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Abstract: Sliding motion has always been one of the major concerns when it comes to the analysis of 

viscoelastic contact problems. A new model simulating the transient sliding contact of smooth viscoelastic 

surfaces is developed in this paper. By taking the dry contact friction and the coupling between shear tractions 

and normal pressure into account, the effect of the early partial slip period, which is often neglected in the 

study of viscoelastic sliding contact problems, is investigated numerically. Compared with solutions based on 

the frictionless assumption, the steady-state pressure profile is found to be slightly different under the effect of 

the partial slip regime, including a lower peak pressure and the shift of the contacting region in the direction 

opposite to the sliding motion. Furthermore, the time required for the viscoelastic contact to reach its steady 

state is delayed owing to the partial slip period preceding the global sliding motion. 
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1  Introduction 

Beyond natural selection, viscoelastic materials have 

been universally applied in practice owing to their 

numerous advantages such as low friction, slight 

rubbing noise, light weight, dimensional stability and 

inexpensive cost. A more efficient design of engineering 

products involving viscoelasticity requires a clear 

understanding of the relevant interfacial mechanical 

system, which is determined by the viscoelastic 

deformation, viscoelastic dissipation, frictional 

temperature rise, time-dependent material property 

and lubrication condition. In the meantime, the 

prevailing relative motion between the contacting 

bodies including sliding and rolling can be critical 

during the viscoelastic contact analysis. Typical 

examples of such a scenario are the tire-road 

contact [1] for vehicles, the cutting of soft tissues with 

scalpels during operations [2], the contact between 

underlying bones and articular cartilages in human 

bodies [3], the interaction between the polymer liner 

component and metal femoral component observed 

for hip implants [4] and the delightful mouthfeel 

when tasting chocolate [5].  

In practice, a wide range of length scales and time 

scales is required to characterize wavelengths of rough 

surfaces and relaxation times of viscoelastic materials, 

respectively. Meanwhile, the time-dependent constitutive 

laws make it more challenging to address real-life 

viscoelastic sliding and rolling contact problems 

theoretically and experimentally [6]. Nevertheless, a 

number of early attempts have been made by different 

researchers. Hunter [7] studied the two-dimensional 

(2D) frictionless problem of a rigid cylinder rolling 

over a viscoelastic half-space. This steady-state 

solution was later extended by Panek and Kaller [8] 

to 3D problems by adopting an approximation on 

the basis of elastic line integral theory. The contact 

friction was taken into account in the line contact 

problem by Goriacheva [9]. However, the pressure 

solution was not affected by the dry contact friction 

(shear traction) as the two contacting viscoelastic  
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bodies were assumed to exhibit the same mechanical 

properties (e.g., no coupling between shear tractions 

and pressures). Apart from these plane strain problems, 

Aleksandrov et al. [10] simulated the frictionless 

sliding contact between a smooth sphere and a 

viscoelastic half-space. The application of these 

approaches is limited to ideal viscoelastic materials 

with one relaxation time. Based on the assumption 

that the viscoelastic material stiffens when the rolling 

speed increases (e.g., higher frequency) while the 

pressure distribution remains of a Hertzian type, a 

novel analytical theory was proposed by Persson   

to solve the rolling contact of a rigid cylinder or a 

sphere over a flat viscoelastic substrate [11]. The rolling 

friction coefficient can be estimated reasonably by  

the theory of Persson. However, the information  

on pressure distribution especially its non-Hertzian 

profile in a force-driven problem is not available 

within the framework of this theory. 

To overcome the drawbacks of these analytical 

solutions, great efforts have been made in the past 

decades in developing numerical models that can 

take into account any viscoelastic material and any 

geometry of contacting bodies [12]. One of the most 

common modelling tools, e.g., the finite element 

method (FEM), was frequently employed in early 

attempts to simulate viscoelastic rolling and sliding 

contact problems based on Lagrangian formulations 

[13–18]. However, the computational cost can be 

relatively high for models based on FEM when 

addressing rough contact problems since they require 

an extremely fine mesh to capture complex surface 

irregularities. In this case, the fast Fourier transform 

(FFT) assisted boundary element method (BEM), also 

referred to as the semi-analytical method (SAM),   

is widely applied as an alternative. Carbone and 

Putignano [19] developed a BEM-based model to 

generate steady-state solutions to rough sliding or 

rolling contact problems [20], where the involved 

viscoelastic material can either exist as the form of  

a half-space [21] or a layer [22–24] with finite 

thickness. Recently, Zhao et al. [25] adopted a novel 

formulation, which relates the surface deformation 

to contact tractions, to simulate the frictionless 

sliding or rolling contact of viscoelastic surfaces. 

They claimed that the new equation helps to improve 

the computational efficiency of their BEM-based 

model using computational techniques including 

multi-grid and multilevel multi-integration (MLMI) 

methods [26, 27].  

Regarding the transient viscoelastic analysis using 

BEM, the frictionless rolling contact of a rigid smooth 

indenter against a flat viscoelastic half-space was 

simulated by Koumi et al. [28], where the material 

inhomogeneity is considered. The frictionless contact 

of an incompressible viscoelastic semi-infinite body 

rolling on a rough rigid surface was analyzed by 

Bugnicourt et al. [29]. Wallace et al. [30] proposed a 

model which provides transient analysis of frictionless 

rolling and sliding viscoelastic problems, in which 

the involved viscoelastic layer and substrate can 

exhibit distinct properties. The effects of imperfect 

bonding between layer and substrate on the transient 

as well as steady-state frictionless viscoelastic sliding 

contact problems were recently investigated by Zhang 

et al. [31].  

It is noted that considering the transient response 

is computationally demanding as all the time scales 

that describe the behaviour of viscoelastic materials 

need to be tracked. Additionally, the numerical time 

interval must be sufficiently small to capture the 

occurrence of sudden events. This explains why several 

researchers focused on the steady-state response of 

the contact problems instead of the transient response 

by making use of the constant complex modulus   

of viscoelastic materials [19–22, 31]. Such analysis 

shall work well for frictionless viscoelastic sliding or 

rolling contact problems as precise knowledge of the 

tangential field is not needed. However, during the 

transient part of frictional sliding, the contact area 

can be separated into stick and slip regions when the 

transient tangential load is not enough to induce 

gross sliding. This separation may play an important 

role in determining the later gross sliding behaviour. 

