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Summary 24 
 25 
Healthcare systems, food supply chains, and society in general are threatened by the 26 
inexorable rise of antimicrobial resistance. This threat is driven by many factors, one of 27 
which is inappropriate antimicrobial treatment. The ability of policymakers and leaders in 28 
healthcare, public health, regulatory agencies, and research and development to deliver 29 
frameworks for appropriate, sustainable antimicrobial treatment is hampered by a lack of 30 
tangible outcome-based measures of the damage it causes. In this review, a mathematically 31 
grounded, outcome-based measure of antimicrobial treatment appropriateness, 32 
‘imprecision’, is proposed. We outline a framework for policymakers and healthcare leaders 33 
to use this metric to deliver more effective antimicrobial stewardship interventions into future 34 
patient pathways. This will be achieved using ‘learning antimicrobial systems’ built on public 35 
and practitioner engagement, solid implementation science, advances in artificial 36 
intelligence, and changes to regulation, research, and development. The outcomes of this 37 
framework would be more ecologically and organisationally sustainable patterns of 38 
antimicrobial development, regulation, and prescribing. We discuss practical, ethical, and 39 
regulatory considerations involved in delivery of novel antimicrobial drug development, policy 40 
and patient pathways built on artificial intelligence-augmented measures of antimicrobial 41 
treatment imprecision. 42 
 43 
  44 
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1. Introduction 45 

 46 
Antimicrobial agents underpin healthcare systems, sustainable food production, and safe, 47 
prosperous societies world-wide.1,2 These benefits, however, are threatened by rising 48 
antimicrobial resistance (AMR). Inappropriate antimicrobial treatment in healthcare is an 49 
important driver of AMR, helping to perpetuate ecologically unsustainable cycles of ‘boom-50 
and-bust’ between AMR emergence and antimicrobial discovery and development (Figure 51 
1).3,4 52 
 53 

 54 
Figure 1: ‘Boom-and-bust’ cycles of antimicrobial discovery, development, prescribing and AMR as a contributor 55 
and response to the emergence of increasingly antimicrobial-resistant organisms. CRE: Carbapenem resistant 56 

Enterobacterales, VRE: Vancomycin resistant Enterococcus, CRAB: Carbapenem resistant Acinetobacter 57 
baumannii, CRPA: Carbapenem resistant Pseudomonas aeruginosa, MRHP: Macrolide resistant Helicobacter 58 

pylori, VRSA/VISA: Vancomycin resistant/intermediate Staphylococcus aureus, MRSA: Methicillin resistant 59 
Staphylococcus aureus, ESBL: Extended-spectrum beta-lactamase, MSSA: Methicillin-resistant Staphylococcus 60 

aureus5,6 61 
 62 
 63 
Antimicrobial stewardship (AMS) aims to improve the appropriateness of antimicrobial 64 
treatment using frameworks such as The World Health Organisation’s (WHO) Access, 65 
Watch, Reserve (AWaRe) classification.7,8 These frameworks, however, do not necessarily 66 
quantify the imprecision of antimicrobial treatment in terms of its full individual and 67 
population costs in healthcare. These costs may include: 68 
 69 
● Suboptimal outcomes caused by treatment failure and/or unanticipated toxicity (e.g., 70 

Clostridioides difficile diarrhoea, drug toxicity).9  71 
● Emergence of multidrug resistant (MDR)/extensively drug resistant (XDR) organisms 72 

leading to treatment failure and creating the potential for their horizontal spread.10,11 73 
● Financial costs incurred by poorly targeted use of expensive new drugs.12 74 

Failure to routinely consider and capture the full cost of antimicrobial therapy hinders the 75 
design of policy in multiple sectors including healthcare, public health, regulation, and 76 
research and development (R&D). Integrated data from digitisation of healthcare records, new 77 
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diagnostics, and One Health AMR studies (e.g., in agricultural antimicrobial use, water 78 
cleanliness) could help better quantify the true impact of antimicrobial therapy. However, this 79 
opportunity is lost because of fragmented dataflows within and between global healthcare 80 
settings.13 81 

Here, we propose an outcome-based model for policymakers and healthcare leaders 82 
worldwide to deliver better antimicrobial treatment outcomes for their citizens. This model is 83 
built on quantification of ‘imprecision’, which we define as the difference between the total 84 
effect of antimicrobial treatment and the effect that is required to provide the best overall 85 
(individual and societal) outcome. We outline an approach for reducing imprecision in patient 86 
pathways via: 87 

