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23 ABSTRACT

24 Deciphering the palaeoenvironmental and palaeoclimatic setting of ancient successions 

25 that include deposits typical of different climates can be challenging. This is the case in the Late 

26 Jurassic succession cropping out in eastern Spain (South-Iberian and western Maestrazgo 

27 basins), where deposits characteristic of both arid to semiarid and humid to subhumid settings 

28 have been identified through a detailed analysis of eight stratigraphic sections. These sections 

29 comprise shallow marine carbonates changing upwards and laterally to a predominantly 

30 siliciclastic coastal and alluvial succession, including abundant dinosaur remains. Deposition of 

31 coastal and alluvial sediments occurred in flood plains, ephemeral and perennial fluvial 

32 channels, aeolian dunes, deltas, distributary mouth-bars and associated distributary channels, 

33 and shallow water bodies influenced by both fresh and marine waters. Some of these deposits, 

34 notably those of aeolian and ephemeral fluvial origin, are characteristic of arid to semiarid 

35 climates. However, there are also abundant deposits that can be demonstrably shown to have a 

36 coeval origin, which are indicative of permanent water courses: 1) sediments of seasonal 

37 discharge fluvial channels with perennial to semi-perennial flow, displaying subcritical and 

38 supercritical flow sedimentary structures; 2) deltaic sediments deposited in permanent 

39 freshwater bodies; and 3) abundant plant and dinosaur remains, especially of herbivorous 

40 dinosaurs, which required the presence of permanent water sources and abundant vegetation. 

41 These apparently contrasting sedimentary features indicate that deposition occurred under a 

42 seasonal climate controlled by monsoonal-type precipitation. These deposits are analogous to 

43 those observed nowadays in the Lençóis Maranhenses National Park (NE Brazil), where a 

44 subhumid tropical climate with a seasonal precipitation pattern prevails. Thus, this study shows 

45 that only through careful facies analysis and interpretation of depositional processes that can be 

46 shown to be occurring concurrently in neighbouring and related depositional systems can the 

47 detailed palaeoenvironmental and palaeoclimatic setting of complex coastal sedimentary 

48 successions be confidently reconstructed in detail.

49 KEYWORDS

Page 84 of 186Sedimentology



3

50 Kimmeridgian-Tithonian, eastern Iberia, aeolian dunes, deltaic deposits, fluvial channels, 

51 supercritical flow bedforms.

52 INTRODUCTION

53 Sedimentological analyses of ancient successions, supported by comparison to analogous 

54 modern environments, provide a valuable technique with which to reconstruct ancient 

55 environmental and climatic settings. The sedimentary analysis of modern environments has 

56 allowed the recognition of certain deposits that predominate in different climate regimes (i.e. 

57 climatically significant rocks sensu Hallam, 1984, climate-indicative lithologies sensu Holz and 

58 Scherer, 2000, or climate-sensitive sediments sensu Gibbs et al., 2002). The inferred 

59 significance of such deposits has been widely employed to interpret the palaeoclimatic setting of 

60 the fossil record. For example, the occurrence of evaporites, deposits of ephemeral channels (i.e. 

61 wadis), aeolian dunes and ephemeral lakes, among others, has been used to interpret arid to 

62 semiarid climates in the fossil record (e.g. Tucker and Benton, 1982; Stear, 1983; 1985; Hallam, 

63 1984; 1985; Zharkov et al., 1998; Holz and Scherer, 2000; Rees et al., 2004; Rodríguez-López 

64 et al., 2010; Priddy and Clarke, 2020). Nevertheless, in the case of aeolian dunes, it is also 

65 important to remark that they are also widely reported from modern humid to subhumid settings 

66 (e.g. Mountney and Russell, 2009; Al-Masrahy and Mountney, 2015; dos Santos and dos 

67 Santos, 2015). In contrast, the presence of abundant coal, plant remains and permanent water 

68 courses has been used as the basis for interpreting humid to subhumid climates (e.g. Tucker and 

69 Benton, 1982; Hallam, 1984; Collinson, 1996; Zharkov et al., 1998; Rees et al., 2004).

70 A significant challenge arises when trying to reconstruct the palaeoenvironmental and 

71 palaeoclimatic setting of sedimentary successions that include features typical of both arid and 

72 humid settings. This is the case of the Late Jurassic Villar del Arzobispo Fm, which crops out in 

73 eastern Spain (western Maestrazgo and South-Iberian basins; Teruel and Valencia provinces; 

74 Fig. 1). This succession comprises mixed siliciclastic-carbonate sediments deposited in shallow 

75 marine, coastal and alluvial settings (e.g. Meléndez et al., 1979; Mas and Alonso, 1981; Mas et 
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76 al., 1984; Luque et al., 2005; Campos-Soto et al., 2016a, 2017a, 2019), and it is internationally 

77 renowned for its abundance of dinosaur remains of theropods, sauropods, thyreophoran and 

78 ornithopods (e.g. Suñer et al., 2008; Alcalá et al., 2009; 2018; Campos-Soto et al., 2017a and 

79 references therein; Cobos et al., 2020; Royo-Torres et al., 2020), including the fossils of the 

80 largest dinosaur found in Europe, Turiasaurus riodevensis Royo-Torres, Cobos and Alcalá, 

81 2006. The stratal arrangement of siliciclastic coastal and alluvial deposits of this unit indicates 

82 the apparently contemporaneous development of a variety of subaqueous and subaerial 

83 depositional settings (Campos-Soto et al., 2016a, 2017a, 2019). They include aeolian dune and 

84 ephemeral channel deposits, which are apparently indicative of arid to semiarid climates. 

85 However, the succession additionally comprises other coeval deposits that are apparently 

86 indicative of a humid to subhumid climate, such as those of deltas with abundant plant remains, 

87 as well as diverse and abundant large dinosaur faunas, which would require the availability of 

88 permanent water sources and abundant vegetation. Moreover, this succession includes deposits 

89 of perennial to semi-perennial fluvial channels with evidence of seasonal discharge, which 

90 commonly develop nowadays in monsoonal domains, but which could also conceivably occur in 

91 arid to semiarid settings if their catchment area is located in the monsoonal domain (Plink-

92 Björklund, 2015). Thus, sedimentological features characteristic of both arid and humid climatic 

93 end-members are present in deposits of sub-environments that were apparently active 

94 contemporaneously; the palaeoenvironmental and palaeoclimatic interpretation of this 

95 succession is therefore challenging.

96 The aim of this study is to show how a detailed lithofacies analysis of a dominantly 

97 siliciclastic coastal and alluvial-plain succession can be applied to demonstrate the co-existence 

98 of a range of sub-environments that are variably indicative of both arid and humid climatic 

99 settings. Specific research objectives are to: i) analyse the subaqueous and subaerial 

100 depositional settings and document their interactions; ii) compare these deposits with modern 

101 analogues; iii) reconstruct the palaeoenvironments, palaeogeography and palaeoclimate of 
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102 eastern Iberia during deposition; and iv) demonstrate how the deposits of coeval sub-

103 environments with evidence for apparently contrasting climates can co-exist.

104 GEOLOGICAL SETTING

105 The South-Iberian and Maestrazgo basins are two of the extensional basins in the 

106 Mesozoic Iberian Extensional System (also referred to as the Iberian Basin) developed in 

107 eastern Iberia during the Late Oxfordian-Middle Albian (Fig. 1A-C), and inverted during the 

108 Cenozoic Alpine Orogeny (e.g. Salas et al., 2001; Mas et al., 2004; Martín-Chivelet et al., 

109 2019). During their extensional development, these basins were surrounded to the W and NE by 

110 the Iberian and Ebro massifs, respectively, while marine areas were located to the E-SE and N 

111 of Iberia (Tethys and Boreal realms, respectively; Fig. 1D; e.g. Salas et al., 2001; Mas et al., 

112 2004). These basins were separated by the Valencian Massif, a NW-SE emergent area 

113 developed in the position where the Javalambre Range is now located (Fig. 1B, D; e.g. Mas and 

114 Alonso, 1981; Mas et al., 2004; Campos-Soto et al., 2019). The Maestrazgo Basin comprises 

115 several sub-basins separated by tectonic structures (e.g. Salas and Guimerà, 1996, 1997; Salas et 

116 al., 2001; Martín-Chivelet et al., 2019). The sedimentary record analysed in this paper crops out 

117 in the western Peñagolosa sub-basin, located to the SW of the Maestrazgo basin (Fig. 1B).

118 The deposits documented herein belong to the Villar del Arzobispo Fm (sensu Campos-

119 Soto et al., 2019; Figs. 1C, 2, 3), a mixed siliciclastic-carbonate succession dated as 

120 Kimmeridgian-Tithonian (Campos-Soto et al., 2016a; 2016b; 2017a, 2019). This succession 

121 was deposited in a shallow marine carbonate platform setting that evolved into essentially 

122 siliciclastic coastal and alluvial environments, expressed as an overall regressive trend (Figs. 2, 

123 3; e.g. Meléndez et al., 1979; Mas and Alonso, 1981; Mas et al., 1984, 2004; Hernández et al., 

124 1985; Luque et al., 2005; Campos-Soto et al., 2016a, 2017a, 2019; Pacios et al., 2018). 

125 However, Campos-Soto et al. (2016b, 2017a, 2019) documented evidence for a marine 

126 transgression in the Tithonian, during the deposition of the uppermost part of the unit (Figs. 2, 

127 3). Additionally, marked thickness variations of the studied succession were largely controlled 
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128 by the development of syn-sedimentary extensional faults (Figs. 2 and 3 and Fig. S1 of 

129 Supplementary Material; see Campos-Soto et al., 2017a, 2019).

130 The Villar del Arzobispo Fm conformably overlies the Higueruelas Fm (Figs. 1C, 2, 3), 

131 an oncolitic limestone unit dated as Kimmeridgian (Campos-Soto et al., 2015a, 2016a, 2017a; 

132 Pacios et al., 2018) and deposited in a mid to inner carbonate platform setting (e.g. Gómez, 

133 1979; Gómez and Goy, 1979; Aurell et al., 1994; Campos-Soto et al., 2015a, 2016a). The Villar 

134 del Arzobispo Fm is unconformably overlain by Lower Cretaceous siliciclastic and/or carbonate 

135 units (Figs. 1C, 2, 3), deposited in shallow marine to coastal and alluvial environments (e.g. 

136 Vilas et al., 1982; Canerot et al., 1982; Salas, 1987; Mas et al., 2004; Fernandez-Labrador, 

137 2016).

138 The Villar del Arzobispo Fm has been studied in different areas of the South-Iberian 

139 and western Maestrazgo basins (Figs. 1C, 2, 3). In all areas, its sedimentary record is equivalent 

140 and comprises two informal parts (Fig. 2; Campos-Soto et al., 2016b, 2017a, 2019): 1) a 

141 Kimmeridgian, essentially carbonate lower part (CLP); and 2) a Kimmeridgian-Tithonian, 

142 essentially siliciclastic upper part (SUP). The thickness and facies distribution differ in sections 

143 located to the E-SE and sections located to the N and W (Campos-Soto et al., 2017a, 2019; Figs. 

144 1C, 2, 3). The eastern and south-eastern sections, located closer to the Tethys Ocean, occupied a 

145 part of the basin subject to relatively high subsidence rates during sedimentation; here, the 

146 accumulated succession is thicker and deposits display greater marine influence than in the 

147 northern and western sections, which themselves occupied more landward and slowly subsiding 

148 areas (Figs. 1D, 2, 3; Campos-Soto et al., 2017a, 2019).

149 In all areas, the CLP comprises bioclastic and/or oolitic limestone with abundant marine 

150 fossils alternating with non-channelized sandstone, siliciclastic mudstone, marl and minor 

151 channelized sandstone and conglomerate (Figs. 2 and 3); this part of the succession, 

152 Kimmeridgian in age, has been interpreted as deposited in a shallow marine carbonate platform 

153 that received siliciclastic sediments from nearby emergent areas (Campos-Soto et al., 2016a, 

Page 88 of 186Sedimentology



7

154 2017a, 2019). Shallow marine deposits of the CLP change upwards to deposits of the SUP, 

155 which mainly comprises reddish siliciclastic mudstone interbedded with non-channelized 

156 sandstone and channelized sandstone and conglomerate, interpreted as deposited in a coastal 

157 and alluvial plain during a regressive stage during the Kimmeridgian-Tithonian (Figs. 1D, 2, 3, 

158 4; Campos-Soto et al., 2015b, 2016a, 2017a, 2017b, 2019). Siliciclastic deposits are interbedded 

159 and laterally related with limestone and marl, mainly towards the upper part of the SUP, during 

160 which a marine transgression took place during the Tithonian (Figs. 2, 3, 5 and Fig. S1 of 

161 Supplementary Material; Campos-Soto et al., 2016b, 2017a, 2019). Some limestone beds are 

162 peloidal and/or micritic, include very scattered marine fossils, and display tidal structures and 

163 abundant subaerial exposure features (including abundant dinosaur tracks). Collectively, these 

164 features indicate sedimentation in inter- to supratidal carbonate flats (Campos-Soto et al. 2017a, 

165 2019). Other limestone beds are bioclastic and/or oolitic and include abundant marine fossils 

166 (Fig. 2). These limestone beds are progressively more abundant and include a higher proportion 

167 of fossils characteristic of normal marine salinities (such as echinoderms, dasyclads, red algae 

168 and corals) towards the east and south-eastern sections (Figs. 2, 5 and Fig. S1 of Supplementary 

169 Material), indicating that the coastal setting was laterally connected to the E-SE to a shallow 

170 marine carbonate platform (Campos-Soto et al., 2017a, 2019).

171 MATERIALS AND METHODS

172 This paper is based on the detailed stratigraphic and sedimentological study, and 

173 geological mapping, of the Villar del Arzobispo Fm (Figs. 1C, 2). Geological mapping was 

174 performed by field observations, supported by analysis of aerial photographs and data 

175 (stratigraphic units and tectonic structures) provided by the Spanish Geological Survey 

176 (GEODE, scale 1:50.000; López-Olmedo et al., 2018). The map shown in Figure 1C was 

177 generated with the ArcGIS software.

178 Eight stratigraphic sections were measured and logged at cm- to m-scale in the areas 

179 with best outcrop exposures: the total cumulative length of measured sections is 5072 m of (Fig. 
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180 2). Four sections were logged in the western Maestrazgo Basin (Cedrillas, El Castellar, 

181 Formiche Alto and Mora de Rubielos); the other four in the South-Iberian Basin (Riodeva, 

182 Losilla-Alpuente, Benagéber and Villar del Arzobispo). One-hundred-and-forty-six additional 

183 outcrops of the studied succession were also analysed to study the composition, texture, 

184 sedimentary structures, fossil content, facies relationships, geometry and lateral continuity of 

185 beds that make up larger-scale architectural elements (see details of the additional studied 

186 outcrops in Campos Soto, 2020). Three-hundred-and-forty-eight palaeocurrent measurements 

187 were obtained from the studied siliciclastic deposits, mainly from the dip azimuth of large-scale 

188 cross strata and clinoforms, and also from small-scale ripple structures. Palaeocurrents obtained 

189 from supercritical flow sedimentary structures have not been taken into consideration for 

190 palaeocurrent analysis, as these bedforms could migrate downstream and upstream (e.g. 

191 Alexander et al., 2001; Cartigny et al., 2014; Ono et al., 2020). Paleocurrent data were plotted 

192 as rose diagrams using the PAST software (Hammer et al., 2001). Rose diagrams were 

193 constructed for architectural elements to show mean palaeocurrent directions and their 

194 variability, grouped in classes of 24º, in which the length of each sector represents the relative 

195 abundance of measurements. The number of readings has been indicated with the letter “n”. 

196 Four-hundred-and-fifty-five rock samples were systematically collected throughout the 

197 stratigraphic sections and from the additional studied outcrops. A 30 µm-thick, polished and 

198 uncovered thin section was prepared for each sample to perform petrographic analysis under 

199 transmitted light microscopy. The terminology used for siliciclastic rocks follows the Udden-

200 Wentworth grain-size scale classification (Udden, 1914; Wentworth, 1922) modified by Blair 

201 and McPherson (1999) and the classifications of Folk (1968) and Powers (1953) for sorting and 

202 roundness, respectively. Carbonate rocks were classified following the classification of Dunham 

203 (1962).

204 This research also includes the analysis of Google Earth´s satellite images of modern 

205 coastal settings deemed to be analogous to the studied ancient succession, principally that 

206 located at the Lençóis Maranhenses National Park (NE Brazil), in which the different 
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207 subenvironments (aeolian dunes, interdunes, fluvial and tidal channels, shallow water bodies, 

208 deltas, flood plains) and the interactions observed between them have been analysed in detail in 

209 this study.

210 RESULTS

211 This research focuses on the sedimentological analysis of the siliciclastic deposits of the 

212 Villar del Arzobispo Fm, which form 65-85% of the succession, depending on the location 

213 (Figs. 2, 3). The other 15-35% are the shallow marine and tide-influenced limestone deposits 

214 (Figs. 2, 3). The siliciclastic deposits are more abundant in the SUP and towards the landward 

215 sections located to the N and W (Riodeva and Benagéber sections in the South-Iberian Basin; 

216 Cedrillas and El Castellar sections in the western Maestrazgo Basin) (Figs. 2, 3, 4). They are 

217 less abundant towards the seaward sections located to the E-SE (Losilla-Alpuente and Villar del 

218 Arzobispo sections in the South-Iberian Basin; Formiche Alto and Mora de Rubielos sections in 

219 the western Maestrazgo Basin) (Figs. 2, 3, 5). Through sedimentological analysis, eleven 

220 siliciclastic architectural elements have been identified, each of them comprising a distinctive 

221 facies assemblage and geometric arrangement; these correspond to elements deposited in four 

222 primary depositional settings: (i) fluvial, (ii) deltaic, (iii) coastal to shallow marine and (iv) 

223 aeolian (Table 1).

224 Fluvial depositional setting

225 Fluvial deposits are observed along the SUP and rarely in the CLP (Fig. 2). They are 

226 interbedded and laterally related with the aeolian and deltaic elements (Figs. 2, 4) and with the 

227 coastal to shallow marine elements (Fig. 2). Three fluvial architectural elements have been 

228 distinguished.

229 Ephemeral fluvial channel architectural element

230 Description. This element typically forms less than 1% of the studied unit, although in 

231 the landward areas of the South-Iberian Basin it forms up to 3% of the succession (Fig. 2). It is 
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232 interbedded with the flood plain, aeolian dune and deltaic elements (Figs. 2, 6A-C). It comprises 

233 decimetre to metre-thick conglomerate lenses (up to 3 m-thick) displaying erosive bases, sharp 

234 flat tops and short lateral extent (commonly <10 m; Fig. 6A-C). Erosive bases are commonly 

235 symmetrical and slightly incisive (1:7 height/width ratios; Fig. 6B) or, locally, they are 

236 asymmetrical, displaying one very steep margin and another less step one, and incising up to 3 

237 m into the underlying deposits (1:3 height/width ratios; Fig. 6C). Conglomerate lenses may be 

238 massive or may display a large-scale (up to 3 m-thick) cross strata set (Fig. 6B-C). In the case of 

239 the asymmetrical lenses, strata are conformable to the less step margin of the erosive surface 

240 (Fig. 6C). Conglomerate is very poorly sorted and mostly clast-supported, though locally 

241 matrix-supported, and comprises subangular to subrounded pebbles and cobbles within a 

242 medium- to coarse-grained sandy matrix (Fig. 6D-F). Conglomerate clasts mainly consist of 

243 siliciclastic mudstone, carbonate and sandstone (Fig. 6E-F), ranging from 0.4 to 10 cm in 

244 diameter, although larger clasts up to 20 cm in diameter locally occur. Rounded quartzite 

245 pebbles, up to 6 cm in diameter, are rarely observed (Fig. 6D), although they become relatively 

246 abundant upwards in the SUP in the South-Iberian Basin. In places, conglomerate includes 

247 fragments of tree trunks (up to 12 cm in length) and some incomplete dinosaur teeth and bones 

248 (up to 20 cm in length; Fig. 6G).

