot of

training data for reliable parameters estimation. However, more

than half of the world’s population speak only 23 languages out

of more than 7000 languages being spoken across the globe [1].

Thus only a few languages have sufficient data resources, and

a lot of languages are still under resourced to build an ASR

system. For such languages, multilingual speech recognition

systems have stolen the lime light over the past decade [2, 3, 4,

5, 6, 7] which have been used for feature extraction [8, 9, 10] or

directly for transfer learning [11, 12].

Data augmentation is another approach to increase the

training data of a low-resource language. Commonly used

data augmentation technique includes extending training data

by making perturbed copies either by adding noise [13, 14],

varying speed and tempo of original speech [15], vocal tract

length perturbation (VTLP) [16, 17], SpecAugment [18] and

combinations of these methods [19]. All these techniques are

based on audio data augmentation.

In the recent past, a few studies have been done to aug-

ment data by processing text rather than speech [20, 21, 22].

Transcripts from different languages have been transliterated to

Latin script to train a multilingual system [21]. However, it

requires paired data (a word in original script and its translit-

eration in Latin) for each language. Thomas et al. [22] have

This work was partly supported by LivePerson Inc. at the Liveper-
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proposed to transliterate a source language data to the target lan-

guage without using parallel data. Source language audio data

has been decoded using the target language ASR to transliterate

them into target language which is then used as augmented data

to retrain target language ASR. Though this is a novel idea, an

out of domain ASR has no knowledge of input language and

thus is not expected to generate a good transliteration.

Recently, we have proposed a technique to learn cross-

lingual acoustic-phonetic similarities on phoneme level [23]

which has been used for multilingual and cross-lingual acoustic

model fusion [24]. A model is trained to learn mappings from

a source language ASR output posterior distributions to that of

the target language ASR. The study has been based on an un-

derlying assumption that these mapping models can learn some

language-related relations between phonemic posterior distribu-

tions. Though the study proves the concept, the work has been

done on phoneme level using DNN-HMM hybrid systems and

handcrafted lexicons for each language. In this work, we ex-

tend the previous work for cross-lingual e2e speech recognition

systems. Then the ASR systems of source languages followed

by a source-target mapping model for each source-target pair is

used to transliterate source data into the target language script.

Though both the components are trained on task specific data

and are expected to generate better output labels, transliteration

of a source language audio data into the target language is still

unintelligible especially for unrelated languages and thus called

ciphered data. So, the key contribution of this work is two-fold;

• it extends the concept of learning cross-lingual mappings for

e2e speech recognition systems and

• generates ciphered text for a target language data augmenta-

tion using source languages ASR and <source-target> map-

ping models.

Exploiting mapping models for cross-lingual speech recog-

nition shows that using a source language ASR for a target lan-

guage gives comparable results. These mapping models are

trained on limited data, and using a source language ASR fol-

lowed by a mapping model enables us to exploit cross-lingual

ASR to recognise the target language speech data. Furthermore,

the proposed data transliteration and augmentation techniques

yield up to 5% and 28.5% relative improvement in character

error rate (CER) when compared with monolingual and multi-

lingual ASR systems respectively.

2. Mapping models

Let MA and MSi
be the monolingual acoustic models of the

target and ith source language respectively, a mapping model

NSiA is trained to translate posteriors PSi
of dimension dSi

from MSi
to the posteriors PSiA of dimension dA where dA is

the dimension of posteriors from MA. Given a set of observa-
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Figure 1: Architecture of the MESD mapping model

tions X = {x1, x2, . . . , xT } of the target language, posterior

distributions (PZ = {p1, p2, . . . , pT } where Z ∈ {A,Si})

are attained from the target and the ith source acoustic models.

A mapping model is trained using KL divergence loss to map

posteriors from ith source acoustic model (PSi ) to the target

language posteriors (PSiA). The loss function is given as;

LSiA(θ) =

B∑

n=1

p
A
n · (log pAn − log pSiA

n ) (1)

where B is the number of frames in one batch for training a

mapping model NSiA to map posteriors from ith source lan-

guage to the target language.

