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Abstract

Zero-shot learning (ZSL) aims to recognize unseen categories without corresponding

training samples, which is a practical yet challenging task in computer vision and pat-

tern recognition community. Current state-of-the-art locality-based ZSL methods aim

to learn the explicit locality of discriminative attributes, which may suffer from in-

sufficient class-level attribute supervision. In this paper, we introduce an Attribute

Subspace learning method for ZSL (AS-ZSL) to learn implicit attribute composition,

which is more general than attribute localization with only class-level attribute supervi-

sion. AS-ZSL exploits subspace representations that can effectively capture the intrin-

sic composition of high-dimensional image features and the diversity within attribute

appearance. Furthermore, we develop a subspace distance based triplet loss to improve

the distinguishability of the attribute subspace representation. Attribute subspace learn-

ing module is only needed for the training phase to jointly learn discriminative global

features. This leads to a compact inference phase. Furthermore, the proposed AS-

ZSL can be naturally extended to adapt to the transductive ZSL setting using a novel

self-supervised training strategy. Extensive experimental results on several widely used

ZSL datasets, i.e., CUB, AwA2, and SUN, demonstrate the advantage of AS-ZSL com-

pared with the state-of-the-art under different ZSL settings.
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1. Introduction

Deep learning based computer vision and pattern recognition tasks have achieved

impressive progress due to the abundant human-annotated data, such as image classi-

fication, object localization, object detection, and semantic segmentation. Especially

object recognition has reached human-like performance benefited from the large-scale5

labeled dataset, like ImageNet. However, manual labeling of such large-scale training

data requires lots of time and expense. Zero-shot learning (ZSL) [1] was presented

to classify categories not appearing in the training set. Thus, there is no need for a

large number of labeled data. ZSL relies on semantic descriptions of both seen and

unseen categories to transfer knowledge from seen to unseen categories. This process10

is inspired by the human cognitive system that describes a novel object as knowing

attribute primitives.

As shown in Fig. 1, depending on the training and test conditions, the ZSL task can

be subdivided into four different settings, i.e., a) inductive ZSL (IZSL), b) transductive

ZSL (TZSL), c) conventional ZSL, and d) generalized ZSL (GZSL). Semantic descrip-15

tions build the bridge from seen categories to unseen categories, which are represented

as quantized attribute semantic vectors (semantic space). One ZSL branch aims to learn

an embedding between the visual and semantic spaces [2, 3]. However, their perfor-

mance is often dissatisfactory under the GZSL setting because the embedding model is

trained only with images of seen categories, leading to a significant bias towards seen20

classes. Due to progress in generative models, another ZSL branch [4, 5] proposes to

generate samples of unseen categories for training. The generative model-based meth-

ods can alleviate the category imbalance problem. Most of these two branches of ZSL

approaches utilize pre-trained global image features or extract global features by end-

to-end deep neural networks. However, only global features are difficult to capture the25

fine-grained differences between seen and unseen categories[6], which is crucial for

the ZSL task.
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Figure 1: Illustration of different zero-shot learning settings. In the training phase, ZSL includes two set-

tings: (a) Inductive ZSL: training with labelled images of only the seen category; (b) Transductive ZSL:

training with images of both seen and unseen categories and labels of only the seen category. ZSL also has

two settings in the test phase: (c) Conventional ZSL: test images all belong to the unseen category; (d)

Generalized ZSL: test images belong to both seen and unseen categories.

Several part-based ZSL models [7, 8, 9] have recently attempted to utilize semantic

information as a guide to extract discriminative region features. They learn the region

embedding of attribute semantics while neglecting the importance of discriminative30

attribute localization. Then, locality-based models, APN [10] and GEM-ZSL [11],

were proposed as a solution that learn the explicit locality of discriminative attributes

with class-level attributes or by human gaze supervision. This significantly improved

the GZSL performance. However, the generalization of these methods still suffers from

the unsatisfactory part or locality learning due to the lack of a supervision signal to35

guide the network to focus on the correct local regions. Additionally, the spatial locality
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Figure 2: Comparison of state-of-the-art locality-based ZSL methods (a) APN [10], (b) GEM-ZSL [11],

and our proposed (c) AS-ZSL. APN and GEM-ZSL both aim to learn the explicit locality of discriminative

attributes. The performance is not satisfying for two reasons: 1) only class-level attributes or human gaze

(attention) supervision is not enough to learn the accurate locality of attributes; 2) the spatial locality and

visual appearance of attributes in different images have numerous diversity. Alternatively, the AS-ZSL learns

implicit attributes composition by subspace representation with class-level attributes supervision.

and visual appearance of attributes in different images have significant diversity. It is

therefor difficult to forcefully learn their locality.

As shown in Fig. 2, in a manner different from attribute localization, we propose a

novel Attribute Subspace learning method for ZSL (AS-ZSL) that explicitly learns the40

attribute composition using class-level attributes supervision. Motivated by the success

of subspace representation learning in many visual tasks [12, 13, 14], we adopt it to

capture the intrinsic composition of high-dimensional image features and the diversity

within attributes appearance.

Avoiding learning explicit attribute locality with only class-level supervision, the45

proposed AS-ZSL learns implicit attribute composition by representing an attribute as

a subspace extracted from its local CNN features. The framework of the AS-ZSL is

illustrated in Fig. 3. The entire model consists of three modules: a) Image Encoder

(IE), b) Attribute Subspace Learning (ASL), and c) Cosine Metric Learning (CML).