249 Palaeocurrents in the South-Iberian Basin indicate transport directions towards the SW-

250 NW and the NE-SE, whereas the scarce palaeocurrents obtained in the western Maestrazgo 

251 Basin indicate a main transport towards the S-SW and the SE (Figs. 2, 6A).

252 Interpretation. Clast- or locally matrix-supported fabrics, sandy matrix and the very 

253 poor sorting of conglomerates, suggest deposition by flash flows, which transported high 

254 concentrations of sediment (sand and gravels) in suspension (Costa, 1988; DeCelles et al., 1991; 

255 Pierson, 2005). The erosive bases and the short lateral extent of the conglomerates, and their 

256 relation to flood plain and aeolian deposits indicates their likely deposition in ephemeral 

257 channels under episodic and high velocity currents, similar to those observed in other ancient 

258 (e.g. Cain and Mountney, 2009; Banham and Mountney, 2014) and modern settings (e.g. 
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259 Glennie, 1970; Picard and High, 1973). In present-day settings, ephemeral channels develop 

260 during seasonal rainfalls and are characterized by short periods of flow (Picard and High, 1973). 

261 The fact that these deposits are commonly characterised by a single set of cross strata indicates 

262 that channel development may have occurred in a single scour and fill event. This is also 

263 interpreted for conglomerates displaying massive fabrics, as they do not show internal erosive 

264 surfaces, grain size variations or other evidence of flow fluctuation or interruption. The 

265 asymmetrical erosive bases with strata that are conformable to their less steep margin, and the 

266 upstream-dipping cross strata are similar to experimentally produced hydraulic jump deposits in 

267 Froude supercritical flow conditions, where upstream dipping backset strata formed during 

268 upstream migration of hydraulic jumps, and the infilling of hydraulic jump scours resulted in 

269 conformable strata (Ono et al., 2020). Similar strata have been documented in ancient fluvial 

270 deposits and interpreted as chute and pool and cyclic step deposits (e.g. Fielding, 2006; Plink-

271 Björklund, 2015; Wang and Plink-Björklund, 2020). 

272 Paleocurrents directed to the NE-SE in the South-Iberian Basin and to the S-SW and SE 

273 in the western Maestrazgo Basin suggest that these deposits were derived from erosion of the 

274 Iberian and Ebro massifs, located to the NW-SW and to the N-NE, respectively (Fig. 1D), 

275 which were the main emergent areas in Iberia during the Late Jurassic (e.g. Salas et al., 2001; 

276 Mas et al., 2004). Nevertheless, palaeocurrents of the South-Iberian Basin also indicate 

277 transport directions to the SW-NW, which are more difficult to interpret. They could indicate 

278 that these deposits were also derived from the Valencian Massif, located to the NE-SE (Fig. 

279 1D). Alternatively, they could correspond to palaeocurrents measured in the backsets produced 

280 by hydraulic jump migration (e.g. Alexander et al., 2001; Cartigny et al., 2014; Ono et al., 

281 2020).

282 The very poorly sorted siliciclastic mudstone, carbonate and sandstone pebbles and 

283 cobbles are interpreted as intraformational clasts derived from the erosion and reworking of 

284 compacted sediments located in nearby flood plain areas, as similarly interpreted in other 

285 ancient fluvial deposits (e.g. North and Taylor, 1996; Deluca and Eriksson, 1989; Hinds et al., 
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286 2004; Cain and Mountney, 2006; Banham and Mountney, 2014). The fact that conglomerates 

287 contain a greater abundance of quartzite pebbles upwards in the SUP in the South-Iberian Basin 

288 suggests that older rocks were successively eroded, i.e. Jurassic carbonate rocks in the earlier 

289 stages of erosion and Paleozoic to Triassic rocks in the later stages. Nevertheless, further 

290 provenance studies are necessary to determine the specific source area of these clasts.

291 Multistorey fluvial channel architectural element

292 Description. This element forms 10 to 25% of the studied succession in the South-

293 Iberian Basin (Fig. 2) and 5 to 10% in the western Maestrazgo Basin (Fig. 2). It is more 

294 abundant in the landwards sections of both basins. In all areas, this element is more abundant in 

295 the SUP, although rare examples are observed in the CLP (Fig. 2). It is interbedded with the 

296 flood plain element (Figs. 4, 7A-E) and with the aeolian dune elements (Fig. 4). It comprises 

297 sandstone or sandstone and conglomerate arranged in metre-thick multistorey bodies (in some 

298 cases up to 15 m thick, Figs. 4, 7A-E) displaying erosive bases and a large lateral extent, in 

299 some exposures in excess of 250 m.

300 Sandstone is moderately to poorly sorted and displays medium to coarse grain sizes, 

301 although fine grain sizes are also observed in some bodies. Sandstone shows large-scale sets of 

302 cross strata (rarely trough cross strata) up to 1.5 m-thick (Fig. 7B-C, E). Set thickness decreases 

303 upwards in some bodies (Fig. 7B-C). Locally, mm- to cm-thick layers of siliciclastic mudstone, 

304 which may contain abundant carbonaceous detritus, occur between cross sets (Fig. 7E-F) and/or 

305 at the lower part of the foresets and bottomsets. 

306 A distinctive feature of this element is the common occurrence of large internal erosive 

307 surfaces that locally incise downwards up to 2.4 m (Fig. 7B-F). Another distinctive feature is 

308 the occurrence of sandstone displaying convex-up low-angle cross strata (Fig. 8A-B) and scour-

309 and-fill structures, which are filled by backset or foreset strata that, in places, gradually flatten 

310 upwards (Figs. 7B-C, 8C-D). Locally, flattening-upwards strata show wavelengths of several 
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311 metres (Fig. 7B-C). In addition, sandstone locally includes fragments of fossilized wood and 

312 tree trunks up to a few metres long.

313 Conglomerate, where present, overlies the erosive base of bodies and/or the internal 

314 erosive surfaces (Fig. 7B-D) and may be up to 2 m thick. Conglomerate is very poorly sorted 

315 and comprises subangular to subrounded pebbles and cobbles (up to 8 cm in diameter), and 

316 fragments of fossilised wood up to 10 cm long in places. Composition of conglomerate is 

317 identical to that reported in the ephemeral channel element. Conglomerate is structureless or 

318 displays large-scale cross strata with sets up to 1.5 m thick. In some bodies, conglomerate 

319 displays scour-and-fill structures comprising asymmetrical scours, with a steeper upstream 

320 margin, and are filled by backset strata that gradually flatten upwards and fine upwards to 

321 medium- to coarse-grained sandstone (Fig. 7B-C).

322 Palaeocurrents measured in the South-Iberian Basin indicate main transport directions to 

323 the NE-S and, less commonly, to the SW-N, whereas in the western Maestrazgo Basin, data 

324 indicate main transport directions to the NE and, less commonly, to the N and E-S (Fig. 7A).

325 Interpretation. The erosive bases and large lateral extent of these deposits and their 

326 interbedding with flood plain deposits, are features typical of fluvial channels that migrated 

327 across a flood plain. The internal erosive surfaces filled by very poorly-sorted conglomerate or 

328 sandstone, are interpreted to develop during episodes of intense precipitation that produced a 

329 rapid rise in flow discharge and velocity within the channels, causing the partial erosion of 

330 earlier deposits of the channels and the subsequent deposition of intraformational clasts 

331 (siliciclastic mudstone, carbonate and sandstone clasts) and fragments of tree trunks and other 

332 plant remains, which were eroded and transported from nearby flood plain areas. Similar 

333 sedimentary features have been reported in other ancient and modern fluvial channels 

334 characterized by a seasonally highly variable discharge (Abdullatif, 1989; Deluca and Eriksson, 

335 1989; Browne and Plint, 1994; North and Taylor, 1996; McKie, 2011; Fielding et al., 2009, 

336 2011, 2018; Plink-Björklund, 2015). In these seasonal rivers, intraformational conglomerates 
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337 are locally derived (i.e. from flood plains) and their deposits are associated with a rapid decrease 

338 of water level occurring during early phases of the waning stage of floods, when upper flow 

339 regime conditions occur (e.g. Singh et al., 1993; North and Taylor, 1996; Gibling and Tandom, 

340 1997; Plink-Björklund, 2015). Fragments of tree trunks and plant remains similar to those of the 

341 studied deposits have been described in other ancient and modern seasonal rivers, especially in 

342 those developed in subhumid subtropics (e.g. Fielding and Alexander, 1996; Alexander et al., 

343 1999; Fielding et al., 1997, 2009, 2011; Allen et al., 2014; Plink-Björklund, 2015 and 

344 references therein), and are derived from the destruction of trees or other plants, during floods, 

345 that grow in the channel margins or in areas of channel bed that get exposed during periods of 

346 non-flood discharges (Fielding et al., 1997; Alexander et al., 1999).

347 The convex-up low-angle cross strata resemble antidune structures formed under 

348 supercritical flow in flume experiments (e.g. Alexander et al., 2001; Cartigny et al., 2014), and 

349 in other ancient fluvial deposits (e.g. Fielding, 2006; Fielding et al., 2009; Plink-Björklund, 

350 2015; Wang and Plink-Björklund, 2020). The asymmetrical scour-and-fill structures with 

351 backset or foreset strata that in places flatten and fine upwards are similar to the structures 

352 produced during the infilling of hydraulic jump scours under supercritical flow conditions in 

353 chutes and pools and cyclic steps in flume experiments (e.g. Alexander et al., 2001; Cartigny et 

354 al., 2014; Ono et al., 2020), in numerical simulations (Vellinga et al., 2018), and in other 

355 ancient seasonal fluvial channels (e.g. Fielding, 2006; Fielding et al., 2009; Plink-Björklund, 

356 2015; Wang and Plink-Björklund, 2020). Backset strata have also been reported in bar head 

357 deposits of some Pliocene alluvial sediments in SE Spain (Viseras and Fernández, 1994, 1995). 

358 However, bar deposits have not been identified in the studied fluvial channel deposits. In fact, 

359 the occurrence of poorly developed barforms, or even their absence, is a common characteristic 

360 that has been reported in many ancient and modern examples of seasonal discharge rivers (e.g., 

361 Fielding et al., 2009; Plink-Björklund, 2015 and references therein).

362 Regarding the recent experimental work performed on the study of supercritical flow 

363 bedforms, it has been observed that antidunes develop downstream of chutes and pools 

Page 96 of 186Sedimentology



15

364 (Cartigny et al., 2014), and convex-up low-angle strata and scour-and-fill structures have been 

365 observed developing coevally by the upstream migration of cyclic steps (Ono et al., 2020). 

366 Thus, these authors highlight that, although these structures are produced under supercritical 

367 flows, caution must be used when trying to assign specific structures observed at the outcrop to 

368 specific supercritical flow bedforms. 

369 During periods of non-flood discharges, sand would have been deposited through the 

370 migration of subaqueous dunes, as indicated by the occurrence of sandstone displaying large-

371 scale cross strata (occasionally trough cross strata). This is similarly observed in some channels 

372 developed in settings with seasonal rainfall, such as in the Gash River in Sudan (Abdullatif, 

373 1989), in which subaqueous dunes and ripples migrate during periods of non-flood discharges 

374 or during less intense flood phases (Plink-Björklund, 2015). 

375 In addition, the local occurrence of thin layers of siliciclastic mudstone containing 

376 abundant carbonaceous detritus between sandstone cross sets and/or at the lower part of the 

377 foresets and at the bottomsets has been similarly identified in other modern and ancient seasonal 

378 fluvial channels, where they are deposited during the rapid waning stage that occur after high 

379 magnitude floods (e.g. Williams, 1971; Abdullatif, 1989; Singh et al., 1993; Shukla et al., 2001; 

380 Allen et al., 2011; Plink-Björklund, 2015 and references therein). 

381 Thus, this element is interpreted as deposited in fluvial channels occupied by perennial 

382 or semi-perennial flow and characterized by episodic and seasonal discharge. Palaeocurrents 

383 measured in the South-Iberian Basin indicate that these deposits were mainly derived from the 

384 Iberian Massif and, in minor proportion, from the Valencian Massif, located to the SW-N and 

385 NE-S, respectively (Fig. 1D). By contrast, in the western Maestrazgo Basin, these deposits were 

386 derived from the Valencian Massif and, in minor proportion, from the Iberian and Ebro massifs 

387 (Fig. 1D). 

388 Flood plain architectural element
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389 Description. This is the most abundant element of the succession, especially in the SUP 

390 (Fig. 2). Depending on the section, it forms 40 to 70% of the studied succession in both basins, 

391 although in the most seaward section of the western Maestrazgo Basin (Mora de Rubielos 

392 section) it only forms around 15% of the studied succession. It is interbedded with the 

393 ephemeral and multistorey fluvial channel, deltaic, aeolian and coastal to shallow marine 

394 elements (Figs. 2, 4). Towards the seaward sections it is also interbedded with limestone of tidal 

395 and shallow marine origin (Fig. 2). It is composed of siliciclastic mudstone alternating with 

396 non-channelized sandstone and locally oncolitic and stromatolitic limestone (Fig. 9A). 

397 Siliciclastic mudstone is typically reddish in colour and displays greenish or greyish mottling, 

398 carbonate nodules and root traces (Fig. 9B). In places, it includes dinosaur bones, which are 

399 commonly associated, disarticulated and/or articulated (Royo-Torres et al., 2009; Cobos et al., 

400 2010; Campos-Soto et al., 2017a and references therein).

401 Non-channelized sandstones comprise very fine- to medium-grained sandstone, 

402 arranged in dm-thick strata (up to 60 cm-thick), displaying tabular geometries (Fig. 9C-D) or, 

403 locally, flat bases and convex-up tops (Fig. 9E), and short lateral extent (up to 40 m). Tabular 

404 sandstone may be massive or display large-scale cross strata or parallel lamination, followed 

405 upwards by current ripple strata (commonly climbing ripple strata), which are rarely overlain by 

406 wave ripple strata (Fig. 9D). Tabular sandstone in places is arranged in thickening- and 

407 coarsening- upwards bodies up to 1.5 m-thick (Fig. 9C). Sigmoidal cross strata have been also 

408 observed in sandstone (Fig. 9E).

409 Palaeocurrents indicate the main transport direction to the E-NE in the western 

410 Maestrazgo Basin and in the South-Iberian Basin to the W-SW, and less commonly to the NE 

411 (Fig. 9A).

412 Sandstone locally includes plant remains and large fragments of dinosaur bones, which 

413 are associated and/or articulated in places (see Royo-Torres et al., 2009, 2020; Cobos et al., 

414 2010). Dinosaur tracks have locally been observed at the base of some sandstone bodies, 
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415 preserved as convex hyporeliefs or natural track casts (Fig. 9F), and locally at the top, preserved 

416 as concave epirreliefs (see Campos-Soto et al., 2017a). In places, sandstone shows vertical and 

417 horizontal burrowing traces at the top. Some of the vertical traces are observed as paired circular 

418 openings at the top of sandstone (Fig. 9G). Sandstone of this element may also display edaphic 

419 features at the top, such as reddish, orange, yellowish and/or greenish mottling and root traces.

420 Locally, limestone up to 30 cm-thick and displaying very limited lateral extension (less 

421 than 100 m) is sparsely interbedded with deposits of this element (Fig. 9A, H). Limestone 

422 includes oncoids (Fig. 9I), stromatolites, variable amounts of quartz grains and may be 

423 associated with poorly sorted fragments of bivalves, including ostreids, up to 4 cm (Fig. 9J). 

424 Very rarely limestone includes benthic foraminifera, echinoid spines, gastropods, ostracods, 

425 charophytes and very scarce fragments of corals and ooids (Fig. 9K). Locally, limestone made 

426 up of oncoids is arranged in bodies with erosive bases and short lateral extent (up to 3 metres).

427 Interpretation. This element is interpreted as deposited in a flood plain located in 

428 alluvial to coastal areas. Specifically, reddish siliciclastic mudstone displaying carbonate 

429 nodules, green mottling and root traces is interpreted as deposited on a flood plain (e.g. Miall, 

430 1996; Selley, 2000; Viseras et al., 2006) subject to subaerial exposure periods and palaeosol 

431 development (Freytet and Plaziat, 1982; Alonso-Zarza and Wright, 2010; Soares et al., 2020; 

432 Yeste et al., 2020). Non-channelized sandstone displaying parallel lamination at the base and 

433 current or, commonly, climbing ripple strata at the top is interpreted as splay lobe deposits 

434 (Burns et al., 2017, 2019; Yeste et al., 2020), which developed due to the spreading out of an 

435 unconfined flow as a result of the breaking of a levee of a fluvial channel during flood events 

436 (Coleman, 1969; Miall, 2010). During these flood events, ephemeral currents transported large 

437 dinosaur bone remains, as similarly reported in other ancient settings (e.g. González Riga and 

438 Astini, 2007; Vogt et al., 2016; Coram et al., 2017). Repeated flooding episodes produced the 

439 progradation of the splay deposits, giving rise to the coarsening- and thickening-upwards 

440 bodies, which are common in this type of deposits (e.g. Farrell, 1987; Bridge, 2006; Yeste et al., 

441 2020). Moreover, the sigmodial cross strata observed in some bodies is interpreted as the result 
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442 of progradation of splay lobes into standing water bodies (cf. Mutti, 1996; Turner and Tester, 

443 2006).

444 Following deposition, the upper parts of splay lobes were reworked by waves and 

445 colonized by burrowers, as evidenced by the occurrence of wave ripple strata and burrows at the 

446 top of sandstone. Bioturbation observed as paired circular openings at the top of sandstone may 

447 correspond to U- or Y-shaped burrows, which are common in marginal-marine environments 

448 (Buatois and Mangano, 2011), as similarly occurs in the deposits of the fluvial-tidal transition in 

449 the Upper Cretaceous Tremp Fm, in the Pyrenees (Díez-Canseco et al., 2014; 2016), for 

450 example. Splay lobes underwent subaerial exposure as indicated by the occurrence of edaphic 

451 features, as similarly reported in other ancient deposits (Yeste et al., 2020), as well as by the 

452 local occurrence of dinosaur tracks at the top of sandstone. The occurrence of natural track casts 

453 at the base of sandstone indicates that dinosaurs passed across the flood plain, producing tracks 

454 in the underlying muddy sediment, as interpreted by Campos-Soto et al. (2017a) for the natural 

455 track casts present in sandstone in the western Maestrazgo Basin.

456 Limestone including oncoids and stromatolites and interbedded with siliciclastic 

457 deposits, is interpreted as deposited in shallow water bodies where benthic microbial 

458 communities interacted with detrital sediments and/or produced calcium carbonate precipitation 

459 (Burne and Moore, 1987; Riding, 1999; 2000). These shallow water bodies received siliciclastic 

460 and freshwater inputs, as limestone includes quartz grains, which may be abundant, and locally 

461 charophytes, and were also influenced by brackish and marine waters, as limestone locally 

462 includes poorly sorted brackish and marine bioclasts that were transported by storms and/or 

463 spring tides (Campos-Soto et al., 2016a, 2019). Oncolitic limestone bodies displaying erosive 

464 bases and short lateral extent are interpreted as oncoid channels, similar to those reported in 

465 other ancient coastal (Suarez-Gonzalez et al., 2015) and fluvio-lacustrine settings (Arenas-Abad 

466 et al., 2010).

467 Deltaic depositional setting
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468 Description. Deltaic deposits are mainly observed in the SUP of the South-Iberian 

469 Basin, where they form 2 to 6% of the studied succession. In the western Maestrazgo Basin, 

470 these deposits form less than 1% of the studied succession (Fig. 2). They are interbedded and 

471 laterally related with the fluvial and aeolian elements (Figs. 2, 4). Deltaic deposits comprise 

472 sandstone with minor proportions of carbonaceous detritus and carbonaceous-rich, dark grey 

473 siliciclastic mudstone, displaying a coarsening- and thickening-upwards succession. Each 

474 succession displays dm to m thicknesses (up to 2 m), an exposed lateral extent of up to 100 m 

475 (Figs. 10, 11) and includes, from base to top, three architectural elements that are intimately 

476 related: the delta-toe, delta-front and delta distributary channel elements. Several deltaic 

477 successions may be vertically stacked giving rise to composite bodies up to 10 m thick, with an 

478 exposed lateral extension of up to 200m (Fig. 10A-C). 