There exists some literature reporting the effects of dry 

contact friction in the sliding contact of viscoelastic 

surfaces such as the work of Goryacheva et al. [32, 33]. 

To date, the effects of friction, especially the evolution 

from partial slip to gross sliding in transient viscoelastic 

sliding contact problems, are barely investigated 

numerically [12], which is the subject of the current 

study. Furthermore, few reports have elucidated the 

effect of surface roughness on the transient sliding of 

viscoelastic materials in the presence of contact friction. 
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A frictional sliding contact model for viscoelastic 

materials is developed in this study, where transient 

contact solutions are available. The steady-state 

solution can be achieved by extending the simulation 

time. The modelling starts from the quasi-static state 

to the dynamic state, where the complete transition 

from partial slip to gross sliding and the coupling 

effects between shear traction and pressure are 

considered. A novel strategy to simulate the surface 

movement during the global slip stage is proposed, 

which is convenient to be implemented compared 

with other approaches in Refs. [30, 34]. The effects of 

the partial slip period on the later sliding contact 

solutions are investigated with the model, including 

the role of the shear traction and the time when the 

partial slip ends (before or after the time when the 

material property becomes steady). 

2 Theory and algorithm description 

To explain how the model of frictional viscoelastic 

sliding contact is developed, some basic terminology 

and relationships commonly used to describe the 

behaviour of viscoelastic materials are first presented 

in this section.  

2.1 Theory of linear viscoelasticity and friction 

Among viscoelastic materials, those exhibiting a 

linear relationship between stress and strain at any 

time are known as linear viscoelastic materials. The 

materials simulated in the current study are assumed 

to behave linearly following the infinitesimal strain 

theory. As viscoelastic materials are usually soft, 

they can hardly experience plastic deformation. 

Therefore, the plastic contact is neglected in the 

following modelling work. In addition, all the analyses 

presented here are under isothermal conditions.    

In other words, the temperature effects on the 

mechanical behaviour of materials are not considered 

during the simulation.  

Following the theory of linear viscoelasticity, the 

responses of stress (denoted as vector  ) to successive 

strain (denoted as vector  ) stimuli are cumulative 

and vice versa, which can be described as Eqs. (1) 

and (2) by using the Boltzmann hereditary integral: 

0

d ( )
( ) ( ) d

d

t t
t t t t

t

 


  
            (1) 

0

d ( )
( ) ( ) d

d

t t
t t t t

t

 


  
            (2) 

where ( )t  and ( )t  are known as the relaxation 

modulus function and creep compliance function 

respectively. 

Different from an ideal elastic contact material 

where the compliance and modulus are mutually 

reciprocal, there exists the essential mathematical 

relationship in Eq. (3) between the two material 

properties for linear viscoelastic materials in the 

Laplace transform domain: 

2

1
( ) ( )s s

s
                  (3) 

where s is the variable in the Laplace transform 

domain  ( j )s a b . 

The time-dependent mechanical response of 

linear viscoelastic materials can be characterised in 

a discretised form by building rheological models. 

By arranging several springs and dashpots in series 

or parallel, different rheological models can be 

constructed. Among them, the Generalized Weichert 

model shown in Fig. 1 is usually employed to 

characterise the complicated response of realistic 

materials such as polymethyl methacrylate (PMMA) 

[35]. With the Generalized Weichert model, the 

relaxation modulus function of any linear viscoelastic 

material can be expressed appropriately by fitting 

the experimental data collected from the conducted 

relaxation test to Eq. (4) (Prony series) and adjusting 

the parameters: 

0
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where the subscript “i” is the index notation of the 

spring and dashpot in series ( 1i n  ) as shown in 

Fig. 1. G is the spring modulus and   is the relaxation 

time ( / )
i i i

G   with   denoting the viscosity of the 

dashpot. 

Once the relaxation modulus function is available, 

the corresponding creep compliance function can  

be easily determined as well by utilizing their 

mathematical relationship in the Laplace transform  
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Fig. 1 Structure of the Generalized Weichert model: G is spring 
modulus and   is viscosity of dashpot. 

domain (3). If the material is characterized by one 

relaxation time in this case (only one spring in series 

with one dashpot), such a three-element model is 

known as the Zener model or standard linear solid 

model. Zener models are commonly employed to build 

fictitious viscoelastic materials for the numerical study 

of the properties of different viscoelastic materials  

[30, 36, 37].  

To avoid confusion about concepts of friction in  

the following modelling work, different friction laws 

commonly employed in contact analysis are stated 

here in advance. The first is the Amontons–Coulomb 

friction law (short for Coulomb friction law hereinafter). 

It describes the macroscale phenomenon that when  

a solid is under sliding, it opposes a tangential force 

proportional to the normal force. It is widely applied 

in many studies due to its simplicity and versatility 

[32, 33, 36, 38, 39]. If this approximation is not 

satisfactory enough to characterise the contact 

phenomena occurring at different scales, it is always 

easy to modify the law to make the friction coefficient 

dependent on different parameters such as pressure 

and velocity. The second is the constant shear stress 

friction law, which claims that friction is affected by 

contact conditions. This law is usually employed to 

characterise the contact phenomena occurring on the 

microscale, where the role of van der Waals bonds 

and physisorption becomes essential. Besides, the 

surface roughness tends to affect the friction force in 

this case. Apart from these two laws, the viscoelastic 

losses that happened in the bulk of a viscoelastic 

material can result in some friction force. The 

apparent friction coefficient analysed in the frictionless 

viscoelastic sliding or rolling contact modelling work 

is related to the friction derived from the viscoelasticity 

of materials. 

