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Abstract— Space weather forecasting is of global interest, and 

its importance is well established in research community and 

recognized by government, industries and stockholders. Over the 

past years, many types of predictive models have been developed 

in the literature. There is a general agreement that forecasting 

models should not only provide point prediction but also inform 

the uncertainty associated with the prediction. This study presents 

a novel method bases on quantile regression and complex dynamic 

modelling for measuring uncertainties in space weather 

forecasting. The approach is implemented using Quantile 

regression and Nonlinear AutoRegressive Moving Average with 

Exogenous inputs (NARMAX) methods (for short the approach is 

called Q-NARMAX).  The method is applied to Disturbance storm 

index (Dst) observations to examine its interpretability and 

capability for uncertainty analysis. Results show that the proposed 

Q-NARX model can produce excellent predictions of the Dst

index, and meanwhile provides a measure for assessing the

uncertainty in the forecast. The innovative integration of quantile

regression, complex dynamic modelling and nonlinear system

identification techniques enables the proposed work to have

following attractive advantages and properties: 1) it can produce

excellent prediction accuracy for space weather forecasting, 2) it

uses transparent models to approximate (represent) black-box

systems, enabling to interpret the dependent relationship between

space weather indices (system outputs) and their drivers (system

inputs), and 3) more importantly, it allows for uncertainty

assessment and analysis of models and forecasts.

Keywords—input/output systems, signals and systems, nonlinear 

system identification, data modeling, forecasting, prediction 

uncertainty, space weather. 

I. INTRODUCTION

Space weather processes can cause adverse or even 
hazardous effects on the operation of modern technological 
systems, either space-based or ground-based. Space weather 
forecasting can help significantly mitigate space weather 
hazards [1]-[5]. Due to the huge complexity of the geospace 
evolution processes, it is nearly impossible to build 
comprehensive physical models of the geospace environment 
based on first principles, which can be used to forecast the space 
weather parameters [6][7]. However, the complementary data 

based or empirical approach, which treats the geospace as a 
black (or grey) box input-output system [8], provides attractive 
alternative tools that are able to make forecast of geomagnetic 
behaviours such as fluxes of energetic electrons in the radiation 
belts, TEC (total electron content), geomagnetic indices such as 
Dst (Ddisturbance storm index), Kp (a common index used to 
indicate the severity of the global magnetic disturbances in near-
Earth space), AE (a geomagnetic index of the auroral electrojet, 
which characterizes the maximum range of excursion, both 
positive and negative, from quiet levels), and Sym-H (an index 
of storm time ring current intensity), among many others. 

This paper restricts the attention to the case of 
magnetospheric space weather, where the Dst index has been 
developed to quantify middle latitude geomagnetic disturbances 
and is used to measure the strengths of such space weather 
hazards as geomagnetic storms [9], for example, for a great 
storm, Dst < −350 nT; for a severe storm, Dst is between  −350 
and −200 nT; for a strong one, it is between −200  and −100 nT; 
for a moderate one, it is between −100 and −50 nT, and for a 
weak one, it is between −50 and −30 nT [10]. Ring current, 
magnetopause current and other currents contribute to the 
evolution of  Dst index. 

Data-driven modelling has attracted increasing attention to 
space weather forecasts in recent years. Models used for Dst 
index prediction can be roughly categorized into two groups: 
transparent to end-user models and opaque to end-user models. 
Parametric models, such as NARMAX (Nonlinear 
AutoRegressive Moving Average with eXogenous inputs) 
methods [11]-[14], which were initially developed for solving 
complex control and systems engineering modelling problems, 
have found their way and successful applications in space 
weather forecast [15]-[20].  These models are transparent to end-
users. Some neural network models, e.g. radial basis function 
networks [21]-[23] are partly transparent to end-users, but most 
neural network models, including classical artificial neural 
networks [24] and deep neural networks [25]-[27] are all opaque 
to end-users. It is worth mentioning that in the most recent few 
years there has been an explosive increase in publications on 
space weather forecast using deep learning or deep neural 
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networks (see, e.g., the survey paper [27] and the references 
therein).  

Over the past years, a variety of predictive models have been 
developed in the literature. There is now a general agreement 
that forecasting models should not only provide point 
predictions but also the uncertainty associated with the 
predictions. A number of approaches have been used to assess 
the accuracy of forecasting models, including correlation 
function, prediction efficiency, root mean square error, and 
many others (see e.g. [26][28]). However, for many of the 
developed data-based tools the assessment of forecast 
uncertainty is still an open question. 