Firstly, global image features are extracted by the IE module. Then, the ASL module50

learns the attribute subspace by singular value decomposition (SVD). We utilize a sub-

space distance to measure the similarity between attribute subspaces. Further based on

the subspace distance, we design a triplet loss to enhance the discriminability of the

subspace representation. Finally, a cosine metric based feature space is learned for the

nearest neighbor classification in the CML module. The AS-ZSL supports an end-to-55

end training manner. Specifically, the ASL module is only used in the training phase
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to jointly learn discriminative global features. In the inference phase, we obtain the

global features of the test image through the IE and then search for its nearest neighbor

in the cosine metric space to obtain its category label. Since the subspace represen-

tation learning process can be accomplished under unsupervised conditions, AS-ZSL60

can be naturally extended to adapt to the transductive ZSL setting (AS-TZSL). Under

the TZSL setting, the unlabeled images are available for unseen classes. Their sub-

space representation can be learned in the same way without labels. For the triplet

loss construction, we utilize a self-supervised training strategy. To do so, we adopt the

data augmentation method to a specific unseen image to gain its positive sample. Then65

images from seen classes are negative samples that generate triplets for TZSL training.

We summarize the main contributions of this paper:

1. We propose a novel attribute subspace method for discriminative attribute repre-

sentation learning. Compared with the existing explicit attribute locality learning

methods, our AS-ZSL learns the intrinsic attribute composition with only class-70

level attribute supervision. To the best of our knowledge, AS-ZSL is the first

work to introduce subspace representation learning to investigate attribute com-

position for the ZSL task.

2. We design a subspace distance based triplet loss, which enhances the discrim-

inability of the attribute subspace representation. In addition, the attribute sub-75

space learning module is only used for training to jointly learn discriminative

global features. Therefore, the inference phase of AS-ZSL is very compact.

3. The AS-ZSL is naturally extended to further adapt to the transductive ZSL set-

ting since the subspace representation learning is an unsupervised procedure.

Moreover, we propose a novel data augmentation based self-supervised training80

strategy for triplet loss learning of the TZSL.

4. We conduct extensive experiments on widely used ZSL datasets. Results validate

the advantage of our proposed AS-ZSL compared with the state-of-the-art under

different ZSL settings.
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2. Related Works85

2.1. Embedding and Generative Models for IZSL

Early ZSL approaches build embedding from the visual space to the semantic

space. Typically, ALE [2] learns the images and the attribute descriptions into a se-

mantic space where the compatibility between them can be measured. DeViSE [15]

proposes a deep visual-semantic embedding model to map images into a semantic em-90

bedding space. Thus it can recognize unannotated images using the semantic relation-

ships between labels. However, since the embedding is from the high-dimensional vi-

sual space to the low-dimensional semantic space, hubness problem is inevitable [16].

To mitigate the issue, embedding from the semantic space to the visual space or embed-

ding both the semantic and visual features into an intermediate space have been pro-95

posed [17]. Recently, an abundance of generative model based ZSL methods [4, 18, 19]

have been proposed to improve the performance of generalized ZSL (GZSL) using

synthesized unseen class features to alleviate the training data imbalance problem. For

example, f-CLSWGAN [4] utilizes the Wasserstein GAN (WGAN) to generate unseen

class features with a classification loss. Cycle-CLSWGAN [20] exploits the idea of Cy-100

cleGAN to map the generated visual features back to their original semantic features

with a cycle consistency loss. Thus it can learn more robust and authentic features for

unseen classes. Since the training of GAN-based models is unstable and difficult, VAE

based methods achieve more robust performance. CADA-VAE [21] adopts a cross-

aligned VAE to align both the visual and semantic distributions generated from VAE105

in a common latent space. More recently, IZF [22] proposes to generate samples of

unseen classes by a generative flow network, which obtains superior performance on

ZSL task.

2.2. Part and Locality-based Models for IZSL

Although generative model based methods have achieved encouraging performance110

for GZSL, learning global image features alone cannot effectively represent the fine-

grained differences between seen and unseen classes. To tackle this issue, several part-

based ZSL models [23, 24] try to use semantic information to guide the learning of
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more discriminative local features. However, they learn the region embedding of at-

tribute semantics but neglect the important discriminative attribute localization [25].115

More recently, the locality-based method APN [10] jointly learns discriminative global

and local features using class-level attributes for supervision by an attribute prototype

network. Another locality-based method GEM-ZSL [11] proposes a novel gaze es-

timation module to mimic human attention when recognizing an unseen class. This

is supervised by both class-level attributes and human gaze. However, these methods120

have attempted to learn explicit locality of discriminative attributes with only class-

level supervision that cannot obtain satisfy locality information. One major reason is

that a class-level attribute vector ignores the spatial structure and diversity of the at-

tributes. There is insufficient supervision signal to effectively guide the network to

focus on the correct local regions.125

We propose an implicit attribute subspace learning method to tackle this problem.

Since the subspace representation can capture the intrinsic structure of the global fea-

tures, which could learn the attribute composition with only class-level attributes su-

pervision. Although we have not learned the explicit locality of attributes, accurate

attribute composition information can also significantly improve the ZSL task.130

2.3. Transductive ZSL

Under the TZSL setting, the unlabeled images are available during training while

the labels of these images are still unavailable. With unseen samples for training, the

domain shift problem can be alleviated. Thus, the core challenge of TZSL is how to

train the image of unseen classes without label. SABR-T [26] learns generative ad-135

versarial networks to generate latent space representations of both the seen and unseen

class images, then a conditional probability distribution of latent representations of the

semantic labels are transferred from seen classes to unseen classes. GXE [27] utilizes

a self-training strategy which generates pseudo labels for unseen images and then al-

ternately updatas the classifier and generator. SDGN [28] proposes a self-supervised140

learning method and designs a cross-domain triplet mining mechanism to connect

the seen and unseen classes. Recently, Zero-VAE-GAN [29] presents a joint gener-

ative model for feature generation with two self-training strategies. This enables the
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model to further mitigate the strong bias towards seen classes. VMAN [30] introduces

a weighted encoder-decoder framework for virtual mainstay sample generation. An145

instance-category matching regularization strategy is proposed to exploit the unseen

data for training the required weights.