479 The delta-toe element comprises carbonaceous-rich, dark grey siliciclastic mudstone, 

480 interbedded upwards with mm- to cm-thick layers of very fine-grained and rippled sandstone, 

481 which display a very low angle-inclination and a great lateral extent (Fig. 10A-D). 

482 Deposits of the delta-toe element change laterally and upwards to the delta-front 

483 element, comprising sandstone displaying clinoforms, which have a sigmoidal outline in a flow-

484 parallel direction (Fig. 11A-B). The lower part of the delta-front element comprises the lower 

485 part of foresets of clinoforms, which display a very low angle-inclination and pass laterally and 

486 downwards, along the bottomsets, to the delta-toe deposits (Fig.10B-C). The lower part of 

487 foresets comprise cm-thick, very fine- to fine-grained, well-sorted sandstone layers that 

488 alternate with mm- to cm-thick layers of carbonaceous detritus (Figs. 10B-C, E, 11B). Locally, 

489 sandstone layers at the lowermost part of the delta-front element, along the bottomsets, display 

490 poorly preserved dinosaur tracks, recorded as convex hyporeliefs or natural track casts, which 

491 show elongated shapes with irregular and deformed outlines and penetrate downwards into the 

492 underlying delta-toe deposits (Fig. 10F). The upper part of the delta-front element comprises the 

493 upper part of foresets and the topsets of clinoforms, which are made up of fine- to medium-
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494 grained, well-sorted sandstone that locally display bioturbation. Locally, drapes of carbonaceous 

495 detritus may extend up to the topsets (Figs. 10A, 11B).

496 The upper part of the delta-front element deposits may be truncated by erosive surfaces 

497 (Figs. 10B-C, 11C-E), which become progressively more abundant and more incisive upwards 

498 and eventually are overlain by deposits of the delta terminal distributary channel element (Fig. 

499 11C-E). The delta terminal distributary channel element comprises dm- to m-thick sandstone 

500 bodies (up to 1.5 m) displaying erosive bases and a lateral extent of up to 10 m (Figs. 10A-C, 

501 11C-E). Sandstone is well-sorted and displays fine to medium grain sizes (Fig. 11F). Sandstone 

502 displays large-scale cross-strata with sets up to 1 m-thick (Figs. 11C-E). In places, sandstone 

503 displays backset strata or upwards flattening strata (Fig. 10B-C).

504 Palaeocurrents measured in the South-Iberian Basin, mainly in the clinoforms of delta-

505 front element and, in less proportion, in the cross-bedded sets of the delta terminal distributary 

506 channel element, indicate main transport directions to the S, to the W-NW and to the NE (Fig. 

507 10A).

508 Interpretation. The coarsening- and thickening- upwards trend and the clinoforms 

509 observed in these deposits likely record the progradation of deltaic sediments into standing 

510 water bodies (e.g. Bhattacharya, 2006, 2010; Enge et al., 2010a; Legler et al., 2013; Gugliotta et 

511 al., 2015, 2016; Kurcinka et al., 2018). 

512 Carbonaceous-rich, dark grey siliciclastic mudstone located in the lower part of the 

513 element, along the delta-toe (Fig. 10A-D), is interpreted to have been deposited by settling of 

514 suspension load during periods of low flow (Bhattacharya, 2010; Legler et al., 2013; Enge et 

515 al., 2010a). The thin layers of very fine-grained rippled sandstone interbedded with 

516 carbonaceous-rich, dark grey siliciclastic mudstone at the delta-toe indicate the episodic influx 

517 of siliciclastic discharges into the delta toes. 

518 Delta-toe deposits change laterally and upwards to delta-front sandstone displaying 

519 clinoforms characterized by low-angle and laterally-continuous foresets with drapes of 
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520 carbonaceous detritus that may extend up to the lower part of foresets, as similarly reported in 

521 other ancient and modern deltaic deposits (e.g. Bhattacharya, 2006, 2010; Enge et al., 2010a, 

522 2010b; Schomacker et al., 2010; Bayet-Goll and de Carvalho, 2013; Legler et al., 2013; Ahmed 

523 et al., 2014; Kurcinka et al., 2018). Sandstone is interpreted to be deposited by unconfined 

524 flows during flood episodes and carbonaceous detritus by settling down from suspension during 

525 periods of low flow (interflood periods sensu Gugliotta et al., 2015, 2016). During periods of 

526 low flow delta-front deposits were occasionally burrowed, as suggested by bioturbation present 

527 locally at the top of sandstone.

528 The large-scale cross-strata sandstone infilling the erosive surfaces that incise 

529 downwards into the upper part of the delta-front sediments are interpreted as the infill of deltaic 

530 terminal distributary channels that migrated in a deltaic plain, as similarly observed in other 

531 ancient deltaic deposits (Olariu and Bhattacharya, 2006; Bhattacharya, 2010). In places, 

532 sandstone displays backset or flattening upwards strata (Fig. 10B-C). Similar structures have 

533 been observed in experimentally produced deltaic deposits (Muto et al., 2012) due to the 

534 development of hydraulic jumps at the channel mouth, and have also been identified in other 

535 ancient deltaic successions (e.g. Massari, 1996, Lang et al., 2017). Thus, it is possible that, 

536 during episodes of intense rainfall, supercritical flow conditions were achieved in the delta 

537 terminal distributary channels, leading to the formation of hydraulic jumps and the infilling of 

538 associated scours.

539 Palaeocurrents obtained in the South-Iberian Basin indicate that deltaic deposits were 

540 mainly associated with fluvial channels flowing to the W-NW, to the S and to the NE, which 

541 coincides with some of the transport directions of the multistorey fluvial channel deposits of this 

542 basin (see Figs. 7A, 10A). The standing water bodies where deltaic sediments were deposited 

543 occupied positions on a flood plain, as the deltaic deposits are commonly interbedded with the 

544 flood plain element. These water bodies were shallow, as evidenced by the height of clinoforms 

545 (from dm to up to 2 m) and by the occurrence of dinosaur tracks at the base of thinly bedded 

546 sandstone layers overlying delta toe deposits (Fig. 10F). The poor preservation of dinosaur 
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547 tracks, showing irregular and deformed outlines, suggests that the delta-toe sediments had a 

548 high-water content and a low yield strength at the moment when the tracks were made (Allen, 

549 1997; Marty et al., 2009). The scarcity of evidence for subaerial exposure and edaphic features, 

550 which are common in the flood plain and splay lobe deposits, but have been only observed 

551 locally at the top of the delta-toe to delta-front element (see flood plain architectural element), 

552 suggests that the water bodies were also relatively permanent. 

553 The salinity of the water bodies is difficult to determine as no fossils or sedimentary 

554 structures indicative of salinity have been observed within the deltaic deposits. If these water 

555 bodies received some marine influence during their deposition, it would be expected to observe 

556 brackish or marine fossils, as they occur in the sediments deposited in the shallow marine- to 

557 brackish-influenced water bodies located in the flood plain (see limestone of flood plain 

558 element). It would be also expected to observe tidal structures, such as the occurrence of a 

559 cyclical pattern in the distribution of carbonaceous detritus within the delta-front deposits, for 

560 instance. However, none of these sedimentary structures or fossils have been observed within 

561 the deltaic elements. It cannot be discarded that the studied deltaic sediments were deposited in 

562 freshwater bodies, as dinosaurs would require the presence of permanent water sources and 

563 abundant vegetation; in fact, freshwater fossils of turtles (Pérez-García et al., 2014) and bivalves 

564 (Delvene et al., 2013) have been reported in the fluvial deposits of the studied succession in the 

565 South-Iberian Basin. Nevertheless, given the coastal setting of the studied succession, mixing of 

566 fresh and marine waters or local tidal influence is conceivable for some water bodies.

567 In addition, the occurrence of vertically stacked coarsening and thickening upwards 

568 deltaic successions, of up to 2m-thick, leading to composite bodies of up to 10m-thick, is 

569 interpreted as a result of the combination of subsidence and high sedimentation rates, which 

570 would have produced the vertical superposition of the deltaic deposits.

571 Coastal to shallow marine depositional setting
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572 Coastal to shallow marine siliciclastic deposits are observed both in the CLP and SUP 

573 interbedded and laterally related with tidal or shallow marine limestone and with marl, which 

574 includes brackish to marine bioclasts (ostreids, trigonioids and other bivalves, and large benthic 

575 foraminifera) and charophytes and was deposited in shallow marine to brackish areas that 

576 received freshwater inputs (Figs. 2, 5; Campos-Soto et al., 2016a, 2019). Coastal to shallow 

577 marine deposits form less than 3% to 6 % of the studied succession in the landward sections of 

578 the South-Iberian and western Maestrazgo basins, respectively (Fig. 2). In the seaward sections, 

579 they form up to 15 and 20% of the studied succession in the South-Iberian and western 

580 Maestrazgo basins respectively (Figs. 2, 5). Two elements have been distinguished:

581 Coastal terminal distributary channel architectural element

582 Description. This element occurs interbedded with the distributary mouth-bar element 

583 and with marl (Figs. 5, 12A-B). It comprises fine- to medium-grained sandstone arranged in 

584 meter-thick bodies (up to 3 m thick), with erosive bases and an exposed lateral extent of 50 m 

585 (Figs. 5, 12A-C). Sandstone displays large-scale cross strata (Fig. 12D-E) and rarely includes 

586 mm- to cm-thick layers of carbonaceous-rich marl between cross sets (Fig. 12D-F). These thin 

587 layers of carbonaceous-rich marl may be also present at the bottomsets and the lower part of the 

588 foresets of large-scale cross strata (Fig. 12E). In addition, some sandstone bodies may show 

589 internal erosive surfaces (Fig. 12C, F), similar to those described in the multistorey fluvial 

590 channel element.

591 Locally, poorly sorted conglomerate is observed overlying the basal erosive surface of 

592 sandstone bodies or the internal erosive surfaces (Fig. 12F-G). It is made up by subangular to 

593 subrounded mudstone pebbles (up to 2.5 cm in diameter), within a coarse-grained sandy matrix, 

594 similar to those described in the multistorey fluvial channel element, although in this case, it 

595 also includes scarce fragments of bivalves (Fig. 12G).

596 The scarce palaeocurrent data obtained in the W Maestrazgo Basin indicate main 

597 transport directions to the E-SE (Fig. 12B).
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598 Interpretation. Channelized sandstone of this element, interbedded with distributary 

599 mouth-bar element and marl, represents the infill of terminal distributary channels flowing into 

600 coastal and shallow marine areas and feeding distributary mouth-bar deposits, as similarly 

601 reported in other ancient examples (e.g. Olariu and Bhattacharya, 2006; Bhattacharya, 2010). 

602 The palaeocurrent data obtained in the W Maestrazgo Basin also support this interpretation, as 

603 they indicate that these distributary channels were flowing to the E-SE, which coincides with 

604 the location of the Tethys Ocean during the Late Jurassic (Fig. 1D), as well as with the transport 

605 directions obtained in some of the distributary mouth-bar deposits of this basin (Figs. 12B and 

606 13A). The thin layers of carbonaceous-rich marl occurring between large-scale cross sets and at 

607 the lower part of foresets and bottomsets are interpreted to be deposited by settling down from 

608 suspension during periods of low river discharge. Nevertheless, tidal influence could not be 

609 discarded, as these deposits were debouching into shallow marine areas. Moreover, the internal 

610 erosion surfaces observed within sandstone are interpreted to develop during periods of intense 

611 precipitation, which led to an increase of flow velocity and the erosion of the sediments of the 

612 channels, as similarly occurs in the multistorey fluvial channel architectural element. This 

613 process was followed by deposition of poorly sorted mudstone conglomerates eroded and 

614 transported from upstream flood plain areas, as well as of fragments of bivalves, which were 

615 transported from nearby shallow marine areas.

616 Distributary mouth-bar architectural element

617 Description. This element occurs commonly interbedded with the coastal terminal 

618 distributary channel element and marl or with tidal limestone, including tidal sedimentary 

619 structures or with shallow marine limestone, which contains marine fossils, including locally 

620 corals in life position (Figs. 12A, 13A-F). It is made up of fine- to medium-grained sandstone 

621 commonly arranged in decimetre- to metre-thick bodies (from 10 cm to 2.50 m), which display 

622 flat bases and flat or convex-up tops, commonly show short lateral extent (<20 m; Figs. 12A, 

623 13A-D) and rare thickening- and coarsening-upwards trend (Fig. 13B). Sandstone may be 

624 massive or display large-scale cross strata, which may be sigmoidal (Fig. 13C-D), and rare 
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625 current and/or wave ripple strata at the top. Cross-bedded sandstone bodies pass seawards to 

626 centimetre-thick bodies displaying current and/or wave ripple strata at the top, which alternate 

627 with marl, giving rise to wavy bedding (Fig. 13G). Sandstone may include carbonate intraclasts, 

628 ooids, brackish and marine bioclasts (Fig. 13H, Table 1) and plant remains. In places, sandstone 

629 displays bioturbation at the top (Fig. 13I). 

630 Palaeocurrents measured in the South-Iberian Basin indicate main transport directions to 

631 the E, and less commonly to the N and SE, and palaeocurrents measured in the western 

632 Maestrazgo Basin indicate main transport directions to the NE and E and less commonly to the 

633 N and S (Fig. 13A).

634 Interpretation. These sandstone bodies are interpreted as distributary mouth-bars (sensu 

635 Wright, 1977; Bhattacharya, 2010) that were formed by the dispersal of unconfined flows at the 

636 mouth of terminal distributary channels debouching into coastal to shallow marine areas (e.g. 

637 Roberts, 1998; DuMars, 2002; Bhattacharya, 2010; Li et al., 2013; Allgöver and Lignum, 

638 2019). This interpretation is supported by palaeocurrent data, indicating that sediment was 

639 mainly transported to the NE-SE (Fig. 13A), where the Tethys Ocean was located at the time 

640 (Fig. 1D). These sediments were deposited in shallow marine areas where even coral reefs 

641 developed (Fig. 13C-F). This has been similarly observed in some Upper Miocene deposits of 

642 SE Spain, interpreted as the result of distributary mouth-bars flowing into an interdistributary 

643 bay where coral reef patches developed (García-García et al., 2006). Another example of this 

644 relationship is observed in the Indonesian Mahakam River Delta, although at a much larger 

645 scale, where large siliciclastic lobes of sediment are debouching into shallow marine areas 

646 where Halimeda bioherms are present (Storms et al., 2005; Roberts and Sydow, 2010). 

647 At the mouth of terminal distributary channels, sediment was deposited through the 

648 migration of subaqueous dunes and, progressively seawards, through the migration of ripples, as 

649 a consequence of the decrease of flow velocity. This is indicated by the occurrence of dm- to m-

650 thick sandstone bodies displaying large-scale cross strata, which passes seawards to cm-thick 
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651 rippled sandstone bodies. The repeated arrival of sand at the distributary mouth would have 

652 produced the progradation of these unconfined sediment bodies, giving rise to the coarsening- 

653 and thickening upwards trend observed in this element. After deposition, these sediment bodies 

654 were prone to reworking by waves, as indicated by the occurrence of wave ripple strata at the 

655 top of sandstone and by tidal currents, as indicated by the occurrence of wavy bedding and the 

656 fact that these deposits occur interbedded with inter- to supratidal limestone including tidal 

657 sedimentary structures also indicates that they were deposited in a setting influenced by tides. 

658 Locally, these deposits were also reworked by storms, as interpreted by Campos-Soto et al. 

659 (2016a) in the Benagéber area (Fig. 1C). 

660 Aeolian depositional setting

661 Aeolian deposits are observed in the SUP of the South-Iberian Basin, being more 

662 abundant in the landward sections (Figs. 2, 4), where they form up to 5% of the studied 

663 succession. They occur interbedded and laterally related with the fluvial and deltaic elements 

664 (Figs. 2, 4). Three types of architectural elements have been distinguished:

665 Simple aeolian dune architectural element

666 Description. This element occurs interbedded with the flood plain element or locally 

667 overlies the ephemeral fluvial channel or deltaic elements (Figs. 2, 14). This element is 

668 composed of fine- to medium-grained, sub-angular to rounded and well-sorted sandstone, which 

669 is arranged in bodies up to 6 m thick (Fig. 14A-E, G-H), with flat bases and tops, and exposed 

670 lateral extents up to 100 m. Sandstone bodies characteristically comprise a single large-scale 

671 cross-stratified set up to 6 m-thick, whose foresets are inclined up to 36º (Fig. 14A-E). A 

672 distinctive feature of this element is that, in some sandstone bodies, foresets display a convex-

673 up outline and pass upwards to low-angle inclined topsets (Fig. 14B-C). In detail, foreset 

674 deposits are made up of successive mm- to cm-thick stratal packages (Fig. 14F). Each stratum 

675 may show inverse grain size grading (from very fine to fine grain sizes at the bottom to medium 

676 grain sizes at the top, Fig. 14H). The contact between each stratum is sharp. Very rarely, 
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677 scattered rounded to subrounded muddy-soft pebbles and rounded quartzite pebbles (up to 1.4 

678 cm in diameter) have been observed but are confined exclusively to the lower part of foresets (in 

679 the lowermost 70 cm of sets). Palaeocurrents indicate transport directions towards the SE, W-

680 SW, or the NW, depending on the sandstone body measured (Fig. 14A).

681 Interpretation. Features of this element, notably the well-sorted nature of the sandstone, 

682 the characteristic occurrence of very large-scale cross-stratified sets up to 6 m-thick with 

683 foresets inclined at angles up to 36º, its geometry (flat bases and tops) and exposed lateral extent 

684 of up to 100 m, lead most logically to the interpretation of migratory aeolian dunes (Ahlbrandt 

685 and Fryberger, 1982; McKee, 1966; Mountney, 2006).

686 The internal structure of foresets, made up of mm- to cm-thick strata displaying inverse 

687 grain size grading, is interpreted as the result of accumulation of grainflow deposits, as similarly 

688 reported from other ancient and modern aeolian dunes (McKee et al., 1971; Hunter, 1977; 

689 Kocurek and Dott, 1981; Fryberger and Schenk, 1988), in which they are explained as the result 

690 of the repeated avalanching of sand in the lee side of dunes exceeding the angle of repose 

691 (Hunter, 1977; Ahlbrandt and Fryberger, 1982; Kocureck, 1991; Mountney, 2006). 

692 Palaeocurrents indicate transport of sand towards the W-SW, the NW or the SE, depending on 

693 the sandstone body measured (Fig. 14A; see interpretation of wind palaeocurrents in 

694 Discussion). This suggests that aeolian dunes migrated under the influence of prevailing 

695 unidirectional winds, which is characteristic of transverse aeolian dunes (sensu Fryberger and 

696 Dean, 1979; Mountney 2006). The style of the cross strata observed in some bodies, 

697 characterized by convex-up foresets with preserved topsets, together with their vertical scale 

698 (Fig. 14B-C), is very similar to the features described in recent dome-shaped aeolian dunes by 

699 McKee (1966, 1979) in the White Sand National Monument (USA). According to this author, 

700 dome-shaped aeolian dunes initially begin as transverse or other type of dunes that are 

701 controlled by one dominant wind direction and are subsequently affected by episodes of strong 

702 winds. Therefore, the studied aeolian sandstone likely represents one of the few examples of 

703 well-preserved dome-shaped aeolian dunes in the pre-Quaternary fossil record; the few other 
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704 examples are those of the Proterozoic of Greenland (Clemmensen, 1988) and India 

705 (Chakraborty, 1991), the Devonian of Australia (Jones, 1972) and the Triassic of the Cheshire 

706 Basin, UK (Thompson, 1969). In addition, the fact that aeolian dune deposits of this element are 

707 formed by one single set of large-scale cross strata, suggests that they were formed under 

708 relatively low rates of sediment supply that merely allowed the migration, but not the climb, of 

709 one single transverse or dome-shaped aeolian dunes (Kocurek and Havholm, 1993; Mountney, 

710 2006).

711 Sandstone of this element is well sorted and made up of sub-angular to rounded grains. 

712 The occurrence of sub-angular (rarely even angular) grains has been identified in modern and 

713 ancient aeolian dune deposits (e.g. Kiersch, 1950; Thompson, 1969; Glennie, 1970; McKee, 

714 1979; Rodríguez-López et al., 2008; Galán-Abellán et al., 2013), and some authors have even 

715 reported aeolian dune deposits displaying moderate (Mountney et al., 1998) to poor sorting 

716 (McKee, 1966; Ahlbrandt, 1979), due to the short time of reworking and the close proximity to 

717 the source of sand.