When it comes to the viscoelastic sliding contact 

analysis, friction is always deduced from viscoelastic 

losses such as these frictionless simulation studies  

[7, 19, 28–31]. The word ‘frictionless’ in these works 

means that the dry contact friction is not included in 

the sliding or rolling analysis. However, the frictional 

force derived from the hysteresis losses in the 

deformation cycles of viscoelastic materials is taken 

into account. The reason behind such practice is 

relevant to the intrinsic property of some specific 

polymers. It is known that elastomers are 

incompressible. For the problem of an incompressible 

half-space sliding on a rigid surface, there exists 

no coupling between the normal pressure and shear 

tractions. A good representation of this type of 

frequently investigated problem is the rubber tyre 

sliding on the hard road surface on the mesoscale, as 

investigated by Bugnicourt et al. [29]. As the normal 

and tangential contact problems are independent of 

each other, the simplest way to simulate the sliding 

or rolling contact problems of viscoelastic materials 

is to neglect shear tractions in the lateral direction, 

together with their related coupling effects affecting 

the pressure profile, and to quantify the friction force 

exclusively derived from the viscoelastic losses. 

However, the case where uncoupled conditions can 

be applied is not ubiquitous. When addressing the 

common material combination for engineering 

products such as the knee or hip prosthesis (usually a 

hard metal against a soft and compressible polymer), 

the inclusion of the coupling effect seems inevitable. 

Furthermore, evidence can be found that as the 

modulus of viscoelastic materials changes with time, 

so does the Poisson’s ratio [40, 41]. Because the latter 

quantity governs the coupling between normal and 

tangential tractions, a fully coupled model, which 

provides information on both normal and tangential 

fields in viscoelastic contact problems, is worth 

studying for fine precision engineering applications. 

It is noteworthy that the applications of first and 

third friction laws do not conflict with each other, 

although frictional forces are derived from different 

media. For example, in the experimental study on the 

frictional behaviour of sliding viscoelastic materials 

by Carbone and Putignano [19], the Coulomb friction 

coefficient (characterising dry contact friction) and 
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apparent friction coefficient (characterising viscoelastic 

losses) were applied in an additive manner (e.g., the 

total friction force is the summation of the dry contact 

friction and viscoelastic friction). 

2.2 Problem formulation and algorithm development 

The 3D problem of a rigid sphere sliding on a 

compressible viscoelastic half-space with contact 

friction is illustrated in Fig. 2. The formulation for 

the frictional sliding contact problem can be divided 

into two parts including the partial slip and fully 

sliding problems.  

To discretize the problem based on BEM, the 

potential contact region between the two contacting 

surfaces is meshed into equally spaced rectangular 

elements with the size of 
1 2

   and number of 

1 2
N N  in x and y directions respectively. Temporal 

discretization is necessary to model transient 

viscoelastic contact problems. The simulation time T 

is discretized into 
t

N  time steps with a time interval 

that is uniform and short enough that the element 

pressure can be assumed to be constant for each time 

interval.  

Coulomb friction law is employed here to determine 

the dry contact friction and to identify the stick or 

slip state of each surface node before gross sliding. A 

constant coefficient of friction 
f

  is assumed for the 

sake of simplicity. To further facilitate the determination 

of contact tractions, semi-coupled conditions (coupling 

between pressure p and the shear traction in x direction 

x
q ) are implemented during the simulation.  

The surface movement after the partial slip period 

needs to be included in the dynamic sliding problem.  

 
Fig. 2 Geometrical description of the frictional contact of a 
rigid sphere against a viscoelastic half-space under input loads 
(the sphere slides with a constant velocity v once the contact 
reaches the gross sliding state). 

This can be achieved by changing the coordinates of 

the contact problem correspondingly with the sliding 

motion. The Cartesian coordinate system used during 

the simulation process either maintains or keeps being 

updated according to the sliding state of the surface 

being experienced. During the partial slip period,   

a fixed coordinate system 
0 0 0 0 0

, ,( ),R O X Y Z , which 

corresponds to the initial contact set of axes at the 

initial simulation time ( 0)t  , is employed. Once the 

surfaces are in the gross sliding stage, the coordinate 

system ( , , , )R O X Y Z  must follow the movement of 

the rigid sphere to search for the transient contact 

solutions in the updated contact fields. The contact 

conditions and equations are formulated in a new 

coordinate system, which is centred on the projection 

of the centre of the indenter on the flat half-space. 

To assume that the sliding velocity of viscoelastic 

surfaces remains constant after reaching the fully slip 

state, by relating the sliding velocity (v) to the pixel 

width 
1 2

( , )  , the coordinates of the rigid sphere are 

translated by one mesh element in the sliding direction 

at each time step. This approach can avoid updating 

the surface geometry by the interpolation of surfaces 

according to the slip distance at each time step [31, 34], 

which could be time-consuming and also undermine 

the accuracy of simulation results.  

However, since the size of the computational 

domain is intended to remain unchanged during 

the simulation, information on past pressure history 

might be partially lost due to the update (movement) 

of the system coordinate. As the size of the mesh 

element is affected by the constant sliding velocity, 

the number of nodes must be large enough that 

the computational domain can characterize the creep 

of the contacting area when the velocity is relatively  

low. A considerably large number of nodes (e.g., 

512 512  or 1,024 1,024 ) is needed to keep the 

whole past pressure history available when the total 

simulation time is long and the time step is extremely 

small. Therefore, a compromise might need to be 

made between computational efficiency and accuracy 

when this approach to updating surface movement is 

adopted. A detailed discussion on the effect of the 

lost past pressure history is given in Section 3. 

To apply the elastic–viscoelastic correspondence 

principle, the surface displacement at any position 
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caused by the contact tractions at any time can be 

determined as Eq. (5): 

1 2

β
1 1 1

( ) ( )( ( )
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, , , , , ,

, , 1 ) 

tN N N

n l m

u i j k IC i l j m k n t l m n
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  


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   

 


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where u  is the displacement in ( , , )x y z    direction 

caused by the traction in ( , , )x y z    direction and 

t  is the contact traction in the ( , , )x y z    direction. 

,( ),IC i l j m k n     is known as the viscoelastic 

influence coefficient characterizing the displacement 

in   direction observed after k time steps in the node 

(i, j) of the spatial mesh under the effect of uniform 

traction in the   direction which acts on the node (l, m) 

in the n-th time step after the reference time, with 

n k   
1

( 1 ,i N  
2
,1j N   and )1

t
k N  . For a 

detailed description of how to determine the influence 

coefficient based on Boussinesq solutions [42] using 

the correspondence principle, readers can refer to the 

work by Wang et al. [36]. 