In this paper, we extend our AS-ZSL to solve the TZSL task by a self-supervised

triplet loss. Firstly, we can learn the subspace representation for unseen images under

unsupervised conditions. Then, we adopt the data augmentation method to the case of150

unseen images to obtain positive samples. The negative samples can be selected from

seen classes to generate triplets for training.

2.4. Subspace Representation Learning

Subspace representation learning has been widely used on various computer vision

tasks. It has demonstrated excellent capabilities in representing the intrinsic structural155

information present in high-dimensional data, especially for specific types of data, such

as face images [31], different identities [32], classes of similar objects [33], and video

clips [34]. JFSSL [35] projects multimodal data into a common subspace, then the

similarity of the different modalities of the subspace representation can be measured

to address the cross-modal retrieval task. KRP-FS [34] introduces a kernelized low-160

rank feature subspace to represent the sequences of human action videos to solve the

action recognition problem. HSS-SMM [32] develops a matrix classifier based binary

code learning framework to transform the subspace representation into a hash code for

efficient subspace search, and which can be applied to face recognition, gesture recog-

nition, video retrieval, and action recognition. DSN [36] represents classes by subspace165

bases and learns dynamic subspace classifiers to improve few-shot classification.

Since the attribute composition of classes is an alternative to the attribute local-

ization for ZSL, additionally, the attribute composition could be learned by subspace

representation learning with only class-level attribute supervision. In this work, we

propose a novel attribute subspace method to learn the attribute composition for the170

ZSL task.
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Figure 3: The pipeline of our AS-ZSL. The whole model consists of three modules: the Image Encoder

(IE), the Attribute Subspace Learning (ASL), and the Cosine Metric Learning (CML). Firstly, global image

features are extracted by the IE module. Then, the ASL module learns the attribute composition by singu-

lar value decomposition (SVD) and triplet loss constraint, which is used to jointly train the global features.

Finally, in the CML module, a cosine metric based feature space is learned for the nearest neighbor classifi-

cation. Red arrows indicate the losses.

3. Proposed Method

3.1. Problem Setting and Notations

We define the image space as X , which contains both seen classes, XS , and unseen

classes, XU , such that the image space is the union of the seen and unseen classes:175

X = XS ∪ XU . Let S = {(x, y, φ(y))|x ∈ XS , y ∈ YS , φ(y) ∈ ϕS} denote the

seen class set, where S consists of triplets (x, y, φ(y)). In each triplet, x is an image

from the image space XS , y is its class label from the label space YS , and φ(y) ∈ R
k

is the attribute vector. Let U = {(xu, u, φ(u))|xu ∈ XU , u ∈ YU , φ(u) ∈ ϕU}
denote the unseen test set, where U consists of triplets (xu, u, φ(u)). In each triplet,180

xu is an image from the unseen image space XU , u is its unseen class label from the

unseen label space YU . The seen classes YS and unseen classes YU are disjoint. The

combined attribute space is defined as ϕ = ϕS ∪ ϕU . The aim of conventional ZSL is

to recognize images only belong to unseen classes, i.e., XU → YU . The goal of GZSL

is to recognize images from both seen and unseen classes, i.e., X → YU ∪ YS .185
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Existing locality-based ZSL approaches invariably suffer from insufficient class-

level attribute supervision when learning the explicit locality of attributes. In this work,

from a new perspective, we propose a novel attribute subspace learning method, AS-

ZSL, to mitigate this problem. Our AS-ZSL method is the first work that learns the

implicit attribute composition by subspace representation learning to solve the ZSL190

task. The overall architecture of AS-ZSL is illustrated in Fig. 3. AS-ZSL firstly learns

the attribute subspace representation, which is obtained by the reconstruction of CNN

features for this image. Then, the similarity between attributes can be calculated using

a subspace distance. We design a triplet loss based on the subspace distance to learn

a more discriminative attribute subspace. A ground-truth attribute vector supervised195

mean square loss is simultaneously used to enhance the subspace learning. Finally, the

global features are projected to the semantic space for the nearest neighbor search to

realize zero-shot recognition.

In the remainder of this section, we first introduce the concept of subspace rep-

resentation. Then, we present the subspace distance based triplet loss underpinning200

our method and together with the end-to-end training process in the context of zero-

shot recognition. Finally, we extend the TZSL setting using a self-supervised training

strategy, which can effectively learn the attribute subspace from unseen images.

3.2. Attribute Subspace Learning

3.2.1. Subspace Representation Learning205

Since learning explicit attribute locality with class-level supervision is difficult,

we focus on investigating the implicit attribute representation learning from the global

image features. As subspace representation learning has the ability that extracts the

intrinsic composition of high-dimensional features [32], we utilize the subspace repre-

sentation technique to learn the attribute composition, i.e., local discriminative features210

from the global image features. Specifically, given an image x, the feature map ex-

tracted by backbone ResNet-101 from the entire image is denoted as f(x) ∈ R
h×w×c,

where h, w and c are the height, width and channel of the feature, respectively. We

repack the c-dimensional feature vectors at all the spatial location of the tensor f(x) to

form a matrix X ∈ R
hw×c. Then, the subspace basis representation can be learned by215
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minimizing

min
S

∥X−XSST ∥F

s.t. STS = I

(1)

where ∥ · ∥F is the Frobenius norm, the columns of S ∈ R
c×k are a set of orthonor-

mal basis vectors, where k is the dimensionality of the annotated attribute vector. The

objective appearing in (1) is a convex optimization problem from which we can cal-

culate the optimal solution by singular value decomposition (SVD) of the matrix X.220

The detailed solution process is shown in Algorithm. 1. We can then learn the attribute

subspace representation a(x) by embedding the feature map into the subspace, i.e.,

a(x) = f(x)S ∈ R
h×w×k.