1. Developing a quantitative model of imprecision based on individual and population-88 
based outcome measures, biologically plausible covariates, and artificial intelligence 89 
(AI) techniques. 90 

2. Identifying and understanding systemic and behavioural drivers of imprecision in 91 
healthcare that can be used to parameterise and calibrate models of imprecision and 92 
design a range of interventions to improve precision. 93 

3. Outlining the improvements in data inputs, interpretation, and actionability required for 94 
collaborations of policymakers and healthcare leaders to build ‘learning antimicrobial 95 
systems’ (LASs) that will deliver the individual and societal benefits of more precise 96 
antimicrobial therapy. We consider the role of healthcare providers, R&D, 97 
patient/practitioner/public engagement, data stewardship, implementation science, and 98 
regulatory bodies in the delivery of these systems. 99 

 100 
 101 
1.1  Search strategy and selection criteria 102 
 103 
For major topics/concepts, advanced searches of Google Scholar for articles from the last 25 104 
years utilised combinations of the terms “antimicrobial”, “resistance”, “prescribing”, 105 
“stewardship”, “artificial intelligence”, “machine learning”, “bayesian”, “epidemiology”, “drug 106 
development”, “decision”, “outcome”, “data”, “diagnostics”, “public health”, “health 107 
economics”, “policy”, and “regulation”. Searches for minor topics/concepts (e.g., “pill-in-108 
pocket”) and known documents (e.g., WHO AWaRe) utilised relevant targeted search terms. 109 
Manual result searches determined sources for inclusion based on relevance. 110 
 111 
 112 

2. Imprecision: a measure of antimicrobial treatment inappropriateness 113 

Measures of the appropriateness of antimicrobial therapy monitored by AMS programmes 114 
and public health agencies are often based on the volume of antimicrobial use and 115 
adherence to population-level guidelines. The consequences of antimicrobial use are often 116 
inferred from aggregate-level trends (e.g., local AMR rates).  117 

Optimally precise antimicrobial use requires a conceptual framework that uses an outcome-118 
based model to capture and quantify the total impact of antimicrobial treatment. Table 1 119 
summarises important concepts that will be introduced and used here in developing this 120 
model. 121 
 122 

Term Definition 

Antimicrobial treatment imprecision The difference between the total effect of antimicrobial 
treatment and the effect which is required to provide the 
greatest benefit, i.e., the best outcome once individual and 
societal needs are considered. 
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Artificial intelligence (AI) The ability of algorithms to perform cognitive functions 
typical of human brains (e.g., perception, reasoning, 
learning, interacting with the environment, problem solving, 
and decision making). 

Decision node A time point in an individual’s healthcare journey (pathway) 
where a decision is made that affects their ongoing 
antimicrobial treatment. There are three decision nodes, 
which correspond to starting, changing, and stopping 
treatment. 

Deficit imprecision An antimicrobial is not exerting enough intended effect to 
provide the greatest overall benefit in terms of ‘total effect of 
antimicrobial treatment’ (see below). 

Excess imprecision An antimicrobial is exerting non-intended effects which 
reduce overall benefit in terms of ‘total effect of antimicrobial 
treatment’ (see below). 

Explainable artificial intelligence Model frameworks that enable machine learning algorithm 
predictions to be understood and interpreted. 

Learning antimicrobial system (LAS) A set of processes built on integration of real-time dataflows 
and prediction techniques that enables continuous learning 
from, and reduction of, antimicrobial treatment imprecision. 

Machine learning (ML) A subdiscipline of artificial intelligence in which computer 
systems develop statistical models and predictions by 
making inferences from data. 

Neural network A set of artificial intelligence algorithms that aim to interpret 
data in a way that mimics the processes of a human brain. 

Supervised learning A subdiscipline of machine learning where algorithms map 
predictions between data labelled as inputs (covariates) and 
outputs (outcomes). 

Total effect of antimicrobial treatment An overall measure of all individual and population effects of 
antimicrobial treatment. 

Unsupervised learning A subdiscipline of machine learning where algorithms infer 
clusters and/or patterns in data not labelled as inputs 
(covariates) or outputs (outcomes). 