Mapping models in the previous work [24] have been

trained on frame level without considering the contextual in-

formation but connected speech is a continuous signal which

poses co-articulation and temporal smearing. Furthermore, a

separate model has been trained for each source-target language

pair rising a requirement of N(N − 1) mapping models. So,

the architecture of mapping model is modified in this work to

a sequence-to-sequence model with Multi Encoder Single De-

coder (MESD) architecture. Thus, it incorporates contextual

information and reduces the required number of mapping mod-

els to just N . The architecture of MESD is shown in the Figure

1.

During the training of MESD model, outputs from all the

source acoustic models for a given utterance u are fed to source-

language dependent encoders successively. Embeddings from

the final layer of the encoders are then passed to a single target-

language dependent decoder. Loss is calculated as mean of the

losses for all encoder-decoder pairs.

LA(θ) =
∑

K

wk · LSkA (2)

where K is the number of total source languages (N − 1),

wk = 1

K
in the case of mean average and LSkA is given in

Equation 1 which is still frame based. It allows mapping models

training to converge in low-resource setting as a small amount

of data provides millions of examples. However, this causes un-

balanced training across languages as mean value can be con-

tinuously decreasing when loss for one of the languages is de-

creasing monotonically but increasing in same fashion for the

Figure 2: Flow of generating data for augmentation and re-

training of target language ASR

other one. This can cause model to learn mappings for one lan-

guage way better than the other. To cope with this issue, a dy-

namic weighting scheme is applied to weight the losses for each

encoder-decoder loss. For the experimentation here, rank sum

weighting [25] is used to assign the weights. In this scheme,

weights are assigned based on their normalised ranks. So, w in

Equation 2 now becomes

wr =
2(K + 1− r)

K(K + 1)
(3)

where r is rank of the language when the languages are sorted

on decreasing values of their losses. It restricts model from

biasing towards a specific language or a group of languages.

Though a mapping model contains multiple encoders, any

encoder can be used with decoder during decoding and MESD

does not require data stream from all the encoders for a given

utterance. It implies that mappings can be obtained having input

even from only one source language at a time. Training of these

mapping models allows to use any source language ASR for

decoding the data of a target language followed by the source-

target mapping model.

3. Ciphering text

In the previous work [22], target language ASR has been used

for transliteration of source language audio data for data aug-

mentation and retraining of target language ASR. However, an

ASR does not have any source language information and is not

expected to generate a rationale transliterated transcriptions.

In this work on the contrary, source language audio data is

decoded using in-domain ASR (MSi
) and then the output pos-

terior distributions (PSi ) are transformed to the target language

posterior distributions (PSiA) using the source-target mapping

model (NSiA). Mapped posteriors from the mapping models

are then used to generate transliterated transcriptions (alterna-

tively referred as ciphered text or transcriptions) using greedy

decoding. Though the transliterations still might not be exact

transliterations (thus called ciphered text), both the components

involved in the process are trained using the task-specific data

and are expected to perform better.

Source language audios and their ciphered transcriptions

are then used as augmented data for retraining of the target lan-

guage ASR. The flow is shown in the Figure 2.
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4. Experimental setup

4.1. Data set

As this work extends the previous work, experiments here are

done on same data set as used in [24]. Full Language Packs

(FLP) of four low-resource languages from IARPA BABEL

speech corpus [26] (Tamil (tam), Telugu (tel), Cebuano (ceb)

and Javanese (jav)) are used for baseline ASR training and eval-

uation. BABEL data set mostly consist of conversational tele-

phone speech with real-time background noises and is quite

challenging because of conversation styles, limited bandwidth,

environment conditions and channel. All the utterances with-

out any speech are discarded. The details of the data sets are

tabulated in Table 1.

For training of the mapping models, a subset of 30 hours is

randomly selected from each language pack. This data is further

split into 29 hours of train set and 1 hour of dev set.

4.2. Speech recognition systems

Hybrid CTC/attention architecture [27] is used to train all

speech recognition models which consists of three modules that

are; a shared encoder, an attention decoder and a CTC module.

The training process jointly optimises the weighted sum of CTC

and attention model.