718 The occurrence of pebbles in the lower parts of aeolian dune sets has been described in 

719 ancient and modern aeolian deposits. Mader (1981) and Turner and Makhlouf (2005) identified 

720 pebbles up to 1 cm long and chert pebbles up to 5 cm long along the foresets of Triassic and 

721 Quaternary aeolian dune deposits of Germany and Jordan, respectively. Kiersch (1950) reported 

722 small pebbles and coarse grains of quartz and chalcedony along several cross strata planes in the 

723 Jurassic Navajo Sandstone (Utah, USA). Rodríguez-López et al. (2010) identified scattered 

724 quartzite pebbles in the toesets of mid-Cretaceous aeolian dune deposits of Spain and 

725 interpreted them as derived from adjacent deflated wadis. These authors cite the work Glennie 

726 (1970), who reported pebbles in the foresets of small recent aeolian dune deposits and 

727 interpreted them as derived from an adjacent wadi bank by rolling or sliding. Additionally, 

728 pebbles of up to 1.5 cm and 2.3 cm in diameter have been recorded lodged in telephone poles at 

729 1.6 m and 0.8 m heights, respectively; these were interpreted as having been transported by 

730 saltation during an intense windstorm in California, USA (Sakamoto-Arnold, 1981). 

Page 110 of 186Sedimentology



29

731 Massive and indistinctly stratified aeolian dune architectural element

732 Description. This element overlies the flood plain element and is overlain by the 

733 multistorey fluvial channel element (Fig. 15A-C). This element may occur interbedded with 

734 ephemeral fluvial channelized conglomerate bodies, which display 90 cm- to 3 m of thickness 

735 and up to 20 m of lateral extent (Fig. 15C-D; see ephemeral fluvial channel architectural 

736 element).

737 This element is made up of fine- to medium-grained, sub-angular to rounded, well-

738 sorted sandstone arranged in up to 25 m-thick bodies, displaying flat bases and tops and an 

739 exposed lateral extent of up to 80 m (Fig. 15B-E). Sandstone mostly shows a massive 

740 appearance, although locally displays poorly preserved large-scale cross strata with sets of up to 

741 7 m-thick (Fig. 15C-D), and with foresets inclined up to 30º (Fig. 15D, G-H). In some cross 

742 stratified sets, foresets pass downwards to laterally continuous bottomsets (Fig. 15B, E, G-H). 

743 Locally, the bottomsets and, less commonly, the lowermost part of foresets are draped by mm- 

744 to cm-thick layers of carbonaceous detritus and mica flakes (Fig. 15G-H). Palaeocurrents 

745 indicate main transport directions to the W-NW and, in minor proportion, to the SW (Fig. 15A).

746 Interpretation. The homogeneous and well-sorted sandstone of this element, together 

747 with its massive appearance, its large thickness (up to 25 m-thick), its flat base and great 

748 exposed lateral extent (up to 80 m), suggest an aeolian origin. The homogeneity of grain size 

749 and the good sorting are features typically described in aeolian deposits, such as in the Lower 

750 Jurassic Navajo Sandstone (e.g. Kiersch, 1950; Prothero and Schab, 1996; McKee, 1979), 

751 which, in places, characteristically exhibits a massive appearance (e.g. Ekdale et al., 2007). 

752 Moreover, the occurrence of poorly preserved, large-scale cross strata with sets of up to 7 m 

753 thick, displaying foresets inclined up to 30º, further supports an aeolian dune origin. 

754 Palaeocurrents indicate aeolian dune migration to the NW-SW (Fig. 15A; see more details of 

755 wind palaeocurrents in Discussion).
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756 The drapes of carbonaceous detritus and mica flakes locally observed in the bottomsets 

757 and in the lowermost part of foresets are interpreted to have settled from suspension in wet 

758 interdunes subject to episodic floods (Ahlbrandt and Fryberger, 1981; 1982; Mountney, 2006). 

759 The occurrence of drapes in the lower part of the foresets indicates that the water level reached 

760 the lower part of aeolian dune flanks, and likely fluctuated. A similar process has been reported 

761 in the Great Sand Dunes (USA) and in the Namib Desert (Skeleton Coast), where episodic 

762 fluvial floods cause the inundation of interdune areas, where clays and/or wood detritus settle 

763 down and drape the interdune floor and the lower part of dune flanks (Langford, 1989 and 

764 Stanistreet and Stollhofen, 2002, respectively). Repeated interdune flooding and aeolian dune 

765 migration produced the successive interfingering of drapes and grainflows within the same cross 

766 strata set (Langford and Chan, 1989; Langford, 1989; Cain and Mountney, 2011). This type of 

767 draping (i.e. mud layers, carbonaceous/wood detritus and mica flakes) has been reported in 

768 other ancient (e.g. Thompson, 1969; Gradziński et al., 1979; Pulvertaft, 1985; Langford and 

769 Chan, 1988; Veiga and Spalletti, 2007; Rodríguez-López et al., 2008, 2012) and modern aeolian 

770 dune deposits (e.g. Ahlbrandt and Fryberger, 1981; Fryberger et al., 1990; García-Hidalgo et 

771 al., 2002; Mountney and Russell, 2006; 2009; Kocurek et al., 2020).

772 The occurrence of ephemeral fluvial deposits interbedded with massive and indistinctly 

773 stratified aeolian dune deposits (Fig. 15C-D) is interpreted as the result of development of 

774 ephemeral channels between aeolian dunes during periods of intense precipitation, which would 

775 have led to the erosion of aeolian dune deposits. This type of fluvial-aeolian interaction has 

776 similarly been documented in other arid to semiarid modern (e.g. Glennie, 1970; Al-Masrahy 

777 and Mountney, 2015) and ancient settings (e.g. Herries, 1992; de Witt, 1999; Mountney et al., 

778 1998; Veiga et al., 2002; Mountney and Jagger, 2004; Jordan and Mountney, 2010, 2012; 

779 Rodríguez-López et al., 2010; 2014 and references therein; Soria et al., 2011; Tripaldi et al., 

780 2011), as a result of development of wadis between aeolian dunes during flash-flood events. In 

781 the studied succession, aeolian dune deposits overlie those of ephemeral fluvial channels, 

782 indicating that, once the flood episode had finished, aeolian dunes would have migrated over the 
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783 deposits of the once-again dry ephemeral channels, a process that similarly occurs in modern 

784 desert settings (Al-Masrahy and Mountney, 2015; Liu and Coulthard, 2015).

785 Climbing aeolian dune architectural element

786 Description. This element is interbedded with the deltaic and fluvial channel elements, 

787 and is overlain by the flood plain element (Figs. 4, 16). It comprises sub-angular to rounded, 

788 fine- to medium-grained, well-sorted sandstone, which is arranged in metre-thick bodies (up to 

789 5 m-thick) with an exposed lateral extent of around 100 m (Fig. 16A-D). Sandstone displays 

790 large-scale cross strata with sets up to 2 m-thick (Fig. 16B), which are stacked in cosets (Fig. 

791 16C-D). A characteristic feature of this element is the occurrence of bounding surfaces 

792 delimiting individual sets of cross strata, which are inclined at low angles (<10º) relative to the 

793 master coset bedding surface and dip in the opposite direction to the foreset dip (Fig. 16C-D). In 

794 some outcrops parallel to transport direction, these surfaces can be laterally traced at least for 50 

795 m. Large-scale cross strata comprises tangential foresets inclined at angles up to 32º (Fig. 16B-

796 E), which occasionally are slightly deformed (Fig. 16E). In detail, foreset deposits comprise 

797 mm- to cm-thick strata, made up of fine- to medium-grained well-sorted sandstone, which pinch 

798 out towards the bottomsets (Fig. 16F-H). Towards the bottomsets, these strata are interbedded 

799 with other mm- to cm-thick strata comprised of very fine- to fine-grained and well-sorted 

800 sandstone, which pinch out upwards (Fig. 16G-H).

801 Pseudomorphs after gypsum crystals, forming desert roses (Fig. 16I), have been locally 

802 observed within the sandstone. Additionally, very scattered subrounded muddy pebbles and 

803 rounded quartzite pebbles (up to 1.5 cm in diameter) are locally observed towards the lower part 

804 of sandstone bodies that overlie fluvial channelized elements, similarly to those described in the 

805 simple aeolian dune architectural element. These pebbles mostly occur along the tangential 

806 foresets, preferentially towards the bottomsets.

Page 113 of 186 Sedimentology



32

807 Palaeocurrents measured in the tangential cross strata sets indicate main transport 

808 directions towards the SE in some sandstone bodies and towards the NW in other sandstone 

809 bodies located in different stratigraphic positions (Fig. 16A).

810 Interpretation. Features of these deposits, such as the well-sorted grain texture, the 

811 occurrence of large-scale cross strata sets comprising tangential foresets, which might be locally 

812 slightly deformed, and the occurrence of low-angle inclined bounding surfaces delimiting sets 

813 of cross strata, indicate that this element records the downwind migration and accumulation of 

814 aeolian dunes, as has been similarly described in other ancient aeolian dune deposits (e.g. 

815 Kocurek, 1981; Ahlbrant and Fryberger, 1982; Spalletti and Colombo Piñol, 2005; Scherer and 

816 Lavina, 2005; Mountney, 2006; Spalleti et al., 2010).

817 The internal structure of tangential cross strata sandstone, comprising mm- to cm-thick 

818 strata pinching out downwards, is very similar to the sandflow cross strata described by Hunter 

819 (1977) in modern aeolian dunes (here referred to as grainflow cross strata sensu Kocurek and 

820 Dott, 1981, and Kocurek, 1991, 1996), which develop due to the successive avalanching of sand 

821 in aeolian dune slipfaces. The very fine- to fine-grained sandstone strata located at the 

822 bottomsets pinching out upwards are interpreted as wind ripples that migrated over the plinth of 

823 aeolian dunes and dry interdunes (Hunter, 1977; Ahlbrant and Fryberger, 1982; Kocurek, 1991). 

824 The occurrence of slightly deformed foresets is interpreted as the result of slumping of cohesive, 

825 semi-consolidated sand in the lee side of dunes wetted by rains or dews (e.g. McKee et al., 

826 1971; Due and Dott, 1980; Loope et al., 2001). Similarly to what occurs in the simple aeolian 

827 dune architectural element, palaeocurrents show a unidirectional transport pattern for each 

828 sandstone body measured in different stratigraphic positions, indicating aeolian dune migration 

829 to the SE for some bodies or the NW for others (Fig. 16A; see interpretation of wind 

830 palaeocurrents in Discussion) and suggesting that deposition occurred in transverse aeolian 

831 dunes (sensu Fryberger and Dean, 1979; Mountney 2006).
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832 The low-angle-inclined bounding surfaces that delimit individual sets of cross strata are 

833 very similar to the interdune surfaces defined by Kocurek (1981, 1996) and described in many 

834 ancient aeolian deposits (e.g. Mountney and Thompson, 2002; Scherer and Lavina, 2005; 

835 Mountney and Jagger, 2004; Rodríguez-López et al., 2008; Bállico et al., 2017). Interdune 

836 surfaces result from the downwind migration of an interdune trough over the stoss side of the 

837 preceding aeolian dune, producing the partial erosion and truncation of its upper part (Rubin and 

838 Hunter, 1982; Kocurek, 1981; 1991; 1996; Mountney, 2006). Climbing transverse aeolian dune 

839 bedforms migrated over these surfaces, as they are overlain by tangential cross strata sandstone. 

840 The fact that these deposits were formed by the accumulation of climbing aeolian bedforms 

841 indicates that the sediment supply during their deposition was high (Kocurek and Havholm, 

842 1993; Mountney, 2006). 

843 The occurrence of pseudomorphs after gypsum crystals, forming desert roses, similar to 

844 those locally observed within this element, have been reported in other aeolian deposits (e.g. 

845 Loope, 1988; Simpson and Erikson, 1993; Tripaldi et al., 2011; Rodríguez-López et al., 2013) 

846 and are interpreted as intrasediment gypsum crystals that grew in the pore spaces of aeolian 

847 sand located close to the water table (Warren, 2016).

848 DISCUSSION

849 Palaeoenvironmental setting of eastern Iberia during the Late Jurassic

850 Siliciclastic sediments of the Villar del Arzobispo Fm were deposited in fluvial, deltaic, 

851 aeolian and coastal to shallow marine depositional environments that developed in eastern Iberia 

852 during the Late Jurassic (Figs. 1D, 17). These deposits are interbedded and laterally related with 

853 each other and possess stratal relationships to indicate that they developed coevally (Figs. 2, 3, 

854 4, 5, 17 and Fig. S1 of Supplementary Material). During the first steps of evolution of the 

855 studied succession (during sedimentation of the CLP), deposition of siliciclastic sediments was 

856 scarce and mainly occurred in coastal to shallow marine marly and carbonate areas (Figs. 2, 3; 

857 Campos-Soto et al., 2016a, 2017a, 2019). Upwards, during sedimentation of the SUP, a large 
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858 abundance of siliciclastic sediments was deposited in a coastal and alluvial plain (Figs. 2, 3, 17; 

859 Campos-Soto et al., 2016a, 2017a, 2019 Campos-Soto et al., 2016a, 2017a, 2019). Landwards, 

860 deposition mainly took place in fluvial, deltaic and aeolian environments that were laterally and 

861 vertically related (Figs. 3, 4, 17), while seawards, it progressively occurred in coastal to shallow 

862 marine environments located in areas with high subsidence rates, where siliciclastics are 

863 interbedded to the E-SE with shallow water marl, with inter- to supratidal peloidal and/or 

864 micritic limestone and with shallow marine bioclastic and oolitic limestone (Figs. 2, 3, 5, 17 and 

865 Fig. S1 of Supplementary Material; Campos-Soto et al., 2016a, 2017a, 2019).

866 The coastal and alluvial plain was formed by broad and vegetated flood plains (see 

867 Flood plain architectural element), which were crossed by ephemeral and perennial to semi-

868 perennial fluvial channels that had a highly seasonal discharge (see Ephemeral and Multi-storey 

869 fluvial channel architectural elements, respectively; Fig. 17). During flood events, flood plain 

870 areas underwent deposition of splay lobes as a result of the breaking of channel levees (see 

871 Flood plain architectural element). Fluvial channels flowed into shallow water bodies located in 

872 the flood plain that were probably freshwater, leading to deposition of small deltas (see Deltaic 

873 architectural elements). Some fluvial channels ultimately flowed into coastal to shallow marine 

874 areas (see Coastal terminal distributary channel architectural element), resulting in the 

875 deposition of distributary mouth-bars (see Distributary mouth-bar architectural element; Figs. 5, 

876 17). Some of the shallow water bodies located in the flood plain underwent carbonate 

877 precipitation and development of oncoids and stromatolites (see Flood plain architectural 

878 element). Some of these water bodies were influenced by freshwater and received siliciclastic 

879 input, as limestone includes abundant quartz grains and locally charophytes. Other water bodies 

880 were also influenced by brackish and marine waters, as limestone locally includes brackish and 

881 marine fossils that were probably transported from shallow marine areas by storms and/or 

882 spring tides (see Flood plain architectural element; Fig. 17).

883 During periods of non-flood discharges, subaqueous siliciclastic deposits likely 

884 underwent periods of subaerial exposure. Subsequently, sand of these deposits was reworked by 
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885 wind and deposited in aeolian dunes that migrated over the coastal and alluvial plain, as 

886 reported in modern (e.g. Glennie, 1970; Langford, 1989; Singh et al., 1993; Collinson, 1996) 

887 and ancient settings (e.g. Thompson, 1969; Mountney et al., 1998). Aeolian dunes developed 

888 next to deltas and eventually migrated over their deltaic plain, as evidenced by the occurrence of 

889 aeolian deposits overlying the deltaic elements (Figs. 2, 4, 10A, 16C-D, 17). Aeolian dunes 

890 could also migrate over deposits of fluvial channels that became subaerially exposed during 

891 periods of non-flood discharges, as indicated by the occurrence of aeolian dune deposits 

892 overlying fluvial channel sediments (Figs. 4, 15C-D). Aeolian deposits are only preserved in the 

893 landward sections of the South-Iberian Basin (Riodeva and Benagéber sections; Figs. 1C-D, 2, 

894 4), which contain a greater proportion of subaqueous siliciclastic deposits than sections of the 

895 western Maestrazgo Basin. The South-Iberian Basin was largely surrounded by emergent areas 

896 (Iberian and Valencian massifs), whereas the western Maestrazgo Basin only had emergent 

897 areas towards the SW (Fig. 1D). In this way, the South-Iberian Basin received greater input of 

898 siliciclastic detritus. Subaerial exposure was common, and deposits were repeatedly reworked 

899 by the wind. In contrast, broader coastal plains developed in the western Maestrazgo Basin and 

900 received relatively less siliciclastic input.

901 Palaeocurrents of the aeolian dune deposits indicate predominant wind transport 

902 directions to the W (ranging between NW-SW) and rarely to the SE (Figs. 14A, 15A, 16A). 

903 This is based on the interpretation of perfectly transverse dune types migrating under the 

904 influence of a unidirectional wind (cf. Rubin, 1987). Palaeocurrents pointing to the W (NW-

905 SW) are in agreement with palaeowind directions shown in the palaeogeographic models of 

906 eastern Iberia during the Late Jurassic (Fig. 1D), which interpret winds approaching eastern 

907 Iberia from the E and S (from the Tethys Ocean; Fig. 1D) during the winter and summer, 

908 respectively (Sellwood and Valdes, 2008), as well as hurricanes and storms also coming from 

909 the Tethys Ocean (Marsaglia and Klein, 1983). Winds approaching the South-Iberian Basin 

910 from the Tethys Ocean might have been deflected by the surrounding Iberian and Valencian 

911 massifs, resulting in them blowing parallel to the NW-SE oriented Valencian Massif, thereby 
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912 producing winds blowing to the SE in the basin and, thus, leading to the migration of aeolian 

913 dunes to the SE. This similarly occurs in some present-day mountain ranges, which act as 

914 barriers to prevailing wind currents, causing their deflection, so they blow parallel to the trend 

915 of the mountain ranges (e.g. O´Connor et al., 1994; McCauley and Sturman, 1999; Neiman et 

916 al., 2010). Moreover, other investigations interpret that winds also approached Iberia from the N 

917 (from the Boreal realm; Fig. 1D) during the Kimmeridgian (Benito et al., 2005). These 

918 northerly winds could have penetrated along the Iberian Basin and increased their velocity, as a 

919 consequence of its southwards narrowing (Fig. 1D), leading to the occurrence of south-

920 eastwards winds in the SE Iberian Basin.

921 Deciphering the palaeoclimate of eastern Iberia during the Late Jurassic

922 Palaeoclimatic and palaeogeographic reconstructions for the Late Jurassic show that 

923 Iberia was located in the subtropics (Fig. 1D) and that its climate was warm (Valdes, 1993; 

924 Valdes and Sellwood, 1992), seasonal (Rees et al., 2000; Diéguez et al., 2010) and subject to 

925 seasonal rainfalls (Valdes and Sellwood, 1992) and hurricanes coming from the Tethys Ocean 

926 (Marsaglia and Klein, 1983). Models also show a trend of increasing aridity during the Late 

927 Jurassic (Hallam, 1984, 1985; Hallam et al., 1993). However, recent studies place the limit 

928 between the arid and the tropical-subtropical belts at the eastern margin of Iberia, from where 

929 more humid conditions prevailed (Sellwoood and Valdes, 2008; Boucot et al., 2013). In this 

930 context, the fact that the siliciclastic sediments of the studied succession include coeval deposits 

931 that are common of both arid to semiarid and humid to subhumid settings makes it difficult to 

932 discern the specific palaeoclimatic setting that prevailed during deposition.