Table 1: A glossary of important concepts introduced and used here in developing and considering 123 
implementation of a model of antimicrobial treatment imprecision14–17 124 
 125 

2.1 Outcome measure: defining, detecting and quantifying imprecision 126 

 127 
The potential effects of imprecision (It) can be considered in terms of deficit and excess (See 128 
Figure 2), which align with ‘benefit and risk’ in antimicrobial prescribing decisions: 129 

 130 

• Deficit (Id): antimicrobial treatment is exerting insufficient effect to provide the 131 
greatest overall individual and population benefit (e.g., inadequate treatment 132 
response). 133 

• Excess (Ie): antimicrobial treatment is exerting non-intended effects that reduce 134 
overall individual and population benefit (e.g., nephrotoxicity, C. difficile diarrhoea, 135 
AMR emergence, subsequent person-to-person transmission of AMR).18  136 
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 137 
Figure 2: A conceptual model of antimicrobial therapy imprecision as a directional measure of difference in 138 

alignment between the effect of an antimicrobial and the effect needed to achieve the ‘greatest benefit’, i.e., the 139 
best overall outcome when both individual and societal needs are considered. Id = deficit imprecision, Ie = excess 140 

imprecision. 141 
 142 
Quantifying imprecision with this directional model presents four problems: 143 

1. Analysing scenarios with coexisting deficit and excess imprecision demonstrates that 144 
they can be difficult to demarcate. For example, both uncontrolled sepsis and 145 
aminoglycoside therapy can cause nephrotoxicity. 146 

2. Some forms of excess and deficit are difficult to detect (e.g., AMR emergence in an 147 
individual patient), particularly in terms of the impact on populations and ‘distant 148 
others’. 149 

3. Clinical scenarios are too complex to precisely determine the minimum effect 150 
required to avoid deficit imprecision and vice versa. 151 

4. Plausible biological outcomes of excess and deficit do not necessarily result in 152 
impact that is meaningful for patients. For example, the impact of nephrotoxicity 153 
could range from a transient rise in serum creatinine to a lifetime of haemodialysis. 154 

Measures of deficit and excess could therefore be used to screen for scenarios where 155 
antimicrobial imprecision may be present. For example, carbapenem treatment of 156 
bacteraemia caused by a carbapenem-resistant organism could plausibly be linked to prior 157 
carbapenem use (potential excess) and death from the bacteraemia (potential deficit). 158 
Employment of new scientific techniques (e.g., ‘microbiomics’, molecular epidemiology, 159 
ambient sensor tracking of movement in healthcare environments) will be key to detecting 160 
hidden imprecision events such as selection pressure, mutational events, and 161 
transmission.48 162 

Imprecision modelling cannot not make subjective assessments about ‘quality’ of prescribing 163 
decisions. It could instead use Bayesian modelling of clinical covariates (as discussed in 164 
Section 2.2) to objectively estimate the most plausible probabilities of different outcomes 165 
following different prescribing decisions. These outcomes should be meaningful for patients 166 
in terms of how they ‘feel, function, and survive’ (e.g., patient-reported outcome measures 167 
and all-cause mortality). Aggregate population health perspective (APHP) health economic 168 
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analyses could then model the effects on society and ‘distant others’ (i.e., people whom the 169 
patient does not come into direct contact with) using combined health outcome measures 170 
(e.g., quality-adjusted life years [QALYs], disability adjusted life years [DALYs]). 171 

 172 

2.2 Covariates: predictors of imprecision in patient pathways 173 

 174 
Imprecision outcomes are influenced by a diverse range of (unmeasured and/or causally 175 
unlinked) covariates individual to patient, infection, organism, microbiome, and population. 176 
Mixed effects Bayesian logistic regression models could contain and weight such effects as 177 
random coefficients (r) with multiple mechanistically plausible measures of potential deficit 178 
and/or excess imprecision (It = α + αr + βrβ1I1 + βrβ2I2 + ...). Examples of mechanistically 179 
plausible factors influencing clinical response (potential deficit) and AMR generation 180 
(potential excess) that may be appropriate for inclusion in such models are summarised in 181 
Table 2. 182 

 183 

Clinical Response (potential deficit) AMR Generation (potential excess) 
Clinical Response & AMR Generation 

(potential excess and deficit) 

Time to initiation of therapy Mechanistic liability of antimicrobial 
agent to generate mutational 
resistance (e.g., drugs affecting 
multiple microbiological targets may be 
less liable to generate resistance) 

Length of antimicrobial treatment course 

Age Liability of infecting organism species 
to develop new mutational resistance 
(e.g., penicillins for ß haemolytic 
streptococci vs Pseudomonas species) 

Microbial burden of disease in terms of 
the likely number of infecting organisms 
(e.g., abscess vs urinary tract infection) 

Illness severity (e.g., APACHE II) 
·· 

Adjunctive treatments (e.g., surgical 
source control) 