To help fill the gap between the demand of uncertainty 
assessment in space weather forecasting and the lack of the need, 
this study proposes a novel methodology based on Quantile 
regression and NARMAX methods, called Q-NARMAX 
models, which can be used to assess the uncertainty in space 
weather forecasting. To evaluate the performance of the 
proposed method, a case study is carried out by applying the 
method to Disturbance storm index (Dst) observations. 
Experimental results show that Q-NARMAX display excellent 
performance.  

The proposed Q-NARMAX method has the following 
advantageous features: 1) It maintains all the attractive features 
of NARMAX, e.g., transparency, parsimony and 
interpretability;  2) The Q-NARMAX model parameters provide 
information on how the role of each regressor changes in each 
quantile of the distribution of the target signal (the system 
output);  3) Unlike a traditional deterministic model which can 
only produce a single point prediction for a given input sample,   
a Q-NARMAX model can produce many prediction points 
corresponding different quantiles of the model parameters. 
These multiple-point predictions can be used to measure the 
model uncertainty. 

II. METHODOLOGY 

A. A Brief Introduction to Quantile Regression 

Least squares type methods play a key role in data modelling 
and analysis. In the sense of ordinary least squares, the 
regression model is designed to fit the mean value of the 
response data. To obtain a good model (e.g. unbiased estimates 
of model parameters), it requires that a number of conditions 
should be satisfied, these include: 1) the noise signal has mean 
zero and is uncorrelated with model regressors;  2) the noise has 
the same variance in all the observations;  and 3) the 
observations (samples) of the regressors are independent and 
identically distributed. If one or more of these assumptions are 
violated, the resulting model may be biased and less reliable. 

Quantile regression is an extension of the traditional 
ordinary least squares regression; it is used when the 
assumptions for ordinary least squares are not satisfied. Unlike 
ordinary least squares regression which attempts to fit the 
conditional mean of the target response data, quantile regression 
is designed to fit the conditional medians of the response values. 

Let y be a response variable which depends on n predictors 
x1, x2, …, xm. The common regression representation that links 
the response to the potential predictors is:  

0 1 1 2 2( ) ( ) ( ) ... ( ) ( )m my k x k x k x k e kβ β β β= + + + + +      (1) 

where the βi’s, (i=0,1, …, m) are the regression coefficients, 

{ ( ), ( )}ix k y k , with k =1,2,…, N,  are measurements or samples, 

e(k) is the model error of the kth sample. Let

1x [1, ( ),..., ( )]T

k mx k x k= and 
0 1[ , ..., ]T

mβ β β β= , the τth 

regression quantile is defined as any solution to the 
minimization problem [29]: 
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For a given dataset, a group of regression models can be 
estimated using the quantile regression (2) by choosing different 
quantiles. 

B. An Overview of NARMAX Methods 

Assume the behaviour of a dynamical system output, y, is 
dependent on or correlated to a total of n inputs, 𝑢𝑢1, 𝑢𝑢2,…, 𝑢𝑢𝑛𝑛. 
From systems engineering theory, the relationship between the 
output y and the input u can be represented by the following 
NARMAX model [11]: 
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      (3) 

where 𝑢𝑢1(𝑘𝑘) , 𝑢𝑢2(𝑘𝑘) ,…, 𝑢𝑢𝑛𝑛(𝑘𝑘)  are the values of the system 
inputs observed or measured at time instant k, 𝑦𝑦(𝑘𝑘) is the system 
output sequence, and 𝑒𝑒(𝑘𝑘) is noise sequence; 𝑝𝑝, 𝑞𝑞 and 𝑟𝑟 are the 
associated maximum time lags; 𝑠𝑠  and τ are the time delays 
between the response and the model input variables, and usually 𝑠𝑠 =1 and τ = 0 or τ = 1; 𝑓𝑓(∙) is an unknown function that needs 
to be built from available training data. The noise signal 𝑒𝑒(𝑘𝑘) 
cannot be measured in real applications, but in practice it can be 
approximated using the model prediction error 𝜀𝜀(𝑘𝑘) = 𝑦𝑦(𝑘𝑘) −𝑦𝑦�(𝑘𝑘), where 𝑦𝑦�(𝑘𝑘) is the model prediction at time instant k. Note 
that the moving averaging (MA) elements, 𝑒𝑒(𝑘𝑘 − 1), 𝑒𝑒(𝑘𝑘 − 2), 
, …, e(k −r ), are mainly used for noise estimation and model 
refinement during the model building process, will be removed 
for later analysis and prediction purposes.  