In the current study, only the tangential problem in 

the x direction is considered. The nodal displacements 

of the viscoelastic half-space induced by an arbitrary 

history of nodal tractions under semi-coupled 

conditions can then be expressed as Eq. (6): 
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where discrete convolution fast Fourier transform 

(DC-FFT) is applied to accelerate the convolution 

operations. 

A quasi-static process is assumed to avoid the 

problem of dissipative friction and its irreversibility 

related to the load-path dependency when addressing 

the partial slip problem. As mentioned before, the 

Poisson’s ratio of a realistic viscoelastic material 

employed in practice is usually time-dependent [40, 41], 

but it is assumed to be constant here for simplicity. 

The frictional sliding contact problem can be 

solved by searching for solutions that can satisfy the 

following boundary conditions: 

(1) Load balance: The sum of the pressure within the 

contact area should always be equal to the specified 

normal load at any time step. This can be expressed 

as Eq. (7): 



  
c( , ) ( )

( ) ( , , )
i j I k

W t p i j k            (7) 

where W denotes the applied normal load,  denotes 

the area of an individual element (1 × 2), and 
c

I  

denotes the time-varying contact region. 

(2) The surface displacement of the contacting 

surfaces should meet the geometrical condition in 

Eq. (8) in the normal direction: 

( , , ) , , , ( ),( , )( ) ( )
i z z p

h i j k h i j u i j k k i j I        (8) 

where hi is the gap between undeformed surfaces, h is 

the surface gap after loading, δz is the normal rigid 

body displacement, and 
p

I  denotes the computational 

domain.  

In the lateral direction, the condition in Eq. (9) must 

be satisfied: 
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c

( ) ( ), , , , ( ),( , ) ( )
x x x

s i j k u i j k k i j I k       (9) 

where sx denotes the slip distance in the x direction and 

δx denotes the rigid body displacement in the x direction. 

(3) The following complementary condition must 

be met to obtain valid contact solutions: 

The Kuhn–Tucker complementary conditions should 

be satisfied in the normal direction at any time point, 

which also implies that there exists no surface adhesion 

and the simulated surfaces are impenetrable: 

  
   

c

c

( )

( )
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p
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k
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where 
cp

I I  denotes the non-contacting region within 

the computational domain. 

During the partial slip period, the stick or slip state 

of each surface node within the contacting region 
c

I  

can be distinguished by the boundary conditions in 

Eq. (11) in the tangential direction: 

  
st

( ) (, , ( , , ), , , 0,( , ) () ),
x f x

q i j k p i j k s i j k i j I k      

, , , , 0( ) ( )
x x
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st
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i j I k I k     
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c st
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x x
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(11) 
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where 
st

I  denotes the stick region and 
c st

I I  denotes 

the slip region. 

Once the surface starts to slide globally, the shear 

traction 
x

q  is always equal to the local friction expressed 

as Eq. (12): 

  
c

, , ( , , ),(( ) , ) ( )
x f

q i j k p i j k i j I k        (12) 

The algorithm for the frictional sliding contact 

problems is shown in Fig. 3, which can be separated 

into two sections including the partial slip and fully 

sliding solvers. As illustrated, the contact solutions 

to the semi-coupled partial slip problem keep being 

searched until the ratio of the stick region to the 

contacting area (short for stick ratio hereinafter) 

vanishes. A detailed description of the partial slip solver 

can be found in our previous work on the partial slip 

modelling of viscoelastic surfaces [36]. Once the surface 

starts to slide, only the normal contact problem needs 

to be addressed as the shear traction is always equal 

to the local friction. During the sliding phase, the 

process to search for solutions to the frictional sliding 

problem is similar to that for a frictionless problem. 

The difference is the time when the coordinate 

system of the contact field needs to be updated   

(i.e., the time when the partial slip ends). This is 

determined by the past pressure history affected by 

the coupling effects with shear traction, and the extra 

normal displacement derived from the shear traction.  

It is of note that the reason why fully coupled 

conditions between shear tractions and pressures 

are not applied is relevant to the way the algorithm 

produces contact solutions to partial slip solutions. 

When normal and tangential problems are fully 

coupled, the state of gross sliding is identified by 

checking if the algorithm of the partial slip solver 

fails to separate the stick and slip regions and outputs 

NaN (not a number) results in MATLAB. Therefore, 

the exact contact tractions are not accessible when 

surfaces are in the sliding state under fully coupled 

conditions. 

3 Model validation 

Since the coupled partial slip aspect of the model 

has been validated and described in detail in our 

previous work [36, 39], only the validation work of its 

fully slip field is shown in this section. By simulating 

a frictionless sliding contact problem of a rigid sphere 

against a viscoelastic half-space, the sliding aspect is 

validated by comparing the simulation results from 

the degenerated forms of our developed model with 

the corresponding results reported by Koumi et al. [28]. 

The contact input specified during the simulation 

is given in Table 1. To capture the creep phenomena 

of the contacting area under different sliding speeds, 

the computational domain is set to be 
0 0

3.84 3.84a a   

for the case with the highest speed (
0

1.2 /v a  ) while 

a smaller computational domain (
0 0

2.56 2.56a a  ) is 

employed for the cases with the lowest and medium 

speeds (
0

0.4 /v a   and 
0

0.8 /v a   respectively). 

The computational domain is discretized by 256 256  

nodes. 

 

Fig. 3 Flow chart of the algorithm for the frictional viscoelastic problem. 
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Table 1 Contact parameters employed in the validation test. 

Parameter Value Description (unit) 

W 1.48 Input indentation load (N) 

R 10 Radius of the sphere (mm) 

  3.86 Initial shear modulus of material (MPa)

0



  10 

Ratio of retardation time to relaxation 
time (ratio of initial shear modulus to 
modulus after infinite time) 

  0.01 Relaxation time of the viscoelastic  
material (s) 

T 4  Total simulation time (s) 

  0.3 Poisson’s ratio of the viscoelastic 
material 

0a  588.7 Hertzian contacting radius for  
nondimensionalization (μm) 

0p  0.2067 Hertzian peak normal pressure for  
nondimensionalization (MPa) 

v  
00.4 /a  

00.8 /a  

01.2 /a  

Constant frictionless sliding speed of 
the surface (normalized) 

 

A Zener model is employed to characterize the 

mechanical response of the viscoelastic half-space,  

where the relaxation modulus and creep compliance 

are usually described in Eqs. (13) and (14): 
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where   is the initial shear modulus and 
0

  is  

the modulus after infinite time. It is noted that the  

parameter  
0



 , which is known as the ratio of  

retardation time to relaxation time, determines   

the rheological behaviour of viscoelastic material 

characterized by a Zener model [36].  