Pharmacogenetic determinants of 
toxicity 

·· 

Penetration of antimicrobial agent into 
site of infection in adequate 
concentrations to achieve logarithmic 
killing (e.g., intra-abdominal abscess, 
central nervous system, or intra-ocular 
infection) 

Allergy history affecting use of first-line 
agents ·· 

Comorbidities including persistently 
impaired host immunity (e.g., profound 
prolonged neutropenia) 

Drug-drug interactions 
·· 

Microbial spectrum of coverage of 
antimicrobial agent 

Pharmacokinetic properties of agent 
(e.g., action based on peak 
concentration vs time over minimum 
inhibitory concentration) 

·· 

Number of antimicrobial agents used 
with activity against the infecting 
organism 

Virulence factors of infecting organism 
species (e.g., ß haemolytic 
streptococci vs coagulase-negative 
staphylococci) 

·· ·· 

 184 
Table 2: Examples of mechanistically plausible factors that could be associated with clinical response (potential 185 
deficit), AMR generation (potential excess), or both clinical response and AMR generation (potential excess and 186 
deficit), that could be used to parameterise Bayesian predictive models of imprecision in antimicrobial treatment. 187 

19–27 188 
 189 
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Interdisciplinary statistical and microbiological expertise and counterfactual (sensitivity) 190 
analysis gives the best chance of selecting mechanistically plausible covariates. However, 191 
their predictive value may still be overwhelmed by statistical ‘noise’ from factors that are 192 
measurable and predictive but not causally intuitive. 193 

Advances in computing power and statistical methods have led to statistical machine 194 
learning (ML) that is causally principled and capable of being grounded by clinical 195 
counterfactual scenarios. There is uncertainty as to whether ML models should extend to 196 
‘unsupervised’ modelling techniques that do not incorporate biological causative 197 
mechanisms. Such causation-agnostic, unsupervised learning could surface complex 198 
associations in causally unlabelled patient pathway data. These algorithms may recognise 199 
and predict causally counter-intuitive ‘fingerprints’ of imprecision by forming complex and 200 
opaque deep learning neural networks to navigate sequences (and timing) of events in 201 
patient pathways. Such ‘black box’ approaches have challenges to overcome including lack 202 
of principled transferability between healthcare settings, and lack of 203 
patient/public/practitioner trust in non-explainable models. Unsupervised ML algorithms 204 
could theoretically screen for imprecision, but the ‘label-free explainability’ techniques 205 
required to create a meaningful, actionable unified model do not (yet) exist. Currently, mixed 206 
algorithmic approaches combining supervised and unsupervised ML are likely to be the most 207 
implementable. 208 

 209 
3. Key drivers of imprecision in healthcare pathways 210 

 211 

Imprecision is driven by complex, interacting psychological, sociological, biological, and 212 
system factors. Healthcare data which policymakers and healthcare leaders could use to 213 
detect and manage these factors is currently insufficient, unlinked, unvalued, and 214 
insufficiently actionable (Figure 3). 215 
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 216 
Figure 3: The current imprecise approach to healthcare data flows in patient pathways. Antimicrobial decision 217 

nodes in existing antimicrobial treatment pathways fed by clinical, diagnostic, R&D, and policy data. Imprecision 218 
is exacerbated by fragmented dataflows from multiple sources that are used to inform attending clinicians, 219 

population-level guidelines, policymakers, regulatory bodies, and R&D stakeholders. These dataflows fail to feed 220 
personalised, precise information back into the patient pathway, resulting in unnecessary costs to patients and 221 

populations. 222 
 223 
 224 
3.1 Data inputs: insufficient, unlinked, and unvalued 225 
 226 
Data inputs in many healthcare pathways globally are: 227 

● Insufficient: electronic healthcare records and diagnostic innovations reduce 228 
diagnostic uncertainty by improving data availability, accuracy, and timeliness for 229 
decision makers. Leveraging these technologies to reduce treatment imprecision is 230 
affected by incomplete uptake and variations in availability globally. Some traditional 231 
data inputs are being eroded (e.g., telemedicine depriving clinicians of face-to-face 232 
sensory information).28   233 

● Unlinked: fragmentation of healthcare economies often results in poorly integrated 234 
dataflows to, from, and between healthcare providers (Figure 3). Decisions are 235 
therefore often made based on incomplete information.29 236 
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● Undervalued: the information provided by data and analytics is often poorly 237 
understood and valued by clinicians, patients, and policymakers. New diagnostic 238 
tests are deployed in disconnected tendering, procuring, contracting and 239 
implementation processes. Their potential impact is therefore not realised, and their 240 
potential value not recognised. Undervalued, untargeted data collection also risks 241 
harming public trust in how their data are used.30 242 