The nonlinear degree of a NARMAX model is determined 
by the highest order of all model terms. For example, the 
nonlinear degree of the model 

0 1 2( ) ( 1) ( 3)y k a a y k a u k= + − + −  

is 1, whereas the nonlinear degree of the two-term model 
2

1 2( ) ( 1) ( 1) ( 2)y k a y k a u k u k= − + − −  is 3. 

In most applications, only a relatively small number of 
important model terms are needed in the final models. An 



efficient model structure detection method is highly needed to 
select the most significant model terms such as ( 1)y k − , 

2( 1) ( 2)u k u k− − . 

When the NARMAX model (3) is applied to space weather 
forecasting, e.g., Dst index forecasting, the system output signal 𝑦𝑦  is the Dst index, 𝑢𝑢1 , 𝑢𝑢2 ,…, 𝑢𝑢𝑛𝑛  can be a number of 
geomagnetic or solar wind parameters/indices such as Bst, Bx, 
By, Bz, V, solar wind density, and solar wind pressure.  

The identification procedure of NARMAX models includes 
the following five steps:  

1)  Data acquisition and pre-processing (where necessary); 

2) Design a sufficiently large dictionary, containing all 
candidate model terms of potentially important or useful, 

e.g., ( 1)y k − , 
1( 2)u k − , 

2 3( 5) ( 2)u k u k− − ;   

3) Apply model term selection and structure detection 
algorithms to select and determine the most important 
model terms; 

4) Perform model validity test using nonlinear statistical 
tests; if the current model does not pass the statistical 
tests, then go back to the previous step to add new model 
terms and then update and refine the model until all tests 
are satisfied;  

5)  Model interpretation and application.   

One of the most efficient model tern selection and structure 
detection algorithms is orthogonal least squares [11][30]. This 
study uses a forward regression with orthogonal least squares 
(FROLS) [31] algorithm, coupled with two metric indices, that 
is, error reduction ratio (ERR) and conditional entropy (CE) 
[32][33], to determine the NARMAX model structure. 

The final identified model can be written in a linear-in-the-
parameters form below: 

0 1 1( ) ( ) ... ( )m my k k kβ β φ β φ= + + +                    (4) 

where m is an integer representing the total number of model 

terms, 
1( ),..., ( )mk kφ φ are model terms, each of which is of a 

polynomial form such as y(k−1), u1(k−1), u2(k−3)×u3(k−4).  

C. Quantile NARMAX Models 

This study innovatively combines quantile regression with 
NARMAX methods, aiming to exploit the power of NARMAX 
for nonlinear system identification and make use of the strength 
of quantile regression, so as to create a new modelling 
framework for better understanding, analyzing and forecasting 
dynamic space weather processes. The implementation 
procedure of Q-NARMAX is as follows: 

1)  Identify a NARMAX model; assume the model contains 
a total of m model terms, denoted by 

1 2( ), ( ),..., ( )mk k kφ φ φ , each term is formed by one or 

more candidate model input variables; 
2)  Choose a number of quantiles, τi (i =1, 2, …, I). For each 

of them, estimate a regression model of the form: 

( ) ( ) ( ) ( )

0 1 1( ) ( ) ... ( )i i i i

m my k k kβ β φ β φ= + + +           (5) 

3)  Analyze the patterns of the m coefficients, and exploit 
and extract useful information from the coefficients; 

4)  Make prediction using each of these I quantile regression 
models;  

5)  The model prediction can be defined as an ensemble of 
the I prediction time series (e.g. weighted sum); 

6) Define prediction uncertainty intervals using the I 
prediction time series. 

III. A CASE STUDY: DST INDEX PREDICTION 

In this section, the proposed Q-NARMAX method is applied 
to Dst index data. A total of five geomagnetic field and solar 
wind indices or factors are chosen to be the candidate drivers. 
These drivers are: solar wind speed, V (unit: km s−1), solar wind 
density (Nsw, unit: cm−3), solar wind pressure (Psw, unit: nPa), 
together with two derived variables: the root of Psw, that is 
(Psw)1/2, and the toroidal magnetic field parameter, Bst (unit: 
nT). Some of these candidate drivers may not be important or 
useful for predicting the Dst index; we let the NARMAX 
method to detect and choose the most important ones and decide 
which ones should be included in the final models. 

A. Data Used 

The data measured in 2015 are used in this paper. Of the 
8760 hourly recorded samples, the first 3624 (measured in the 
first 5 months) are used for model training, and the remaining 
5136 samples are used for testing model performance. The 
measurements of these input and output variables are obtained 
from the OMNIweb and the NGDC website (see the 
Acknowledgment section for details). 