The simulation results under the given contact 

inputs are normalized by the Hertzian solution based 

on the instantaneous modulus (0)  and the input 

load W. Since the pressure profile tends to become 

steady after the time of 2 ,  transient pressure 

distributions at four different time points within the 

simulation of 2  are plotted. As a fixed normal load 

is applied, the creep of contacting area with time can 

be observed in Figs. 4(a)–4(c) for the three tests with 

different sliding velocities. Due to the resistance force 

arising from the viscoelasticity of the material during 

sliding, the pressure is distributed non-symmetrically. 

Compared with the pressure at the trailing edge of 

the contact area, that at the leading edge tends to be 

higher showing a sharp spike. Besides, the contact 

region shifts in the sliding direction with time even 

though the effects of shear stress on the pressure are 

neglected in the current frictionless tests. Meanwhile, 

the increase in the sliding velocity is found to cause 

an increase in the peak pressure, a decrease in the 

contacting area and a more pronounced contact shift 

phenomenon. One can see from Figs. 4(a)–4(c) that 

the back side of the contacting area becomes closer to 

the centre of the indenter when the sliding velocity 

increases.  

To quantify the friction derived from viscoelastic 

loss, the apparent friction coefficient 
app

  is usually 

determined. A time-dependent tangential force 
T

F  can 

be induced by the hysteresis loss within a viscoelastic 

material, which can be calculated as Eq. (15): 




 
c

T

( )

, ,
( ) ( , , )d

)
d

(
z

I t

u x y t
F t p x y t x y

x
      (15) 

As a common practice, the finite difference method   

is used to calculate the factor 
( ,

' '
),

z
u x y t

x




 and the  

rectangle rule is applied to evaluate the integral for 

T
( )F t . The apparent friction coefficient 

app
  can then 

be calculated as the ratio of the resulting tangential 

force 
T

F  to the applied normal load W. 

As shown in Fig. 4(d), for all the tests, the apparent 

friction coefficient tends to become steady when the 

simulation time reaches 3 .  This coefficient is affected 

by the sliding velocity such that a higher velocity 

leads to a higher apparent friction coefficient (more 

viscoelastic friction). It is noted that such a monotonic 

trend only holds for viscoelastic contacts with low or 

medium sliding velocity. When the sliding velocity 

is considerably high, the response of the apparent 

friction coefficient to the sliding velocity tends to be 

the opposite. A complete map showing the evolution 

of the apparent friction coefficient with the normalized 

sliding velocity, which is also known as the Deborah 

number, can be found in the steady viscoelastic contact 

analysis by Carbone and Putignano [19]. 
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Good agreement can be found between the 

simulation results derived from our model and the 

referred data from Koumi et al. [28], as shown in  

Figs. 4(a)–4(d).  

As mentioned in Section 2.2, sliding motion is 

simulated by updating the coordinate of the contacting 

surface at any time point in the model. Some of the 

past pressure histories could be lost as a computational 

domain with a fixed size is applied during the 

simulation, where the pixel width is related to the 

sliding distance per time step. It is possible to keep 

the whole past pressure history in the record by 

extending the computational domain, but such an 

operation will impose a certain computational burden. 

To investigate the effect of the lost past pressure 

information on the sliding contact solution and to 

identify if it would become one of the limitations of 

our model, the following test, where two different 

numbers of nodes in /x y  direction (denoted as L) 

were applied in a frictionless sliding contact simulation 

with the velocity of 
0

0.8 /a  , was conducted. The 

computational domain is set to be 
0 0

2.56 2.56a a   

for the case with 256 256  nodes ( 256L  ) while it  

is increased to 
0 0

5.12 5.12a a   for the case with 

512 512  nodes ( 512L  ). 

As shown in Fig. 5(a), some of the past pressure 

histories are lost at several time points, including 

0.0 ,  0.5 ,  1.0 ,  when 256 256  nodes are applied. 

On the other hand, past pressure information is 

recorded completely when 512 512  nodes are applied 

as illustrated in Fig. 5(b). Contact solutions of the two 

cases (solid line for 256L   and scatter for 512L  ) 

are given in Fig. 5(c). The two curves of contact 

pressure fit perfectly initially while some insignificant 

difference appears at the final time point ( 3.975 )t   

as presented in the zoomed-in view in Fig. 5(c). The 

globally good agreement between the simulation 

results with different numbers of nodes indicates 

 
Fig. 4 Comparison of the simulation results from our model (solid lines) with the results from Koumi et al. [28] (scatters). Reproduced 
with permission from Ref. [28], © Elsevier B. V., 2023. (a)–(c) Pressure distribution with different dimensionless sliding 

velocities 
0

vτ

a
 =0.4, 0.8, 1.2, respectively, and (d) evolution of the apparent friction coefficient app  with time at different sliding 

velocities. 
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that the lost past pressure information has micro effects 

on the contact solutions. Therefore, results derived from 

our model are reliable if an appropriate computational 

domain is specified to capture the creep of viscoelastic 

surfaces.  

4 Results and discussion 

Before moving to the frictional sliding contact 

modelling, it is noted that in our previous study on 

viscoelastic contacts [36], the parameter known as the 

ratio of retardation time to relaxation time (
0

/  ) 

is found to determine the rheological behaviour of 

viscoelastic materials characterized by Zener models. 

Although the boundary value is yet unknown, 

materials with higher ratios tend to behave more 

fluid-like while those with lower ratios exhibit a more 

solid-like contact response. As a follow-up study, 

here the dependence of the pressure distribution 

and apparent friction coefficient on the rheology of 

viscoelastic materials is first investigated. 