LASR(θ) = αLCTC + (1− α)Latt (4)

The input to the model is 40 filterbanks and the output of the

model is the byte-pair encoded (BPE) tokens. Monolingual

ASRs are trained for 100 BPE tokens for each language while

the output of multilingual ASR is 400 tokens. SentencePiece

library [28] is used for tokenisation. During decoding, the final

prediction is made based on a weighted sum of log probabilities

from both the CTC and attention components. Given a speech

input X , the final prediction Ŷ is given by;

Ŷ = argmax
Y ∈Y

{λ logPCTC(Y |X) + (1− λ) logPatt(Y |X)}

(5)

where λ is a hyper-parameter. The values of α and λ are kept

same for all ASR systems. SpeechBrain toolkit [29] is used for

training of all ASR systems.

4.3. Mapping models

A multi encoder single decoder model is trained for each tar-

get language. In an MESD model, there are three encoders and

only one attention decoder. Each encoder and single decoder

consists of one bidirectional RNN layer. For each target lan-

guage, mapping model size is only 2.59 million parameters.

Table 1: Details of BABEL data sets used for the experimenta-

tion

Lang
Train Eval

# hours # spks # hours # spks

Tamil (tam) 59.11 372 7.8 61

Telugu (tel) 32.94 243 4.97 60

Cebuano (ceb) 37.44 239 6.59 60

Javanese (jav) 41.15 242 7.96 60

4.4. Performance metric

Accuracy of a mapping model is measured as the ratio of num-

ber of correctly mapped frames to the total number of frames

as given in Equation 6. Correctly mapped frames are defined as

the frames where the values of argmax(mapped posteriors)
and argmax(targetAM posteriors) are the same.

argmax
k

(pAt,k) == argmax
k

(pSiA

t,k ))) ⇒ CMF + +

Accuracy =
CMF

T
(6)

where k is the index of classes in the output vector pt,

CMF is the number of correctly mapped frames and T is the

total number of frames.

For downstream speech recognition task, results are re-

ported in terms of percent character error rate.

5. Results and Discussion

5.1. Mapping models

Accuracies of mapping models, trained to map posterior distri-

bution from a source language ASR to the target language ASR,

are tabulated in Table 2. Analysis shows that correct target class

is still among top n mapped classes if not the most probable

one. So, the mapping models accuracy is calculated for differ-

ent values of n where n represents the number of most prob-

able classes. Though the accuracy increases with increasing

value of n, rate of change is not as much as observed in case of

phonemes by [24] which implies that the performance of map-

ping model in case of phoneme based hybrid DNN-HMM sys-

tems has been better than that for e2e systems. Since the map-

ping models are trained using posterior distributions of ASR

outputs, one potential reason could be the detrimental affect of

speech recognition systems on the training of mapping models.

However, the joint analysis of amount of training data (Table 1),

performance of monolingual speech recognition systems (Table

3) and performance of mapping models (Table 2) rules out this

reason.

Amount of mapping model training data is same for all the

languages but the mappings for ceb and jav target language is

better than tam and tel. Even for ceb and jav target languages,

accuracy of mappings from tel source language is very low in

comparison to other source languages. The investigation reveals

that as the number of BPE tokens are restricted to 100 for all the

languages, ceb and jav having only 19 and 26 characters respec-

tively have good context coverage in 100 BPE tokens. But the

BPE tokens extracted for tel, which have more than 52 charac-

ters, do not cover context very well. Furthermore, both ceb and

jav are written in Latin script and thus have a full overlap of

characters and are even acoustically close. While on the other

hand though both tam and tel belong to same Dravidian fam-

ily, their writing scripts are different which makes it difficult for

model to learn mappings with limited number of BPE tokens.

5.2. Ciphering text

For a given target language, audio data of all the source lan-

guages is decoded using language dependent ASR systems and

the output posterior distributions are then mapped to target lan-

guage distributions using the mapping models NSiA. Greedy

decoding is carried out on these output posterior distributions to
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Figure 3: Examples of ciphered transcriptions

generate ciphered transcriptions for the target language. Lan-

guage model (LM) is not integrated at this stage to avoid LM

affect on transliterations. As this stage solely depends on map-

ping models, the quality of ciphered text depends on mapping

models accuracy for n = 1. The analysis of ciphered transcrip-

tions shows that the transliteration is fairly good for shorter ut-

terances but gets worse for longer utterances. A few examples

of ciphered transcriptions are shown in Figure 3.