Algorithm 1: Subspace representation learning.

Input: f(x) ∈ R
h×w×c

Output: S ∈ R
c×k

Steps:

1. Repack the feature map tensor f(x) into matrix X ∈ R
hw×c.

2. Calculate the eigen decomposition of XXT to obtain the eigenvalues λi and

the right-singular vectors vi, i = 1, 2, . . . , hw.

3. Calculate the singular values ϵi by the square root of λi, ϵi =
√
λi.

4. Choose the top-k largest singular values from ϵi, then the optimal S consists

of their corresponding right-singular vectors.

3.2.2. Subspace Distance based Triplet Loss

With the label of seen classes to hand, we can further utilize a triplet loss to en-225

hance the subspace representation. The triplet loss is known as constraining the fea-

tures of the same class aggregating and for the different classes which are decentral-

ized. Here we introduce a widely used subspace distance [32] to calculate the simi-

larity of different subspaces. The subspace distance is measured by the relative spa-

tial position of two subspaces, which is revealed by the principal angles [37]. Let230

Si = [p1, ...,pk] and Sj = [q1, ...,qk] be two subspaces learned from different image
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𝐒𝑖 𝐒𝑗𝑆𝑉𝐷 𝐒𝑖𝑇𝐒𝑗 singular values 𝜎1, 𝜎2, … , 𝜎𝑘cos 𝜃𝑡 = 𝜎𝑡 ⟶ 𝐷 𝐒𝑖 , 𝐒𝑗 = 1 − σ𝑡=1𝑘 𝜎𝑡2𝑘
Figure 4: Illustration of the subspace distance. The principal angles are defined recursively by the largest dot

product of the orthonormal basis from the two subspaces.

xi and xj , p1, ...,pk,q1, ...,qk ∈ R
c are orthonormal bases. The principal angles

{θt}kt=1 ∈ [0, π/2] are defined recursively by the largest dot product of orthonormal

bases of the two subspaces Si and Sj

cos θt = max
pt∈Si,∥pt∥2=1

pT
t [p1,...,pt−1]=0

max
qt∈Sj ,∥qt∥2=1

qT
t [q1,...,qt−1]=0

pT
t qt (2)

As illustrated in Fig. 4, the first principal angle θ1 is the smallest angle between235

a pair of orthonormal bases from the two subspaces. The t-th principal angle is then

defined recursively. Since Si and Sj are c × k matrices whose columns are orthonor-

mal bases, the cosine of each principal angle can be obtained by a singular value of

ST
i Sj [37]. We then calculate the singular values of ST

i Sj represented as σ1, σ2, ..., σk,

where 1 ≥ σ1 ≥ σ2 ≥ ... ≥ σk ≥ 0. Assuming that the principal angles satisfy the240

ordering 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θk ≤ π/2, we obtain

cos θt = σt, t = 1, 2, ..., k (3)

As a result the distance between subspaces Si and Sj is given by

D(Si,Sj) = 1−
∑k

t=1 cos
2 θt

k
= 1−

∑k

t=1 σ
2
t

k
(4)
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Since the singular values have the property that
∑k

t=1 σ
2
t = ∥ST

i Sj∥2F , we can

rewrite the subspace distance as

D(Si,Sj) = 1− ∥ST
i Sj∥2F
k

(5)

where D(Si,Sj) ∈ [0, 1], the smaller value of D(Si,Sj) means more similarity be-245

tween the two subspaces.

Triplet loss. Based on the subspace distance, we aim to make the attribute subspace

of a specific class closer to those of the same class (positive sample) than the remaining

different classes (negative sample). The triplet loss is defined as

LTri =
∑

i|yi∈YS

[D(Si,Spos)−D(Si,Sneg) + α]+ (6)

where Spos and Sneg are the positive and negative samples of Si respectively, i.e.,250

ypos = yi and ynag ̸= yi. α is a margin that is enforced between positive and negative

sample pairs, and [x]+ = max{x, 0}.

3.2.3. Attribute Subspace Alignment

After mapping the feature map to the learned attribute subspace, we obtain the

attribute subspace feature representation a(x) ∈ R
h×w×k. We then utilize a global255

max pooling operation across the dimensionality of h and w on a(x) to predict the

attribute response value â(x). To align the learned subspace representation with the

discriminative attributes, a mean square error (MSE) loss is calculated with the ground-

truth attribute vector φ(y) as supervision

LMSE = ∥â(x)− φ(y)∥22 (7)

where y is the ground-truth class of x. The attribute subspace representation can be260

further improved by minimizing the MSE loss.

3.3. Cosine Metric Learning

Following the other end-to-end ZSL methods [10, 11], we choose pre-trained ResNet-

101 as the Image Encoder to extract the feature of image x, represented as f(x) ∈
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R
h×w×c. We then apply a global average pooling operation over the dimensionality of265

h and w to learn a global discriminative feature h(x) ∈ R
c for classification.

In our method, the nearest neighbour search is performed in the semantic space.