 243 
3.2 Data actionability: decision making in healthcare 244 
 245 
To understand prescriber drivers (and therefore intervention targets) of antimicrobial 246 
treatment imprecision in patient pathways, it is informative to consider the component parts 247 
of three prescribing decision nodes: starting, changing, and stopping antimicrobial treatment. 248 

 249 
3.2.1 Decision node 1: starting antimicrobial treatment 250 

 251 
Starting antimicrobial treatment comprises four decisions: 252 

1. Whether to commence treatment: where infections are part of differential diagnoses, 253 
empirical treatments bridge early uncertainty in patient pathways. Crucial new 254 
technologies, diagnostics, biomarkers, and therapeutic drug monitoring (TDM) cannot 255 
resolve this uncertainty alone because their impact in the context of human and 256 
healthcare system factors is incompletely understood – healthcare workers are under 257 
unprecedented time pressure and increasing administrative burden.31 Perceived 258 
small margins of error and prior experience (e.g., previous death of a patient 259 
following insufficient antimicrobial treatment) can skew perceptions of risks, benefits 260 
and loss.32 Antimicrobial treatment is therefore often perceived as the ‘safe’ 261 
option.33,34 Biases towards heuristic, imprecise prescribing decisions result, which 262 
can become embedded in organisational practices and become culturally 263 
engrained.35 Patients are rarely counselled as to the consequences of imprecision, 264 
exacerbating behavioural patterns of antimicrobial-seeking particularly in primary 265 
care. 266 

2. Agent choice: the range of available agents is determined by drug development 267 
processes and frameworks that incentivise imprecision – broader organism spectrum 268 
coverage broadens the range of potential licensed clinical indications. Empirical 269 
treatment of infection syndromes (e.g., urinary tract infection) is predominantly 270 
directed by guidelines/formularies based on population-level data. Working 271 
diagnoses in periods of diagnostic uncertainty (e.g., ‘sepsis of unknown origin’ at 272 
initial presentation to healthcare) are often treated with broad-spectrum antimicrobial 273 
treatment. Colonisation status, comorbidities and risk of specific pathogens may 274 
facilitate more targeted therapy. However, their application is inconsistent in clinical 275 
practice, and their predictive value is not always understood.36 Infection severity is 276 
often highest at initial presentation, increasing the likelihood of imprecise treatment in 277 
the face of perceived narrow margins of error.37 Decision aids based on snapshots of 278 
context-specific observational data are often used to direct agent choice (e.g., 279 
CURB-65 in pneumonia). These are useful methods for leveraging evidence-based 280 
medicine in patient pathways. However, they may generalise inadequately beyond 281 
original populations and lack evidence-based implementation approaches.38 282 

3. Route of administration: patients may receive parenteral antimicrobial therapy for 283 
practical reasons (e.g., swallowing difficulties) or to achieve high drug exposure, 284 
though highly-bioavailable oral therapy is increasingly used.39 285 

4. Regimen: recommended dosing regimens are chosen in early clinical trials to 286 
maximise chances of efficacy or establish non-inferiority with minimum expenditure – 287 
additional time/resource input to identify occult harms of antimicrobial over- and/or 288 
under-exposure are not incentivised. Initial dosages can only be individualised using 289 
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readily observed values (e.g., weight, renal function). Other relevant information 290 
(e.g., pharmacogenetics) are often either not available in clinical practice due to a 291 
poor evidence base and lack of well-designed trials, or too slow to be clinically 292 
useful.40,41 There is therefore variability in antimicrobial regimen imprecision ranging 293 
from routine TDM for some agents to ‘one-size-fits-all’ solutions for others.42 294 
Resource pressures can endanger precise regimens by shifting or distorting the goal 295 
of therapy (e.g., a six-hourly intravenous infusion regimen may be sacrificed for a 296 
more convenient but broad spectrum once-daily regimen to facilitate discharge from 297 
hospital).43 298 

 299 
 300 

3.2.2  Decision node 2: changing antimicrobial treatment 301 
 302 
Changing treatment also comprises four decisions: 303 

1. Whether to change treatment: clinicians have high thresholds to challenge legacy 304 
diagnoses made at initial presentation, meaning opportunities to reduce treatment 305 
imprecision are lost. Many clinicians are uncertain how long treatment response 306 
should take, what constitutes adequate response, and what other clinical factors are 307 
relevant.44 308 