B. The Identified NARMAX Model 

This study concerned with 1-hour ahead prediction of Dst 
index. A total of five drivers (input variables) are considered, 
namely, u1 = V,  u2 = Bst,  u3 = Nsw,  u4 = Psw,  u5 = [Psw]1/2. 

      A total of 30 lagged candidate input variables are used to 
build the best model for estimating the value of Dst(k):      
V(k−d), Bst(k−d), Nsw(k−d), Psw(k−d), [Psw(k−d)]1/2, with d 
=1, 2, …,6. 

With the total of 30 candidate lagged input variables, using 
the FROLS+ERR+CE algorithm, together with the Bayesian 
information criterion (BIC), the identified model consisting of 7 
regressors (model terms) is obtained as follows: 

1 1 2 2 7 7Dst( ) ( ) ( ) ... ( )

          3.9004 0.9152Dst( 1)

          7.9257V( 1) 0.6187Bst( 1)
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          0.4387V( 3)Bst(
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− − −3) Psw( 3)k










− 

        (6) 

From (6), it can be noted that not all the initially selected 30 
candidates are important for explaining the variation of the Dst 
index; those that are not or less important are not selected by the 
model selection algorithms. In this way, the obtained model is 
not only transparent but also parsimonious and sparse.  



C. The Quantile-NARMAX Models 

By setting the regression quantiles τ =0.1, 0.2, …, 0.9, the 7 
model terms in (6) are used to build a total of 9 Q-NARMAX 
models of the form (5). In order to observe the change patterns 
of these 9 regressors and investigate how each of the regressors 
influences the variation of the Dst index, the plots of the 7 
coefficients at the 9 quantiles are shown in Fig. 1. 

 
Fig. 1. Plots of the 7 Q-NARMAX model coefficients against the 9 regression 
quantiles (τ =0.1, 0.2, …, 0.9). The three horizontal parallel lines represent the 
model parameter estimates in the ordinary linear least squares sense, and the 
lower and upper 95% confidence intervals. 

It can be observed from Fig. 1 that all the 7 Q-NARMAX 
coefficients vary with the change of the regression quantile τ. 
The change in a regression coefficient reflects the role or 
significance of the corresponding regressor (variable) in 
representing the variation of the Dst index at different quantiles. 

For example, the second coefficient β2 changes mildly with 
τ, and this has two implications: 1) the autoregressive variable, 
Dst(k−1) is important for predicting the variation in Dst(k) 
throughout all the quantiles, although the significance of the 
regression in predicting the response values in the lower and 
upper quantile bands is slightly different; 2) the regressor 
Dst(k−1) always makes “positive” contribution to the variation 
of Dst(k) in all the quantile bands. In other words, an increase in 
Dst(k−1) could very likely lead to an increase in Dst(k) and vice 
versa. 

The pattern of the third and fifth coefficients, β3 and β5, are 
very similar, showing that the variable V(k−1) and the cross-
product term Bst(k−1)[Psw(k−1)]1/2 both make “negative” 
contribution to the increase/decrease of Dst(k): an increase in 
V(k−1) or Bst(k−1)[Psw(k−1)]1/2 will lead to a decrease in Dst(k) 
and vice versa. An interesting finding is that their contributions 
are strong in low quantiles (corresponding severe and strong 
storms in this study) but gradually become weak in high quantile 
band (corresponding to weak or very weak storms). 

The coefficients β4, β6 and β7 show a common interesting 
pattern at τ = 0.3 (roughly corresponding to Dst ≤ −20nT for the 
training data considered in this study); the reason behind this 
patter is not clear to us.   

D. Prediction Confidence Interval 

This section proposes an approach on how to establish a 
prediction uncertainty over a test dataset using the Q-NARMAX 
models. 

The prediction confidence interval, over a test dataset, 
calculated from the nine Q-NARMAX models are as follows: 

1)  Separately perform prediction using each of the nine Q-
NARMAX models; 

2)  Choose the prediction from the model at τ =0.1 as the 
lower bound, and the prediction of from the model at τ 
=0.9 as the upper bound, define the τ[0.1, 0.9] prediction 
confidence interval; 

3)  Compute the averaged prediction of the 9 prediction time 
series. Use the averaged quantile regression prediction as 
a reference for Dst index prediction. 

As an example, the τ[0.1, 0.9] prediction confidence interval 
for the test period, days 172 – 175 of 2015, are shown in Fig. 2. 

 

Fig. 2. The weighted model prediction and the τ[0.1, 0.9] prediction 
confidence interval, over the test period of days 172 – 175, 2015. 

E. Prediction Performance Analysis 

To evaluate the prediction performance of the proposed 
method, the averaged prediction values from the 9 Q-NARMAX 
models are compared with the corresponding measurements of 
Dst index. The following two common metrics are used to 
measure the prediction performance.   