Thus, the global feature h(x) is mapped into the semantic space by a linear layer V ∈
R

c×k, where k is the dimensionality of the attribute vector.

Unlike previous work [10] which computes class logits by taking the dot prod-270

uct of the projected visual features and attribute vectors, our method calculates cosine

similarity between the visual features and attribute vectors to constrain and reduce the

variance of the neuron activations.

Using cosine similarity rather than dot products enables our models to generalize

better, as noted in prior work [27]. First, we measure the cosine distance between the275

projected visual feature h(x)TV and the y-th attribute vector φ(y). Then the score

function can be defined as

p(y|x) = exp(σ cos(h(x)TV, φ(y)))∑
ŷ∈YS exp(σ cos(h(x)TV, φ(ŷ)))

(8)

where σ = 20.0. The classification loss LCLS then can be written as

LCLS = − log p(y|x) (9)

3.4. Zero-Shot Recognition

The full model is optimized in an end-to-end training manner. The overall loss is280

defined as

L = LCLS + β1LTri + β2LMSE (10)

where β1 and β2 are hyper-parameters for the triplet loss and the MSE loss, respec-

tively.

For the conventional ZSL setting, after training the entire model, the inference

phase is accomplished in the learned cosine metric space. Given a test image x, we285

first extract its feature through the trained Image Encoder and then map the feature into

the semantic space, i.e., the cosine metric space. The nearest attribute vector φ(û) of

the test image is then searched in the cosine metric space via

û = argmax
u∈YU

cos(h(x)TV, φ(u)) (11)
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For the GZSL setting, test images are the mixture of seen and unseen classes while

there are only images of seen classes used for model training. As aforementioned, there290

is a significant bias towards predicting the seen classes. To alleviate this bias, we utilize

a widely used strategy in GZSL to directly reduce the seen class scores by a calibration

factor γ. The nearest neighbor search for GZSL can be realized by

ŷ = argmax
ỹ∈YU∪YS

(σ cos(h(x)TV, φ(ỹ))− γI[ỹ ∈ YS ]) (12)

where I = 1 if ỹ is a seen class and 0 for unseen classes.

4. Transductive ZSL295

Since the subspace representation can be learned in an unsupervised manner by

Eq. (1), we can easily extend our method to the specific TZSL setting. The critical

challenge for TZSL is how to exploit the unlabeled images of the unseen classes to

train the zero-shot learning classifier. In this paper, we propose a novel subspace based

self-supervised strategy to cope with this problem. Firstly, we learn the subspace of300

unseen images xu ∈ XU using the same manner with inductive setting

min
S̄

∥X̄− X̄S̄S̄T ∥F

s.t. S̄T S̄ = I

(13)

here we use S̄ ∈ R
c×k to denote the subspace of the unseen images. X̄ ∈ R

hw×c

obtained from the feature map tensor f(xu). With the learned subspaces to hand, we

then design a self-supervised triplet loss to exploit the unseen images for the purposes

of training.305

As illustrated in Fig. 5, during the training of the inductive ZSL, we sample positive

and negative images both from the seen classes using the ground-truth labels. However,

for the TZSL setting, unseen images have no label. To tackle this problem, for the train-

ing of TZSL, if the anchor image is from one of the seen classes, we sample its positive

image from the same class and the negative image from both seen and unseen classes310

since the seen and unseen classes are disjoint. To cope with the condition that the an-

chor image is from one of the unseen classes, we utilize a random image augmentation
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Figure 5: The triplet sampling strategy for the training phase under IZSL and TZSL settings. For the IZSL

setting, we can sample triplets using the label of each seen image. For the TZSL setting, since unseen images

have no label, we utilize the image augmentation technique on the anchor image of the unseen classes to

obtain their positive samples and sample negative images from the disjoint seen classes.

technique (flip, crop, brightness) on the anchor image to obtain the positive image and

then sample negative image from the disjoint seen classes. We then obtain triplets for

all the training images from both the seen and unseen classes. The self-supervised315

triplet loss for the subspaces of unseen images is then defined as

LSelfTri =
∑

i|yi∈YU

[D(S̄i, S̄
′
i)−D(S̄i,Sneg) + α]+ (14)

where S̄′
i is random augmentation of S̄i.
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For transductive ZSL, our model is trained with the overall loss using

LTZSL = LCLS + β1LTri + β2LMSE + LSelfTri (15)

when the input anchor image is from one of the unseen classes, since there is no ground-

truth label, only LSelfTri is used for training, and the remaining terms are set equal to320

0.

After training the entire model, the inference phases of ZSL and GZSL are identical

to that of inductive ZSL. With the unseen images exploited in training by our method,

we can learn discriminative attribute subspace representations for unseen images, and

this improves the performance of both ZSL and GZSL.325

5. Experiments

For a fair comparison, our AS-ZSL was evaluated on three ZSL datasets, i.e., CUB-

200-2011 (CUB) [38], Animals with Attributes 2 (AwA2) [39], and SUN attribute

(SUN) [40]. We followed the most widely used Proposed Split (PS) [39] in ZSL to

divide the seen and unseen categories. Details of used datasets are listed in Table 1.330

For the conventional ZSL setting, we adopt the average per-class Top-1 (T1) ac-

curacy of unseen classes as evaluation metric. For GZSL setting, since the test set

contains both seen and unseen categories, we calculate the Top-1 accuracy of seen

classes Accs and unseen classes Accu, respectively. Furthermore, the harmonic mean

H = (2×Accs ×Accu)/(Accs +Accu) [39] is utilized to evaluate the comprehen-335

sive performance of GZSL.

5.1. Implementation Details

The Image Encoder of AS-ZSL is ResNet-101 which is pre-trained on ImageNet.