4.1 Contact solutions in frictionless sliding and the 

effects of rheological properties 

The frictionless sliding contacts of three different 

viscoelastic materials characterized by Zener models 

are simulated here. It is of note that contact solutions 

can be different depending on whether the contact is 

generated via a prescribed displacement or a fixed 

load since they represent distinct contact phenomena 

for viscoelastic materials. To describe it briefly, a creep 

phenomenon is encounter under a fixed normal load, 

where the contacting area keeps increasing with time. 

On the other hand, a stress relaxation phenomenon 

is encountered under a fixed normal displacement, 

where the contacting area remains while the normal 

pressure relaxes (decreases) with time. To complicate 

the study on the effects of rheological properties of 

viscoelastic materials on the sliding solutions, two 

different contact phenomena encountered in the normal  

 

Fig. 5 Simulation results with different numbers of nodes L. (a) and (b) Past pressure history at the updated coordinates within 
4T  with 256L  and 512L , respectively, and (c) comparison of contact pressures at different times for the two cases with
256L  and 512L , respectively. 
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direction are tested by varying the contact input 

(constant load or displacement) to investigate their 

effects on sliding solutions. The detailed contact 

inputs specified in the tests are given in Table 2. The 

computational domain is set to be 
0 0

2.56 2.56a a   for 

all the tests, which is discretized by 256 256  nodes 

( 256)L  . 

As shown in Figs. 6(a)–6(c), when a stress relation 

phenomenon is experienced in the normal direction, 

the rear part of the contact region keeps shrinking with 

time. The shrink of contact area and relaxation of 

pressure becomes more significant for the more fluid-like 

material (e.g., the material with the higher value of  

  0
/ ). For the more solid-like material 





 
  

 0

3 ,  

the pressure profile is skewed less significantly 

compared with that of the more fluid-like material 





 
  

 0

10 . Besides, it seems to take more time for the 

frictionless viscoelastic contact to reach the steady 

state for the more solid-like material. This can be 

related to the relaxation modulus functions of the 

materials as shown in Fig. 6(d) such that the modulus 

of the more fluid-like material can reach a steady 

value within a shorter time.  

To switch to the load-controlled case, the more 

fluid-like material (the material with a higher value 

of 
0

/  ) is found to exhibit a more significant 

creep phenomenon as shown in Figs. 7(a)–7(c). Similar 

to the displacement-controlled case, the pressure   

Table 2 Contact parameters employed in the frictionless sliding 
test of different viscoelastic materials. 

Parameter Value Description (unit) 

W 1.50 Input indentation load (N) 

  100 Input normal displacement (μm) 

R 10 Radius of the sphere (mm) 

  3.86 Initial shear modulus of material (MPa)

0



  3, 5, 10 

Ratio of retardation time to relaxation 
time (ratio of initial shear modulus to 
modulus after infinite time) 

  0.01 
Relaxation time of the viscoelastic 
material (s) 

  0.3 
Poisson’s ratio of the viscoelastic 
material 

v 00.8 /a  
Frictionless sliding speed of the surface 
(normalized) 

profile is skewed more significantly for the more 

fluid-like material such that the peak pressure tends to 

appear on the rear edge of contacting area. However, 

the more fluid-like material tends to require more time 

to reach its steady contact state in the current creep 

case, which is related to the creep compliance of 

tested materials shown in Fig. 7(d). These simulation 

results are consistent with the finding of Zhao et al. 

[25], who reported the effects of a similar material 

parameter, which is known as the elasticity ratio in 

their study, on the steady-state pressure distribution 

when a creep phenomenon is encountered in the 

normal direction.  

Regarding the pressure spikes in the pressure 

profile, the reason behind their occurrence shall be 

highlighted here. In our previous viscoelastic study 

regarding the effects of the rheological behaviour of 

materials on the shape of pressure in a normal 

indentation problem [36], the pressure spikes on both 

contacting edges can only be observed for the more 

fluid-like material for a certain time while the more 

solid-like always exhibits a Hertzian-type pressure 

distribution. The role played by the viscosity of 

viscoelastic materials determines the shape of the 

pressure profile in indentation problems. In this case, 

the viscosity of the more solid-like viscoelastic material 

has relatively trivial effects, where the contact 

behaviour is similar to that of elastic materials. 

Regarding the fluid-like material, its mechanical 

response could be first assumed as a pack of liquid 

being squeezed, where the indentation load keeps 

being distributed to the contacting edges. However, 

the material is not a real fluid after all. Eventually,   

it will reach a steady state, where elasticity plays a 

dominant role instead of viscosity and leads to a 

Hertzian-type pressure profile. For the sliding problem 

investigated here, it is the synergistic effect of sliding 

motion and viscosity of material (e.g., the friction 

derived from viscoelasticity during sliding) that leads 

to the commonly observed asymmetric pressure 

distribution. According to the studies in Refs. [19] 

and [25], the pressure profile becomes symmetric at 

considerably low or extremely high sliding speeds. 

In terms of the frictional behaviour exhibited by 

different viscoelastic materials, as shown in Fig. 8, 

the more fluid-like material always shows a higher 

apparent friction coefficient regardless of the time and 
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Fig. 6 Results of tested frictionless sliding contact problems under a constant displacement. (a)–(c) Pressure distributions of different 

materials characterised by Zener models 
0

3


  , 5, 10, respectively, and (d) variations of relaxation modulus function with time for 

different materials. 

 
Fig. 7 Results of tested frictionless sliding contact problems under a constant load. (a)–(c) Pressure distributions of different 

viscoelastic materials characterised by Zener models 
0

3


  , 5, and 10, respectively, and (d) variation of creep compliance with time 

for different materials 
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the experienced contact phenomenon. This results from 

the more significant viscoelastic loss related to the 

dominant role played by the viscosity of the material. 

Compared with solutions under stress relaxation shown 

in Fig. 8(a), the apparent friction coefficient is always 

higher when the creep phenomenon is experienced 

by the same viscoelastic material as shown in Fig. 8(b). 

This suggests that a material can exhibit different 

levels of viscoelastic friction depending on whether 

the contact is generated by a specified penetration or 

load (experienced contact phenomenon). 

4.2 Effects of partial slip period on the sliding 

solutions 

To show the effects of the partial slip period, here four 

different cases of viscoelastic sliding are tested when 

a fixed displacement is specified in the normal direction. 