933 The studied succession includes ephemeral fluvial channels and aeolian dune deposits, 

934 locally containing desert roses, which are features commonly linked to arid to semiarid settings 

935 (e.g. Tucker and Benton, 1982; Holz and Scherer, 2000; Spalletti and Colombo Piñol, 2005; 

936 Boucot et al., 2013; Priddy and Clarke, 2020). In fact, the fluvial-aeolian interactions recorded 

937 in the studied deposits, such as the development of ephemeral fluvial channels between aeolian 
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938 dunes and the presence of standing water bodies in interdunes during periods of rainfalls, are 

939 similar to those reported in many present-day and ancient arid to semiarid environments (e.g. 

940 Glennie, 1970; Langford, 1989; Stanistreet and Stollhofen, 2002; Veiga et al., 2002; Veiga and 

941 Spalletti, 2007; Rodríguez-López et al., 2014 and references therein; Al-Masrahy and 

942 Mountney, 2015; Liu and Coulthard, 2015; Kocurek et al., 2020; see Massive and indistinctly 

943 stratified aeolian dune architectural element; Fig. 15). Nevertheless, similar fluvial-aeolian 

944 interactions can also occur in humid to subhumid climates in present-day settings (e.g. 

945 Mountney and Russell, 2009; Al-Masrahy and Mountney, 2015; dos Santos and dos Santos, 

946 2015). Aeolian dunes, accumulated through the process of bedform climbing, have been widely 

947 documented in many ancient examples developed in arid to semiarid settings (e.g. Kocurek, 

948 1981; Clemmensen, 1989; Mountney et al., 1999; Mountney and Thompson, 2002), but they 

949 also occur nowadays in modern humid to subhumid climates, such as in the coastal plains of 

950 Oregon (USA; Cooper, 1958; Hunter et al., 1983; Peterson et al., 2007). In these coastal plains 

951 of Oregon, aeolian dune fields of relatively modest size (from 7 to 15 km2 approximately) 

952 develop next to coastal lakes and vegetated areas, which are crossed by rivers (Cooper, 1958; 

953 Hunter et al., 1983; Peterson et al., 2007). These aeolian dunes develop in areas with high 

954 sediment supply, where aeolian sand comes from wind reworking of a local source of subaerial 

955 exposed sand; this is similar to the interpreted setting for the climbing aeolian dune deposits of 

956 the studied succession. In the case of the coastal aeolian dunes of Oregon, aeolian sand comes 

957 predominantly from the reworking of sandy beach sediments (Peterson et al., 2007), whereas in 

958 the case of the Late Jurassic succession it was predominantly derived from the sandy fluvial and 

959 deltaic sediments that underwent subaerial exposure after periods seasonal rainfalls (see 

960 Palaeoenvironmental setting of eastern Iberia during the Late Jurassic).

961 The studied unit also includes abundant deposits indicative of permanent water courses 

962 that occur laterally and vertically related with those of the aeolian and ephemeral fluvial 

963 channels (Figs. 2, 4). Some of them correspond to those deposited in perennial to semi-perennial 

964 fluvial channels that had a seasonal discharge. Variable discharge rivers nowadays occur in 
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965 areas controlled by monsoonal-type precipitation (e.g. Fielding et al., 2011; Plink-Björklund, 

966 2015), which is coherent with the interpretation of common development of seasonal storms and 

967 hurricanes in Iberia during the Late Jurassic (Marsaglia and Klein, 1983; Valdes and Sellwood, 

968 1992). In present-day settings, seasonal rivers transmit a perennial discharge in monsoonal 

969 domains, whereas in subtropical arid to semiarid settings they typically only transmit flow 

970 during the monsoonal season and could even be dry the rest of time, unless their catchment area 

971 is located in the monsoonal domain (e.g. Nile River; Plink-Björklund, 2015). Other deposits 

972 indicative of permanent water courses correspond to the deltaic sediments, which were 

973 deposited in permanent to semi-permanent water bodies, as well as the abundant vegetation. 

974 Although vegetation can locally develop in arid to semiarid settings in low-lying areas with a 

975 high water table, the occurrence of plant remains (carbonaceous detritus, fragments of fossil 

976 trunks and other remains) and/or edaphic features occurs widespread in all the studied deposits 

977 (fluvial channels, distributary mouth-bars, deltaic, flood plain, splay lobes, wet interdunes of the 

978 Massive and indistinctly stratified aeolian element) in both basins (Fig. 2; Table 1). 

979 Furthermore, the studied deposits include a great abundance of dinosaur remains and, 

980 especially, of herbivorous dinosaurs (sauropods, stegosaurs and scarce ornithopods; e.g. 

981 Casanovas-Cladellas et al., 1999, 2001; Cobos et al., 2010, 2020; Royo-Torres et al., 2006, 

982 2009, 2020; Alcalá et al., 2009, 2018; Company et al., 2010; Suñer et al., 2014). These 

983 observations reinforce the interpretation of a setting with availability of abundant vegetation and 

984 permanent freshwater sources. Therefore, collectively these features indicate a more humid and 

985 seasonal setting that was controlled by monsoonal-type precipitation during deposition of the 

986 studied succession. This interpretation is coherent with that recently made for the coeval Late 

987 Jurassic Lourinhã Fm in Portugal, which points to a warm subhumid climate with a strongly 

988 seasonal precipitation pattern (Myers et al., 2012).

989 Comparison with modern analogous systems

990 A modern coastal setting that includes a wide variety of depositional subenvironments 

991 characteristic of arid to semiarid and humid to subhumid settings, similarly to what occurs in the 
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992 Villar del Arzobispo Fm, is developed in the Lençóis Maranhenses National Park in NE Brazil 

993 (Fig. 18). It comprises an aeolian dune field located next to an estuary (Fig. 18A), where flood 

994 plains, intermittent interdune ponds, perennial and ephemeral rivers, tidal plains (e.g. Gonçalves 

995 et al., 2003; Parteli et al., 2006; dos Santos and dos Santos, 2015; Ielpi, 2017) and deltas 

996 develop. This system forms in a tropical subhumid climate in which 90% of annual rainfall 

997 occurs during the wet season (Parteli et al., 2006; dos Santos and dos Santos, 2015). During 

998 seasonal rainfalls, interdune ponds are flooded by rainwater or by the upwelling of groundwater 

999 (dos Santos and dos Santos, 2015), giving rise to standing water bodies in the interdunes areas 

1000 (Fig. 18B), as similarly interpreted for the studied aeolian deposits (see Massive and indistinctly 

1001 stratified aeolian dune architectural element). In Lençóis Maranhenses, sand of aeolian dunes 

1002 developing next to tidal channels is reworked by tides (Fig. 18C). This process cannot be 

1003 discarded in the studied deposits, as aeolian interdunes might have been flooded by storms 

1004 and/or spring tides, since they developed in a coastal setting.

1005 In Lençóis Maranhenses, semi-perennial rivers cross the flood plain areas and flow into 

1006 shallow water bodies where deltaic sediments are deposited (Fig. 18D), as similarly interpreted 

1007 for the studied deposits (see Deltaic architectural elements). In this system, rivers also transect 

1008 the aeolian dune field (Fig. 18E-G; Ielpi, 2017). In some cases, rivers erode aeolian dune flanks 

1009 (Fig. 18F) and, in other cases, aeolian dunes migrate over fluvial channels that are dried out or 

1010 transmit a very low discharge (Fig. 18G), as similarly interpreted for the studied succession (see 

1011 Massive and indistinctly stratified aeolian dune architectural element). Furthermore, in Lençóis 

1012 Maranhenses, aeolian dunes migrate over small shallow deltas (Fig. 18E, H-I). Similarly, the 

1013 studied fossil aeolian dunes locally overlie deltaic deposits (Figs. 4, 10A, 16C-D), indicating 

1014 that aeolian dunes developed next to a delta and migrated over the deltaic plain. In Lençóis 

1015 Maranhenses, aeolian dunes are reworked by distributary channels (Fig. 18I). A similar process 

1016 would explain the generally well-sorted texture of sandstone deposited in the delta terminal 

1017 distributary channels and the delta fronts of the studied deposits (Fig. 11F).
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1018 Nevertheless, although the Late Jurassic and the Brazilian systems have numerous 

1019 similarities, they also show differences regarding their geotectonic setting, which influence the 

1020 sedimentary features of their fluvial deposits. The presently active Brazilian system is 

1021 developed in a stable tectonic setting. By contrast, the Late Jurassic succession was deposited in 

1022 a tectonically-active extensional basin, which would have led to the development of steeper 

1023 topographic gradients. This would have favoured the incision of streams, as occurs in nowadays 

1024 tectonically-active settings (e.g. Bull, 2007; Allen and Allen, 2013), which could transport very 

1025 poorly sorted conglomerates displaying clasts of large sizes and subangular shapes and deposit 

1026 them in the ephemeral and perennial to semi-perennial fluvial channels during periods of intense 

1027 rainfalls (Figs. 1D, 2, 17), as those observed in the studied succession. Another difference is 

1028 that, in the Late Jurassic system, aeolian dunes did not form an extensive dune field like in 

1029 Lençóis Maranhenses. The ancient system was likely similar to the transition zone located 

1030 between the tidal flats of the estuary and the aeolian field of the Brazilian analogue (Fig. 18A). 

1031 Aeolian dunes were apparently more abundant towards the landward areas of the South-Iberian 

1032 Basin (Fig. 1D).

1033 Moreover, the studied succession locally includes desert roses in the aeolian deposits 

1034 (see Climbing aeolian dune architectural element), which, to our knowledge, have not been 

1035 reported in the Brazilian aeolian dunes. Nevertheless, although the occurrence of evaporites has 

1036 traditionally been linked to arid or semiarid settings (e.g. Hallam, 1984; Warren, 2016), they 

1037 have also been locally identified in humid (see Argentinean Rio de la Plata estuary in Carol et 

1038 al., 2016) and subhumid settings (see Australian Burdekin River Delta in Fielding et al., 2006).

1039 Thus, the comparison made between deposits of the Villar del Arzobispo Fm and those 

1040 of present-day settings highlights that deposits that characteristically develop under the 

1041 influence of contrasting climate regimes (arid and humid) could appear laterally and vertically 

1042 interbedded in the fossil record as a result of deposition in intermediate climates. This study 

1043 highlights the importance of carrying out a careful and thorough sedimentological analysis 

1044 when interpreting the palaeoclimatic significance of ancient successions, taking into account all 
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1045 available evidence from deposits that represent multiple coeval sub-environments in the rock 

1046 record.

1047 CONCLUSIONS

1048 This work presents the sedimentological analysis of the siliciclastic deposits of the Late 

1049 Jurassic Villar del Arzobispo Fm cropping out in the South-Iberian and western Maestrazgo 

1050 basins. Detailed lithofacies analysis has enabled establishment of the palaeoenvironmental, 

1051 palaeogeographical and palaeoclimatic setting of eastern Iberia during the Late Jurassic.

1052 The siliciclastic studied succession was deposited in a coastal and alluvial plain crossed 

1053 by ephemeral and perennial to semi-perennial fluvial channels that had a seasonal discharge and 

1054 underwent deposition of splay lobes during flood events. Fluvial channels flowed into shallow 

1055 freshwater bodies located in the flood plain, leading to the accumulation of small deltas. 

1056 Seawards, fluvial channels bifurcated in distributary channels, which flowed into coastal and 

1057 shallow marine areas, leading to the development of distributary mouth-bars. Some water 

1058 bodies located in the flood plain were connected to the sea, allowing transport of brackish and 

1059 marine bioclasts from shallow marine areas during storms and/or spring tides. Siliciclastic 

1060 sediments underwent periods of subaerial exposure, causing the wind-reworking of sand to form 

1061 aeolian dunes; this led to the preservation of one of the few known examples of dome-shaped 

1062 aeolian dunes in the fossil record. The coastal and alluvial plain was laterally connected to the 

1063 E-SE to tidal flats and shallow marine areas, which underwent deposition of peloidal and/or 

1064 micritic limestone and bioclastic and/or oolitic limestone, respectively.

1065 The studied coastal and alluvial succession includes deposits that are typical of arid to 

1066 semiarid settings, such as aeolian dunes and ephemeral channel deposits. However, the coeval 

1067 occurrence of deposits indicative of permanent water courses, such as perennial to semi-

1068 perennial fluvial channel deposits and deltaic sediments deposited in permanent water bodies, as 

1069 well as abundant plant remains and large dinosaur faunas, suggests a more humid and seasonal 

1070 setting controlled by monsoonal-type precipitation.
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1071 A comparison performed between these Late Jurassic deposits and those developing 

1072 nowadays in the Lençóis Maranhenses National Park (NE Brazil) – a coastal system located in a 

1073 subhumid tropical setting with a seasonal precipitation pattern that includes very similar aeolian, 

1074 fluvial and deltaic environments to those interpreted in the studied succession – has revealed 

1075 that deposits characteristic of contrasting climate regimes (arid and humid) could be laterally 

1076 and vertically related in ancient successions as a result of deposition in complex coevally active 

1077 coastal environments present in intermediate climates.
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1793 map was obtained and modified from the geological map of the Iberian Peninsula and the 

1794 Balearic and Canary Islands (1995 edition, scale 1:1.000.000, Caride de Liñan, 1995). C) 

1795 Geological map of the study area of the South-Iberian and the western Maestrazgo basins 

1796 (modified from Campos-Soto et al., 2019), showing the location of the stratigraphic sections, 

1797 the main areas where additional outcrops have been studied for this work (for more details on 

1798 the additional studied outcrops see Campos Soto, 2020) and the panels shown in Figs. 4 and 5. 

1799 The geological data were obtained and modified from the geological map Z1700 of the 

1800 Geological Spanish Survey (GEODE, scale 1:50.000; López-Olmedo et al., 2018). D) 

1801 Palaeogeographic reconstruction of eastern and northern Iberia during the Tithonian, to the left 

1802 (palaeogeography and palaeocurrents obtained and modified from Thierry et al., 2000 and 

1803 Campos-Soto et al., 2019 and references therein). To the right detailed palaeogeography of the 

1804 South-Iberian and western Maestrazgo basins (data obtained and modified from Campos-Soto et 

1805 al., 2019). The line that represents the 30ºN latitude in the palaeogeographic reconstruction of 
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1806 eastern and northern Iberia has been modified according to data published by Sellwood and 

1807 Valdes (2008) and Boucot et al. (2013). Tracks of hurricanes and storms for the Late Jurassic 

1808 are based on Marsaglia and Klein (1983) and wind tracks blowing from the Tethys and the 

1809 Boreal realms are based on Sellwood and Valdes (2008) and Benito et al. (2005), respectively. 

1810 Palaeocurrents obtained in this work from the subaquatic and aeolian deposits in the different 

1811 studied areas of both basins have been represented in the palaeogeographic map with blue and 

1812 orange arrows, respectively. The length of the arrows corresponds to the abundance of 

1813 measurements. The palaeogeographic reconstruction of the South-Iberian and the western 

1814 Maestrazgo Basin, to the right, shows the location of the specific areas studied here: CE 

1815 (Cedrillas), CAS (El Castellar), FA (Formiche Alto) and MO (Mora de Rubielos) in the western 

1816 Maestrazgo Basin, and RI (Riodeva), LO-AL (Losilla-Alpuente), BE (Benagéber) and VI 

1817 (Villar del Arzobispo) in the South-Iberian Basin.  

1818 Fig. 2. Stratigraphic sections of the Villar del Arzobispo Fm logged in the western Maestrazgo 

1819 (Cedrillas, El Castellar, Formiche Alto and Mora de Rubielos) and in the South-Iberian basins 

1820 (Riodeva, Losilla-Alpuente, Benagéber and Villar del Arzobispo). Modified from Campos-Soto 

1821 et al. (2019). This figure also includes a simplified map showing the location of the sections at 

1822 the studied areas (see also Fig. 1C). All the sections show, at their right part, the main 

1823 sedimentary structures and paleontological data, including the dinosaur remains (for more 

1824 information on dinosaur fossil sites see Figs. 2 and 3 of Campos-Soto et al., 2017a and Fig. 3A 

1825 of Campos-Soto et al., 2019). The Losilla-Alpuente section also shows, at its right part, some 

1826 partial stratigraphic sections logged in laterally related outcrops.

1827 Fig. 3. A) Diagrams showing the different stages of system evolution during sedimentation of 

1828 the Villar del Arzobispo Fm. These stages comprise: i) the deposition of shallow marine 

1829 deposits of the CLP during the Kimmeridgian; ii) deposition of the essentially siliciclastic 

1830 deposits of the SUP during a regressive stage during the Kimmeridgian-Tithonian; during this 

1831 stage, fluvial, aeolian and deltaic depositional settings manly developed landwards; these 

1832 settings passed gradually seawards to coastal to shallow marine settings; iii) deposition of the 
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1833 upper part of the SUP during the Tithonian marine transgression. The reconstruction of the 

1834 different stages of evolution is based on the data obtained from the stratigraphic sections (Fig. 

1835 2), the geological mapping (see Fig. 1C and Fig. S1 of Supplementary Material), and the ages 

1836 obtained through the analysis of the larger benthic foraminifera (see Campos-Soto et al. (2016a; 

1837 2016b; 2017a; 2019). Deposits of each studied area are delimited by syn-sedimentary faults, 

1838 which have been represented with vertical lines. In the Formiche Alto area, sedimentation took 

1839 place in two different blocks delimited by syn-sedimentary faults (F1 and F2; see location on 

1840 geological maps of Figs. 3C and Fig. S1 of Supplementary Material). Note that the block 

1841 located to the southeast of F2 corresponds to the stratigraphic section shown in Fig. 2 for the 

1842 Formiche Alto area. Areas with no outcrop control correspond to the areas where no Upper 

1843 Jurassic deposits have been identified (see details in geological map of Fig. 1B). B) Simplified 

1844 palaeogeographic reconstruction of eastern Iberia during the Late Jurassic (see Fig. 1D for 

1845 details), showing the location of the studied areas and the correlation line displayed in diagrams 

1846 of Fig. 3A. The blue dashed line shows the position of the geological map of the Peñagolosa 

1847 sub-basin shown in Fig. 3C. C) Simplified geological map of the Peñagolosa sub-basin (western 

1848 Maestrazgo basin) showing the location of the stratigraphic sections and the faults F1 and F2, 

1849 which bound the two sedimentation blocks of the Formiche Alto area represented in Fig. 3A 

1850 (modified from Campos-Soto et al., 2017a). For more details of this geological map, see Fig. S1 

1851 of Supplementary Material.

1852 Fig. 4. A-B) Panoramic field photograph (A) and line drawing (B) of deposits of the SUP of the 

1853 Villar del Arzobispo Fm at the most landward area of the South-Iberian Basin (see Fig. 1C for 

1854 location). The SUP comprises flood plain, fluvial channel, aeolian dune and deltaic deposits that 

1855 are interbedded and laterally related.

1856 Fig. 5. A-B) Panoramic field photograph (A) and line drawing (B) of deposits of the uppermost 

1857 part of the SUP of the Villar del Arzobispo Fm at the most seawards area of the W Maestrazgo 

1858 Basin (Mora de Rubielos area; see Fig. 1C and Fig. S1 of Supplementary Material for location). 

1859 Note that siliciclastic deposits (coastal terminal distributary channel and distributary-mouth bar 
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1860 deposits) and marl are interbedded and pass laterally to the S to shallow marine bioclastic and 

1861 oolitic limestone, which, in turn, gets progressively thicker and more abundant southwards. 

1862 Fig. 6. Ephemeral fluvial channel architectural element. A) Schematic diagram and log of the 

1863 ephemeral fluvial channel architectural element (bracket in the diagram shows the location of 

1864 the log; see Fig. 2 for legend) and palaeocurrents. B) Field photograph (Riodeva area) of 

1865 channelized conglomerate displaying large-scale cross strata and a slightly incisive erosive base. 

1866 Hammer for scale (white circle). C) Field photograph (Riodeva area) of a conglomerate lens 

1867 displaying an asymmetric and incisive erosive base, with a very steep margin, to the right, and a 

1868 less steep one, to the left. Conglomerate displays a unique set of cross strata that is conformable 

1869 to the less steep margin of the erosive base. D) Field photograph (Riodeva area) of a very 

1870 poorly-sorted and clast-supported conglomerate made by rounded quartzite (white arrows) and 

1871 sandstone clasts (red arrow). E-F) Field photographs (Cedrillas and Riodeva areas, respectively) 

1872 of poorly-sorted and clast-supported conglomerates made up of subangular to subrounded, 

1873 muddy and carbonate soft clasts. G) Dinosaur bone (red arrow) observed within conglomerate in 

1874 the Riodeva area.