We train the entire model in an end-to-end manner with the SGD optimizer. The mo-

mentum is set to 0.9, the weight decay is set to 10−5, and the learning rate is set to340

10−3. The hyperparameters β1 and β2 are set to 0.5 and 1.0, respectively. The margin

α is set to 0.2 for CUB and SUN datasets, and 0.3 for AwA2. The calibration factor γ

is set to 0.9 for CUB and SUN, and 4.0 for AwA2. We use an episode-based training
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Table 1: Attributes are the number of defined attributes in the dataset. |YS | and |YU | denote the category

number of seen classes and unseen classes, respectively. TR, VAL, TE mean training set, validation set, and

test set, respectively.

Datasets Attributes |YS | |YU | TR VAL TE

CUB 312 150 50 7057 1764 2967

AwA2 85 40 10 23527 5882 7913

SUN 102 645 72 10320 2580 1440

method [11] that samples M categories and N images for each category in a mini-

batch. Each epoch contains 300 batches, and 20 epochs are trained. M and N are set345

to 16 and 2 consistently for all three datasets.

5.2. Comparison with the State-of-the-Art

We compared our AS-ZSL with abundant recent state-of-the-art ZSL methods.

These include non end-to-end methods such as SP-AEN [41], PSR [42], TCN [43],

IIR [44], DAZLE [45], E-PGN [46], and generative model based methods cycle-CLSWGAN [20],350

f-CLSWGAN [4], CADA-VAE [21], IZF [22], IB-ZSL [5], SRSA [3], DAGAN [18],

and end-to-end methods LFGAA [47], AREN [23], APN [10], GEM-ZSL [11], MSDN [8],

and HRT [9].

Both the conventional ZSL and GZSL results are reported in Table 2. The methods

in the top block of the table are non end-to-end and the middle block shows generative355

model based methods. The bottom block gives end-to-end methods. From the table,

our AS-ZSL can outperform all the compared methods on the CUB and AwA2 datasets

for the harmonic mean accuracy. Additionally, the conventional ZSL result of AS-ZSL

on CUB is also the best. This is because CUB is a challenging fine-grained bird im-

age dataset which has stronger requirement on local discriminative attributes learning.360

These results validate that the proposed attribute composition learning in AS-ZSL has

a more substantial ability in essential local feature learning. On the SUN dataset, gen-

erative model based methods achieve significant advantage. The performance of our

method is not so satisfactory. Since there are more than 700 categories in SUN dataset,
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Table 2: ZSL and GZSL results (%) of compared methods on different datasets. The top 6 methods are non

end-to-end, the middle 7 are generative model-based methods, and the bottom 7 methods are end-to-end.

Methods

CUB AwA2 SUN

ZSL GZSL ZSL GZSL ZSL GZSL

T1 Accu Accs H T1 Accu Accs H T1 Accu Accs H

SP-AEN(CVPR’18) [41] 55.4 34.7 70.6 46.6 - - - - 59.2 24.9 38.6 30.3

PSR(CVPR’18) [42] 56.0 24.6 54.3 33.9 63.8 20.7 73.8 32.3 61.4 20.8 37.2 26.7

TCN(ICCV’19) [43] 59.5 52.6 52.0 52.3 71.2 61.2 65.8 63.4 61.5 31.2 37.3 34.0

IIR(ICCV’19) [44] 63.8 55.8 52.3 53.0 67.9 48.5 83.2 61.3 63.5 47.9 30.4 36.8

DAZLE(CVPR’20) [45] 65.9 56.7 59.6 58.1 - 60.3 75.7 67.1 - 52.3 24.3 33.2

E-PGN(CVPR’20) [46] 72.4 52.0 61.1 56.2 73.4 52.6 83.5 64.6 - - - -

cycle-CLSWGAN(ECCV’18) [20] 58.4 45.7 61.0 52.3 - - - - 60.0 49.4 33.6 40.0

f-CLSWGAN(CVPR’18) [4] 57.3 43.7 57.7 49.7 - - - - 60.8 42.6 36.6 39.4

CADA-VAE(CVPR’19) [21] - 51.6 53.5 52.4 - 55.8 75.0 63.9 - 47.2 35.7 40.6

IZF(ECCV’20) [22] 67.1 52.7 68.0 59.4 74.5 60.6 77.5 68.0 68.4 52.7 57.0 54.8

IB-ZSL(ML’22) [5] 62.2 52.2 56.2 54.1 70.1 56.0 80.0 65.9 64.2 43.8 37.8 40.6

SRSA(PR’22) [3] 59.9 27.5 55.6 36.8 68.3 38.1 59.6 46.5 64.3 25.3 37.9 30.3

DAGAN(PR’22) [18] 62.4 49.0 59.5 53.7 - - - - 66.5 49.9 38.8 43.3

LFGAA(ICCV’19) [47] 67.6 36.2 80.9 50.0 68.1 27.0 93.4 41.9 61.5 18.5 40.0 25.3

AREN(CVPR’19) [23] 71.8 63.2 69.0 66.0 67.9 54.7 79.1 64.7 60.6 40.3 32.3 35.9

APN(NeurIPS’20) [10] 72.0 65.3 69.3 67.2 68.4 56.5 78.0 65.5 61.6 41.9 34.0 37.6

GEM-ZSL(CVPR’21) [11] 77.8 64.8 77.1 70.4 67.3 64.8 77.5 70.6 62.8 38.1 35.7 36.9

MSDN(CVPR’22) [8] 76.1 68.7 67.5 68.1 70.1 62.0 74.5 67.7 65.8 52.2 34.2 41.3

HRT(PR’23) [9] 71.7 63.5 62.1 62.8 67.3 78.7 58.9 67.4 63.9 26.9 53.2 35.7

AS-ZSL(Ours) 78.5 65.8 78.2 71.5 68.9 66.5 78.3 71.9 62.2 39.5 37.2 38.3

generative model-based methods can accommodate more features for generalization to365

the unseen classes. Even though, our AS-ZSL can still outperform the other part or

locality-based methods such as AREN, APN, GEM-ZSL, and HRT.