2. Changing antimicrobial agent: diagnostic results may reduce treatment imprecision in 309 
several ways – examples of the potential effects of microbiology tests on diagnostic 310 
uncertainty are summarised in Figure 4. Discordance between susceptibility results 311 
and clinical response is common, however, reflecting the importance of clinical 312 
covariates, laboratory measurement and susceptibility breakpoint definitions.45,46 313 

 314 

 315 

 316 
Figure 4: Examples of effects of microbiology diagnostics on precision of antimicrobial treatment by reducing 317 
diagnostic uncertainty. AST: Antimicrobial susceptibility testing, AMR: Antimicrobial resistance, WBC: White 318 

blood cell. 319 
 320 

 321 
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3. Changing route of administration: ‘step-down’ to similar spectrum agents with routes 322 
of administration facilitating discharge is common.47 ‘Escalation’ from oral to 323 
intravenous agents in response to severity is often accompanied by broadening of 324 
antimicrobial spectrum, though like-for-like escalation can occur to increase drug 325 
exposure.48,49 326 

4. Changing regimen: TDM is a powerful precision tool to maximise effect and minimise 327 
toxicity, but its targets may not always reflect biological variability and organism 328 
susceptibility is not always quantified.50 Pharmacogenetic tests and treatment effect 329 
biomarkers are available but uptake in clinical care is poor and interpretation remains 330 
problematic (e.g., gentamicin MT-RNR1 variant and hearing loss).51 Resistance-331 
suppressing drug exposure targets are have been identified, but their use carries 332 
ethical ramifications where individual patient and population benefits/risks are in 333 
tension (e.g., where exposure targets for resistance suppression increase likelihood 334 
of toxicity).52,53 335 

 336 
3.2.3  Decision node 3: stopping antimicrobial treatment 337 

 338 
Guideline-recommended durations of therapy often adhere to multiples of 5-day or 7-day 339 
units and are imprecise in many individual situations. Easy-to-remember durations prompt 340 
clinicians to think about length of treatment but maintaining the status quo and continuing 341 
treatment is often perceived as the ‘safe’ option. For decades, prevailing teaching has been 342 
that 'completing the course' reduces resistance generation, but this has recently been 343 
challenged.54 Understanding the imprecision of flexible treatment durations adopted in the 344 
best interests of patients with recurrent or resistant infections (e.g., suppressive, 345 
prophylactic, or ‘pill-in-pocket’ antimicrobial plans) is difficult due to their relative rarity.55–58  346 

 347 

4. Implementing precision modelling to close data-to-action loops in healthcare 348 

 349 

4.1  Improving data inputs: connected dataflows and new technologies 350 

Accurate, actionable models of imprecision will require ‘big’, real-world, contemporaneous 351 
clinical data.59 This will necessitate new dataflows into continuously updated repositories 352 
with significant storage capacity and data engineering resource. These repositories will 353 
combine publicly accessible stores of antimicrobial study data with anonymised individual 354 
and aggregate-level electronic health records. They will form platforms for enhanced, 355 
continuously tuned systems for real-time data sharing, linkage, curation, and processing. 356 
Their encryption and governance processes will permit regulated access to Trusted/Secure 357 
Data Environments (TREs/SDEs) for researchers, practitioners, policymakers, and 358 
managers. Within healthcare, adoption of commodity AIs for tasks such as natural language 359 
processing will improve data structure and availability.60 360 

Given that AMR is a global problem, expansion of connected dataflows beyond national 361 
borders should be the ultimate objective – this will undoubtedly be a significant legislative 362 
and technical challenge. Regional/national dataflow networks should be seen as achievable 363 
medium-term steppingstones towards that goal. Open-source sharing of algorithms and 364 
metadata will help nations to converge on the same goal. For R&D data, international hubs 365 
could be built for regulated cross-border access to preclinical data to inform global drug and 366 
device development programmes. The way in which encrypted data storage infrastructure 367 
can be sustainably funded and built in a range of global income settings (e.g., through cloud 368 
data storage and affordable hardware) will be another key consideration. 369 