5.3. ASR

Monolingual systems (mono) are the language dependent

acoustic and language models which are trained on target lan-

guage specific data sets. The train sets of all the languages are

then mixed to train a multilingual system (multi). Language

model for a multilingual system is also trained using mix cor-

pora of individual languages. The results of speech recognition

systems are shown in Table 3. The first row contains the mono-

lingual ASR result without using LM for a later comparison

while rest of the results are ASR decoding with LM.

For a given target language test set, speech recognition re-

sults are also computed on top of mapping models after decod-

ing target language data using source language acoustic mod-

Table 2: Accuracy of the mapping models considering top n

mapped classes

Target

Lang

Source

Lang

Mapping model accuracy

n=1 n=2 n=5 n=10

tam

tel 47.46 54.58 66.31 77.06

ceb 45.98 52.88 64.25 74.65

jav 46.97 54.02 65.63 76.26

tel

tam 48.88 56.20 67.80 78.28

ceb 46.22 53.27 64.97 75.96

jav 47.40 54.78 66.76 77.54

ceb

tam 60.53 66.32 74.79 82.31

tel 48.32 51.43 56.49 62.53

jav 65.04 71.39 80.06 86.58

jav

tam 62.24 68.40 77.00 83.76

tel 54.64 57.92 62.29 67.69

ceb 65.51 71.85 80.30 86.65

Table 3: ASR performance in terms of %CER

Lang tam tel ceb jav

mono 44.6 58.24 39.40 42.42

+ LM 39.25 52.68 31.25 32.11

multi 41.15 54.38 38.91 42.65

augAll 41.90 56.10 32.30 32.86

augTwo 38.83 52.06 29.94 30.47

els. Greedy decoding is applied on mapped posteriors and the

results are shown in Table 4. CER on diagonal is the same as

the first row of Table 3. Though these results are from source

language ASR followed by a source-target mapping model and

does not use language dependent ASR, it preforms better than

monolingual ASR in case of jav. Results are comparable for

other languages but fairly depend on mapping models perfor-

mance. It is evident from these results that a source language

acoustic model can be used for decoding of a target language

followed by a mapping model trained on limited amount of data.

5.3.1. Data augmentation

Ciphered transcriptions are generated from all the source lan-

guages for a target language using mapping models as described

in Section 3. Then the audio data of source languages and the

ciphered transcriptions are used together as augmented data for

retraining of target language ASR (augAll). As described ear-

lier, the quality of ciphered transcriptions depends on perfor-

mance of mapping models, using ciphered transcriptions data

augmentation from all the source languages include very low

quality transcriptions and have detrimental effect on retraining

of target language ASR. So, the augmentation is then restricted

to use ciphered data from only closest language (augTwo). For

a target language, the source language with highest mapping

model accuracy is chosen as the closest language. By augment-

ing this data for retraining of a target language, an relative gain

of up to 5% is achieved in terms of CER (augTwo).

6. Conclusion

In this work, the technique of mapping models is extended for

e2e speech recognition systems. For a given target language,

a mapping model is trained on limited amount of data to trans-

form output posterior distributions from a source language ASR

model to that of the target language. A source language ASR

followed by a mapping model is then used for cross-lingual

speech recognition in low-resource setting. Mapping models

are further exploited to transliterate data of a source language to

the target language for data augmentation. Retraining of target

language ASR after data augmentation results in a relative CER

reduction of up to 5% and 28.5% in comparison to monolingual

and multilingual ASR systems respectively.

Table 4: Cross-lingual ASR performance in terms of %CER

Target

Lang

Source Languages accuracy

tam tel ceb jav

tam 44.60 49.34 49.21 49.03

tel 63.19 58.24 64.33 63.65

ceb 48.10 65.31 39.40 40.94

jav 46.72 56.92 40.88 42.42
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