5.3. Further Analysis

Ablation study. To further verify the effectiveness of the proposed attribute sub-

space learning module. We conducted ablation experiments on all the three datasets.370

The results are shown in Table 3. The first row of the result is baseline model that con-

tains the image encoder with a cross-entropy loss. The second and third rows are the

performance of AS-ZSL when adding the mean square error loss LMSE and triplet loss

LTri, respectively. The last row is results of the full model with all losses. The ablation

experimental results verify that the proposed AS-ZSL significantly promotes the ZSL375
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Table 3: Ablation study of the proposed AS-ZSL on different datasets.

Methods

CUB AwA2 SUN

ZSL GZSL ZSL GZSL ZSL GZSL

T1 Accu Accs H T1 Accu Accs H T1 Accu Accs H

Baseline 70.4 62.4 72.4 67.0 64.2 58.0 84.0 68.7 58.1 35.3 33.6 34.4

+LMSE 76.8 65.6 75.7 70.3 68.1 65.8 74.4 69.8 61.6 38.9 32.9 35.6

+LTri 74.8 62.3 78.0 69.3 66.7 60.8 83.3 70.3 61.2 36.8 35.1 35.9

Full Model 78.5 65.8 78.2 71.5 68.9 66.5 78.3 71.9 62.2 39.5 37.2 38.3
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Figure 6: The effect of margin α in the triplet loss.

and GZSL performance. Specifically, AS-ZSL gains an improvement for ZSL by 8.1%

(CUB), 4.7% (AwA2), 4.1% (SUN), and for the GZSL by 4.5% (CUB), 3.2% (AwA2),

3.9% (SUN). Thus, the proposed attribute subspace learning module can significantly

promote the local discriminative feature learning which is beneficial to ZSL.

Effect of margin α in LTri. Fig. 6 shows the results of T1 and H when varying α380

from 0.1 to 0.9 under ZSL/GZSL settings for our method. It shows that when α is 0.2,

AS-ZSL obtains best results on CUB and SUN, and when α is 0.3, AS-ZSL performs

best on AwA2.

Training method analysis. In the training phase of AS-ZSL, to improve the gener-
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Table 4: Results of different mini-batch sampling methods on GZSL (H). R denotes random sampling, E

denotes different pairs of M and N .

Training Method M -way N -shot CUB AwA2 SUN

R mini-batch random 64 62.8 67.2 34.7

E

8 2 60.8 47.1 27.5

8 3 64.8 62.5 28.6

8 4 60.2 64.3 29.5

12 2 62.9 68.8 33.4

12 3 68.2 64.3 34.9

12 4 67.6 65.5 34.7

16 2 71.5 71.9 38.3

16 3 70.1 70.2 37.5

16 4 69.3 69.6 36.7

alization ability, we followed [11] to exploit an episode-based training strategy. Specifi-385

cally, we sampled M categories and N images for each category in a batch. To analysis

the influence of the different sampling strategies, we conducted experiments with dif-

ferent pairs of M and N from the ranges of {8, 12, 16} and {2, 3, 4}, respectively. The

comparison is shown in Table 4. It is clear that our AS-ZSL obtains the best perfor-

mance when M = 16 and N = 2.390

Visualization results. To further demonstrate the advantage of our AS-ZSL method,

we used the t-SNE [48] to visualize the attribute response value â(x) and the global

feature h(x) used for the final classification. Fig. 7(a) and (b) show the distributions

of the attribute response features and the global features of unseen classes on the three

datasets. We can see that the feature distribution is very consistent for each class of395

CUB and AwA2. This verifies that the implicit attribute representation for each class is

well learned by our subspace learning method. For the SUN dataset, the visualization

results are not so satisfactory since there are 72 categories for the unseen images. The

result also reflects the poorer performance of AS-ZSL on SUN.
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(a)

(b)

Figure 7: The feature distribution visualization results on the unseen classes of CUB, AwA2 and SUN (from

left to right). (a) The attribute response value â(x). (b) The global feature h(x).

5.4. Transductive ZSL400

For the experiments of TZSL, the images of unseen classes are available for train-

ing. Thus, our AS-TZSL can achieve better performance compared with IZSL by

alleviating the data imbalance problem between seen and unseen classes. To verify

the effectiveness of AS-TZSL, we selected state-of-the-art TZSL methods for com-

parison, including ALE-trans [49], GFZSL [50], QFSL [51], GXE [27], GMN [52],405

f-VAEGAN [53], WDVSc [54], Zero-VAE-GAN [29], DeGAN [55], VMAN [30], IB-

TZSL [5].

Table 5 shows the performance of GZSL on all the three datasets. AS-TZSL

achieves the best results on both the CUB and AwA2 datasets. Especially on CUB,

AS-TZSL outperform the second best method with a large margin of 11.4%. For the410

SUN dataset, AS-TZSL can also achieve competitive performance. The conventional

ZSL results are reported in Table 6. Our AS-TZSL also obtains superior classification

accuracy on the CUB and AwA2 datasets. These results validate the superiority of our

proposed self-supervised training strategy.
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Table 5: Results of the GZSL for TZSL on CUB, AwA2, and SUN.