The first is the already conducted frictionless test. 

The second case is a frictional sliding test but without 

the initial partial slip period. In other words, the 

contact starts with gross slip and the effects of shear 

traction on the pressure profile are taken into account 

in this case, where the magnitude of shear traction 

is always equal to the local friction. The third case 

includes the partial slip period in the frictional 

sliding contact, where the gross slip happens before 

the material property reaches its steady state (gross 

sliding achieved at 0.1 ). The case where the gross 

slip happens relatively late (gross sliding achieved 

at 0.6 , when the time-dependent material property 

becomes stable) is considered in the final test.  

By specifying different linearly increasing rates  

of tangential displacement in x direction Δ
x
 in our 

displacement-controlled algorithm (e.g., the increasing 

displacement is the model input while the increasing 

load is the output), the occurrences of gross sliding at 

different times for cases 3 and 4 are achieved. Once 

the gross sliding state is reached for the viscoelastic 

contact, the same sliding velocity v is specified for all 

four cases. The difference between static friction and 

dynamic friction is neglected here since a unified 

coefficient of friction is intended to be applied to 

simplify the frictional sliding simulations. The detailed 

contact inputs used in the tests are given in Table 3. 

The computational domain is set to be 
0 0

3.07 3.07a a     

Table 3 Contact parameters employed in the frictional viscoelastic 
sliding test. 

Parameter Value Description (unit) 

 z  34.45 Input normal displacement (μm) 

R 10 Radius of the sphere (mm) 

  3.86 Initial shear modulus of material (MPa)

0/  10 
Ratio of retardation time to relaxation 
time (ratio of initial shear modulus to 
modulus after infinite time) 

  0.01 
Relaxation time of the viscoelastic 
material (s) 

  0.3 
Poisson’s ratio of the viscoelastic 
material 

f  0.3 Coefficient of dry contact friction 

Δ x  

0

0

0.017
,

0.17




a

a
Increment of tangential displacement per
time step  

v 01.2 /a
Constant sliding speed of the viscoelastic 
surface (normalized) when the surface is 
in the gross sliding state 

 

 

Fig. 8 Response of apparent friction coefficient with time for tested viscoelastic materials under different contact phenomena.
(a) Stress relaxation and (b) creep. 
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for all the cases, which is discretized by 256 256  

nodes ( 256L  ). 

The contact solutions of the four cases when the 

contact just initializes ( 0.0t  ) are shown in Fig. 9(a). 

Due to the presence of shear tractions, cases 2, 3 and 

4 exhibit different pressure profiles as illustrated in 

Fig. 9(a), right. The shear traction 
x

q  is equal to the 

static friction ( p ) for case 2 while cases 3 and 4 

experience the same partial slip state exhibiting 

identical distributions of pressure and shear tractions 

as shown in Fig. 9(a), left. Compared with the two 

cases without a partial slip period, cases 3 and 4 show 

higher peak pressures at this moment. 

For the next investigated time interval ( 0.1 )t  , the 

gross sliding is just reached for case 3 as indicated in 

Fig. 9(b), left, where the curve of shear traction agrees 

with that of static friction. The difference between the 

pressure profiles of cases 1 and 2 exists but it is still 

not significant at this time point as shown in Fig. 9(b), 

right. The shift of the contacting area in the direction 

of the sliding motion can be observed for these   

two cases while the contacting region tends to remain 

for cases 3 and 4 due to the mainly experienced 

stress relaxation phenomena in static states. Since 

case 4 is still in the partial slip period at 0.1t   as 

demonstrated in Fig. 9(b), left, the pressure profiles 

 

Fig. 9 Nondimensionalized contact solutions including the shear tractions of cases 3 and 4 (left) and normal pressures of four different
cases (right) at different time. (a) 0.0t , (b) 0.1t , (c) 0.5t , (d) 1.0t , and (e) 1.5t . 
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of cases 3 and 4 are distinct currently.  

For the time interval when the material property 

becomes stable and the frictionless sliding solution 

becomes steady ( 0.5t  ), since case 4 has yet not 

reached the gross sliding region as indicated in Fig. 9(c), 

left, its pressure distribution is significantly different 

from the other cases as shown in Fig. 9(c), right. 

Due to the viscoelastic sliding motion, contact areas of 

surfaces in cases 1, 2, and 3 have shrunk, which leads 

to significantly higher peak pressures compared with 

the solution of case 4. Besides, after being in gross 

sliding for a certain time, the contact area of case 3 

is found to shift in the same way as cases 1 and 2. 

However, this case now shows a lower peak pressure 

compared with the two cases without a partial slip 

period.   

Contact solutions of another later time point ( 1.0t  ) 

are given in Fig. 9(d), where the surface in case 4 has 

already been in a global slip state for a certain time 

as indicated in Fig. 9(d), left. Eventually, the shift of 

the shrinking contacting area is observed for case 4. 

Besides, the pressure solutions of other cases seem 

to reach a steady state as the difference can hardly be 

found between Fig. 9(c), right and Fig. 9(d), right for 

cases 1, 2, and 3.  

By extending the simulation time to 1.5 ,  the 

contact becomes steadier for case 4 as the viscoelastic 

surface has been in the gross sliding state for a longer 

time as illustrated in Fig. 9(e), left. The overlap of 

pressure distribution curves is found for cases 3 and 

4 as shown in Fig. 9(e), right. This suggests that the 

same pressure profile can be obtained by extending 

the simulation time to the steady contact state no 

matter when the partial slip period ends in a frictional 

sliding problem.  

Cases including the partial slip period show a 

minor variation with the frictionless sliding solution 

regarding the shape of pressure distribution when 

the contact becomes steady. When the contact is in the 

steady regime, a slight difference can be observed 

when comparing the pressure magnitude as a lower 

peak pressure is observed for the case where partial 

slip has been experienced. Besides, the contacting 

region is slightly shifted in the direction opposite to 

the sliding motion for those cases. The difference 

between the solutions of frictional sliding contact 

 

Fig. 9 (Continued) 
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without partial slip period and frictionless sliding 

contact is relatively micro regardless of the time 

being referred to. 