Traditional epidemiological techniques (e.g., population screening) combined with advances 370 
in genomic, proteomic, and ambient/wearable biometric technology will fill critical gaps for 371 
detecting and quantifying microbiome and transmission outcomes. Integration of healthcare 372 
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dataflows with One Health agriculture and clean water research will further enhance 373 
understanding of the transmission of AMR between people, animals, and the environment. 374 
Innovative data inputs with AI-informed R&D pathways will also be required to parameterise 375 
predictive models of imprecision (e.g., a wearable or in-line therapeutic drug monitor that 376 
models the effect of serum drug levels on treatment imprecision).61 Advances in molecular 377 
diagnostics could improve timeliness of diagnostic information, improving precision and 378 
moving antimicrobial decision nodes closer to the start of the patient pathway.62 Improved 379 
qualitative data collection techniques will help understand and predict human factor drivers 380 
of imprecision at decision nodes. 381 

 382 

4.2 Improving data interpretation: learning antimicrobial systems 383 

Systems built on integrated dataflows have already demonstrated an ability to formulate and 384 
effect policy by learning from population-level data.63 Improved data inputs combined with 385 
accurate imprecision AI models that link causally-intuitive covariates to aggregative outcome 386 
measures of mortality and morbidity (outlined in Section 2) could enable leaders and 387 
policymakers to build ‘learning antimicrobial systems’ (LASs). The running and governance 388 
of these systems would incorporate health and social care, public health, regulatory and 389 
R&D stakeholders, and continuously adapt to real-time, real-world data, enabling R&D, 390 
policy, and patient pathways to be mapped, analysed, simulated, and controlled.64 391 

Examples of the interpretive applications of an LAS in healthcare provider organisations, 392 
policymaking/regulatory agencies, and R&D include: 393 

● Understanding the impact of diagnostic tests in both point-of-care and 394 
laboratory/diagnostic support settings. 395 

● Assessing the performance of new diagnostics (e.g., turnaround time, accuracy). 396 

● Auditing clinical services at multiple levels including individual clinicians, teams, units, 397 
and organisations. 398 

● Assessing barriers to implementation and scalability of new interventions/drugs. 399 

● Incorporating structured qualitative experiential data from patients and communities. 400 

● Networking with different healthcare systems to borrow strength from each other 401 
through shared programming algorithms and digital connections. 402 

 403 

4.3 Improving data actionability: the role of policymakers and healthcare leaders 404 

LASs will be built, run, and governed by collaborations of policymakers and leaders across 405 
health and social care, public health, R&D and regulatory bodies (Figure 5). Their effective 406 
and safe implementation will require careful consideration of patient/practitioner/public 407 
engagement, data stewardship, implementation science, and regulation. 408 
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 409 

Figure 5: An AI model-informed precise approach to healthcare data flows in patient pathways. A schematic for 410 
the delivery and monitoring of precision antimicrobial treatment in the patient pathway by collaborations of 411 
policymakers and leaders in healthcare provision, public health, regulatory bodies, and R&D. This will be 412 
achieved by ‘learning antimicrobial systems’ built on connected dataflows. Improvements in patient and 413 

population care are driven by AI modelling of imprecision as a utility function, and fragmented dataflows (see 414 
Figure 3) have been replaced by integrated data-to-action loops. 415 

 416 

4.3.1 Actioning models of imprecision in real-time patient and population pathways 417 

Embedding real-time modelling of imprecision into decision support interfaces within LASs 418 
would better inform clinicians of the impact of antimicrobial treatment. Ambient, wearable 419 
and in-line biometric devices would provide real-time data inputs.65,66 Diagnostic and R&D 420 
laboratories embedded in the LAS would target test implementation towards reducing 421 
imprecision. Valuation of diagnostics based on their ability to reduce imprecision would 422 
better target R&D and healthcare resources. Clinician- and patient-directed implementation 423 
science would help determine how LAS-embedded decision aids could insert into the patient 424 
pathway. In cases where the overall benefit of an intervention is debatable because 425 
individual and societal impact exists in tension, this increased burden of knowledge will bring 426 
with it difficult ethical decisions. These decisions cannot and must not be made by 427 
algorithms. User interfaces built around ‘moral’ AI, however, could help clinicians and 428 
policymakers navigate these complexities.67 429 



 
15 

 

Integrating patient-level data with traditional, readily available aggregate data metrics (e.g., 430 
hospital-level AMR data) would help model and reduce antimicrobial treatment imprecision 431 
on a larger scale. These models could complement or replace procedural markers such as 432 
defined daily doses (DDDs). Unsupervised neural network models would form early warning 433 
systems for AMS teams that sensitively detect imprecision. These areas would then be 434 
explored through further data gathering and causation-based imprecision modelling. The 435 
health consequences and resource impact of subsequent policies could then be simulated 436 
based on modelling of imprecision.68  437 