1875 Fig. 7. Multistorey fluvial channel architectural element. A) Schematic diagram and log of the 

1876 multistorey fluvial channel architectural element (bracket in the diagram shows the location of 

1877 the log; see Fig. 2 for legend) and palaeocurrents. B-C) Field photograph (B) and line drawing 

1878 (C) of channelized sandstone and conglomerate element at the Riodeva area. Sandstone displays 

1879 large internal erosive surfaces filled by conglomerate or sandstone (red arrows). Sandstone 

1880 displays scour and fill structures (blue arrows) filled by foresets and backsets (green arrows) 

1881 strata that flatten upwards in places. In the lower part of the body, sandstone displays upwards 

1882 flattening strata with long wavelength (blue bracket). Sandstone also displays sets of large-scale 

1883 cross strata at the upper part of the body (pink arrows), whose thickness decreases upwards (red 

1884 bracket). Conglomerate displays scour and fill structures filled by backset strata (white arrows). 

1885 Note the asymmetrical scour filled by conglomerate in the lower part of the body, displaying 

1886 backset strata that flatten upwards and fine upwards to sandstone (green bracket). D) Field 
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1887 photograph (Riodeva area) of a multistorey fluvial channel element composed of sandstone and 

1888 conglomerate. Note that sandstone displays internal erosive surfaces (red dotted lines), which 

1889 are filled by sandstone or conglomerate (white arrow and orange-shaded area). E) Channelized 

1890 sandstone (El Castellar area) displaying a basal and internal erosive surfaces (red-dotted lines), 

1891 which are filled by large-scale cross strata sandstone. Locally there is a thin layer of siliciclastic 

1892 mudstone containing abundant carbonaceous detritus interbedded with sandstone (yellow 

1893 arrows). F) Detail of the thin layers of siliciclastic mudstone containing carbonaceous detritus 

1894 (yellow arrows) observed in Fig. 7E. 

1895 Fig. 8. Upper flow regime sedimentary structures observed within the multistorey fluvial 

1896 channel architectural element (El Castellar area). A-B) Field photograph (A) and line drawing 

1897 (B) of a sandstone body displaying convex-up low-angle cross strata (red bracket; blue arrows). 

1898 C-D) Field photograph (C) and line drawing (D) of sandstone displaying scour and fill 

1899 structures, which is directly overlying the convex-up low-angle cross strata sandstone of Fig. 8A 

1900 (red asterisk marks the same point in both pictures). Note that scours are filled by foreset and 

1901 backset strata (yellow and red arrows, respectively) that flatten upwards in places (blue bracket). 

1902 In the upper part of the body, a large-scale cross strata set is observed (white arrow), in which 

1903 the inclination of foresets indicates the flow direction.

1904 Fig. 9. Flood plain architectural element. A) Schematic diagram and log of the flood plain 

1905 architectural element (bracket in the diagram shows the location of the log; see Fig. 2 for 

1906 legend) and palaeocurrents measured in the non-channelized sandstone deposits included in this 

1907 element. B) Field photograph (Formiche Alto area) of reddish siliciclastic mudstone displaying 

1908 green mottling (red arrows). C) Non-channelized sandstone body (El Castellar area) displaying 

1909 a coarsening- and thickening-upwards trend (yellow bracket). The lower part is made up of 

1910 decimetre-thick sandstone beds, which include a fragment of a dinosaur bone (white arrow) and 

1911 which are interbedded with greyish-greenish siliciclastic mudstone. D) Non-channelized 

1912 sandstone (Riodeva area) displaying parallel lamination followed upwards by small-scale cross 

1913 strata. Wave ripple cross strata are observed at the top. E) Non-channelized sandstone 
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1914 displaying large-scale sigmoidal cross strata (Benagéber area). F) Dinosaur track observed at the 

1915 base of a non-channelized sandstone bed (dotted yellow line) at the Riodeva area. The dinosaur 

1916 track is preserved as a convex hyporelief (natural track cast) and shows slide marks (parallel 

1917 striations, white arrow) made by skin scales. G) Bioturbation observed as paired circular 

1918 openings at the top of a non-channelized sandstone bed at the Riodeva area. H) Field 

1919 photograph of limestone (red arrow) interbedded with reddish siliciclastic mudstone (Riodeva 

1920 area). I) Limestone made up of oncoids (white arrows) that are up to 6-7 cm large at the 

1921 Riodeva area. J) Field photograph of bioclastic limestone containing poorly-sorted bivalve 

1922 fragments (Losilla-Alpuente area). K) Photomicrograph of poorly-sorted bioclastic limestone, 

1923 which includes quartz grains, fragments of bivalves (green arrow), gastropods (yellow arrow), 

1924 echinoderms (blue arrow), ostracods (white arrow), miliolids (red arrow) and ooids (orange 

1925 arrows). 

1926 Fig. 10. Deltaic architectural elements. A) Schematic diagram and log of the deltaic elements 

1927 (bracket in the diagram shows the location of the log; see Fig. 2 for legend) and palaeocurrents 

1928 obtained in clinoforms of the delta-front element and in cross-bedded sets of the delta terminal 

1929 distributary channel element. B-C) Field photograph (B) and line drawing (C) of four 

1930 coarsening- and thickening-upwards deltaic successions (marked with blue brackets). Note that 

1931 the lower and uppermost deltaic successions do not crop out completely. The first three deltaic 

1932 successions, starting from the base, are made up of laterally-extensive cm-thick, very fine-to 

1933 fine-grained sandstone layers showing a very low angle inclination and alternating with mm-

1934 thick carbonaceous detritus layers, which are interpreted as deposits of the delta front element 

1935 (see text for details). In the two lowermost deltaic successions, the delta-font deposits are 

1936 truncated at their uppermost part by the delta terminal distributary channel element (orange 

1937 arrows). The delta terminal distributary channel element displays erosive surfaces and is filled 

1938 by sandstone displaying upwards flattening strata or backset strata (purple and green arrows, 

1939 respectively). The uppermost deltaic succession is made up of carbonaceous-rich, dark-grey 

1940 siliciclastic mudstone (delta-toe element, blue colour), which changes upwards to alternating 
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1941 sandstone and carbonaceous detritus layers (delta front element). D) Field photograph of the 

1942 delta-toe element comprising carbonaceous-rich, dark-grey siliciclastic mudstone interbedded 

1943 with very fine-grained rippled sandstone. E) Field photograph of cm-thick sandstone layers 

1944 alternating with mm to cm-thick carbonaceous detritus layers at the lower part of foresets of the 

1945 delta-front element. F) Field photograph of a sandstone layer at the lowermost part of the delta-

1946 front element displaying poorly-preserved dinosaur tracks at the base, which are preserved as 

1947 convex hyporeliefs or natural casts (white arrows and black dotted line). The dinosaur tracks 

1948 display elongated shapes, with irregular and deformed outlines and their infill is massive. They 

1949 penetrate up to 70 cm into the underlying deposit, made up of alternating carbonaceous-rich, 

1950 dark-grey siliciclastic mudstone and rippled sandstone layers, interpreted as delta toe deposits 

1951 (see text for details). All photographs were taken at the Riodeva area.

1952 Fig. 11. Deltaic architectural elements. A) Field photograph of sandstone displaying clinoforms. 

1953 B) Detail of three coarsening- and thickening-upwards deltaic successions (marked with blue 

1954 brackets) displaying clinoforms. Note that the lower part of foresets are draped by carbonaceous 

1955 detritus (red arrow) and, locally, these drapes extend upwards to the topsets (white arrow). C-D) 

1956 Field photograph (C) and line-drawing (D) of three coarsening- and thickening-upwards deltaic 

1957 successions (marked with blue brackets). Note that deposits of the lowermost succession are 

1958 truncated by an erosive surface, which incises 1.30 m downwards into the underlying sediments, 

1959 made up of thinly-bedded sandstone and carbonaceous detritus layers (delta-front element), and 

1960 it is filled by sandstone displaying large-scale cross strata (delta terminal distributary channel 

1961 element). The yellow start indicates the position of the sample shown in Fig. 11F. E) Detail of 

1962 deposits of the delta terminal distributary channel element observed in Fig.11C-D, displaying an 

1963 erosive base and formed by large-scale cross strata sandstone. F) Transmitted light 

1964 photomicrograph of a well-sorted sandstone. The location of the sample is indicated in Fig. 

1965 11C-D with a yellow star. All photographs were taken at the Riodeva area.

1966 Fig. 12. Coastal to shallow marine architectural elements. A) Schematic diagram of the coastal 

1967 to shallow marine architectural elements indicating the position of the logs shown in Fig. 12B 
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1968 and 13A. B) Log of the coastal terminal distributary channel architectural element (bracket in 

1969 the diagram shows the location of the log in Fig. 12A; see Fig. 2 for legend) and palaeocurrents 

1970 obtained in the W Maestrazgo Basin. C-D) Channelized sandstone (Formiche Alto area) 

1971 displaying a basal erosive base (red dotted line) and large-scale cross strata. This body is 

1972 interbedded with marl (white arrows), which, in turn, is interbedded with shallow marine 

1973 limestone (blue arrow) and distributary mouth-bar sandstone (orange arrows). Note that 

1974 sandstone displays an internal erosive surface (pink dotted line) filled by poorly-sorted 

1975 conglomerate and also includes thin layers of carbonaceous-rich marl between the large-scale 

1976 cross strata sets (yellow arrows). E) Detail of the thin layers of carbonaceous-rich marl located 

1977 between large-scale cross-strata sets (yellow arrow) and draping the bottomsets and the lower 

1978 part of foresets (white arrows). See location in Fig. 12D. F) Detail of the internal erosive surface 

1979 (pink dotted line) filled by poorly-sorted conglomerate (see location in Fig. 12C). G) Field 

1980 photograph of poorly-sorted mudstone pebbles including fragments of bivalves overlaying the 

1981 internal erosive surface (pink dotted line). See location in Fig. 12F.

1982 Fig. 13. Coastal to shallow marine architectural elements. A) Log of the distributary mouth-bar 

1983 element (bracket in the diagram shows the location of the log in Fig. 12A; see Fig. 2 for legend) 

1984 and palaeocurrents. B) Field photograph (Benagéber area) of a sandstone body displaying a 

1985 coarsening- and thickening-upwards trend (yellow bracket) and interbedded with shallow 

1986 marine limestone (greyish strata below and above yellow bracket). C-D) Field photograph (C) 

1987 and line drawing (D) of the distributary mouth-bar element (Mora de Rubielos area) comprising 

1988 a non-channelized sandstone body interbedded with marl that includes corals in life position 

1989 (black arrow indicates location of corals). Note that sandstone displays large-scale and 

1990 sigmoidal cross strata (white arrows). Hammer for scale. E) Field photograph of colonial corals 

1991 observed in life position at the Mora de Rubielos area. Note that the white arrows point to its 

1992 growth lines. See location of the coral at Fig. 13C-D. F) Detail of the septa of the coral shown in 

1993 Fig. 13E. G) Field photograph (Mora de Rubielos area) of cm-thick sandstone displaying wave 

1994 ripple strata at the top (white arrows) and interbedded with marl, giving rise to wavy bedding. 
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1995 H) Trigonioids and ostreids observed within a sandstone body (white and blue arrows, 

1996 respectively) at the Mora de Rubielos area. I) Burrowing traces observed at the top of a 

1997 sandstone body in the Formiche Alto area. 

1998 Fig. 14. Simple aeolian dune architectural element. A) Schematic diagram and log of the simple 

1999 aeolian dune architectural element (bracket in the diagram shows the location of the log, see 

2000 Fig. 2 for legend) and palaeocurrents. B-C) Field photograph (B) and line drawing (C) of a 

2001 sandstone body displaying a 6 m-thick large-scale cross strata set. Large-scale cross strata set is 

2002 made up of convex-up foresets passing upwards to low-angle inclined topsets. D) Field 

2003 photograph of a metre-thick sandstone body displaying a single set of large-scale cross strata. E) 

2004 Metre-thick sandstone body comprising a 4 m-thick large-scale cross strata set. Hammer for 

2005 scale (black circle). F) Detail of large-scale cross strata set observed in Fig. 14E. Large-scale 

2006 cross strata set is made up of successive cm-thick inversely graded strata. Note that the contact 

2007 between each stratum is sharp (red arrows). Hammer for scale. G) Transmitted light 

2008 photomicrograph of simple dune aeolian sandstone displaying well-sorted subrounded to 

2009 subangular grains. H) Transmitted light photomicrograph of sandstone strata displaying inverse 

2010 grain size grading. All photographs were taken at the Riodeva area.

2011 Fig. 15. Massive and indistinctly stratified aeolian dune architectural element. A) Schematic 

2012 diagram and log of the massive and indistinctly stratified aeolian dune architectural element 

2013 (bracket in the diagram shows the location of the log; see Fig. 2 for legend) and palaeocurrents. 

2014 B) Field photograph of massive and indistinctly stratified aeolian dune sandstone overlain by 

2015 the multistorey fluvial channel architectural element (its base is indicated with a yellow line). 

2016 Black lines represent faults. C) Field photograph of massive and indistinctly stratified aeolian 

2017 dune sandstone, which is laterally interbedded with conglomerate bodies of the ephemeral 

2018 fluvial channel architectural element (delimited by red lines). D) Field photograph of massive 

2019 and indistinctly stratified sandstone interbedded with conglomerate bodies (delimited by red 

2020 lines). Sandstone displays poorly preserved large-scale cross strata (foresets are outlined with 

2021 black lines). Note that the blue circle shows a 2 m large pocket rule (white line). E) Field 
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2022 photograph of massive and indistinctly stratified aeolian dune sandstone overlain by the 

2023 multistorey fluvial channel architectural element (its base is indicated with a yellow line). F) 

2024 Transmitted light photomicrograph of sandstone displaying subangular to subrounded and well-

2025 sorted grains. G-H) Field photograph (G) and line drawing (H) of sandstone displaying large-

2026 scale cross strata in which foresets pass downwards to laterally continuous bottomsets. 

2027 Carbonaceous detritus and mica flakes drape some bottomsets and the lowermost part of some 

2028 foresets. Note the high-angle foresets displayed by the cross strata set to the right of the 

2029 photograph (blue arrow). All photographs were taken at the Riodeva area.

2030 Fig. 16. Climbing aeolian dune architectural element. A) Schematic diagram and log of the 

2031 climbing aeolian dune architectural element (bracket in the diagram shows the location of the 

2032 log; see Fig. 2 for legend) and palaeocurrents. B) Field photograph of sandstone displaying a 

2033 large-scale cross stratified set, at least 2 m thick (note that the person in the photograph is 1.65 

2034 m tall). C-D) Field photograph (C) and line drawing (D) of sandstone displaying large-scale 

2035 tangential cross strata sets. Individual sets are delimited by low-angle inclined bounding 

2036 surfaces, which dip in the opposite direction to the foresets dip. E) Field photograph of large-

2037 scale and high-angle cross strata sandstone whose foresets are slightly deformed (yellow 

2038 arrows). F) Field photograph of tangential cross strata sandstone. G) Detail of the lower part of 

2039 foresets and bottomsets of large-scale cross strata sandstone. Foresets comprise cm-thick strata 

2040 pinching out downwards, which correspond to grainflow strata (gf). Grainflow strata are 

2041 interbedded with cm-thick strata pinching out upwards, corresponding to wind ripple strata (wr). 

2042 H) Detail of grainflow strata made up of fine- to medium-grained sandstone (blue bracket) and 

2043 wind ripple strata made up of very fine- to fine-grained sandstone (red brackets). I) Sandstone 

2044 pseudomorph after gypsum (desert rose formed by a rosette-like crystal aggregate). All 

2045 photographs were taken at the Riodeva area.

2046 Fig. 17. Reconstruction of the different palaeoenvironments inhabited by dinosaurs of the Villar 

2047 del Arzobispo Fm and of the lateral relationships between them (not at scale).
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2048 Fig. 18. Interactions between fluvial, tidal, deltaic, and aeolian environments observed in the 

2049 Lençóis Maranhenses National Park (NE Brazil). Satellite images were taken from Google 

2050 Earth in 2019. A) The coastal dune field of the Lençóis Maranhenses National Park (to the 

2051 right) is located next to the estuary of the Mearim River (to the left). B) Aeolian dunes 

2052 developing in a flooded area, at the end of the dune field. Note that stagnant water bodies 

2053 develop in the interdune areas (blue arrows). C) Aeolian dunes approaching a tidal channel 

2054 (blue arrows). Note how the aeolian interdunes may get flooded (red arrows). D) The coastal 

2055 flood plain is crossed by the Grande River, which flows into a shallow water body in which 

2056 deltaic sediments are deposited (red arrow). E) The coastal dune field is penetrated by the Negro 

2057 River (blue arrows) and in its margin small deltas develop in stagnant water bodies (red 

2058 squares). F-G) Interdune areas crossed by the Negro River. Note that the fluvial channel erodes 

2059 the aeolian dune sediments in F (pink arrow) and that aeolian dunes migrate over the fluvial 

2060 channel in G (blue arrow). Note that small deltas develop in the interdune areas (red arrows). H-

2061 I) Deltas developing in the margins of the dune field. Note that the aeolian dunes migrate over 

2062 the delta plain in H (blue arrows) and that the distributary channels rework the aeolian dune 

2063 sediments in I (red arrow).

2064 Table 1. Summary of the essentially siliciclastic coastal and alluvial architectural elements of 

2065 the Villar del Arzobispo Fm in the South-Iberian and western Maestrazgo basins. See Fig. 2 for 

2066 location of the architectural elements. The references are cited in the main text.

2067 Supplementary Material

2068 S1. A) Geological map of western Maestrazgo and South-Iberian Basins (modified from 

2069 Campos-Soto et al., 2019). The blue dotted rectangle indicates the location of the map shown in 

2070 Fig. S1B. B) Geological map of western Maestrazgo Basin (modified from Campos-Soto et al., 

2071 2017a), showing the location of the stratigraphic sections of the Villar del Arzobispo Fm 

2072 included in Fig. 2 and the position of the panel shown in Fig. 5. The map includes the detailed 

2073 mapping of the shallow marine bioclastic and oolitic limestone (dark blue lines) and the inter- to 
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2074 supratidal peloidal and micritic limestone (light blue lines) of the studied succession, as well as 

2075 the mapping of the syn-extensional faults that controlled its thickness variations. Note how 

2076 shallow marine bioclastic and oolitic limestone gets progressively thinner and less abundant 

2077 towards the north and gets thicker and more abundant towards the SE of the study area, where 

2078 the thickness of the studied succession significantly increases. 