To switch the contact input in the normal direction 

to be a fixed load (  0.15 NW ), since the time when 

the gross sliding happens barely causes any difference 

as long as the viscoelastic sliding contact reaches 

the steady state, only one frictional sliding contact 

with the presence of partial slip under creep input 

was tested with  0Δ 0.17 /x a  . It was named case 3 

while cases 1 and 2 stand for the frictionless test and 

frictional test without partial slip respectively. To take 

into account the creep of the contacting area under a 

constant normal load, the computational domain is 

increased to 
0 0

3.84 3.84a a   for the following tests. 

The time-dependent contact solutions under the 

input of constant normal load are shown in Fig. 10. 

Like the above relaxation tests, when the contact 

initializes ( 0.0t  ), due to the addition of dry contact 

friction in cases 2 and 3 and the resulting partial slip  

 

Fig. 10 Nondimensionalized solutions including the shear tractions of case 3 (left) and normal pressures of the three different cases 
(right) at different time points. (a) 0.0t , (b) 0.1t , (c) 0.2t , (d) 1.0t , and (e) 4.0t . 
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phenomenon in case 3 shown in Fig. 10(a), left, the 

three cases exhibit different pressure profiles as shown 

in Fig. 10(a), right.  

For the following two time points including 

0.1t   and 0.2t  , the viscoelastic surface in case 3 

is found to experience a partial slip state as shown 

in Fig. 10(b), left and a gross slip state that is just 

achieved as illustrated in Fig. 10(c), left, respectively. 

Hence, the pressure profiles of case 3 are significantly 

different from the other two fully-slip cases at these 

two time points as shown in Fig. 10(b), right and  

Fig. 10(c), right, respectively.  

Similar to the finding in our former study about 

viscoelastic indentation problems [36], fluctuating 

results are observed on the contact solutions for all 

the cases in Figs. 10(b) and 10(c). Although such 

oscillations could be alleviated by adopting a smaller 

time interval, the computational domain must be 

increased to characterize the creep of the contacting 

area as the pixel width of the mesh system is 

determined by the sliding distance during each time 

interval. 

For the rest investigated time points ( 1.0t   and 

4.0t  ) when the viscoelastic surface in case 3 is in 

the gross slip state after certain times as illustrated  

in Fig. 10(d), left and Fig. 10(e), left, respectively,  

the pressure profiles of case 3 tend to become closer 

to those of case 2 as shown in Fig. 10(d), right and  

Fig. 10(e), right, respectively. What is different from 

the former relaxation test is that the load in the 

current creep test does not relax with time. Besides, 

different from the relaxation test where the contacting 

area of the sliding surface starts to shrink while that 

of the surface in the partial slip state remains, the 

contacting areas of the three cases almost remain 

identical regardless of the sliding states that are 

experienced by the viscoelastic surface at any time 

point as illustrated in Fig. 10. Together with the fact 

that viscoelastic surface exhibits different frictional 

resistance to sliding depending on whether the stress 

relaxation or creep phenomenon is experienced in the 

normal direction, the partial slip regime has different 

effects on the later sliding solutions as discussed. 

However, as shown in Figs. 9 and 10, the differences 

 

Fig. 10 (Continued) 
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between the pressure profiles of all the tested cases 

are not significant but yet exist when the contacting 

viscoelastic surface is at a steady state. 

5 Conclusions 

The sliding aspect of the developed model is 

validated against the simulation results of Koumi   

et al. [28] for a spherical frictionless sliding contact 

problem. The dependence of the distribution of contact 

pressure and dissipative losses on the rheological 

property of viscoelastic materials is analysed based on 

the developed sliding contact model for viscoelastic 

materials. It was found that the more fluid-like 

viscoelastic material, for which the pressure profile is 

skewed more remarkably, exhibits higher frictional 

resistance to sliding motion due to the more dissipative 

loss arising from the dominant role of its viscosity.  

As a result, the shrinkage of contacting area for the 

more fluid-like viscoelastic material is more significant 

when the stress relaxation phenomenon is experienced 

in the normal direction.  

The frictional viscoelastic sliding contact with the 

partial slip period is analysed in this paper. Beyond 

the fact that the partial slip regime caused a micro 

change in the normal pressure distribution when the 

contact becomes steady, it delays the time required 

by the viscoelastic sliding surface to reach its steady 

state. This suggests that the assumption of frictionless 

contact (no dry friction), which is adopted in most 

numerical and theoretical models, could induce 

quantitative differences when analysing the sliding 

contact of viscoelastic materials. Qualitative errors 

may even be encountered when the observation time 

is too small to capture the actual steady state of the 

contacting surfaces. We believe that our numerical 

study can serve as a good reference for the future 

modelling work about the sliding contact of viscoelastic 

materials. If the steady-state solution is the primary 

concern and of greater interest for researchers, they 

can simplify the contact problem under consideration 

(i.e., neglect the dry contact friction and conduct   

a frictionless sliding contact analysis instead) to  

obtain qualitative-correct results. However, in some 

cases such as a contact system subjected to dynamic 

loading, it is necessary to perform transient contact 

analysis on the sliding viscoelastic materials, where 

the role played by dry friction should be considered. 

Understanding the contact traction history during 

the evolution period from partial slip to gross sliding 

and pinpointing the time at which gross sliding begins 

can lead to a quantitatively-correct contact analysis. 

This, in turn, enhances our grasp of friction and 

wear of materials and improves our ability to predict 

material performance. 

Considering that the contact solutions presented in 

the study are limited to the half-space approximation 

while viscoelastic materials often exist in the form   

of a layer with a finite thickness in practice, the 

development of a model for the sliding contact of 

viscoelastic layers is necessary. This is the subject of 

our current ongoing work.  

Apart from the single-asperity contact considered 

in the study, the transient multi-asperity (rough-surface) 

contact needs to be investigated numerically to shed 

light on the role played by the surface roughness 

in frictional sliding contact solutions of viscoelastic 

materials. Furthermore, the assumption of no adhesive 

force might undermine the validity of the simulation 

results especially when the viscoelastic material is 

significantly softer or more compliant than the other 

contacting materials. A model, which integrates the 

effects of adhesive force and viscoelasticity, shall 

provide a more helpful contact analysis of viscoelastic 

materials. These are knowledge gaps that currently 

exist and need to be filled in the future.  
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