• R-squared coefficient (coefficient of determination). 
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• Mean Absolute Error 
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• Root Mean Square  Error 
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where the symbol ‘Г ’ denote a test dataset consisting of a total 
of K samples, y(k) is the measurements at the time instant k, 
ˆ( )y k represents the model prediction values, and y is the mean 

value. Note that there is certain equivalent between the 
coefficient of R-squared and other commonly used metrics, e.g., 
prediction efficiency (PE), variance of accounted for (VAF). 
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For the test period of days 172-175 of 2015 shown in Fig. 2, 
the values of R2, MAE and RMSE are 0.9620, 6.4538 and 
9.7783, respectively. These values confirm the excellent 
performance of the proposed Q-NARMAX method for strong 
and severe storm predictions.  

Finally, for more information, the scatter plot between the 
model predictions and the true values, over the test period of 
days 172 – 175 of 2015, is shown in Fig. 3. 

 

 

Fig. 3. The scatter plot between the model predictions and the true values, over 
the test period of days 172 – 175, 2015. 

IV. DISCUSSIOSNS 

As mentioned earlier, the proposed method has several 
attractive features and advantages, for example: 1) the resulting 
models are transparent, parsimonious and simulatable; 2) using 
transparent models to approximate and represent black-box 
systems makes it easier to interpret the dependent relationship 
between space weather indices and their drivers; 3) the resulting 
models can be written down, so end-users can see how the 
desired response is related to the individual predictors and their 
interactions; and 4) model parameters are estimated using 
quantile regression algorithm, enabling the model to fit the 
conditional medians of the target response data, rather than the 
conditional mean of the data, as considered in traditional data 
based modelling approaches.    

The last property above is useful for understanding and 
interpreting how the change of the system behaviour, at different 
quantiles of data distribution, is related to system input signals 
(drivers). It is also important and useful for assessing 
uncertainties in model based prediction. The proposed 
uncertainty evaluation procedure is as follows. Firstly, to 
identify a set of best model structures using nonlinear system 
identification techniques. Secondly, to estimate model 
parameters each of these model structures at a number of 
different quantiles of data distribution (say quantiles from 0.1 to 
0.9. Thirdly, to make predictions using all the models with 
different quantiles. Finally, to ensemble the predictions form all 
the models, and calculate the quantile confidence intervals of 
interest and the mean or median of the prediction values. 

Nevertheless, the overall performance of the proposed 
methods has not yet been comprehensively evaluated; more 
needs to be done to explore the advantages of the new method 
and to reveal its potential deficiencies and limitations as well. 
Based on our experience from the present work and our other 
related studies so far, we have the following comments on the 

implementation of the proposed method, its limitations, and 
potential improvements. 

Implementation. The proposed method combines NARMAX 
modelling and quantile regression. The NARMAX method does 
not need a large number of samples to train models. More 
importantly, with the efficient forward regression with 
orthogonal least squares (FROLS) algorithm [34], the method 
can effectively solve the “p >> n problem”, where n is the 
number of observations and p is the number of predictors 
(regressors). As the resulting models are usually parsimonious, 
the quantile estimation procedure can usually be completed 
within a short time period. So, in comparison with other machine 
learning methods including deep learning approaches, the 
computational load is much smaller. 

Limitations and improvements. Unlike linear regression 
where the dependent relationship between response and 
predictors can usually be easily recognized and interpreted, 
nonlinear dynamic quantile regression models are relatively 
difficult to explain due to the inclusion of interaction terms 
(regressors). Further work and investigations will be carried out 
to better explain the Q-NARMAX models and gain deep insight 
into the inhere associations of processes in space weather. 

V. CONCLUSION 

The paper introduced a novel nonlinear transparent, 
interpretable and parsimonious modelling method, called 
quantile-NARMAX (Q-NARMAX), which has several 
attractive features. In comparison to other predictive models, Q-
NARMAX has several distinctive features, for example, the  
integration of quantile regression into the NARMAX modelling 
procedure enables to better explore the distribution of the target 
signals (response or output variables) at different quantiles and 
better represent the relationship between the input and output 
data using many quantile models rather than only a single  
model. This significantly improves the prediction robustness. 
Moreover, the predictions corresponding to different quantiles 
provide useful information for assessing the prediction 
uncertainty. Additionally, Q-NARMAX model parameters 
provide a useful indication of how each model term (regressor) 
affects the change of the system response in each quantile of the 
distribution of the output signal. The last feature here will be 
further explored in our future work. 
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