Page 164 of 186Sedimentology



 

Fig. 1. A)  Sim plified geological m ap of the I berian Peninsula indicat ing the locat ion of the South- I berian and 

Maest razgo basins within the Mesozoic I berian Extensional System  (m odified from  Mas et  al.,  2004) . The red 

square indicates the locat ion of the m ap shown in Fig. 1B. B)  Geological m ap of eastern Spain showing the 

lim its of the deposits of the Maest razgo Basin and its sub-basins -sb-  (modified from  Salas and Guim erà, 

1996, 1997, Salas et  al.,  2001;  Bover-Arnal and Salas, 2019)  and the South- I berian Basin. The geological 

inform at ion of this m ap was obtained and m odified from  the geological m ap of the I berian Peninsula and the 

Balearic and Canary I slands (1995 edit ion, scale 1: 1.000.000, Caride de Liñan, 1995) . C)  Geological m ap of 

the study area of the South- I berian and the western Maest razgo basins (m odified from  Cam pos-Soto et  al.,  

2019) , showing the locat ion of the st rat igraphic sect ions, the main areas where addit ional outcrops have 

been studied for this work ( for m ore details on the addit ional studied outcrops see Cam pos Soto, 2020)  and 

the panels shown in Figs. 4 and 5. The geological data were obtained and m odified from  the geological m ap 

Z1700 of the Geological Spanish Survey (GEODE, scale 1: 50.000;  López-Olm edo et  al.,  2018) . D)  

Palaeogeographic reconst ruct ion of eastern and northern I beria during the Tithonian, to the left  

(palaeogeography and palaeocurrents obtained and m odified from  Thierry et  al.,  2000 and Campos-Soto et  
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al., 2019 and references therein) . To the r ight  detailed palaeogeography of the South- I berian and western 

Maest razgo basins (data obtained and m odified from  Cam pos-Soto et  al.,  2019) . The line that  represents 

the 30º N lat itude in the palaeogeographic reconst ruct ion of eastern and northern I beria has been modified 

according to data published by Sellwood and Valdes (2008)  and Boucot  et  al. (2013) . Tracks of hurr icanes 

and storms for the Late Jurassic are based on Marsaglia and Klein (1983)  and wind t racks blowing from  the 

Tethys and the Boreal realm s are based on Sellwood and Valdes (2008)  and Benito et  al. (2005) , 

respect ively. Palaeocurrents obtained in this work from  the subaquat ic and aeolian deposits in the different  

studied areas of both basins have been represented in the palaeogeographic m ap with blue and orange 

arrows, respect ively. The length of the arrows corresponds to the abundance of m easurem ents. The 

palaeogeographic reconst ruct ion of the South- I berian and the western Maest razgo Basin, to the r ight , shows 

the locat ion of the specific areas studied here:  CE (Cedrillas) , CAS (El Castellar) , FA (Form iche Alto)  and MO 

(Mora de Rubielos)  in the western Maest razgo Basin, and RI  (Riodeva) , LO-AL (Losilla-Alpuente) , BE 

(Benagéber)  and VI  (Villar del Arzobispo)  in the South- I berian Basin.   
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Fig. 2. St rat igraphic sect ions of the Villar del Arzobispo Fm  logged in the western Maest razgo (Cedrillas, El 

Castellar, Form iche Alto and Mora de Rubielos)  and in the South- I berian basins (Riodeva, Losilla-Alpuente, 

Benagéber and Villar del Arzobispo) . Modified from  Cam pos-Soto et  al. (2019) . This figure also includes a 

sim plified m ap showing the locat ion of the sect ions at  the studied areas (see also Fig. 1C) . All the sect ions 

show, at  their  r ight  part , the m ain sedim entary st ructures and paleontological data, including the dinosaur 

rem ains ( for m ore inform at ion on dinosaur fossil sites see Figs. 2 and 3 of Campos-Soto et  al., 2017a and 

Fig. 3A of Cam pos-Soto et  al.,  2019) . The Losilla-Alpuente sect ion also shows, at  its r ight  part , som e part ial 

st rat igraphic sect ions logged in laterally related outcrops. 
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Fig. 3. A)  Diagrams showing the different  stages of system  evolut ion during sedim entat ion of the Villar del 

Arzobispo Fm . These stages com prise:  i)  the deposit ion of shallow m arine deposits of the CLP during the 

Kim m eridgian;  ii)  deposit ion of the essent ially siliciclast ic deposits of the SUP during a regressive stage 

during the Kim meridgian-Tithonian;  during this stage, fluvial, aeolian and deltaic deposit ional set t ings m anly 

developed landwards;  these set t ings passed gradually seawards to coastal to shallow m arine set t ings;  iii)  

deposit ion of the upper part  of the SUP during the Tithonian m arine t ransgression. The reconst ruct ion of the 

different  stages of evolut ion is based on the data obtained from  the st rat igraphic sect ions (Fig. 2) , the 

geological m apping (see Fig. 1C and Fig. S1 of Supplem entary Material) , and the ages obtained through the 

analysis of the larger benthic foram inifera (see Campos-Soto et  al. (2016a;  2016b;  2017a;  2019) . Deposits 

of each studied area are delim ited by syn-sedim entary faults, which have been represented with vert ical 

lines. I n the Form iche Alto area, sedim entat ion took place in two different  blocks delim ited by syn-

sedim entary faults (F1 and F2;  see locat ion on geological m aps of Figs. 3C and Fig. S1 of Supplem entary 

Material) . Note that  the block located to the southeast  of F2 corresponds to the st rat igraphic sect ion shown 

in Fig. 2 for the Form iche Alto area. Areas with no outcrop cont rol correspond to the areas where no Upper 
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Jurassic deposits have been ident ified (see details in geological map of Fig. 1B) . B)  Sim plified 

palaeogeographic reconst ruct ion of eastern I beria during the Late Jurassic (see Fig. 1D for details) , showing 

the locat ion of the studied areas and the correlat ion line displayed in diagram s of Fig. 3A. The blue dashed 

line shows the posit ion of the geological m ap of the Peñagolosa sub-basin shown in Fig. 3C. C)  Sim plified 

geological m ap of the Peñagolosa sub-basin (western Maest razgo basin)  showing the locat ion of the 

st rat igraphic sect ions and the faults F1 and F2, which bound the two sedim entat ion blocks of the Form iche 

Alto area represented in Fig. 3A (m odified from  Cam pos-Soto et  al.,  2017a) . For m ore details of this 

geological m ap, see Fig. S1 of Supplem entary Material. 
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Fig. 4. A-B)  Panoram ic field photograph (A)  and line drawing (B)  of deposits of the SUP of the Villar del 

Arzobispo Fm  at  the most  landward area of the South- I berian Basin (see Fig. 1C for locat ion) . The SUP 

com prises flood plain, fluvial channel, aeolian dune and deltaic deposits that  are interbedded and laterally 

related. 
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Fig. 5. A-B)  Panoram ic field photograph (A)  and line drawing (B)  of deposits of the upperm ost  part  of the 

SUP of the Villar del Arzobispo Fm  at  the m ost  seawards area of the W Maest razgo Basin (Mora de Rubielos 

area;  see Fig. 1C and Fig. S1 of Supplem entary Material for locat ion) . Note that  siliciclast ic deposits (coastal 

term inal dist r ibutary channel and dist r ibutary-mouth bar deposits)  and m arl are interbedded and pass 

laterally to the S to shallow m arine bioclast ic and oolit ic lim estone, which, in turn, gets progressively thicker 

and m ore abundant  southwards. 
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Fig. 6. Ephem eral fluvial channel architectural elem ent . A)  Schem at ic diagram  and log of the ephem eral 

fluvial channel architectural elem ent  (bracket  in the diagram  shows the locat ion of the log;  see Fig. 2 for 

legend)  and palaeocurrents. B)  Field photograph (Riodeva area)  of channelized conglom erate displaying 

large-scale cross st rata and a slight ly incisive erosive base. Hamm er for scale (white circle) . C)  Field 

photograph (Riodeva area)  of a conglom erate lens displaying an asym m etr ic and incisive erosive base, with 

a very steep m argin, to the r ight , and a less steep one, to the left . Conglomerate displays a unique set  of 

cross st rata that  is conform able to the less steep m argin of the erosive base. D)  Field photograph (Riodeva 

area)  of a very poorly-sorted and clast -supported conglom erate m ade by rounded quartzite (white arrows)  

and sandstone clasts ( red arrow) . E-F)  Field photographs (Cedrillas and Riodeva areas, respect ively)  of 

poorly-sorted and clast -supported conglom erates m ade up of subangular to subrounded, m uddy and 

carbonate soft  clasts. G)  Dinosaur bone ( red arrow)  observed within conglom erate in the Riodeva area. 

170x193m m  (300 x 300 DPI )  

Page 172 of 186Sedimentology



 

Fig. 7. Mult istorey fluvial channel architectural elem ent . A)  Schem at ic diagram and log of the mult istorey 

fluvial channel architectural elem ent  (bracket  in the diagram  shows the locat ion of the log;  see Fig. 2 for 

legend)  and palaeocurrents. B-C)  Field photograph (B)  and line drawing (C)  of channelized sandstone and 

conglom erate elem ent  at  the Riodeva area. Sandstone displays large internal erosive surfaces filled by 

conglom erate or sandstone ( red arrows) . Sandstone displays scour and fill st ructures (blue arrows)  filled by 

foresets and backsets (green arrows)  st rata that  flat ten upwards in places. I n the lower part  of the body, 

sandstone displays upwards flat tening st rata with long wavelength (blue bracket ) . Sandstone also displays 

sets of large-scale cross st rata at  the upper part  of the body (pink arrows) , whose thickness decreases 

upwards ( red bracket ) . Conglom erate displays scour and fill st ructures filled by backset  st rata (white 

arrows) . Note the asym m etrical scour filled by conglom erate in the lower part  of the body, displaying 

backset  st rata that  flat ten upwards and fine upwards to sandstone (green bracket ) . D)  Field photograph 

(Riodeva area)  of a mult istorey fluvial channel elem ent  composed of sandstone and conglom erate. Note that  

sandstone displays internal erosive surfaces ( red dot ted lines) , which are filled by sandstone or 

conglom erate (white arrow and orange-shaded area) . E)  Channelized sandstone (El Castellar area)  
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displaying a basal and internal erosive surfaces ( red-dot ted lines) , which are filled by large-scale cross st rata 

sandstone. Locally there is a thin layer of siliciclast ic m udstone containing abundant  carbonaceous det r itus 

interbedded with sandstone (yellow arrows) . F)  Detail of the thin layers of siliciclast ic m udstone containing 

carbonaceous det r itus (yellow arrows)  observed in Fig. 7E. 
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Fig. 8. Upper flow regim e sedim entary st ructures observed within the m ult istorey fluvial channel 

architectural elem ent  (El Castellar area) . A-B)  Field photograph (A)  and line drawing (B)  of a sandstone 

body displaying convex-up low-angle cross st rata ( red bracket ;  blue arrows) . C-D)  Field photograph (C)  and 

line drawing (D)  of sandstone displaying scour and fill st ructures, which is direct ly overlying the convex-up 

low-angle cross st rata sandstone of Fig. 8A ( red aster isk m arks the sam e point  in both pictures) . Note that  

scours are filled by foreset  and backset  st rata (yellow and red arrows, respect ively)  that  flat ten upwards in 

places (blue bracket ) . I n the upper part  of the body, a large-scale cross st rata set  is observed (white arrow) , 

in which the inclinat ion of foresets indicates the flow direct ion. 
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Fig. 9. Flood plain architectural elem ent . A)  Schem at ic diagram and log of the flood plain architectural 

elem ent  (bracket  in the diagram  shows the locat ion of the log;  see Fig. 2 for legend)  and palaeocurrents 

m easured in the non-channelized sandstone deposits included in this element . B)  Field photograph 

(Form iche Alto area)  of reddish siliciclast ic m udstone displaying green mot t ling ( red arrows) . C)  Non-

channelized sandstone body (El Castellar area)  displaying a coarsening-  and thickening-upwards t rend 

(yellow bracket ) . The lower part  is m ade up of decim et re- thick sandstone beds, which include a fragm ent  of 

a dinosaur bone (white arrow)  and which are interbedded with greyish-greenish siliciclast ic m udstone. D)  

Non-channelized sandstone (Riodeva area)  displaying parallel lam inat ion followed upwards by sm all-scale 

cross st rata. Wave r ipple cross st rata are observed at  the top. E)  Non-channelized sandstone displaying 

large-scale sigm oidal cross st rata (Benagéber area) . F)  Dinosaur t rack observed at  the base of a non-

channelized sandstone bed (dot ted yellow line)  at  the Riodeva area. The dinosaur t rack is preserved as a 

convex hyporelief (natural t rack cast )  and shows slide m arks (parallel st r iat ions, white arrow)  made by skin 

scales. G)  Bioturbat ion observed as paired circular openings at  the top of a non-channelized sandstone bed 

at  the Riodeva area. H)  Field photograph of lim estone ( red arrow)  interbedded with reddish siliciclast ic 

m udstone (Riodeva area) . I )  Lim estone m ade up of oncoids (white arrows)  that  are up to 6-7 cm  large at  

the Riodeva area. J)  Field photograph of bioclast ic lim estone containing poorly-sorted bivalve fragm ents 

(Losilla-Alpuente area) . K)  Photom icrograph of poorly-sorted bioclast ic lim estone, which includes quartz 

grains, fragments of bivalves (green arrow) , gast ropods (yellow arrow) , echinoderm s (blue arrow) , 

ost racods (white arrow) , m iliolids ( red arrow)  and ooids (orange arrows) . 
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Fig. 10. Deltaic architectural elements. A)  Schem at ic diagram  and log of the deltaic elements (bracket  in the 

diagram  shows the locat ion of the log;  see Fig. 2 for legend)  and palaeocurrents obtained in clinoform s of 

the delta- front  elem ent  and in cross-bedded sets of the delta term inal dist r ibutary channel elem ent . B-C)  

Field photograph (B)  and line drawing (C)  of four coarsening-  and thickening-upwards deltaic successions 

(m arked with blue brackets) . Note that  the lower and uppermost  deltaic successions do not  crop out  

com pletely. The first  three deltaic successions, start ing from  the base, are m ade up of laterally-extensive 

cm - thick, very fine- to fine-grained sandstone layers showing a very low angle inclinat ion and alternat ing 

with m m- thick carbonaceous det r itus layers, which are interpreted as deposits of the delta front  elem ent  

(see text  for details) . I n the two lowerm ost  deltaic successions, the delta- font  deposits are t runcated at  their  

upperm ost  part  by the delta term inal dist r ibutary channel elem ent  (orange arrows) . The delta term inal 

dist r ibutary channel elem ent  displays erosive surfaces and is filled by sandstone displaying upwards 

flat tening st rata or backset  st rata (purple and green arrows, respect ively) . The upperm ost  deltaic succession 

is m ade up of carbonaceous- r ich, dark-grey siliciclast ic m udstone (delta- toe elem ent , blue colour) , which 

changes upwards to alternat ing sandstone and carbonaceous det r itus layers (delta front  elem ent ) . D)  Field 

photograph of the delta- toe elem ent  com prising carbonaceous- r ich, dark-grey siliciclast ic m udstone 
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interbedded with very fine-grained r ippled sandstone. E)  Field photograph of cm - thick sandstone layers 

alternat ing with m m  to cm - thick carbonaceous det r itus layers at  the lower part  of foresets of the delta- front  

elem ent . F)  Field photograph of a sandstone layer at  the lowerm ost  part  of the delta- front  elem ent  

displaying poorly-preserved dinosaur t racks at  the base, which are preserved as convex hyporeliefs or 

natural casts (white arrows and black dot ted line) . The dinosaur t racks display elongated shapes, with 

irregular and deform ed out lines and their  infill is m assive. They penet rate up to 70 cm  into the underlying 

deposit , m ade up of alternat ing carbonaceous- r ich, dark-grey siliciclast ic m udstone and r ippled sandstone 

layers, interpreted as delta toe deposits (see text  for details) . All photographs were taken at  the Riodeva 

area. 
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Fig. 11. Deltaic architectural elements. A)  Field photograph of sandstone displaying clinoform s. B)  Detail of 

three coarsening-  and thickening-upwards deltaic successions (m arked with blue brackets)  displaying 

clinoform s. Note that  the lower part  of foresets are draped by carbonaceous det r itus ( red arrow)  and, 

locally, these drapes extend upwards to the topsets (white arrow) . C-D)  Field photograph (C)  and line-

drawing (D)  of three coarsening-  and thickening-upwards deltaic successions (m arked with blue brackets) . 

Note that  deposits of the lowerm ost  succession are t runcated by an erosive surface, which incises 1.30 m  

downwards into the underlying sedim ents, m ade up of thinly-bedded sandstone and carbonaceous det r itus 

layers (delta- front  elem ent ) , and it  is filled by sandstone displaying large-scale cross st rata (delta term inal 

dist r ibutary channel elem ent ) . The yellow start  indicates the posit ion of the sam ple shown in Fig. 11F. E)  

Detail of deposits of the delta term inal dist r ibutary channel elem ent  observed in Fig.11C-D, displaying an 

erosive base and form ed by large-scale cross st rata sandstone. F)  Transm it ted light  photom icrograph of a 

well-sorted sandstone. The locat ion of the sample is indicated in Fig. 11C-D with a yellow star. All 

photographs were taken at  the Riodeva area. 
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Fig. 12. Coastal to shallow m arine architectural elements. A)  Schem at ic diagram  of the coastal to shallow 

m arine architectural elements indicat ing the posit ion of the logs shown in Fig. 12B and 13A. B)  Log of the 

coastal term inal dist r ibutary channel architectural elem ent  (bracket  in the diagram shows the locat ion of the 

log in Fig. 12A;  see Fig. 2 for legend)  and palaeocurrents obtained in the W Maest razgo Basin. C-D)  

Channelized sandstone (Form iche Alto area)  displaying a basal erosive base ( red dot ted line)  and large-scale 

cross st rata. This body is interbedded with m arl (white arrows) , which, in turn, is interbedded with shallow 

m arine lim estone (blue arrow)  and dist r ibutary mouth-bar sandstone (orange arrows) . Note that  sandstone 

displays an internal erosive surface (pink dot ted line)  filled by poorly-sorted conglom erate and also includes 

thin layers of carbonaceous- r ich m arl between the large-scale cross st rata sets (yellow arrows) . E)  Detail of 

the thin layers of carbonaceous- r ich m arl located between large-scale cross-st rata sets (yellow arrow)  and 

draping the bot tom sets and the lower part  of foresets (white arrows) . See locat ion in Fig. 12D. F)  Detail of 

the internal erosive surface (pink dot ted line)  filled by poorly-sorted conglom erate (see locat ion in Fig. 12C) . 

G)  Field photograph of poorly-sorted m udstone pebbles including fragments of bivalves overlaying the 

internal erosive surface (pink dot ted line) . See locat ion in Fig. 12F. 
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Fig. 13. Coastal to shallow m arine architectural elements. A)  Log of the dist r ibutary m outh-bar elem ent  

(bracket  in the diagram shows the locat ion of the log in Fig. 12A;  see Fig. 2 for legend)  and palaeocurrents. 

B)  Field photograph (Benagéber area)  of a sandstone body displaying a coarsening-  and thickening-upwards 

t rend (yellow bracket )  and interbedded with shallow marine lim estone (greyish st rata below and above 

yellow bracket ) . C-D)  Field photograph (C)  and line drawing (D)  of the dist r ibutary m outh-bar elem ent  

(Mora de Rubielos area)  com prising a non-channelized sandstone body interbedded with m arl that  includes 

corals in life posit ion (black arrow indicates locat ion of corals) . Note that  sandstone displays large-scale and 

sigm oidal cross st rata (white arrows) . Hamm er for scale. E)  Field photograph of colonial corals observed in 

life posit ion at  the Mora de Rubielos area. Note that  the white arrows point  to its growth lines. See locat ion 

of the coral at  Fig. 13C-D. F)  Detail of the septa of the coral shown in Fig. 13E. G)  Field photograph (Mora 

de Rubielos area)  of cm- thick sandstone displaying wave r ipple st rata at  the top (white arrows)  and 

interbedded with m arl, giving r ise to wavy bedding. H)  Trigonioids and ost reids observed within a sandstone 

body (white and blue arrows, respect ively)  at  the Mora de Rubielos area. I )  Burrowing t races observed at  

the top of a sandstone body in the Form iche Alto area. 
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Fig. 14. Sim ple aeolian dune architectural element . A)  Schem at ic diagram  and log of the sim ple aeolian dune 

architectural elem ent  (bracket  in the diagram  shows the locat ion of the log, see Fig. 2 for legend)  and 

palaeocurrents. B-C)  Field photograph (B)  and line drawing (C)  of a sandstone body displaying a 6 m - thick 

large-scale cross st rata set . Large-scale cross st rata set  is made up of convex-up foresets passing upwards 

to low-angle inclined topsets. D)  Field photograph of a m et re- thick sandstone body displaying a single set  of 

large-scale cross st rata. E)  Met re- thick sandstone body com prising a 4 m - thick large-scale cross st rata set . 