Methods
CUB AwA2 SUN

Accu Accs H Accu Accs H Accu Accs H

ALE-trans(CVPR’15) [49] 23.5 45.1 30.9 12.6 73.0 21.5 19.9 22.6 21.2

GFZSL(ECML-PKDD’17) [50] 24.9 45.8 32.2 31.7 67.2 43.1 - - -

QFSL(CVPR’18) [51] 17.3 39.0 24.0 20.8 74.7 32.6 17.7 25.0 20.7

GXE(ICCV’19) [27] 57.0 68.7 62.3 80.2 90.0 84.8 45.4 58.1 51.0

GMN(CVPR’19) [52] 60.2 70.6 65.0 - - - 57.1 40.7 47.5

f-VAEGAN(CVPR’19) [53] 61.4 65.1 63.2 84.8 88.6 86.7 60.6 41.9 49.6

WDVSc(NeurIPS’19) [54] 43.3 85.4 57.5 76.4 88.1 81.8 - - -

Zero-VAE-GAN(TIP’20) [29] 64.1 57.9 60.8 70.2 87.0 77.6 53.1 35.8 42.8

DeGAN(WACV’21) [55] 59.1 68.4 63.4 - - - 57.2 44.3 49.9

VMAN(TIP’21) [30] 65.6 54.9 59.8 72.9 84.9 78.4 59.3 32.0 41.6

IB-TZSL(ML’22) [5] 63.5 66.5 65.9 82.7 89.2 85.8 57.5 44.6 50.2

AS-TZSL 73.2 76.5 74.8 85.2 90.2 87.6 55.6 42.5 48.2

5.5. Further Analyses for Transductive Setting415

Table 6: Results of conventional ZSL for transductive setting on CUB, AwA2, and SUN.

Methods CUB AwA2 SUN

ALE-trans(CVPR’15) [49] 54.5 70.7 55.7

GFZSL(ECML-PKDD’17) [50] 49.3 78.6 64.0

QFSL(CVPR’18) [51] 72.1 79.7 58.3

GXE(ICCV’19) [27] 61.3 83.2 63.5

GMN(CVPR’19) [52] 64.6 - 64.3

f-VAEGAN(CVPR’19) [53] 71.7 89.8 70.1

WDVSc(NeurIPS’19) [54] 73.4 87.3 63.4

Zero-VAE-GAN(TIP’20) [29] 68.9 85.4 66.8

VMAN(TIP’21) [30] 72.9 89.3 69.3

IB-TZSL(ML’22) [5] 73.5 88.1 67.6

AS-TZSL 79.3 90.1 64.5

Different data augmentation methods. Under the transductive ZSL setting, we

generated triplets for anchor images from unseen classes by sampling negative from

seen classes and utilizing the data augmentation method on itself to obtain positive.
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Table 7: Results (%) of ZSL and GZSL under transductive ZSL setting with different data augmentation

methods in the triplets generation.

Methods

CUB AwA2 SUN

ZSL GZSL ZSL GZSL ZSL GZSL

T1 Accu Accs H T1 Accu Accs H T1 Accu Accs H

Flip 77.3 71.9 75.8 73.8 88.6 83.3 89.2 86.1 63.0 53.8 41.2 46.7

Crop 78.1 72.5 76.2 74.3 89.2 84.1 89.4 86.7 63.3 54.3 41.7 47.2

Brightness 77.5 72.2 76.1 74.1 88.9 83.7 89.3 86.4 63.2 54.1 41.7 47.1

Random augmentation 79.3 73.2 76.5 74.8 90.1 85.2 90.2 87.6 64.5 55.6 42.5 48.2
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Figure 8: The effect of margin α in the self-supervised triplet loss for transductive ZSL.

Here, we conducted an experiment to demonstrate the effect of different data augmen-

tation methods. Table 7 shows the results of three widely used data augmentation420

methods, i.e., flip, crop, and brightness. The random augmentation randomly adopts

one of the three methods for each unseen image. It s clear that AS-TZSL achieves the

best performance with random augmentation. The reason for this may be that random

augmentation can bring better diversity for images from different classes.

Effect of margin α in LSelfTri. Fig. 8 shows the results of T1 and H when varying425
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α from 0.1 to 0.9 under ZSL/GZSL for transductive ZSL. From the figure, we reach

the same conclusion as with the inductive setting, i.e.. that AS-TZSL obtains the best

performance on CUB and SUN when α is 0.2, and 0.3 for AwA2.

6. Conclusion

In this paper, we have proposed a novel attribute subspace learning method for430

the zero-shot recognition task. It benefits from the property of subspace learning that

can capture the underlying structure of diversified samples from similar classes. Our

AS-ZSL method can learn the attribute composition with only class-level supervision.

Compared with locality-based ZSL methods, learning the attribute composition pro-

vides both discriminative and robust features, capturing the diversity of spatial locality435

and the visual appearance of attributes in different images. To our knowledge, AS-ZSL

is the first method to investigate the subspace representation for attribute composition

learning. Furthermore, we naturally extend our method to cope with the transductive

ZSL problem using a self-supervised triplet loss. The designed triplet sampling strategy

can also be used for alternative transductive learning methods to solve the problem of440

unseen classes in training. Extensive experiments under different ZSL settings validate

the effectiveness of our method, especially compared with the state-of-the-art locality-

based methods APN and GEM-ZSL. Our future work will explore the potential for fur-

ther investigation of attribute composition learning using alternative manifold learning

methods. In addition, the attribute subspace learning method could also be applied to445

few-shot learning and fine-grained recognition tasks to facilitate discriminative feature

learning.
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