 438 

4.3.2 Actioning models of imprecision in research and development 439 

The impact of LASs would be continually assessed by teams of healthcare data scientists 440 
using system-wide statistical analysis. Clinical trial endpoints could be adapted from models 441 
of imprecision that enable ongoing questions about drugs and regimens to be addressed. A 442 
traditional evidence base of interventional trials of LAS-embedded decision aids would be 443 
continuously updated. An evaluation framework would facilitate participation in LAS-444 
embedded research at scale. Low-burden, adaptive platform trials would be embedded in 445 
routine clinical care. State-of-the-art TREs with data engineering capacity would facilitate 446 
storage of clean, secure, externally validated R&D data. 447 

Valuation, research, development, regulation, and reimbursement based on imprecision 448 
could incentivise the development of more targeted agents with useful characteristics (e.g., 449 
once daily administration). Health technology appraisals would leverage LAS data to develop 450 
more equitable measures of allocating resource for new drugs and diagnostics. The impact 451 
and value of delinked funding arrangements, contracts, and payment mechanisms within 452 
and between health systems could be better assessed. 453 

 454 

4.3.3 Data stewardship and implementation science 455 

LASs would apply FAIR (find, access, interoperate, reuse) procedures. They would prioritise 456 
data stewardship (including privacy, transparency, security, and governance), reproducibility 457 
of evidence, and transferability of learning.69 Embedding human-driven implementation 458 
science (e.g., process evaluation, resource monitoring, qualitative methodology) and 459 
governance in LASs will provide accountability that AI cannot fulfil. 460 

Chronic system stress risks embedding organisational cultural psychologies of inertia and 461 
impaired learning that may adapt poorly to the system changes required for LASs.70,71 462 
Experienced healthcare and public health organisational experts will therefore help facilitate 463 
LAS adoption, implementation and maintenance.72 Clear lines of responsibility and 464 
communication will ensure that learning from the system is fed back to stakeholders. These 465 
measures will help sustain public trust, resource-efficiency, and feasibility of the system’s 466 
ongoing operation in a range of global settings. 467 

 468 

4.3.4 Patient and public involvement 469 

Given the social impact of AMR, co-production of LASs with practitioners, patients, and the 470 
public is essential to ensure their operation is transparent, useful, and trustworthy. LAS data 471 
must inform patients how they might maximally benefit from an antimicrobial treatment. This 472 
will facilitate their role as decision makers in their own care. They must have access to their 473 
own clinical information and understand how they can opt out of data collection. Involving the 474 
public as stakeholders in LASs must drive a social conversation about the use of 475 
antimicrobial agents as critical societal assets. 476 

 477 
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4.3.5 Regulation and legislation of learning antimicrobial systems 478 

Regulatory agencies (e.g., Food and Drug Administration), lawmakers, and expert bodies 479 
will need to develop positions on more flexible precision-based antimicrobial regimens. 480 
Clarity about regulatory pathways will be required for AI-based decision support algorithms 481 
(e.g., model-informed precision dosing). Legal positions must be clarified on data sharing 482 
and data protection impact assessment that reflect the public health impact of AMR. 483 

Preserving public trust in healthcare institutions and medical research will be a priority for 484 
LASs. Legislating, vetting, monitoring, and regulating private companies’ access to 485 
healthcare data will be essential to ensure transparency and data security.  486 
Code/algorithms/standard operating procedures must be open-source and not monetised, 487 
enabling LASs across the globe to learn from one another.  488 

 489 

5. Conclusions 490 

Reducing antimicrobial treatment imprecision requires an adaptive, integrative, and 491 
actionable representation of the evolving impacts of antimicrobial treatment on individuals 492 
and society globally. Revolutions in availability of electronic healthcare data, computing, and 493 
data science increasingly bring such intelligence within reach – clinically and scientifically 494 
guided use of AI-based imprecision modelling could play a key role in improving our 495 
understanding and uses of antimicrobial treatments. Better integrated dataflows will allow 496 
these technologies to be embedded in LASs run by policymakers and leaders in healthcare, 497 
public health, R&D, and regulatory bodies. The safe, practical, ethical, and sustainable 498 
operation of LASs will be informed by state-of-the-art implementation science incorporating 499 
clinician, patient, and public involvement. LASs built on models of imprecision could help 500 
dampen ‘boom and bust’ cycles of antimicrobial development and AMR with globally 501 
inclusive, ecologically, and organisationally sustainable models of infection management. 502 

 503 

 504 
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