Ham m er for scale (black circle) . F)  Detail of large-scale cross st rata set  observed in Fig. 14E. Large-scale 

cross st rata set  is m ade up of successive cm - thick inversely graded st rata. Note that  the contact  between 

each st ratum  is sharp ( red arrows) . Ham m er for scale. G)  Transm it ted light  photom icrograph of sim ple dune 

aeolian sandstone displaying well-sorted subrounded to subangular grains. H)  Transm it ted light  

photom icrograph of sandstone st rata displaying inverse grain size grading. All photographs were taken at  

the Riodeva area. 
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Fig. 15. Massive and indist inct ly st rat ified aeolian dune architectural elem ent . A)  Schem at ic diagram  and log 

of the m assive and indist inct ly st rat ified aeolian dune architectural element  (bracket  in the diagram  shows 

the locat ion of the log;  see Fig. 2 for legend)  and palaeocurrents. B)  Field photograph of massive and 

indist inct ly st rat ified aeolian dune sandstone overlain by the m ult istorey fluvial channel architectural elem ent  

( its base is indicated with a yellow line) . Black lines represent  faults. C)  Field photograph of m assive and 

indist inct ly st rat ified aeolian dune sandstone, which is laterally interbedded with conglom erate bodies of the 

ephem eral fluvial channel architectural elem ent  (delim ited by red lines) . D)  Field photograph of massive and 

indist inct ly st rat ified sandstone interbedded with conglom erate bodies (delim ited by red lines) . Sandstone 

displays poorly preserved large-scale cross st rata ( foresets are out lined with black lines) . Note that  the blue 

circle shows a 2 m  large pocket  rule (white line) . E)  Field photograph of m assive and indist inct ly st rat ified 

aeolian dune sandstone overlain by the mult istorey fluvial channel architectural elem ent  ( its base is 

indicated with a yellow line) . F)  Transm it ted light  photom icrograph of sandstone displaying subangular to 

subrounded and well-sorted grains. G-H)  Field photograph (G)  and line drawing (H)  of sandstone displaying 

large-scale cross st rata in which foresets pass downwards to laterally cont inuous bot tom sets. Carbonaceous 
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det r itus and m ica flakes drape som e bot tomsets and the lowerm ost  part  of som e foresets. Note the high-

angle foresets displayed by the cross st rata set  to the r ight  of the photograph (blue arrow) . All photographs 

were taken at  the Riodeva area. 
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Fig. 16. Clim bing aeolian dune architectural elem ent . A)  Schem at ic diagram  and log of the clim bing aeolian 

dune architectural elem ent  (bracket  in the diagram shows the locat ion of the log;  see Fig. 2 for legend)  and 

palaeocurrents. B)  Field photograph of sandstone displaying a large-scale cross st rat ified set , at  least  2 m  

thick (note that  the person in the photograph is 1.65 m  tall) .  C-D)  Field photograph (C)  and line drawing (D)  

of sandstone displaying large-scale tangent ial cross st rata sets. I ndividual sets are delim ited by low-angle 

inclined bounding surfaces, which dip in the opposite direct ion to the foresets dip. E)  Field photograph of 

large-scale and high-angle cross st rata sandstone whose foresets are slight ly deform ed (yellow arrows) . F)  

Field photograph of tangent ial cross st rata sandstone. G)  Detail of the lower part  of foresets and bot tomsets 

of large-scale cross st rata sandstone. Foresets com prise cm - thick st rata pinching out  downwards, which 

correspond to grainflow st rata (gf) . Grainflow st rata are interbedded with cm - thick st rata pinching out  

upwards, corresponding to wind r ipple st rata (wr) . H)  Detail of grainflow st rata made up of fine-  to m edium -

grained sandstone (blue bracket )  and wind r ipple st rata m ade up of very fine-  to fine-grained sandstone 

( red brackets) . I )  Sandstone pseudom orph after gypsum  (desert  rose form ed by a roset te- like crystal 

aggregate) . All photographs were taken at  the Riodeva area. 
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Fig. 17. Reconst ruct ion of the different  palaeoenvironm ents inhabited by dinosaurs of the Villar del Arzobispo 

Fm  and of the lateral relat ionships between them  (not  at  scale) . 
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Fig. 18. I nteract ions between fluvial, t idal, deltaic, and aeolian environm ents observed in the Lençóis 

Maranhenses Nat ional Park (NE Brazil) .  Satellite images were taken from  Google Earth in 2019. A)  The 

coastal dune field of the Lençóis Maranhenses Nat ional Park ( to the r ight )  is located next  to the estuary of 

the Mearim  River ( to the left ) . B)  Aeolian dunes developing in a flooded area, at  the end of the dune field. 

Note that  stagnant  water bodies develop in the interdune areas (blue arrows) . C)  Aeolian dunes approaching 

a t idal channel (blue arrows) . Note how the aeolian interdunes may get  flooded ( red arrows) . D)  The coastal 

flood plain is crossed by the Grande River, which flows into a shallow water body in which deltaic sedim ents 

are deposited ( red arrow) . E)  The coastal dune field is penet rated by the Negro River (blue arrows)  and in 

its m argin sm all deltas develop in stagnant  water bodies ( red squares) . F-G)  I nterdune areas crossed by the 

Negro River. Note that  the fluvial channel erodes the aeolian dune sedim ents in F (pink arrow)  and that  

aeolian dunes m igrate over the fluvial channel in G (blue arrow) . Note that  sm all deltas develop in the 

interdune areas ( red arrows) . H- I )  Deltas developing in the m argins of the dune field. Note that  the aeolian 

dunes m igrate over the delta plain in H (blue arrows)  and that  the dist r ibutary channels rework the aeolian 

dune sedim ents in I  ( red arrow) . 
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Depositional 
settings

Archi-
tectural 
elements

Sedimentary features and fossil content Sedimentary structures
Stratigraphic position 

and occurrence in 
sections

Associated 
deposits

Environmental 
interpretation
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Composition and sorting: very poorly-sorted conglomerate. Commonly 
clast-supported. Subangular to subrounded mud, carbonate and sandstone 
clasts (<20 cm), locally rounded quartzite pebbles (<6cm).
Thickness and vertical arrangement: dm- to m-thick bodies (<3 m) with 
erosive bases (commonly symmetrical and slightly incisive, locally 
asymmetrical and very incisive) and short lateral extent (<10 m). 
Fossil content: fragments of tree trunks and dinosaur bones
Observations: more abundance of quartzite pebbles upwards in the SUP of 
the South-Iberian Basin sections.

Tractive structures: large-scale cross strata 
(set thickness <3 m)
Palaeocurrents:
- South-Iberian Basin: transport to the W-NW 
and the NE-SE.
- W Maestrazgo Basin: transport to the S-SW 
and the SE.

South-Iberian Basin:
- CLP: Riodeva 
- SUP: Riodeva, 
Benagéber and Villar 
del Arzobispo
W Maestrazgo Basin:
- CLP: Cedrillas
- SUP: Cedrillas, El 
Castellar and Formiche 
Alto

Interbedded with 
flood plain and 
massive and 
indistinctly 
stratified aeolian 
dune elements. 
Overlain by delta-
toe and simple and 
climbing aeolian 
dune elements.

Ephemeral fluvial channels 
developed during periods of 
intense rainfalls and in 
which conglomerates were 
deposited under episodic 
and flash flows.
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Composition and sorting:
- Sandstone: medium- to coarse-grained, occasionally fine-grained. 
Moderately- to poorly-sorted.
- Conglomerate: very poorly-sorted, commonly clast-supported. Medium to 
coarse-grained sandy matrix. Minor pebbly sandstone. Subangular to 
subrounded mud, carbonate and sandstone clasts (<8cm), locally rounded 
quartzite clasts (<5cm). Conglomerate overlies erosive bases and internal 
erosive surfaces.
Thickness and vertical and lateral arrangement: m-thick bodies (<15 
m) with erosive bases and great exposed lateral extent (<250m). Common 
fining-upwards trend. Occurrence of large internal erosive surfaces. 
Fossil content: fragments of tree trunks (up to few meters in size) and 
other plant remains (up to 30 cm in size).
Observations: more abundance of quartzite pebbles upwards in the SUP of 
the South-Iberian Basin sections.

Tractive structures: large-scale cross strata in 
sandstone and conglomerate (set thickness 
<1.5m). Local upwards decrease of set 
thickness. Locally thin layers of siliciclastic 
mudstone with abundant carbonaceous detritus 
are interbedded with cross strata sandstone sets 
and/or at the lower part of foresets and 
bottomsets. Occasional supercritical flow 
sedimentary structures (convex-up low-angle 
cross strata and scour and fill structures filled 
by backset and foreset strata that flatten upward 
in places). 
Palaeocurrents:
- South-Iberian Basin: main transport to the 
NE-S, minor to the W-N.
- W Maestrazgo Basin: transport to the NE, 
minor to the N and E-SE.

South-Iberian Basin:
- CLP: Villar del 
Arzobispo
-SUP: all sections
W Maestrazgo Basin:
- CLP: El Castellar and 
Formiche Alto
- SUP: all sections

Interbedded with 
flood plain and 
simple, climbing 
and massive and 
indistinctly 
stratified aeolian 
dune elements. 
Overlying massive 
and indistinctly 
stratified aeolian 
element. Overlain 
by delta elements.

Perennial to semi-perennial 
fluvial channels 
characterized by episodic 
and seasonal discharge. 
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Composition, components, texture and/or sorting:
- Siliciclastic mudstone: typically reddish colour, and minor greyish and 
greenish color.
- Sandstone: very fine- to medium-grained. Well- to moderately-sorted.
- Limestone: oncolitic and stromatolitic limestone, with variable amounts 
of quartz grains and local poorly-sorted bioclasts and ooids. 
Thickness and vertical and lateral arrangement:
- Sandstone: dm- to m-thick bodies (<60cm) with tabular or flat-convex-up 
geometries and short lateral extent (<40m). Tabular sandstone may be also 
arranged in coarsening and thickening-upwards bodies (<1.5 m). 
- Limestone: dm- to m-thick bodies (<30 cm), locally with erosive bases 
and short lateral extent (<3m)
Fossil content: dinosaur bones in siliciclastic mudstone and sandstone, 
plant remains in sandstone and bioclasts in limestone (fragments of 
bivalves, including ostreids, scarce benthic foraminifera, echinoid spines, 
gastropods, ostracods, charophytes and very scarce corals).

Tractive structures:
-Sandstone: parallel lamination followed 
upwards by current ripples (climbing ripples) 
and locally by wave ripples. Large-scale cross 
strata, sigmoidal cross strata.
Palaeocurrents:
- South-Iberian Basin: main transport to the W-
SW, minor to the NE.
- W Maestrazgo Basin: main transport to the E-
NE.
Bioturbation: burrowing traces in sandstone 
and micritic limestone.
Subaerial exposure features (top of beds): 
edaphic features (carbonate nodules in 
siliciclastic mudstone, mottling and root traces 
in siliciclastic mudstone and sandstone) and 
dinosaur tracks in siliciclastic mudstone, 
sandstone and limestone.

South-Iberian Basin:
- CLP: Riodeva and 
Villar del Arzobispo 
- SUP: all sections
W Maestrazgo Basin:
- CLP: all sections
- SUP: all sections

Interbedded with 
ephemeral and 
multistory fluvial 
channel, simple and 
climbing aeolian 
elements and tidal 
and shallow marine 
limestone. 
Overlying the delta 
terminal 
distributary 
channel, delta-front 
and distributary-
mouth bar elements. 
Overlain by the 
delta-toe and the 
massive and 
indistinctly 
stratified aeolian 
dune elements.

Flood plain located in 
alluvial to coastal areas that 
underwent periods of 
subaerial exposure and 
paleosol development, as 
well as deposition of 
overbank splay lobes during 
flood events and in which 
shallow fresh, brackish and 
marine water bodies 
developed.

Table 1. Summary of the essentially siliciclastic coastal and alluvial architectural elements of the Villar del Arzobispo Fm in the South-Iberian and western Maestrazgo 
basins. See Fig. 2 for location of the architectural elements. The references are cited in the main text.
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Composition and sorting:
- Carbonaceous-rich, dark grey siliciclastic 
mudstone
- Sandstone: very fine-grained. Well-sorted
Thickness and vertical and lateral 
arrangement:
- Carbonaceous-rich, dark grey siliciclastic 
mudstone: < 50cm of thickness and great exposed 
lateral extent (<100m)
- Sandstone: mm- to cm-thick discontinuous 
layers
Fossil content: plant remains (carbonaceous 
detritus)

Tractive structures: current ripples in 
sandstone
Bioturbation: Dinosaur tracks

South-Iberian Basin:
- SUP: Riodeva, Losilla-
Alpuente and Villar del 
Arzobispo
W Maestrazgo Basin:
- SUP: Cedrillas

Overlying flood 
plain and ephemeral 
and multistorey 
fluvial channel 
elements. Overlain 
by delta-front 
element.

Delta-toe 
sediments 
deposited by 
settling down 
from 
suspension of 
fine material.
Siliciclastic 
input.
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Composition and sorting: very fine- to medium-
grained, well-sorted sandstone.
Thickness and vertical and lateral 
arrangement: dm- to m-thick sandstone (< 2m) 
and great exposed lateral extent (<100m)
Fossil content: plant remains (carbonaceous 
detritus)

Tractive structures: clinoforms with low-
angle and large laterally-continuous foresets. 
Drapes of carbonaceous detritus at the lower 
part of foresets, locally extend up to the topsets.
Palaeocurrents:
- South-Iberian Basin: main transport to the W-
NW and S, minor to the NE.
Bioturbation: local burrowing traces. 

South-Iberian Basin:
- SUP: Riodeva, Losilla-
Alpuente and Villar del 
Arzobispo
W Maestrazgo Basin:
- SUP: Cedrillas

Overlying delta-toe 
element. Overlain 
by delta terminal 
distributary 
channel, flood plain 
and simple or 
climbing aeolian 
dune elements.

Sandy delta-
front 
sediments 
deposited by 
unconfined 
flows. 
Carbonaceou
s detritus 
deposited 
during 
periods of 
low flow.
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Composition and sorting: fine- to medium-
grained, well-sorted sandstone.
Thickness and vertical and lateral 
arrangement: dm- to m-thick bodies (<1.5m) 
with erosive bases and short lateral extent (<10m)

Overall thickness and 
vertical and lateral 
arrangement: 
Coarsening- and 
thickening- upwards 
dm- to m-thick 
successions (<2m) 
with <100m of 
exposed lateral 
extension, composed, 
from base to top, of 
delta-toe, delta-front 
and delta terminal 
distributary channel 
elements. Vertical 
stacking of individual 
deltaic successions 
producing 
composite bodies 
(<10m) with great 
exposed lateral extent 
(<200 m).

Tractive structures: Large-scale cross strata. 
Locally backset or upward flattening strata.
Palaeocurrents:
- South-Iberian Basin: main transport to the
NE and S, minor to the W and SSW

South-Iberian Basin:
- SUP: Riodeva, Losilla-
Alpuente and Villar del 
Arzobispo
W Maestrazgo Basin:
- SUP: Cedrillas

Overlying delta-
front element. 
Overlain by flood 
plain and simple or 
climbing aeolian 
dune elements.

Delta 
terminal 
distributary 
channels 
migrating in 
a deltaic 
plain

Deposition 
of deltaic 
sediments in 
shallow 
water bodies 
located in 
the flood 
plain. 
Probably 
freshwater; 
marine 
influence is 
not 
discarded.
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Composition and sorting: fine- to medium-grained, well-sorted 
sandstone. Local poorly-sorted conglomerate (mudstone subangular to 
subrounded mudstone pebbles and scarce bioclasts) with medium- to 
coarse-grained sandy matrix.
Thickness and vertical and lateral arrangement: m-thick bodies (<3m) 
with erosive bases and <50m of exposed lateral extent. Occurrence of 
internal erosive surfaces.
Fossil content: occasional fragments of bivalves in conglomerate.

Tractive structures: large-scale cross strata. 
Local thin layers of carbonaceous-rich marl 
interbedded with cross strata sandstone sets 
and/or at the lower part of foresets and 
bottomsets
Palaeocurrents:
-W Maestrazgo Basin: main transport to the E-
SE.

South-Iberian Basin:
- CLP: Villar del 
Arzobispo
W Maestrazgo Basin:
- SUP: Formiche Alto 
and Mora de Rubielos

Interbedded with 
distributary mouth-
bar element and 
marl.

Coastal terminal 
distributary channels 
flowing into coastal and 
shallow marine areas
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Composition and sorting: fine- to medium-grained, well-sorted sandstone
Thickness and vertical and lateral arrangement: cm- to m-thick bodies 
(<2.50m) with flat bases and flat or convex-up tops and short lateral extent 
(<20m). Occasional coarsening and thickening upwards trend.
Fossil content: occasional fragments of ostreids, trigonioids and other 
bivalves, corals, echinoderms, gastropods, large benthic foraminifera, 
miliolids, serpulids and plant remains.

Tractive structures:
- Dm- to m-thick bodies: large-scale cross 
strata, sigmoidal cross strata, occasional wave 
and/or current ripples at the top
- Cm-thick bodies: wave and/or current ripples 
at the top, wavy bedding. 
Palaeocurrents:
- South-Iberian Basin: main transport to the E, 
minor to the N and SE
-W Maestrazgo Basin: main transport to the NE 
and E, minor to the N and S.
Bioturbation: burrowing traces at the top

South-Iberian Basin:
- CLP: all sections
- SUP: Losilla-Alpuente 
and Villar del Arzobispo
W Maestrazgo Basin:
- CLP: all sections
- SUP: all sections

Interbedded with 
coastal terminal 
distributary channel 
element and marl or 
with tidal and 
shallow marine 
limestone.

Distributary mouth-bars 
formed by the spreading out 
of an unconfined flow at the 
terminus of distributary 
rivers in coastal and shallow 
marine areas.
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Composition and sorting: fine- to medium-grained, well-sorted 
sandstone. Locally very scattered rounded to subrounded muddy-soft 
pebbles and rounded quartzite pebbles (<1.4 cm).
Thickness and vertical and lateral arrangement: m-thick bodies (<6m) 
with flat bases and tops and great exposed lateral extent (<100m). 
Fossil content: plant remains (carbonaceous detritus)

Tractive structures: single large-scale cross 
strata sets (<6 m). High angle foresets (<36º). 
Foresets locally pass upwards to low-angle 
topsets.
Palaeocurrents:
- South-Iberian Basin: main transport to the SE, 
W-SW or the NW.

South-Iberian Basin:
- SUP: Riodeva, Losilla-
Alpuente and Benagéber

Interbedded with 
flood plain element. 
Locally overlies 
ephemeral fluvial 
channel, delta 
terminal 
distributary channel 
or delta-front 
elements.

Transverse and dome-
shaped aeolian dunes 
migrating in the flood plain
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Composition and sorting: fine- to medium-grained, well-sorted 
sandstone.
Thickness and vertical and lateral arrangement: m-thick bodies (<25 
m) with flat bases and tops and great exposed lateral extent (<80 m).
Fossil content: local plant remains (carbonaceous detritus)
Observations: massive appearance.

Tractive structures: local poorly-preserved 
large-scale cross strata (set thickness <7m), 
high angle foresets (<30º). Local drapes of 
carbonaceous detritus and mica flakes at 
laterally continuous bottomsets and the lower 
part of foresets.
Palaeocurrents:
- South-Iberian Basin: main transport to the W-
NW, minor to the SW.

South-Iberian Basin:
- SUP: Riodeva

Interbedded with 
ephemeral fluvial 
channel element. 
Overlying coastal 
flood plain element. 
Overlain by 
multistorey fluvial 
channel element.

Aeolian dunes subjected to 
episodic flooding, causing 
the inundation of interdune 
areas and the development 
of ephemeral channels 
between aeolian dunes.
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Composition and sorting: fine- to medium-grained, well-sorted 
sandstone. Local very scattered subrounded mud pebbles and rounded 
quartzite pebbles (<1.5 cm)
Thickness and vertical and lateral arrangement: m-thick bodies (<5 m) 
with great exposed lateral extent (<100 m)
Observations: scarce occurrence of desert roses.

Tractive structures: cosets of large-scale cross 
strata (set thickness <2 m). Low-angle inclined 
(<10º) and laterally continuous (<50m) set 
bounding surfaces. High angle tangential 
foresets (<32º). Local slightly deformed 
foresets. 
Palaeocurrents: 
- South-Iberian Basin: transport to the SE or the 
NW

South-Iberian Basin:
- SUP: Riodeva and 
Benagéber

Interbedded with 
multistorey fluvial 
channel element. 
Overlying 
ephemeral fluvial 
channel element, 
delta terminal 
distributary channel 
and delta-front 
elements. Overlain 
by flood plain 
element.

Climbing aeolian dunes that 
migrated in the flood plain 
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